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1. Introduction

The crossing number can be considered as the most fundamental invariant of a knot or link. It dates back to the early
days when knot theory began with Tait’s first knot tables. Yet this invariant is still in general very hard to compute.
It is related to several long-standing problems, like additivity under connected sum and the Cable crossing number
conjecture [FH]. The century-old problem of Tait about crossing numbers of alternating links was spectacularly
solved in [Ka, Mu2, Th2]. Later on, Lickorish and Thistlethwaite [LT] introduced the concept of (semi)adequacy to
help determining the crossing number of some other links. The concept was based on the study of Kauffman’s bracket
[Ka] for the Jones polynomial. At a later stage Thistlethwaite extended the study of (semi)adequacy to the Kauffman
polynomial in [Th], and proved that adequate diagrams have minimal crossing number. (He thereby extended the
result for alternating links, of which adequate links are a generalization.) Recently these properties were also related
to Khovanov homology [Ko].

Semiadequacy seems to be much less understood. It follows from [Th] that semiadequate links are non-trivial, although
a concrete crossing number estimate of this non-triviality has not been obtained. Beyond this non-triviality result, not
much has been known until recently about semiadequate links in general. This might be due to the fact that they form
a rather large class. Unlike adequate links, it completely contains other interesting classes like positive, Montesinos
[LT], and 3-braid links [St12]. Semiadequacy also plays a central role in recent attempts [DL, St15] to understand some
coefficients of the Jones polynomial. Based on this, it is a basic ingredient in the proof of existence of amphicheiral
knots of almost all odd crossing numbers (relating to another old problem of Tait) [St12]. Thistlethwaite observed
[Th, p. 290 top] that, although not all low crossing knots have adequate diagrams, “all diagrams of minimal crossing
number of knots up to 11 crossings are semiadequate, as are all but a handful of diagrams of minimal crossing number
of 12 crossing knots”. This provided some evidence that
(a) any knot may have a semiadequate diagram, and
(b) that it may have one of minimal crossing number (assuming it has one at all, if we do not believe that (a) holds).
He gave an example of a knot, 121750 on [Th, figure 2], for which it was unknown whether it has a semiadequate
diagram.

Kauffman’s bracket is a cornerstone in all study of semiadequacy so far, except [Th]. The aim of this paper is, on the
theoretical side, to build on the work in [Th] and widen the scope of relations of this property. On the practical side,
we will apply our method to many concrete examples.

First we will connect semiadequacy to skein invariants (the skein polynomial, and the Jones polynomial as a special
case of the former, rather than as an equivalent of Kauffman’s bracket), the signature and, for knots at least, its recent
homological relatives τ,s introduced by Ozsváth–Szabó [OS] and Rasmussen [Ra]. Our main results show how such
invariants can be used to estimate above the crossing number of a semiadequate diagram.

Theorem 1.1 Any semiadequate link has only finitely many semiadequate reduced diagrams, which can be effectively
generated provided the link can be identified from a semiadequate diagram.

By variations of our arguments, we will be able to naturally relate our estimates also to the classical invariants of L,
like unknotting (or unlinking) number, genus, braid index, or hyperbolic volume. We remark that other topological or
diagrammatic properties, like sliceness and achirality, also give additional useful information in our approach.
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Thistlethwaite’s results are the starting point, but will be used only limitedly. A more important tool will be the esti-
mates of Morton-Williams-Franks [Mo, FW] and Bennequin-Rudolph [Be, Ru] for what is called now the Thurston-
Bennequin invariant. (A good discussion is given by Fuchs-Tabachnikov [FT].) Most substantially, however, we will
use the generator description of canonical Seifert surfaces [St, St6, SV].

We will show how our method leads to efficient tests for (A/B)-semiadequacy. They allow us to decide many cases,
including the example 121750 in [Th] and all Rolfsen [Ro, appendix] knots. We have examples of various difficulty
showing

Theorem 1.2 There are knots having neither A-semiadequate nor B-semiadequate diagrams.

The conditions in [LT, Th] on the Jones and Kauffman polynomial of semiadequate links also yield such examples
(see i.p. §4.1), but they are scarce, since the resulting tests are not very efficient. Apart from doing much better in this
regard, we will also disprove all the aforementioned evidence on realization of semiadequacy properties by minimal
crossing diagrams. This is opposed to the intrinsic relationship between the combination of A- and B-semiadequacy
to the crossing number.

Theorem 1.3 For any of the properties A-semiadequate, B-semiadequate and semiadequate, there exist knots with
diagrams having this property, but no such diagrams of minimal crossing number.

Besides general semiadequate links, we will investigate in some detail two important subclasses, of alternating and
positive links. It turns out that our estimates can handle these particular cases more efficiently. For these links we
show that the difference between the crossing number of a reduced semiadequate diagram and the crossing number of
the link can be controlled by the degrees of the Jones polynomial and the smooth 4-ball Euler characteristic. As an
application of this fact we prove, building on and extending previous work with A. Vdovina [SV]:

Theorem 1.4 A generic (see definition 4.1) positive or alternating knot of a fixed genus higher than 1 is special
alternating. Its special alternating diagram is its only positive (in particular, also its only alternating) diagram.

This result allows us to determine the asymptotical number of such links for growing crossing number. Another result
is the easy (and precise) derivation of the classification of the Seifert fibered (and thus also the hyperbolic) Montesinos
links. A further application to the Cable crossing number conjecture has been moved out to a separate paper for length
reasons.

In [St12], the approach in [LT] focused on Kauffman’s bracket is pursued, and many of the results there extended.
For example, we prove that semiadequate links and Whitehead doubles of semiadequate knots have non-trivial Jones
polynomial. The solution in [St12] of Tait’s 120-year-old problem to determine the crossing numbers of amphicheiral
knots uses heavily an invariant quantity of semiadequate diagrams, the atom number, which we work out in §3.1 here.
So our paper can be considered also as a preparation to that solution.

M. Ozawa pointed to his paper [O2], where he extended the non-triviality result of semiadequate links to a larger class
he defines (Theorem 1.15). Our theorems 1.1 and 1.2 (partly) address problems (1) and (3) in §4 of op. cit.

2. Preliminaries

We begin by introducing necessary notions, notations, and recalling earlier results that will be used throughout the
paper. Most of these are well-known, but some are more specific, and introduced in our own previous work.

2.1. General and link notations

The cardinality of a (finite) set S is denoted by #S or |S|. For any S ⊂ R, by supS we denote the supremum of S, with
the natural convention that sup∅ = −∞.

The crossing number c(L) of a link L is the minimal number of the crossing number c(D) of all diagrams of L.
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The mirror image of K is denoted by !K, the inverse (oppositely oriented knot) by −K. By Tk for k ∈ Z \ {−1,0,1}
we denote the (2,k)-torus knot or link (in latter case with parallel orientation), with the mirroring convention that Tk
is positive for k ≥ 2. Similarly let T k for k ∈ 2Z\{0} be the (2,k)-torus link with reverse orientation, again with the
mirroring convention that T k is positive for k ≥ 2. Thus T2 = T 2 is the (positive) Hopf link and T3 is the (positive or
right-handed) trefoil.

Knots and links of ≤ 10 crossings will be denoted according to Rolfsen’s tables [Ro, appendix] (including mirroring
convention), and knots of ≥ 11 crossings according to Hoste and Thistlethwaite [HT]. We shift down by one the index
of the last 4 Rolfsen knots, discarding the Perko duplication 10162 =!10161.

2.2. Polynomial invariants

The various link polynomials were introduced in the papers [F&, LM, Ka, J].

