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1. Introduction

When the Jones polynomial V [J] appeared in 1984, one of its spectacular features was that it was often able to
distinguish between a knot and its mirror image, or obverse, by taking different values on them. This property of
V was a novelty, since its decades-old predecessor, the Alexander polynomial ∆ [Al], is always equal for a knot and
its mirror image. Nonetheless, ∆ was known to satisfy certain properties for an achiral, or amphicheiral knot, a
knot equivalent to its mirror image [Ha, HK]. The generalizations of the Jones polynomial, the HOMFLY, or skein,
polynomial P [F&] and the Kauffman polynomial F [Ka], consequently also distinguish mirror images. More precisely,
the V , P and F polynomial of an achiral knot has the special property of being self-conjugate, or reciprocal, that is,
invariant when (one of) its variable(s) is replaced by its inverse.

In this paper we will consider the Alexander and skein polynomials of several large classes of achiral knots and prove
some properties of their leading coefficients. We will primarily address achiral alternating knots, where such properties
are closely related to Murasugi’s ∗-product. We prove in particular that perfect squares are exactly the numbers
occurring as leading coefficients maxcf ∆ of the Alexander polynomial of alternating achiral knots (corollary 5.12).
This improves the previously known fact, shown by Murasugi and Przytycki [MP2, MP3], that these coefficients can
not be primes. For strongly and negatively amphicheiral knots the same squareness result is obtained using [Ha, HK].
The theme of relations of achiral knots to square numbers was studied in detail in [St2], and the present paper is a
continuation of this previous work. An independent proof of our result for alternating knots was obtained soon after
our proof by C. Weber and C. V. Quach Hongler [QW]. (See the end of §3 for some explanation.)

We will illustrate our results with several examples. In particular we will solve negatively (see example 6.3) a re-
lated conjecture of Murasugi and Przytycki in [MP3], stating that the skein polynomial would always detect chirality
whenever their primeness (chirality) condition on maxcf ∆ does.

Some open problems will be mentioned during the discussion. Particularly worth pointing to is a conjecture of
Kawauchi (see remark 4.3), which will be seen to imply an extension of our results on the Alexander polynomial
of alternating to general amphicheiral knots. A related interesting problem is discussed in [St4], namely whether all
achiral knots have diagrams that can be transformed into their obverse by moves in S2. We also omit here a detailed
study of links (where also the additional technical issue of component orientation becomes relevant).
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2 2 Basic preliminaries

2. Basic preliminaries

We begin by discussing the most basic concepts that will be employed in this paper. (A few more detailed definitions
are given later.) We recall first the description of some link polynomials, and then general properties of knot diagrams.
We will also use some abbreviations in the text: “w.r.t.” stands for “with respect to”, and “w.l.o.g.” abbreviates
“without loss of generality”.

Knots and links are represented by diagrams. A knot (resp. link) diagram is understood as a smoothly immersed
closed plane curve (resp. a collection of such curves) with transverse self-intersections (crossings), at which one of
the intersecting plane curve segments is distinguished (over- and undercrossing). In the following knots and links, and
their diagrams, will be assumed oriented, but sometimes orientation will be irrelevant. The inverse of a knot or link
(diagram) is obtained by altering the orientation of all components.

The Alexander polynomial ∆ L(t) [Al] is an invariant of oriented knots and links L with values in Z[t, t−1] (a Laurent
polynomial in one variable t). Originally, one has a topological definition of ∆ , which is accurate only up to multiplica-
tion with units in Z[t, t−1] (see [Ro]). The fix of this ambiguity (normalization) is usually chosen so that ∆ (t) = ∆ (1/t)
and ∆ (1) = 1. Later it was found that the so normalized polynomial can be alternatively characterized by the properties
of having the value 1 on the unknot and satisfying the “skein” relation

∆ (L+) − ∆ (L−) = (t1/2− t−1/2) ∆ (L0) . (1)

Herein L±,0 are three links with diagrams differing only near a crossing.

L+ L− L0

(2)

As above, we will often omit from the notation ∆ L(t) the link L or variable t (or both) if it is irrelevant or clear from
the context, and we will also sometimes write ∆ (L) for ∆ L. It is well-known that the the Alexander polynomial does
not distinguish a knot K from its mirror image !K, that is, ∆ K(t) = ∆ !K(t) for any knot K.

The skein or HOMFLY polynomial P [F&] is a Laurent polynomial in two variables l and m of oriented knots and links
and can be specified by being equal to 1 on the unknot and the skein relation

l−1 P
(
L+

)
+ l P

(
L−
)

= −mP
(
L0
)
, (3)

with L±,0 as in (2). (This convention uses the variables of [LM], but differs from the convention there by the inter-
change of l and l−1.) Here and below a similar explanation to the one for ∆ applies on the use of P(l,m) and PK = P(K)
as abbreviations of PK(l,m).