The skein (HOMFLY) polynomial P is a Laurent polynomial in two variables l and m of oriented knots and links and
can be defined by being 1 on the unknot and the (skein) relation

l−1 P
(

L+

)

+ l P
(

L−
)

= −mP
(

L0
)

. (2.1)

It involves diagrams of three links

L+ L− L0

(2.2)

differing just at one crossing. The convention in (2.1) uses the variables of [LM], but differs by the interchange of l and
l−1. We call the three diagram fragments in (2.2) from left to right a positive crossing (of sign +1), a negative crossing
(of sign −1) and a smoothed out crossing. We also say that the signs are meant in the skein sense. (We will briefly use
a different, Kauffman, sign later.) The writhe w(D) of a link diagram D is the sum of signs of all its crossings.

The Kauffman polynomial [Ka2] F is usually defined via a regular isotopy invariant Λ (a,z) of unoriented links.

We use here a slightly different convention for the variables in F , differing from [Ka2, Th] by the interchange of a and
a−1. Thus in particular we have the relation F(D)(a,z) = aw(D) Λ (D)(a,z), where w(D) is the writhe of D, and Λ (D)
is given in our convention by the properties

Λ
( )

+ Λ
( )

= z
(

Λ
( )

+ Λ
( ) )

,

Λ
( )

= a−1 Λ
( )

; Λ
( )

= a Λ
( )

,

Λ
(©)

= 1 .

Note that for P and F there are several other variable conventions, differing from each other by possible inversion
and/or multiplication of some variable by some fourth root of unity.

The Jones polynomial V is obtained from P and F by the substitutions (with i the complex unit)

V (t) = P(−it, i(t−1/2− t1/2)) = F(−t3/4, t1/4 + t−1/4) . (2.3)

(See [LM] or [Ka2, §III] but mind our conventions.)

Below ∆ is the Alexander polynomial. It is an invariant with values in Z[t, t−1], and can be defined by being 1 on the
unknot and a relation, with L±.0 as in (2.2),

∆ (L+) − ∆ (L−) = (t1/2− t−1/2) ∆ (L0) . (2.4)

This relation is easily seen to be a special case of the skein polynomial relation. Consequently, there is the substitution
formula (see [LM]),

∆ (t) = P(i, i(t1/2 − t−1/2)) .
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Let [Y ]ta = [Y ]a be the coefficient of ta in a polynomial Y ∈ Z[t±1]. Similarly one defines for Y ∈ Z[x1, . . . ,xn] the
coefficient [Y ]X for some monomial X in the xi. For a multi-variable polynomial the coefficient may be taken with
respect only to some variables, and is a polynomial in the remaining variables, for example [Y ]xk

1
∈ Z[x2, . . . ,xn].

(Thus it must be clear as a monomial in which variables X is meant. For example, for X = xk
1 ∈ Z[x1], the coefficient

[Y ]X = [Y ]xk
1
∈ Z[x2, . . . ,xn] is not the same as when regarding X = xk

1 = xk
1x0

2 ∈ Z[x1,x2] and taking [Y ]X = [Y ]xk
1x0

2
∈

Z[x3, . . . ,xn].)

Let for Y ∈ Z[t±1]

mindegY = min{a ∈ Z : [Y ]a 6= 0} , maxdegY = max{a ∈ Z : [Y ]a 6= 0} , spanY = maxdegY −mindegY

be the minimal and maximal degree and span (or breadth) of Y , respectively. If Y is a multi-variable polynomial, one
can define minimal and maximal degrees mindegxi

Y and maxdegxi
Y with regard to a single variable xi analogously.

Finally, define the leading coefficient of xi in Y to be

maxcfxiY := [Y ]
x

maxdegxi Y
i

.

In a similar way the trailing coefficient is

mincfxiY := [Y ]
x

mindegxi Y
i

.

2.3. Signature

The signature σ is a Z-valued invariant of knots and links. Originally it was defined terms of Seifert matrices [Ro]. We
have that σ(L) has the opposite parity to the number of components of a link L, whenever the determinant det(L) =
∣

∣ ∆ L(−1)
∣

∣ 6= 0. This in particular always happens for L being a knot (since ∆ L(−1) is always odd in this case), so that
σ takes only even values on knots. The most of the early work on the signature was done by Murasugi [Mu], who
showed several properties of this invariant.

Then, with L±,0 as in (2.2),

σ(L+)−σ(L−) ∈ {0,1,2} (2.5)

σ(L±)−σ(L0) ∈ {−1,0,1} . (2.6)

(Note: In the first property one can also have {0,−1,−2} instead of {0,1,2}, since other authors, like Murasugi, take
σ to be with opposite sign. Thus (2.5) not only defines a property, but also specifies our sign convention for σ.)

We have additivity of σ under split union (denoted by ‘t’) and connected sum (denoted by ‘#’)

σ(L1#L2) = σ(L1 tL2) = σ(L1)+σ(L2) .

Also, σ(!L) =−σ(L), where !L is the mirror image of L.

2.4. Diagrams

A crossing p in a link diagram D is called reducible (or nugatory) if D can be represented in the form

p
P Q .

The diagram D is called reducible if it has a reducible crossing; otherwise it is called reduced.
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A link diagram D is composite, if there is a closed curve γ intersecting (transversely) the curve of D in two points,
such that both in- and exterior of γ contain crossings of D. That is, D has the form

A B .

Otherwise D is prime.

The diagram is split, if there is a closed curve not intersecting it, but which contains parts of the diagram in both its
in- and exterior:

A B .

A link is split if it has a split diagram.

A flype is the move

p
PQ −→

p
P

Q

Two crossings p and q of a knot diagram D are linked, iff their basepoints are passed in cyclic order pqpq along the
line of D (rather than ppqq).

Recall that in [St] we called two crossings ∼-equivalent, if after a sequence of flypes they can be made to form a

reverse clasp . Similarly we call (see [St6]) two crossings ∼∗ -equivalent, if after a sequence of flypes they

can be made to form a parallel clasp . It is an exercise to check that both are equivalence relations. We

observed (see [St, St6, STV]) that ∼- and ∼∗ -equivalent crossings of a knot diagram are linked with the same set of
other crossings in the diagram.

We call a crossing p connected to a Seifert circle s also adjacent or attached to s. If only negative crossings, in the
skein sense explained below (2.1), are adjacent to a Seifert circle s, we call s strongly negative. Let s−(D) be the
number of strongly negative Seifert circles of a diagram D.

In [St4] we called a diagram k-almost positive, if it has exactly k negative crossings (in the skein sense). A link L is
k-almost positive, if it has a k-almost positive diagram, but no l-almost positive one for any l < k. We call a diagram
or link positive, if it is 0-almost positive (see [Cr, O, Yo, Zu]), and almost positive if it is 1-almost positive [St8].
Similarly one defines k-almost negative, and in particular almost negative and negative links and diagrams to be the
mirror images of their k-almost positive (or almost positive or positive) counterparts.

Adequacy consists of the combination of two weaker properties called jointly semiadequacy. They are defined as
follows.

AA
B

B
AA

B

B

Figure 1: The A- and B-corners of a crossing, and its both splittings. The corner A (resp.
B) is the one passed by the overcrossing strand when rotated counterclockwise (resp.
clockwise) towards the undercrossing strand. A type A (resp. B) splitting is obtained by
connecting the A (resp. B) corners of the crossing.
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One defines for each crossing of a diagram an A- and B-splitting as in figure 1. One calls a diagram D A-(semi)
adequate if the number of loops obtained after A-splicing all crossings of D is more than the number of loops obtained
after A-splicing all crossings except one. Similarly one defines the property B-(semi) adequate. Then we set

adequate = A-semiadequate and B-semiadequate ,

semiadequate = A-semiadequate or B-semiadequate ,

inadequate = neither A-semiadequate nor B-semiadequate .

We call a link adequate resp. (A/B)-semiadequate if it has an adequate resp. (A/B)-semiadequate diagram.

An alternative way to understand A-semiadequacy is to keep the trace of the crossings after each splitting. Then we
have each of the traces of the crossings joining two loops, obtained after the splittings. The property A-semiadequate
means that, in the set of loops obtained by A-splitting all crossings, each crossing connects two different loops. We
call this set of loops the A-state of the diagram.

Since in a positive diagram the A-splittings are the same as the splittings according to the skein relation, the loops
obtained are just the Seifert circles. Then since any crossing connects different Seifert circles, it follows that positive
diagrams (and hence also links) are A-semiadequate. (This was also previously observed, see e.g. [Fi].)

A standard result on the signature, which will be used, is that non-trivial positive links (in our convention for σ) have
positive signature. The first proof (for knots, which however easily extends to links) is given in [CG]. Another proof
follows from the work of Taniyama [Ta]. (See [St11, St9] for a more detailed discussion.) A significant improvement
of this result for a general positive link is unfortunately not known. Such an improvement would also have impact on
the applicability of some of our estimates (see §3.6).

2.5. Critical line polynomials

The relation between k-almost positivity and A-adequacy originates from Thistlethwaite’s work, but was not substan-
tially pursued. Let us explain the few easy known facts (see also Cromwell’s book [Cr3]). We need the Kauffman
polynomial F [Ka2], and some of its properties studied by Thistlethwaite.

As observed in [Th], the relation for Λ implies that the coefficient of zlam in Λ (D), denoted by [ Λ (D)]zl am , does not
vanish only if |m|+ l ≤ c(D). The main contribution of [Th] was the study of the “critical line” polynomials

φ±(D)(z) =
c(D)

∑
i=0

[Λ (D)]zc(D)−ia∓i zc(D)−i . (2.7)

Note the sign switch resulting from our different convention. We changed also the variable and exponent from t i to
zc(D)−i. It was shown in [Th], in particular, that φ±(D) 6= 0 iff D is A/B-semiadequate (theorem 3 (i)), and that in this
case all the coefficients are always non-negative (corollary 1.1 (i)).

Let us specify a slightly different definition of φ±. For a diagram D, let X(D) resp. x(D) be the maximal sum l + m
resp. minimal (as an integer, not in absolute value) difference l−m, such that [F(D)(a,z)]al zm is a non-zero coefficient.
Let φ−(D)(z) be the sum over m of monomials [F(D)(a,z)]al zmzm, such that l +m = X(D). Similarly φ+(D)(z) is the
sum of the same sort of monomials, but for l,m with l −m = x(D). For semiadequate diagrams this formulation is
equivalent to (2.7); see p. 287, l. -14f and Theorem 3 in [Th]. These arguments imply also that when D is A-adequate,
then −x(D) = 2c−(D) is the number of negative crossings of D. Similarly for a B-adequate diagram, X(D) = 2c+(D).
(See below proposition 2.1.)

One can also write x(L),X(L) for a link L, since x,X depend only on F , which is a link invariant. In that sense, we
define the following quantity, that will be of major importance throughout the rest of the paper:

a(L) = −1
2

x(L) =
1
2

max{m− l : [F(L)]zmal 6= 0} . (2.8)

Thus if the F polynomial of a knot K has the property that there are l, m ∈ Z, such that

[F(K)]zl am < 0 and m− l = max{m− l : [F(K)]zl am 6= 0} , (2.9)
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then K cannot be A-semiadequate. Similarly, if there are l ′, m′ with

[F(K)]zl′am′ < 0 and m′ + l′ = max{m′ + l′ : [F(K)]zl′am′ 6= 0} , (2.10)

then K cannot be B-semiadequate.

Both conditions give a semiadequacy test, but it is not efficient in practice (see §4.1).

Proposition 2.1 A diagram D of L is A-semiadequate iff it has exactly a(L) (defined in (2.8)) negative crossings (in
the skein, not checkerboard, sense!). Moreover, for any (not necessarily semiadequate) link L there is no diagram with
fewer negative crossings than a(L).

Proof. Since [Λ (D)]zmal 6= 0 only for m+ |l| ≤ c(D), we have [F(D)]zmal 6= 0 only for

m+w(D)− l ≤ m+ |l−w(D)| ≤ c(D) .

Thus w(D) ≤ c(D)− (m− l), that is,

w(D) ≤ c(D) + min{ l −m : [F(D)]zmal 6= 0} . (2.11)

Then for a diagram D we have

D is A-semiadequate ⇐⇒ ∃ some m and l with m− l = c(D) and [Λ (D)]zmal 6= 0
⇐⇒ ∃m− l = c(D)−w(D) : [F(D)]zmal 6= 0
⇐⇒ (2.11) is sharp.

This easily implies the claim. �

Proposition 2.1 can be rephrased thus (see also the remarks preceding proposition 3.1):

Corollary 2.1 For any k-almost positive link L we have k ≥ a(L). Moreover, L has an A-semiadequate diagram D if
and only if k = a(L), and then D has exactly k negative crossings. �

In particular, we have the following important special cases:

Corollary 2.2 If a link L is positive, then a(L) = 0. Moreover, a diagram of L is A-adequate exactly if it is positive. �

Corollary 2.3 An adequate achiral knot of 2k crossings is k-almost positive. �

This extends the result for achiral alternating knots and k ≤ 4, whose proof in [St4] using the Jones polynomial is much
more awkward. (Note that for alternating knots the corollary follows also from an inequality of Murasugi [Mu4]; see
the proof of proposition 3.9.)

2.6. Topological invariants

An compact orientable spanning surface of a link L is called a Seifert surface. We will allow disconnected surfaces, but
exclude closed components. A Seifert surface of L is called canonical if it is obtained by Seifert’s algorithm applied
on some diagram D of L.

The canonical Euler characteristic of a link diagram D is called the Euler characteristic of D’s canonical Seifert
surface. It satisfies

χ(D) = −c(D)+ s(D) ,

where c(D) is the number of crossings of D, and s(D) the number of its Seifert circles. The canonical genus g(D) is
given by

g(D) =
1
2
(

2−n(D)−χ(D)
)

,
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where n(D) is the number of components of (the link represented by) D. The canonical Euler characteristic χc(L) and
canonical genus gc(L) of a link L are the maximal canonical Euler characteristic resp. minimal canonical genus of any
diagram D of L.

The (classical, or Seifert) Euler characteristic χ(L) resp. genus g(L) of a link L is called the maximal Euler char-
acteristic resp. minimal genus of all its Seifert surfaces (i.e. not necessarily those canonical for some diagram of
L).

The (smooth) slice or 4-ball genus or Euler characteristic gs(L) and χs(L) are the maximal Euler characteristic resp.
minimal genus of all smoothly properly embedded surfaces in B4, whose boundary is L.

From their definition, we have the inequalities

χs(L) ≥ χ(L) ≥ χc(L) and gs(L) ≤ g(L) ≤ gc(L) .

Bennequin’s inequality [Be, theorem 3] , states that for any reduced diagram D of L,

−χ(L) ≥ w(D)− s(D) , (2.12)

with s(D) being the number of Seifert circles of D, and w(D) its writhe. (This is rather an extension of Bennequin’s
formulation from braids to diagrams, see [Ru2, St2].) Later this inequality was improved, and its strongest version
known presently (see [Ru, K]) is

1−χs(L) ≥ w(D)− s(D)+1+2s−(D) , (2.13)

with s−(D) being explained in §2.4.

The unknotting (or unlinking) number u(L) of a link L is the minimal number of crossing changes needed to turn L
into the trivial link (of the same number of components). A link is trivial if all its split components are unknots.