It easily follows from (3) that P is a generalization of the Alexander polynomial. Consequently, there is a substitution
formula (see [LM]), expressing the Alexander polynomial ∆ , for the normalization so that ∆ (t) = ∆ (1/t) and ∆ (1) = 1,
as a special case of the HOMFLY polynomial (i is here the complex unit):

∆ (t) = P(i, i(t1/2 − t−1/2)) . (4)

The skein polynomial satisfies the property PK(l,m) = P!K(l−1,m). A similar identity holds for the Jones V [J] and
Kauffman F [Ka] polynomials. Such relations mean that achiral knots K (i.e. knots with K =!K) have self-conjugate
polynomials (in one of the variables). In contrast to ∆ , this property is not automatic, and so allows for a chirality
test. This test is efficient but not perfect. The popular example of a chiral knot K (i.e. a knot with K 6=!K) having
self-conjugate polynomials is 942 in the tables of [Ro, appendix].

Let L = Q[t, t−1] be the Laurent polynomial ring in one variable. For X ,Y ∈ L we write X ∼ Y if X and Y differ by
a multiplicative unit in Z[t±1], that is, X(t) = ±tnY (t) for some n ∈ Z. For Y ∈ L and a ∈ Z, let [Y ]ta = [Y ]a be the
coefficient of ta in Y . For Y 6= 0, let CY = {a ∈ Z : [Y ]a 6= 0} and define

mindegY = min CY , maxdegY = max CY , and spanY = maxdegY −mindegY

to be the minimal and maximal degree and span (or breadth) of Y , respectively. We will denote the maximal degree,
or leading, coefficient [Y ]maxdegY of t in Y by maxcfY .
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More generally, let x1, . . . ,xn be variables, and Y ∈ Q[x1, . . . ,xn]. Let M = {1, . . . ,n}, Φ ⊂ M, and Q = ∏i∈ Φ xki
i for

ki ∈ N (not necessarily non-zero) be a monomial in {xi}i∈Φ . Then we write [Y ]Q for the coefficient of Q in Y , and
understand it so that [Y ]Q ∈ Q[xi]i∈ Φ , with Φ = M \ Φ . The maximal degree maxdegxi

Y of Y w.r.t. the variable xi is
the largest power of xi occurring in a monomial Q of Y (that is, a monomial Q in x1, . . . ,xn with [Y ]Q 6= 0 in Q). The
leading coefficient maxcfxi Y of Y w.r.t. xi is defined by [Y ]

x
maxdegxi Y
i

∈ Q[x j] j∈{i}. For Laurent polynomials, we replace

xi by x±1
i in the polynomial ring, and ki ∈ N by ki ∈ Z in Q.

Definition 2.1 The diagram on the right of figure 1 is called connected sum A#B of the diagrams A and B. If a diagram
D can be represented as the connected sum of diagrams A and B, such that both A and B have at least one crossing, then
D is called disconnected, or composite; otherwise it is called connected, or prime. Equivalently, a diagram is prime if
any closed curve intersecting it in exactly two points does not contain a crossing in one of its interior or exterior.

Any diagram D can be written as D1#D2# · · · #Dn, so that all Di are prime and have at least one crossing. Then Di are
called the prime (or connected) components/factors of D. A link L is prime if for any composite diagram D1#D2 of L,
one of D1,2 is an unknot diagram.

Definition 2.2 A diagram D is split if there is a closed curve which does not intersect D, but which contains parts of
D in both its interior and exterior.

A # B = A B

Figure 1

Definition 2.3 A crossing q in a link diagram D is called nugatory if there is a closed (smooth) plane curve γ inter-
secting D transversely in q and nowhere else. A diagram is called reduced if it has no nugatory crossings.

Theorem 2.4 ([Me]) An alternating reduced diagram of a link L is prime iff L is prime.

By replacing in a diagram D all fragments of the type L± in (2) by fragments of the type L0, we obtain a collection of
loops called Seifert circles of D. A Seifert circle is separating if it contains other Seifert circles in both its interior and
exterior. A diagram with no separating Seifert circles is special. We call the crossings in the fragments of L+ resp. L−
in (2) resp. positive and negative. A diagram is called positive or negative if all of its crossings are so. A diagram is
special alternating if it is special and alternating. (For non-split special diagrams, alternating is equivalent to one of
positive or negative.)

Definition 2.5 Let c(D) be the crossing number of a link diagram D. Let c(L) be the crossing number of a link L,
which is the minimal crossing number of all diagrams D of L.

Theorem 2.6 ([Ka2, Mu2, Th]) Each alternating reduced diagram is of minimal crossing number (for the link it
represents).

3. The leading coefficients of the Alexander and HOMFLY polynomial

In this section we formulate, and later partly explain, a very striking occurrence of (perfect) squares in connection
with invariants of achiral knots, namely in the leading coefficients of their Alexander polynomial, and discuss a partial
generalization of this property to the HOMFLY (skein) polynomial.
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Definition 3.1 Let g = g(K) be the genus of a knot K, the minimal genus of a Seifert surface S of K, which means an
embedded compact oriented surface S ⊂ R3 with boundary ∂S = K and no closed components. For a diagram D of K,
the Seifert surface obtained by applying the Seifert algorithm on D is called canonical Seifert surface of D. The genus
of this surface is called (canonical) genus g(D) of D. This genus can be expressed as

g(D) =
c(D)− s(D)+1

2
,

with s(D) being the number of Seifert circles of D (see [Ad, §4.3] or [Ro]). Call the minimal genus of a diagram D of
a knot K the canonical genus of K.