The braid index of L is the minimal number of strands of a braid, whose closure is L [Mo, FW].

2.7. Montesinos links

Figure 2: The Montesinos knot M(3/11,−1/4,2/5,4) with Conway notation (213,−4,22,40).

To avoid confusion, let us fix some terminology related to Montesinos links. The details on Conway’s notation can be
found in his original paper [Co], or for example in [Ad].

Let the continued fraction [[s1, . . . ,sr]] for integers si be defined inductively by [[s]] = s and

[[s1, . . . ,sr−1,sr]] = sr +
1

[[s1, . . . ,sr−1]]
.

The rational tangle T (p/q) is the one with Conway notation c1 c2 . . .cn, when the ci are chosen so that

[[c1,c2,c3, . . . ,cn]] =
p
q

. (2.14)
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One can assume without loss of generality that (p,q) = 1, and 0 < q < |p|. A rational (or 2-bridge) link S(p,q) is the
closure of T (p/q).

Montesinos links (see e.g. [BZ]) are generalizations of pretzel and rational links and special types of arborescent links.
They are denoted in the form M( q1

p1
, . . . , qn

pn
,e), where e, pi,qi are integers, (pi,qi) = 1 and 0 < |qi| < pi. Sometimes

e is called the integer part, and the qi
pi

are called fractional parts. They both together form the entries. If e = 0, it
is omitted in the notation. Our convention follows [Oe] and may differ from other authors’ by the sign of e and/or
multiplicative inversion of the fractional parts. For example M( q1

p1
, . . . , qn

pn
,e) is denoted as m(e; p1

q1
, . . . , pn

qn
) in [BZ,

definition 12.28] and as M(−e;(p1,q1), . . . , (pn,qn)) and the tables of [Kw].

If all |qi| = 1, then the Montesinos link M(± 1
p1

, . . . ,± 1
pn

,e) is called a pretzel link P(±p1, . . . ,±pn,ε, . . . ,ε), where
ε = sgn(e), and there are |e| copies of it. We also say it is a (±p1, . . .)-pretzel link.

To visualize the Montesinos link from a notation, let pi/qi be continued fractions of rational tangles c1,i . . .cni,i with
[[c1,i,c2,i,c3,i, . . . ,cli,i]] = pi

qi
. Then M( q1

p1
, . . . , qn

pn
,e) is the link that corresponds to the Conway notation

(c1,1 . . .cl1,1),(c1,2 . . .cl2,2), . . . ,(c1,n . . .cln,n),e0 . (2.15)

An example is shown in figure 2.

An easy exercise shows that if qi > 0 resp. qi < 0, then

M(. . . ,qi/pi, . . . ,e) = M(. . . ,(qi ∓ pi)/pi, . . . ,e±1) , (2.16)

i.e. both forms represent the same link. In our convention the identity (2.16) can be read naturally in the sense that
the sum of all entries is preserved. Theorem 12.29 in [BZ] asserts that the entry sum, together with the vector of the
fractional parts, modulo Z and up to cyclic permutations and reversal, determine the isotopy class of a Montesinos
link L. So the number n of fractional parts is an invariant of L; we call it the length of L. If the length n < 3, an easy
observation shows that the Montesinos link is in fact a rational link.

A minimal crossing diagram D(L) of the form (2.15) for each Montesinos link L was described in [LT]. There are 2
cases. Either e 6= 0, and all ci, j in (2.15) are of the same sign as e (the Montesinos link is alternating), or e = 0, n ≥ 3,
and all c j,i are of the same sign for given i, depending on the sign of qi. This diagram is A resp. B-adequate, unless
exactly one of the qi is positive resp. negative. In particular, at least one of both applies, so the diagram is always
semiadequate.

2.8. Genus generators

The description of canonical Seifert surfaces by generators was initiated by myself in [St] and independently by
Brittenham [Br]. It was set forth in [St6], and later in [STV, SV]. (Some explanation of this work is given also in
section 5.3 of Cromwell’s recent book [Cr3].)

Now, we consider the move we call a t̄ ′2 twist or t̄ ′2 move. Up to mirroring this is given by

−→ . (2.17)

We call diagrams that cannot be reduced by flypes and inverses of the move (2.17) generating or t̄ ′2-irreducible.
The importance of this concept comes from our previous work in [St]. Reduced knot diagrams of given genus g
(with 1−χ = 2g) decompose into finitely many equivalence classes under t̄ ′2 twists and their inverses. We call these
collections of diagrams series. Since the number of series grows rapidly with the genus, practical classification is
possible only up to genus 4 [St11]. In manageable form, the list of generators can be given for genus 1 and 2 [St, St6].

Theorem 2.1 ([St, St6]) A genus one knot diagram is (modulo crossing changes) a rational diagram C(p,q) with
p,q > 0 even, or a pretzel diagram P(p,q,r), with p,q,r > 0 odd. That is, it can be obtained via t̄ ′2 moves and crossing
changes from the alternating trefoil and figure eight knot diagram.
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A prime genus two knot diagram can be obtained via t̄ ′2 moves and crossing changes from an alternating diagram of
the following 24 knots: 51, 62, 63, 75, 76, 77, 812, 814, 815, 923, 925, 938, 939, 941, 1058, 1097, 10101, 10120, 11123, 11148,
11329, 121097, 121202, and 134233.

The finiteness of generators, together with the Flyping theorem [MT], shows

Theorem 2.2 (see [St]) Let an,g be the number of prime alternating knots K of genus g(K) = g and crossing number
c(K) = n. Then for g ≥ 1

∑
n

an,gxn =
Rg(x)

(xpg −1)dg
,

for some polynomial Rg ∈ Z[x], and pg,dg ∈ N. Alternatively, this statement can be written also in the following
form: there are numbers pg (period), ng (initial number of exceptions) and polynomials Pg,1, . . . ,Pg,pg ∈ Q[n] with
an,g = Pg,n mod pg(n) for n ≥ ng.

This was explained roughly in [St], and then in more detail in [SV], where we made effort to characterize the leading
coefficient of these polynomials Pg,i. Even if the polynomials vary with a very large period pg, the leading coefficients
depend only on the parity of n. The degrees of all Pg,i are independent on i, and maxdegPg,i = cg − 1, where cg is
the maximal number of ∼-equivalence classes of diagrams of canonical genus g. In [SV] it was later shown that
cg = 6g−3. An exceptional case is g = 1 and i even, when maxdegPg,i = 1 instead of 2.
We will use an extension of the result cg = 6g−3 to link diagrams.

Theorem 2.3 In a connected link diagram D of canonical Euler characteristic χ(D) ≤ 0 there are at most
{

−3χ(D) if χ(D) < 0
1 if χ(D) = 0

∼-equivalence classes of crossings. If D is t̄ ′2-irreducible and has n(D) link components, then

c(D) ≤















4 if χ(D) = −1 and n(D) = 1 ,
2 if χ(D) = 0 ,

−6χ(D) if χ(D) < 0 and n(D) = 2−χ(D) ,
−5χ(D)+n(D)−3 else .

(2.18)

Combined with the examples in [SV], this settles the problem the maximal crossing number of a generator for knots.

Corollary 2.4 The maximal crossing number of a knot generator of genus g ≥ 2 is 10g−7.

Even albeit the inequalities in theorem 2.3 are optimal in general, they can be improved under additional conditions.
One such condition is related to the signature σ(L) of the underlying link L, in comparison to the maximal Euler
characteristic χ(L) of an orientable spanning surface of L. It is well-known [Mu3] that |σ(L)| ≤ 1− χ(L), at least
when L does not bound disconnected surfaces of small genus, so for example for knots or (non-split) positive links.
We can say something about the situation when σ(L) � 1−χ(L).

Lemma 2.1 Assume we have a diagram D of a link L with χ(D) < 0 and c−(D) negative crossings, and

k(D) :=
1−χ(D)−2c−(D)−σ(D)

2
≥ 0 .

Then D has at most −3χ(D)− 3
2

k(D) ∼-equivalence classes, and its underlying generating diagram has at most

−5χ(D)+n(D)−2− 1
2

k(D)

crossings.

Originally theorem 2.3 and lemma 2.1 were proved in this paper. Then we decided, though, to move out the material.
This was done both for length reasons, and because, while the paper evolved, the method of proof became gradually
unrelated to the rest of the exposition. The proof is now in the preprint [St11], which will likely become part of a
monograph. Still the present place was referred to for the proof from elsewhere, and at least the reference in [St10] is
published and cannot be altered. We apologize to have to forward the reader to [St11] at this point.
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2.9. Graphs

A graph G will have for us possibly multiple edges (edges connecting the same two vertices). It will, though, usually
have no loop edges (edges connecting one and the same vertex). By V (G) we will denote the set of vertices of G, and
by E(G) the set of edges of G. (In the latter, each multiple edge will count as a set of single edges.) Similarly v(G)
and e(G) will be the number of vertices and edges of G (counted with multiplicity), respectively.

For a graph, let the operation −→ (adding a vertex of valence 2) be called bisecting and its
inverse (removing such a vertex) unbisecting of an edge. We call a graph G′ a bisection of a graph G, if G′ is obtained
from G by a sequence of edge bisections. We call a bisection G′ reduced, if it has no adjacent vertices of valence 2
(that is, each edge of G is bisected at most once). Contrarily, if G′ is a graph, its unbisected graph G is the graph with
no valence-2-vertices, of which G′ is a bisection.

Similarly, a contraction is the operation −→ , and a decontraction its inverse.

The doubling of an edge consists in adding a new edge connecting the same two vertices.

A graph is n-connected, if n is the minimal number of edges needed to remove from it to disconnect it. (Thus connected
means 1-connected.) Such a collection of edges is called an n-cut. An edge forming a 1-cut is called an isthmus.

Hereby, when we delete an edge, we understand that a vertex it is incident to is not to be deleted too. In that sense, the
set Iv of edges incident to a given vertex v always forms a cut – if we delete these edges, v gets an isolated component,
so the graph is not connected anymore. A cut vertex is a vertex which disconnects a graph, when removed together
with all its incident edges.

A graph G is planar if it is embeddable in the plane and equipped with a fixed such planar embedding. Observe that
there is a natural bijection of edges between a planar graph G and its dual graph G∗; in that sense we can talk of the
dual e∗ ∈ E(G∗) of an edge e ∈ E(G). The operations doubling and bisection become dual to each other.

3. Crossing number estimates for semiadequate links

For many knots, like the one 121750 quoted by Thistlethwaite, it is still difficult to decide by the previously known
methods alone whether they have a semiadequate diagram. This motivates the following results, which will basically
settle the problem in theory.

Now we can proceed to prove our main result in several qualitative versions. The Kauffman polynomial will always be
necessary (at least in the proof), but the additional ingredients can be varied a lot. This way one can put into use many
invariants known from standard knot theory. The number of possible ways in which the arguments can be combined
is too large. We can therefore present only the most self-contained and simple cases, and explain how is to proceed
otherwise. We regroup the results into five subsections, named after the invariants that come to use at each new stage.

Let us meet one other convention in advance. In some situations the estimates we will write down will not be integers.
This can be corrected by using integer parts of certain subexpressions, or case distinctions, which would both make
the form, however, less pleasant. Thus we (largely) avoid this option, even if it would sometimes slightly improve the
inequalities. The results that follow are meant anyway in a theoretical purpose – to explain the interrelation between
the various invariants, and how they can be applied to study semiadequacy. How to proceed in practice will be shown
at the end of the paper.

3.1. Critical line polynomials

Thistlethwaite studied in [Th] the partial terms φ± of the Kauffman polynomial F(a,z). Our convention and notation
differs from his at several places. To minimize confusion, we explain once more how to convert between both in the
below arguments. First we conjugate Λ and F in a in comparison to his. To account for this, we interchange the
polynomials φ±, and also replace therein each tn by zc(D)−n The formulation of his result in (3.1) changes accordingly.
Also, if we apply Thistlethwaite’s results stated for +-adequate (his term for A-adequate) diagrams to B-adequate
ones, we must interchange the role of G+ with G− (and Ḡ+ with Ḡ−). We do retain the same notion as his of positive
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and negative crossings in the checkerboard (Kauffman) sense. (Note that this signing of crossings is different from the
one in (2.2). The checkerboard sign is used only here in §3.1.)

Let, as explained in [Th], G be the signed checkerboard graph of D (any of the two choices, equivalent up to duality,
will do). Let G− be obtained from G by deleting all + edges and Ḡ+ be obtained by contracting all − edges (compare
p. 286 l. 2f in [Th]). Let bl denote the number of blocks of a graph, except isolated vertices (with no edges incident).

By Thistlethwaite [Th, corollary 1.1 (iii)], we have (with our conventions) that

c(D)−maxdegz φ±(D) = bl(G±)+bl(Ḡ∓) . (3.1)

Proposition 3.1 Let D be a non-trivial reduced B-adequate diagram. Then c(L)−1 ≥ maxdegz φ−(D) ≥ c(D)/2 .

Proof. Using (3.1), we need to estimate the number of blocks of G− and Ḡ+. By reducedness of D and by construction
of G− and Ḡ+ we can assume that G− has no loop edges and Ḡ+ has no isthmuses. Since D is B-adequate, by
proposition 2 (ii) in [Th], also Ḡ+ has no loop edges and G− has no isthmuses. Then each block in G− and Ḡ+ must
consist of at least two edges, and the total number of edges in G− and Ḡ+ is equal to the crossing number of D. This
shows the second inequality we claim. The first inequality follows from [Ki] because maxdegφ± ≤ maxdegz F . (Note
that [Ki] uses Q = F(1,z), but the argument for F is the same.) �

Corollary 3.1 There are only finitely many semiadequate links with given Kauffman polynomial, or even maxdegz F .
In particular, there are only finitely many 3-braid, positive, or Montesinos links.

Proof. The first claim of the corollary is clear; the second claim follows from the first, because these classes of links
are semiadequate. For positive links this was explained above. For Montesinos links, it was known from [LT]. For
3-braid links, it was shown in [St12]. �

Remark 3.1 A still unsolved problem of Kanenobu (problem 1.91 (3) of [Kr]) is whether there is at all an infinite
family of links with the same Kauffman polynomial.

The fact that the (2,2n+1)-torus knots have positive diagrams of 4n crossings shows at least that any constant > 1/2
cannot be expected, also for positive links. However, in the case of positive links, we can be more precise. Let m(D)
be the number of Murasugi atoms of a positive diagram D. These are the connected sum factors of Murasugi sum
components of D, as called by Quach-Weber [QW].

Proposition 3.2 Let D be a positive diagram. Then maxdegz φ+(D) = c(D)−m(D) . In particular maxdegz φ+(D) ≥
c(D)−1+χ(D).

This settles a conjecture made in [St3].

Corollary 3.2 Let D be a positive reduced non-trivial diagram of a link L. Then c(L) ≥ c(D)+χ(D), and if equality
holds, then L is (special) alternating.