Note that for the genus g(K) of K arbitrary, not necessarily canonical, Seifert surfaces of K are taken into account. To
underscore this, in [Mo], Morton showed the inequality

maxdegm P(D) ≤ c(D)− s(D)+1 (5)

for any arbitrary link diagram D, and observed from it that there are knots K which do not possess a diagram D with
g(D) = g(K) (a fact that also implicitly follows from [Wh]). Such knots K are believed, though, to be somewhat
exceptional. In fact, the main interest in the canonical genus comes from the study of diagrams D that satisfy the
above equality. Of particular importance in this regard is the following classical fact:

Theorem 3.2 ([C, Mu3]) If K is an alternating knot with an alternating diagram D, then g(D) = g(K). Also we have
maxdeg ∆ K = g(K).

For an alternating knot K, the HOMFLY polynomial PK ∈ Z[m2, l±2] is known to have maxdegm PK = 2g(K), i.e.

PK(l,m) = a2g(l)m2g +(lower m-degree terms) , (6)

with a2g ∈ Z[l2, l−2] being a non-zero Laurent polynomial in l2 (see [Cr]).

Some experimental and heuristical evidence (explained below) leads to two main questions we consider here. The first
one concerns the Alexander polynomial.

Question 3.3 Is maxcf ∆ K for an achiral knot K always a square up to sign, and if ∆ is normalized so that ∆ (t) = ∆ (1/t)
and ∆ (1) = 1, is the sign sgn(maxcf ∆ K) always given by (−1)maxdeg ∆ K ?

The question about ∆ can be generalized to P. If K is achiral, then we have that Pmax = maxcfm P (which equals a2g
in (6) if K is alternating) satisfies Pmax(l−1) = Pmax(l). However, another property of Pmax becomes often apparent.

Question 3.4 Which achiral knots have maxcfm P of the form f (l2) f (l−2) for some f ∈ Z[l]?

We will be concerned with answering these questions for several classes of achiral knots, in particular for alternating
knots. It appears convenient to summarize these classes for each question in one statement, but first we need some
more terminology.

Recall that a knot K is fibered if S3 \K fibers over S1 (with fiber being a minimal genus Seifert surface for K).

The notion of a homogeneous diagram/link was introduced by Cromwell [Cr], in an attempt to extend certain results
on positive and alternating links. It relies on the concept of (diagrammatic) Murasugi sum, which will be of central
importance also here.

Definition 3.5 (see [Cr, §1]) The Seifert picture (union of Seifert circles) of a link diagram D separates the plane into
regions. A non-empty part of D lying in some such region is called a block. Then we say that D is homogeneous if
all blocks Di of D are positive or negative (i.e. special alternating). A link is homogeneous if it has a homogeneous
diagram.
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In the terms of definition 3.5, a Seifert circle is separating if it bounds blocks on both sides, and a diagram is special if
it has only one block. In particular, any of the blocks of D is special.

Since in positive/negative diagrams all blocks are positive/negative, such diagrams are homogeneous. Alternating
diagrams are also homogeneous, this time so that blocks which are Murasugi-summed along a Seifert circle have
opposite sign.

Definition 3.6 (see [MP] for example) The operation that reconstructs a diagram from its blocks by gluing them back
along the separating Seifert circles is called (diagrammatic) ∗–product or Murasugi sum.

When considering knot orientation, then we distinguish among achiral knots between +achiral (or positive am-
phicheiral) and −achiral (or negative amphicheiral) ones, dependingly on whether the deformation into the mirror
image preserves or reverses the orientation of the knot. (For links one has to attach a sign to each component, and take
into account possible permutations of the components. Usually one calls the link + or −achiral if the orientation of
all components is preserved or reverted, without regard to their order, i.e. allowing one component to be mapped to
the mirror image of another.)

Recall that a knot K is called strongly achiral if it admits an embedding into S3 pointwise fixed by the (orientation-
reversing) involution (x,y,z) 7→ (−x,−y,−z). Again dependingly on the effect of this involution on the orientation of
the knot we distinguish between strongly +achiral and strongly −achiral knots.

Theorem 3.7 Let K be an (+/−)achiral knot. Then maxcfm PK is of the form f (l2) f (l−2) for some f ∈ Z[l], if

1) K is a fibered homogeneous knot,

2) K is a homogeneous knot of crossing number at most 16, or

3) K is an alternating knot.

From formula (4) it is straightforward to see that whenever the leading m-coefficient of PK is of the above form,
both the modulus and sign of maxcf ∆ K are as specified in question 3.3. There are some more situations where these
Alexander polynomial properties can be established. We list again all cases we know of, even if some of them are easy
to prove.