Proof. Clearly maxdegz φ+(D) ≤ maxdegz F ≤ c(D). If c(D) = maxdegz F , then D is a trivial unlink diagram, and
if c(D)−1 = maxdegz F , then D is alternating [Ki]. �

Proof of proposition 3.2. Consider the Murasugi sum decomposition of D along separating Seifert circles. It
decomposes D into diagram blocks, as defined in [Cr, §1]. (We call them not just ‘blocks’ in order to emphasize the
distinction from Thistlethwaite’s ‘graph blocks’.) Choose an even-odd type black-white coloring B of the diagram
blocks of D, so that blocks neighbored along a separating Seifert circle have opposite color.

Choose then also a checkerboard coloring A of D. Then the + edges in the checkerboard coloring A correspond to
the crossings in the blocks of D with one of the colors, say white, in B . So G+ is a disjoint union of the checkerboard
graphs of these blocks. Since the number of graph blocks in the checkerboard graph is equal to the number of
connected sum factors, we identified bl(G+). To deal with bl(Ḡ−), switch colors in A . Then Ḡ− is taken to G+, and
the positive crossings in G become the crossings of the diagram blocks colored by the other color (black) in B . Using
(3.1) we are done. �
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Remark 3.2 We will use the fact that we have now a lower bound, which for fixed χ and number of components is of
the form c+ constant, to extend the main result of [STV] in section 4.

The proof of proposition 3.2 also shows immediately how to interpret maxdegz φ+(D) in terms of the A-state of D.

Proposition 3.3 Decompose an A-adequate link diagram D along separating loops of its A-state into diagrams Di
in analogy to the Murasugi sum decomposition along separating Seifert circles. Let m(D) be the total number of
connected sum factors of all Di. Then maxdegz φ+(D) = c(D)−m(D). �

We call m(D) the atom number of D. (It is straightforward that for a positive diagram it coincides with the Murasugi
atom number, as we previously specified.) It will be used heavily in [St12] for the construction of odd crossing number
amphicheiral knots.

While we discuss the work in [Th] only briefly in this paper, let us give also a description of mindegz φ+(D). Let
v(G) be the number of vertices of G and p1(G) the first Betti number of G (the minimal number of edges to remove to
destroy all cycles in G).

Lemma 3.1 (see corollary 1.1 (iv) in [Th]) We have for an A-adequate diagram D,

mindegφ+(D) = c(D)− p1(G+)− v(G−)+1 , (3.2)

and the minimal degree term in φ+(D) has coefficient +1.

Now we use this to show the following

Proposition 3.4 Let D be A-adequate. Then p1(G+)+ v(G−) equals the number |A(D)| of loops in the A-state of D.

Proof. While there may be an intrinsic, but more elaborate, combinatorial argument, we show this much faster by
appealing to (3.2) and some other observations.

If D is positive (i.e. all crossings are positive in the skein sense), |A(D)| = s(D), so, using (3.2), the claim we
like to show reads mindegφ+(D) = 1 − χ(D). This now follows from the work of Yokota [Yo]. He shows that
mindega F(D) = 1−χ(D), and up to signs and change of variables that [F(D)]a1−χ = [P(D)]l1−χ . The non-vanishing
of the coefficient of (lm)1−χ in P(D) follows from mindegl P(D) = 1−χ(D) and the identity [LM, proposition 21].
This finishes with the case that D is positive.

Now clearly altering the orientation of single components does not change the (validity of) the claim in the lemma,
and we observed in [St12] that D admits a positive orientation iff its A-state graph G(A) = G(A(D)) is bipartite. We
recall form [St12] that G(A) has a vertex for each loop in A(D), and an edge for each trace of a crossing. (This is not
the same as the checkerboard graph G of D.)

Now for every diagram D, its graph G(A) can be made bipartite by edge bisections – give in some arbitrary way a sign
to each vertex, and bisect edges between vertices of equal sign. Such a bisection adds one loop in A(D) (or vertex
in G(A)). In D it displays as a turning a crossing into a clasp (in an appropriate way). Its effect on G is that either a
negative edge is bisected, or a positive edge is doubled. Then from p1(G+) and v(G−) one is preserved, and the other
is augmented by one. More precisely, v(G−) is augmented if the edge in A(D) is a trace of a checkerboard-negative
crossing in D, or a negative edge e in G (which is bisected), and p1(G+) is augmented if e is positive (and doubled).
So the claim follows from the positive diagram case. �

Now, Kauffman’s state model [Ka] relates the number of loops in A(D) also to the Jones polynomial. We recall the
number a(L) defined in (2.8). Now by straightforward calculation, we obtain, using w(D) = c(D)−2a(D):

Corollary 3.3 If a link L is non-split and A-adequate, then we have

mindegV (L) =
1
2

mindegz φ+(L)− 3
2

a(L) , (3.3)

and the trailing coefficient of V (L) is (−1)mindegz φ+(L). �
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In particular, one easily sees

Corollary 3.4 If L is non-split and alternating, then mindegz φ+(L)+mindegz φ−(L) = c(L).

Proof. One applies (3.3) to L and !L. Then one notes that maxdegV (L) = −mindegV (!L), and that a(L)+a(!L) =
c(L) when L is adequate and that maxdegV (L)−mindegV (L) = c(L) when L is alternating. �

While (3.3), is a simple yet efficient tool to rule out A/B-adequacy (see example 4.3), it is certainly not universal, and
cannot account for most of the work that follows. We show next how to improve the inequality in proposition 3.1
under certain circumstances and in a variety of ways. We will then treat with the tools we develop several examples,
including Thistlethwaite’s knot 121750.

3.2. Kauffman polynomial and Euler characteristic

We start with a series of inequalities involving the Euler characteristic and Kauffman polynomial F . We need again
the quantity defined in (2.8).

Theorem 3.1 Let L be an oriented non-split link of maximal Euler characteristic χ(L), and D be a reduced A-
semiadequate diagram of L. If L 6= T k, k ≥ 2, then

c(D) ≤ 17a(L)−9χ(L)

2
+maxdegz F(L) . (3.4)

The A-semiadequate reduced diagrams of T k, k ≥ 2, are exactly their (only) alternating diagrams.

Remark 3.3 By [Th, corollary 3.2], if D is non-split, so is L. In the following we will pose the non-splitness condition
for merely technical reasons. It can easily be dropped in most cases, or at least weakened to the exclusion of trivial
(unknotted) split components.

Remark 3.4 Note that semiadequacy and crossing numbers of diagrams and links, and also maxdegz F , do not depend
on the orientation of single components. Contrarily χ and a(L) do (except for knots). Thus one has the freedom to
alter, and possibly improve, the estimate (3.4) by proper choice of orientations.

Remark 3.5 It follows from the proof that if the quantity in (2.8) is negative, L cannot be A-semiadequate. It would
be curious to find examples, where this happens, but at least among knots up to 16 crossings there are no such ones.

Proof of theorem 3.1. As noted in proposition 2.1, D has a(L) negative crossings. Thus Bennequin’s inequality
(2.12) now reads

1−χ(L) ≥ w(D)− s(D)+1 = 1−χ(D)−2a(L), (3.5)

with s(D) being the number of Seifert circles of D, and χ(D) the Euler characteristic of D’s canonical Seifert surface.
We have

1−χ(D) = c(D)− s(D)+1 . (3.6)

From the improvement (2.13) and (3.6) we have

1−χ(L) ≥ w(D)− s(D)+1+2s−(D) = 1−χ(D)−2a(L)+2s−(D) . (3.7)

(Note that we use here only χ instead of χs; we will consider χs separately later.)