Theorem 3.8 Let K be an achiral knot. Then |maxcf ∆ K | is a square and sgn(maxcf ∆ K) = (−1)maxdeg ∆ K , if

1) K is a fibered homogeneous knot,

2) K is a knot of crossing number at most 16,

3) K is an alternating knot,

4) K is strongly achiral, or

5) K is negative achiral.

Before the proofs of theorems 3.7 and 3.8 we give some motivational and historical comments.

Question 3.3 was the first one I came across, addressing special properties of the leading coefficients of the Alexander
polynomial of achiral knots. This question came up when considering the formula

maxcf ∆ K = ±2−2g
2g

∏
i=1

ai

for a rational (or 2-bridge) knot K given in its Conway notation a1 . . .a2g, with all ai 6= 0 even and g = g(K). If K
is achiral, the sequence (a1, . . . ,a2g) is palindromic, and so we have, up to the sign, the requested property. Then a
verification of all prime knots in Thistlethwaite’s tables [HT] up to 16 crossings failed to turn up an example answering
the question negatively. (Note that the property for a composite knot will follow from that of its factors.) The rational
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knot argument led to question 3.4. Its diagrammatic, and not topological, origin suggested that the question may not
have a positive answer in general, but at least on some (diagrammatically defined) nice knot classes, for example
alternating knots. Some electronic search indeed found exceptions among non-alternating knots. Later the proof for
alternating knots was found. While it subsumes the rational knot case, latter still deserves some attention by virtue of
its generalization to Montesinos knots (see §7). Then the theorem of [HK] was used to prove the Alexander polynomial
property for strongly achiral knots.

A last remark aims to clarify, from my perspective and knowledge, the relation of this work to [QW] and [St2]. The
statements about alternating knots in theorems 3.7 and 3.8 were proved independently in [QW]. The present proof,
apart from being simplified (using mutations instead of flypes), was obtained somewhat earlier. It was explained in
summer 2001 to Prof. Murasugi and appeared in written form in the arXiv version v2 of [St2] dated 9/2/01. In summer
2002, Prof. Murasugi gave me a copy of the preprint of [QW]. The referee supporting the publication of [St2] asked
to remove the section on theorems 3.7 and 3.8. I followed his advice, at that time unaware of the publication of [QW],
which I found only shortly thereafter. Thus I present a separate exposition of this material here.

4. Non-alternating knots

We now collect the arguments that prove the statements of theorems 3.7 and 3.8 for non-alternating knots K. Some
arguments are well-known, a matter of electronic verification, or follow algebraically from theorem 4.1. These parts
are briefly discussed first. Our main result are the statements in the alternating case, which are proved subsequently.
We will finish by mentioning some classes of independent interest that we identify as subclasses of the alternating
knots.

We will use the following theorem on the Alexander polynomial of strongly achiral knots, due to Hartley and Kawauchi.

Theorem 4.1 ([HK]) If K is strongly negative amphicheiral, then ∆ (t2) ∼ F(t)F(−t) for some F ∈ L with F(−t) ∼
F(t−1). If K is strongly positive amphicheiral, then ∆ (t) = F(t)2 for some F ∈ L with F(t) ∼ F(t−1).

We require one standard number theory term.

Definition 4.2 The p-adic valuation of s/t ∈ Q\{0} w.r.t. the prime p is given by

val p

( s
t

)
:= max{ i ∈ N : pi | s}−max{ i ∈ N : pi | t } .

It makes sense to set val p(0) = ∞. For s, t ∈ Q, the properties

• val p(−s) = val p(s),

• val p(s · t) = val p(s)+val p(t) and

• val p(s+ t) = val p(s) when val p(s) < val p(t)

are obvious and well-known.

Proof of theorems 3.7 and 3.8.

fibered knots. A class of knots for which the squareness property of maxcf ∆ is trivial are the fibered knots, since for
them maxcf ∆ =±1. For fibered homogeneous (in particular, alternating) knots, the other properties also follow easily
from known results, because by [Cr, corollaries 4.3 and 5.3] and [MP] we have for such knots that maxcfm P = lk for
some k ∈ 2Z, and then achirality shows k = 0.

strongly achiral knots. For strongly achiral knots we obtain the claims of theorem 3.8 from the results of [HK] stated
in theorem 4.1. We start with the following observation.

For a prime p, the p-adic valuation of non-zero rationals is additive under multiplication. For a polynomial F ∈
L = Q[t, t−1], let its minimal p-adic valuation be the minimal p-adic valuation of all of its non-zero coefficients. An
easy argument shows that, similarly to the case of rational numbers, the minimal p-adic valuation is additive under
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polynomial multiplication. It follows that if a non-zero polynomial in Z[t, t−1] factors as F · F̃ in Q[t, t−1], and F has
a coefficient with a negative p-adic valuation, then all coefficients of F̃ have positive p-adic valuation. However, in
the way that F(t) and F̃(t) = ±t±nF(±t±1) are related in theorem 4.1, this is impossible. Thus in the sequel we can
assume w.l.o.g. that theorem 4.1 holds with L = Z[t, t−1] instead of L = Q[t, t−1].

The square property of |maxcf ∆ | is then obvious. To obtain the sign of maxcf ∆ , consider first strongly positive
amphicheiral knots. Since then F(t) ∼ F(t−1), and we have ∆ (1) = 1, it follows that F(1) = ±1, and so F(t) =
+tnF(t−1), rather than F(t) =−tnF(t−1). Moreover, since F(−1)≡ F(1) mod 2, we see that F(−1) 6= 0, and n must
be even. Then so is spanF. Hence 4 | span ∆ , and maxcf ∆ = (maxcfF)2 > 0, as desired.

Now consider the sign of maxcf ∆ for a strongly negative amphicheiral knot. To identify this sign, first normalize the
polynomial F found by theorem 4.1 by some +tn so that mindegF =−maxdegF . (Note that span ∆ = spanF , which
is even.) Then we have

F(t) = ±F(−t−1) . (7)

If we normalize ∆ so that mindeg ∆ = −maxdeg ∆ and ∆ (1) = 1, then the minimal and maximal degrees show that in

∆ (t2) = ±tn F(t)F(t−1)

we must have n = 0, and the evaluation at t = 1 shows that we must have the positive sign. Then, since ∆ (1) = 1 and
∆ (t) = ∆ (t−1), the absolute term [∆ (t)]0 of ∆ (t) is odd. Thus the same is true for ∆ (t2) = F(t)F(t−1). But

[
F(t)F(t−1)

]
0 =

maxdegF

∑
i=mindegF

[F(t)]2i ,

and so from (7) we conclude that F must have non-zero absolute term. This determines the sign in (7) to be positive,
and then maxcfF = ±mincfF dependingly on the parity of maxdegF = maxdeg ∆ .

negative amphicheiral knots. Hartley [Ha] has extended the result of [HK] for strongly negative amphicheiral knots to
arbitrary negative amphicheiral knots. Thus the claim follows from the previous argument.

knots with at most 16 crossings. The positive answer to question 3.3 for these knots follows from some experimental
results related to question 3.4. We examined the tables of prime knots of [HT]. Note that the verification of both the
square and the sign property of maxcf ∆ reduce to prime knots. Prime factors of composite achiral knots are achiral or
mutually mirrored in pairs. The sign property of the pairs is dealt with as in the argument for strongly +achiral knots
above in the proof. Then both properties are preserved under multiplication of polynomials.

It is clear that an answer ‘yes’ to question 3.4 implies the same answer to question 3.3. A computer experiment found,
though, that the answer to question 3.4 is not positive in general. The examples showing exceptional behaviour are
not quite simple, and their location required the full extent of the tables presently available. Among ≤ 16 crossing
knots, only three fail to have this property: 161025717, 161025725 and 161371304. They are all +achiral and have P =
m8(l−2 + 3 + l2) + O(m6). See figure 2. Since the Alexander polynomial of these knots has degree 4 and leading
coefficient 1, they still conform to the properties requested in question 3.3. Also, the knots in figure 2 were found
to be fibered (the first two by myself using the method of [Ga], and the third one by M. Hirasawa), showing that the
homogeneity assumption in part 1) of theorem 3.7 is essential.

alternating knots. We defer this part to corollary 5.12. 2

Remark 4.3 The property of the Alexander polynomial of a strongly negative amphicheiral knot proved in [HK] was
conjectured by Kawauchi [Kw] to hold for arbitrary amphicheiral knots. This conjecture clearly implies a positive
answer to question 3.3. Kawauchi’s conjecture is true in particular for 2-bridge knots, since in [HK] he shows that
all amphicheiral 2-bridge knots are strongly negative amphicheiral. Hartley’s extension [Ha] of the result in [HK]
confirmed the conjecture for general negative amphicheiral knots. (Note that Hartley also obtains a condition for
positive amphicheiral knots, but it is too weak to address the conjecture or our question.) Along the proof of part 2) in
theorem 3.8 Kawauchi’s conjecture was also verified for all prime amphicheiral knots of ≤ 16 crossings.

Remark 4.4 Fibered homogeneous knots contain the homogeneous braid knots of [S], but also many more. For
example, there are 15 fibered homogeneous prime 10 crossing knots, among them 12 alternating and 2 positive ones,
which can be shown by the work of [Cr] and an easy computer check not to have homogeneous braid representations:
1060, 1069, 1073, 1075, 1078, 1081, 1089, 1096, 10105, 10107, 10110, 10115, 10154, 10156 and 10161.
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161025717 161025725 161371304

Figure 2: Three +achiral knots with maxcfm P not of the form f (l2) f (l−2).

Remark 4.5 It follows from our argument for strongly positive amphicheiral knots K that maxdeg ∆ K is even. Since
maxdeg ∆ is often equal to the genus g(K) of K (for example if K is alternating of fibered), one can raise a natural
question: are there strongly positive amphicheiral knots of odd genus? Such knots indeed exist. Among the tabulated
knots, the simplest instances have no less than 16 crossings, and two examples I found are 161227719 and 161371180.
They have 16 crossing diagrams obtained by Murasugi-summing two special pretzel diagrams (+2,+2,−2,−2) along
their valence-4-Seifert circles. These diagrams show that the knots are strongly positive amphicheiral. Their (genus 3)
canonical surfaces can be proved to be of minimal genus using for example Gabai’s work. For both knots maxdeg ∆ =
2.