Now, clearly any semiadequate diagram D will have in each ∼-equivalence class only crossings of the same (skein)
sign. We call a ∼-equivalence class of D positive or negative depending on the sign of its crossings. By applying
flypes, we can assume without loss of generality that the l crossings in a negative ∼-equivalence class of D bound
l −1 Seifert circles with only two adjacent crossings each (both negative).
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Let c−(D) be the number of negative ∼-equivalence classes of D. (Clearly, c−(D) = 0 for a(L) = 0, and 1 ≤ c−(D) ≤
a(L) otherwise.) Then we have from (3.7) ,

1−χ(D)≤ 1−χ(L)+2c−(D). (3.8)

We know now from theorem 2.3 that D has at most

−3χ(D) ≤ −3χ(L)+6c−(D) (3.9)

∼-equivalence classes. This conclusion may be incorrect if χ(D) = 0. But the estimate remains valid unless −χ(L)+
2c−(D) = 0. Then χ(D) = c−(D) = a(L) = 0. The property χ(D) = 0 implies that D is a diagram of L = T k, and
a(L) = 0 that an A-semiadequate diagram D of L is positive, hence in particular k ≥ 2. Since a positive diagram
has maximal χ, we obtain the exceptional case of the theorem. Otherwise, we can assume in the following that
−χ(L) + 2c−(D) > 0, and hence that the quantity on the right of (3.9) is correct as an estimate for the number of
∼-equivalence classes of D.

Consider one of the series D of n-component link diagrams, differing by t̄ ′2 moves, in which D lies. If we have > 3
crossings in a positive ∼-equivalence class in D, we can reduce them by (possible flypes and) undoing t̄ ′2 twists, thereby
preserving A-semiadequacy. Similarly, if we have > 2 crossings in a negative ∼-equivalence class in D, we can reduce
them by reverse t̄ ′2 twists, too. This does not spoil A-semiadequacy either, since a t̄ ′2 twist applied at a negative crossing
creates two crossings joining the same loops in the A-state as the original crossing.

Thus the undoing of t̄ ′2 twists leads to an A-semiadequate diagram D′′ with ≤ 3 crossings in each positive∼-equivalence
class, and≤ 2 crossings in each negative∼-equivalence class. Also, the number of positive and negative∼-equivalence
classes of D′′ is the same as in D. Thus the crossing number of D′′ is at most

3 · (−3χ(D′′))− c−(D′′) = 3 · (−3χ(D))− c−(D) ≤ 3
(

−3χ(L)+6c−(D)
)

− c−(D) = 17c−(D)−9χ(L). (3.10)

Now, repeated applications of t̄ ′2 twists on D′′ to obtain D preserve A-semiadequacy.

The effect of a t̄ ′2 twist on the checkerboard graph G is the replacement of an edge by three edges of the same (now
checkerboard) sign. This is done either by bisecting the edge twice (adding on it two vertices of valence two), or by
tripling it (replacing it by three edges connecting the same vertices). This procedure preserves the number of blocks
of the graphs G± and G± introduced in [Th], which are not isolated vertices. Thus by [Th, corollary 1.1(iii)], c( .)−
maxdegz φ+( .) remains constant under the t̄ ′2 moves taking D′′ into D. That is, each t̄ ′2 move augments maxdegφ+ by
two. Since we know from proposition 3.1, that maxdegφ+(D′′) ≥ c(D′′)/2, and maxdegz F(D) ≥ maxdegφ+(D), we
have

c(D)− c(D′′) = maxdegφ+(D)−maxdegφ+(D′′) ≤ maxdegz F(D)− c(D′′)
2

.

So with (3.10) we find:

c(D) ≤ c(D′′)
2

+maxdegz F(D) (3.11)

≤ 17c−(D)−9χ(L)

2
+maxdegz F(D) .

This implies the inequality we claimed, as c−(D) ≤ a(L). �

Remark 3.6 As one can see from the proof of theorem 3.1, the coefficient 17 in (3.4) results from the s− term
in Rudolph’s improvement (2.13) of the slice Bennequin inequality. In the previous form without s− on the right of
(2.13) we would have 18 instead. (Our method will lead to several rather unusual constants in the following estimates.)

As the exceptions T k cause extra effort, in the following most formulas will hold modulo this family of links. If they
are to be incorporated, they must be checked separately.

Since the inequality in theorem 3.1 may appear a bit involved, we can derive (at the price of efficiency) some simplified
version of it.
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Corollary 3.5 Let L be a non-split and non-trivial link of maximal Euler characteristic χ(L) ≤ 0 and crossing number
c(L). If L 6= T k, k ≥ 2, has an A-semiadequate reduced diagram D, then

c(D) ≤ 17a(L)−9χ(L)

2
−1+ c(L) ,

with equality only if L is alternating.

Proof. Now, maxdegz F(D) ≤ c(L)−1 by [Ki]. If maxdegz F(D) = c(L)−1, then L would be alternating. �

3.3. Skein and Jones polynomial

There are two similar versions of theorem 3.1, using instead of the Euler characteristic the skein and Jones polynomial.
For the skein polynomial, we have:

Theorem 3.2 Under the hypothesis of theorem 3.1, we have

c(D) ≤ 18a(L)+9mindegl P(L)−9
2

+maxdegz F(L) ,

except if L = T k for k ≥−2. Then ‘−9’ must be replaced by ‘−7’.

Proof. The proof is similar to that of theorem 3.1, so some parts are not repeated. However, the following important
modifications are necessary. First, we replace the Rudolph-improved version of Bennequin’s inequality (3.7) by its
weaker form (3.5). Then the last inequality in the estimate

1−χ(D) = c(D)− s(D)+1 = w(D)− s(D)+1+2a(L) ≤ 1−χ(L)+2a(L) , (3.12)

must be modified using an inequality of Morton [Mo] (and essentially also found by Williams-Franks [FW]). This
inequality states

w(D)− s(D)+1 ≤ mindegl P(L) maxdegl P(L) ≤ w(D)+ s(D)−1 . (3.13)

We obtain
1−χ(D) = w(D)− s(D)+1+2a(L) ≤ mindegl P(L)+2a(L) . (3.14)

The inequality (3.9) modifies to
−3χ(D) ≤ −3+3mindegl P(L)+6a(L) .

The rest of the calculation follows as before, by replacing ‘χ(L)’ by ‘1−mindegl P(L)’, and ‘c−(D)’ by ‘a(L)’, and
omitting the terminal ‘−c−(D)’ in (3.10).

We must again verify the case χ(D) =−1+mindegl P+2a = 0 separately, which leads to the exceptional T k. Then D′′

has one more ∼-equivalence class, of an even number of crossings, which contributes with (3.11) one more crossing
to the total estimate of c(D). �

The proof shows

Corollary 3.6 If mindegl P(L) < 1−χ(L)−2a(L), then L is not A-semiadequate.

Proof. For a semiadequate, reduced diagram D of L we would have from (3.14) that 1−χ(D) < 1−χ(L), which is
clearly impossible. �

Let us give an application that shows how this simple condition can be useful in some cases.

Proposition 3.5 Let β be a positive 3-braid of n > 2 crossings, and its closure link L = β̂ not be the (2,n− 1)-torus
link. Then L cannot be projected with fewer than n positive crossings. Also, L is B-semiadequate (or adequate) if and
only if β contains no σ1σ2σ1 or σ1σ2σ1 as a cyclic subword.
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This shows in particular that (3,n)-torus links are not B-semiadequate for n ≥ 3. We will use this proposition for the
description of Seifert fibered Montesinos links in §4.3.

Proof. The link L is positive, with χ(L) = 3− n, and by the result of [Yo], we have mindega F(L) = 1− χ(L) =
n−2 > 0 and that [F(L)]z1−χa1−χ 6= 0. Now, because of the identity F(

√
−1,z) = 1, the polynomial [F(L)]z1−χ (in a)

must have at least two monomials, so maxdega[F(L)]z1−χ ≥ 3−χ = n. It implies that a(!L) ≥ n−1.