5. Alternating knots

The remaining cases of theorems 3.7 and 3.8 are included in two more general theorems. The first one generalizes the
result of [MP2], where it was shown that for an alternating amphicheiral knot the leading coefficient of the Alexander
polynomial is not a prime. We require some definitions of properties that we will need to refer to below.

Definition 5.1 A flype is a move on a diagram shown in figure 3.

p
PQ −→

p P
Q

Figure 3: A flype near the crossing p

By the fundamental work of Menasco-Thistlethwaite, we have a proof of the Tait flyping conjecture.

Theorem 5.2 ([MT]) For two alternating diagrams of the same prime alternating link, there is a sequence of flypes
taking the one diagram into the other.

Herein we consider diagrams identical if they are transformable into each other by S2-moves, meaning changes of the
unbounded region, and flip. A flip is a rotation by 180◦ along some axis in the projection plane, or alternatively a
combination of mirroring the diagram in the plane, and then changing all crossings. (A flip has the effect of seeing a
diagram, projected on a sphere, from the other side of the sphere. It does not need to be realizable by a sequence of
S2-moves alone.)
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Definition 5.3 Given a link diagram D and a closed curve γ intersecting D in exactly four points, γ defines a tangle
decomposition of D.

D = Q P γ (8)

Mutation is an operation introduced by Conway [Co]. It is performed by removing one of the tangles P in some tangle
decomposition of D and replacing P by a tangle obtained from it by 180◦ rotation along the axis perpendicular to the
projection plane, or horizontal or vertical in the projection plane. For example:

Q

P

(To make orientations compatible, for oriented diagrams D possibly the orientation of either P or Q must be altered.)
The curve γ is called the Conway circle for this mutation.

Remark 5.4 Note that a flype can be realized as a sequence of mutations.

Definition 5.5 As in definition 3.5, the Seifert picture of a link diagram D defines the blocks D1, . . . ,Dn of D. These
blocks may not be prime diagrams. We call the prime components Di, j of Di block prime components of D. Then
we say that D is semi-homogeneous if all block prime components are positive or negative. (That is, Di, j are special
alternating, but, unlike homogeneity, possibly of different sign within the same block/for the same i.)

An example of a semi-homogeneous diagram which is not homogeneous will occur later as the (unique) minimal
crossing diagram of the knot 1445601 in figure 5.

Remark 5.6 Almost all results of [Cr] extend to semi-homogeneity, but this point is not interesting to discuss. The
new feature of semi-homogeneity which will turn out useful below is that, unlike homogeneity, it is invariant under
flypes and mutations.

Theorem 5.7 Let a knot or link K have a semi-homogeneous diagram D which can be turned into its mirror image
(possibly with opposite orientation) by a sequence of mutations and S2-moves. Then |maxcf ∆ K | is a square.

Remark 5.8 There are two ways of building a mirror image of a diagram: to mirror in the projection plane (plane
mirroring) or to change all crossings (crossing mirroring). However, here distinguishing between the two mirrorings is
irrelevant, since they differ by the flip mentioned after theorem 5.2, and such a flip is indeed a special type of mutation.

Proof of theorem 5.7. For a link diagram D, we denote by D̃ the mutation equivalence class of D, that is, the set of
all diagrams that can be obtained from D by a sequence of mutations. We consider orientation reversal as a special
type of mutation, so a diagram and its inverse belong to the same mutation equivalence class. Also, the skein and
Alexander polynomial are invariant under mutation, so they are well-defined on a mutation equivalence class.

The treatment of split diagrams D easily reduces to the non-split ones, so assume below that D is non-split. Let Di be
the blocks of D, and Di,1, . . . ,Di,ni be the prime components of Di. Note that all Di, j are positive or negative. They
will have no nugatory crossings if D has neither.

Define
I (D) := { D̃i, j }i=1,...,n, j=1,...,ni .

Here a set is to be understood with the order of its elements ignored, but with their multiplicity counted (i.e.,
{1,1,2,3} = {1,1,3,2} 6= {1,2,3}).
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Now apply a mutation on D. The Seifert picture separates the Conway circle into 3 parts A, B and C.

CA B

Because the Conway circle intersects the Seifert picture only in 4 points, all parts A, B and C represent prime compo-
nents of the blocks in D they belong to, or possibly connected sums of several such prime components.

Mutation then has the effect of applying mutation on B and interchanging and/or reversing A and C. Therefore,
I (D) = I (D′) for any iterated mutant diagram D′ of D.

If D has the property assumed in the theorem, then I (D) = I (!D), or

{ D̃i, j }i=1,...,n, j=1,...,ni = { !̃Di, j }i=1,...,n, j=1,...,ni .

Let φ : { D̃i, j }→ { D̃i, j } be the bijection induced by D̃i, j 7→ !̃Di, j.

Since mutation preserves the writhe, φ has no fixpoints (unless some Di, j has no crossings, which leads to the previ-
ously excluded situation that D is split). Thus φ descends to a bijection

φ : { D̃i, j : Di, j positive}→ { D̃i, j : Di, j negative} .

Then by the work of [Mu] we have that maxcf ∆ is multiplicative under ∗-product, and hence

maxcf ∆ D = ∏
i, j

maxcf ∆ Di, j

= ∏
i, j :Di, j positive

maxcf ∆ Di, j · maxcf ∆ !Di, j

= ∏
i, j :Di, j positive

maxcf ∆ Di, j · ±maxcf ∆ Di, j

= ±
(

∏
i, j :Di, j positive

maxcf ∆ Di, j

)2

,

as desired. 2

Definition 5.9 We say that a link diagram D is P-maximal if it makes Morton’s inequality (5) exact (that is, this
inequality becomes an equality).

In [Cr, corollary 4.1] it was shown that homogeneous diagrams are P-maximal, and by remark 5.6 so are semi-
homogeneous ones. Many knots have P-maximal diagrams – beside homogeneous knots, for example all the knots
in Rolfsen’s tables [Ro, appendix], and also all 11 and 12 crossing knots tabulated in [HT]. However, some knots do
not – in [St, fig. 9] we gave four examples of 15 crossings.

In [MP] it was shown that maxcfm P is multiplicative under ∗-product of P-maximal diagrams. From this result we
have now

Theorem 5.10 Under the same assumption as theorem 5.7 we have maxcfm P(D) = f (l2) f (l−2) for some f ∈ Z[l].

Proof. Using [MP] instead of [Mu], we obtain maxcfm P(D) = f̃ (l) f̃ (l−1). Additionally, f̃ is up to units in Z[l±1] a
product of elements in Z[l±2], since for any link diagram Di, j only even or only odd powers of l occur in maxcfm P.
Then the result follows. 2
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Remark 5.11 Beware that simply using X(l) = f̃ (l) f̃ (l−1) ∈ Z[l±2] does not suffice to conclude X(l) = f (l2) f (l−2).
Take for example f̃ (l) = −l−1 + 1 + l. Then X(l) = −l−2 + 3 + l2 ∈ Z[l±2], but X(

√
l) ∈ Z[l±1] is irreducible. (In

particular, theorem 1.2 (2) of [QW], even with signs ignored, is stated weaker than theorem 5.10.)

We complete now the proof of theorems 3.7 and 3.8.

Corollary 5.12 If K is an alternating achiral knot, then |maxcf ∆ K | is a square and sgn(maxcf ∆ K) = (−1)maxdeg ∆ K .
Moreover, maxcfm PK = f (l2) f (l−2).

Proof. The claim on maxcfm P follows from the facts that any alternating diagram is homogeneous, theorem 5.2, and
remark 5.4. The properties of ∆ then follow from (4). 2

Note that with corollary 5.12 we obtain an exact condition what numbers occur as |maxcf ∆ K | for an alternating achiral
knot K, since for every perfect square finding a proper K is easy.

6. Some examples

One can visualize the squareness properies by some examples.

Example 6.1 Alternating knots of small genus are completely classified. For genus one this was done explicitly in
[St3], although I was aware of, and motivated by, a related previous remark by Rudolph. The result there shows that
the achiral alternating genus one knots are the rational knots (a,a), with a even (and so for example implies easily
Corollary 1.4 of [QW]). The classification was continued for genus up to 4, but can unlikely be (technically) completed
for genus 5.

Example 6.2 It is useful to see examples showing that theorems 5.7 and 5.10 can be applied as a chirality test for an
alternating knot. For interesting examples it makes sense to consider only alternating knots with self-conjugate skein
polynomial. The knots 121171 and 121205 in [HT], in figure 4, are the simplest ones that have |maxcf ∆ | a square, but

121171 121205 12669

Figure 4

maxcfm P 6= f (l2) f (l−2). For all such knots up to 16 crossings where the test of maxcfm P excludes achirality, so does
already the (weaker) test for sgn(maxcf ∆ ), and also the Kauffman polynomial. Some knots, for example 16130184,
have zero signature, but the signature condition and the squareness test of |maxcf ∆ | combinedly also apply for all
examples.

The existence of a sufficient variety of knots with self-conjugate skein polynomial leads also to the following related
examples.
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Example 6.3 Murasugi-Przytycki conjectured (for general knots) that if the leading coefficient of the Alexander poly-
nomial is (up to sign) a prime then the skein polynomial is not self-conjugate; see conjecture 15.10 in [MP3]. This
conjecture is wrong, even for alternating knots; 12669 (figure 4) is among the simplest counterexamples. It may be
worth saying the following on such knots we found.

• We have no alternating counterexamples of zero signature, but have non-alternating examples of both zero
(121538) or non-zero signature (121850).

• We have no alternating counterexamples of ”right” sign (−1)maxdeg ∆ of maxcf ∆ ; but have non-alternating
examples of right (121538) or wrong (16976307) sign.

• We have no alternating counterexamples of self-conjugate Kauffman F polynomial (because such have zero sig-
nature), but have such non-alternating examples (1419544). Even though for non-alternating knots self-conjugate
F polynomial does not imply zero signature (cf. 942), all our examples of self-conjugate F are of zero signature.

1445317 1445601 1441330

Figure 5

Although corollary 5.12 is the most interesting special case of the preceding theorems 5.7 and 5.10, latter give indeed
more general statements. To illustrate this, we give the following example.

Example 6.4 The non-alternating achiral knots 1445317 and 1445601 in [HT], shown in figure 5, have unique minimal
crossing (number) diagrams, which therefore must be transformable into their mirror images by S2-moves and flip
only. These diagrams are homogeneous and semi-homogeneous, respectively. Note that, unlike [HT] which identifies
mirrored diagrams, here we consider diagrams equivalent only up to S2-moves and flip. Uniqueness is then meant
w.r.t. this equivalence. There are achiral knots with two minimal crossing diagrams, which are mutually mirrored (so
that there is a unique minimal diagram up to mirroring), but not interconvertible by S2-moves, flip and flypes. One
such example is 1441330.

7. Montesinos and other knots

We finish with a brief treatment of some further noteworthy special classes of knots, for which theorems 3.7 and 3.8
hold by means of the fact that all such achiral knots are alternating.

Montesinos knots can be described as the closure of a sequence of rational tangles, such that the tangles are glued
along disjoint disks. See [BZ].

Proposition 7.1 Achiral knots in the following classes are alternating:

1) rational (or 2-bridge) knots,

2) 3-braid knots,
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3) Montesinos knots.

Proof. It is well-known that 2-bridge knots are alternating. It follows also from [BM] that achiral 3-braid knots have
alternating 3-braid representations. The case of Montesinos knots is recurred to that of 2-bridge knots by means of
proposition 7.2 below. 2

Proposition 7.2 An achiral Montesinos knot is 2-bridge.

This property seems suggestive, but I have not found a record of it in this form. In [BZ], a weaker claim was left as
an exercise, with the restriction to odd length knots. With a different small restriction (nonellipticity), the result was
given in [BZi, corollary 1.4]. However, the heavy machinery of Thurston’s hyperbolization theorem is not needed, and
a proof can be obtained (without restrictions) from the classification of Montesinos links.

Proof of proposition 7.2. Let
K = M(p1/q1, . . . , pn/qn ; e) (9)

be the representation with 0 < pi/qi < 1. If n ≤ 2, then K is 2-bridge, so assume n ≥ 3. Then the representation (9) is
canonical up to cyclic permutation and possible reversal of the vector

ᾱ := (α1, . . . ,αn) = (p1/q1, . . . , pn/qn) .

We call (9) then normal form. So comparison of normal forms of K and !K shows that e = −n/2 (in particular n is
even) and ᾱ differs from 1− ᾱ by cyclic permutation and possible reversal. Let Γ be this dihedral transformation. If Γ
has no reversal, then Γ (αi) = α(k+i) mod n for some k, where ‘modn’ is taken with values between 1 and n. If now the
map i 7→ (k + i) mod n, acting iteratedly on {1, . . . ,n}, has an orbit of odd order, then for all i in this orbit αi = 1/2.
Since for a knot at most one of the αi can be 1/2, the orbit must be trivial. So k = 0, but then all αi = 1/2. Thus Γ has
only even order orbits, and the αi complete each other to 1 in pairs:

{1, . . . ,n} =

n/2�

j=1

A j , |A j| = 2 , ∑
i∈A j

αi = 1 .

If Γ contains a reversal, then Γ (αi) = α(k−i) mod n. If k is odd, then the map i 7→ (k− i) mod n has two fixpoints, so two
αi = 1/2, which we excluded; otherwise this map is a fixpoint-free involution, and again the αi complete each other
to 1 in pairs.

So the αi complete each other to 1 in pairs in both cases. Again, no αi = 1/2. So we can incorporate the −n/2 twists
in e into the n/2-many αi > 1/2, and then we have a representation K = M(α′

1, . . . ,α′
n;0) with α′

i opposite in pairs:

{1, . . . ,n} =

n/2�

j=1

A j , |A j| = 2 , ∑
i∈A j

α′
i = 0 .

Now mutation does not change the number of components, and we can permute the α′
i so that α′

i =−α′
n/2+i for i≤ n/2.

Then the diagram of M(α′
1, . . . ,α′

n;0) has a tangle decomposition as in (8) with the two tangles Q = (α′
1, . . . ,α′

n/2) and
P = (α′

n/2+1, . . . ,α
′
n) being mirrored to each other, and hence having the same connectivity. Such a link cannot be a

knot. 2

Remark 7.3 In studying the polynomials of achiral Montesinos links some caution is needed. The classification of
Montesinos links (and hence the examination of their achirality) is done in the unoriented sense, while our polynomial
properties could extend to links only for oriented achirality (as in [QW]). Thus such an extension would require beside
the normal form a careful analysis of component orientations.

Remark 7.4 With a bit more argument, one can refine proposition 7.2 to show that an achiral (in the unoriented sense)
Montesinos link has even number of components.
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