If !L is ≤ n−1-almost positive, then by corollary 2.1, we must have a(!L) = n−1, and that !L is A-semiadequate. Now
by [N2], when L 6= Tn−1, we have maxdegm P(L) = 5−χ(L). So we can apply corollary 3.6, obtaining a contradiction.
This shows the first claim.

The second claim follows from the first and a few other results. The link L is clearly A-semiadequate. By corollary 2.1
it would be B-semiadequate if and only if a(L) = n. This condition is equivalent to the B-semiadequacy (and hence
adequacy) of the diagram β̂, which by [St12] in turn is equivalent to the stated property of β. �

Now we can replace the skein polynomial by the Jones polynomial, using an analogue of Morton’s inequality proved
in [St4].

Proposition 3.6 ([St4]) If D is a k-almost positive diagram (that is, one with exactly k negative crossings), then

mindegV (D) ≥ 1−χ(D)

2
+1−2k

for k > 0.

For positive diagrams D (that is, k = 0), we have, as well-known previously (see [Zu, Fi]), mindegV (D) =
1−χ(D)

2
,

so that using V instead of χ does not give any new information; likewise with P and χs, since also mindegl P = 1−χ =
1−χs in this case (see [Cr, theorem 4] and [St2]).

Using proposition 3.6, we obtain an analogous inequality. (We exclude the case a(L) = 0 as in proposition 3.6 just
for formal reasons; in this case one would have to replace the constant −14 by −4.5 if L 6= T k, k ≥ 2, and by −3.5
otherwise. But positive links were treated satisfactorily with corollary 3.2, so it is no real contraint to exclude them
when convenient.

Theorem 3.3 Under the hypothesis of theorem 3.1, but assuming that also a(L) > 0, we have

c(D) ≤ 27a(L)−14+9mindegV (L)+maxdegz F(L) .

Proof. Instead of (3.12), we have now

1−χ(D)≤ 2mindegV (L)+4a(L)−2

with a similar calculation. In (3.10) we use c−(D) ≥ 1 (because a > 0). Verifying the analogue of (3.9) would lead
to exceptions if χ(D) = 2mindegV + 4a− 3 = 0. The only T k with k < 0 satisfying this condition is for k = −2.
(The assumption a > 0 excludes k > 0.) For T−2 we see directly that the estimate we claim is weaker than the one of
theorem 3.2. �

As for theorem 3.1, the choice of orientation of single components has influence on the estimate for links. Using
the result of [LM2, Mo2] (following also from (2.3)), we can control this change for theorem 3.3. Let us denote by
lk(Li,L j) the linking number of two components of a link L = L1tL2 t . . .tLn, and by lk(Li) the total linking number
of component Li, given by

lk(Li) = ∑
j 6=i

lk(Li,L j) .

Then reversal of the orientation of Li changes mindegV (L) by −3lk(Li), while it changes a(L) by 2lk(Li). Thus the
choice of orientation for which mindegV (L), and hence the writhe of the diagram, is maximal (and a(L) minimal) will
give the best estimate (excluding positive diagrams). For theorem 3.1 and 3.2 the change of χ (resp. χs) and mindegl P
cannot be reasonably controlled, so some trial and error may be appropriate.
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The comparison of the efficiency of the estimates in theorems 3.1, 3.2 and 3.3 basically depends on the quantities

α(L) = 1−χ(L) , β(L) = mindegl P(L) , and γ(L) = 2mindegV (L)−2sgn(a(L))+2a(L)

as upper bounds for w(D)− s(D) + 1. In general, β is the smallest among the three, thus making the estimate in
theorem 3.2 the best one. It is easy to find examples when β is lower than α and γ; consider e.g. 41 and !10132. These
two examples show also that α and γ are independent (no one is always sharper than the other one), and apply also for
α′(L) = 1−χs(L) instead of α. However, to show that some of α and γ can become smaller than β is rather non-trivial.
For α this was an old problem of Morton, resisting solution over 15 years, for which examples have been found only
recently [St3]. For γ, as for Morton’s problem, a computer check showed that no prime knot of ≤ 16 crossings satisfies
γ < β.

Nonetheless, theorem 3.3 deserves consideration in its own right, even if just for theoretical purposes. Since F de-
termines V (by (2.3) or [Ka2, §III]), we have with theorem 3.3 a new estimate entirely determined by the Kauffman
polynomial. This implies again corollary 3.1 (for F rather than just maxdegz F at least).

One can prove a yet different such estimate also from a weaker version of theorem 3.2, since

mindegl P(L) ≤ mindegl [P(L)]m1−n(L) (3.15)

and, up to change of variable, [P(L)]m1−n(L) = [F(L)]z1−n(L) (see [L, proposition 4.7]). So we have

c(D) ≤
18a(L)+9mindega[F(L)]z1−n(L) −9

2
+maxdegz F(L) . (3.16)

However, with the inequality (3.15) we may sometimes lose a lot, so that the Jones polynomial variant can do sensibly
better. An example is the knot !132917, where mindegl P = 0 but mindegl [P]m0 = 6. From theorem 3.3 we obtain that
an A-semiadequate diagram with its Kauffman polynomial will have at most 43 crossings, while (3.16) gives only at
most 52.

On the other hand side, the weak appearing estimate (3.16) can occasionally dominate the universal bound c(D) ≤
2maxdegz F(L) in proposition 3.1. This is shown by the twist knots with a = 2 and further examples like 155399. We
do not know whether the estimate in theorem 3.3 can dominate proposition 3.1 (or even (3.16) simultaneously).

Next we will explain how the other invariants get into relation with almost everything dealt with so far.

3.4. Canonical, 4-ball genus, and new concordance invariants

Since Bennequin’s inequality (2.13) applies to the 4-genus, one can incorporate several (smooth) 4-ball invariants into
the picture. We will concentrate on the (smooth) 4-ball genus gs and 4-ball Euler characteristic χs. The other invariants
are less important and more auxiliarily defined, and their relation to χs is well-known. (A section of [St2] gives a brief
survey.)

When using χs instead of χ, a bit more care is necessary since, unlike χ, even for non-trivial non-split links χs may
be positive. Nevertheless, most of the results in §3.2 hold by simply replacing ‘χ’ by ‘χs’. In particular, Theorem 3.1
generalizes without much difficulty, and we have:

Corollary 3.7 Under the same hypothesis as theorem 3.1,

c(D) ≤ 17a(L)−9χs(L)

2
+maxdegz F(L) . (3.17)

Proof. The only point in the to-be-modified proof of theorem 3.1 to remark is when verifying (3.9). Then we must
consider the case that χ(D) = 0, so that L = T k, and χ(L) = χs(L) = 0, implying again c−(D) = a(L) = 0, etc. �

Corollary 3.5 also generalizes accordingly.

For knots one can obtain a relation to the more recent invariant τ defined by Ozsváth and Szabó [OS] using Floer
homology, and also the invariant s of Rasmussen [Ra] and Bar-Natan [BN] (modulo the conjecture that Bar-Natan’s
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definition is legitimate). The slice Bennequin inequality for knots was proved, in the original form of the estimate, for
τ by Livingston [Lv], and for s (without being stated explicitly) by Rasmussen [Ra]. More recently, Kawamura [K2]
showed the improvement with the s−(D) term:

s(L) ≥ w(D)− s(D)+2s−(D)+

{

−1 if D is negative
1 otherwise . (3.18)

On the left one can place also 2τ(L) instead of s(L). So we can obtain new inequalities involving τ and s.

Corollary 3.8 Under the assumption of theorem 3.1, and if L is a knot, we have

c(D) ≤ 17a(L)−9+18τ(L)

2
+maxdegz F(L) (3.19)

and

c(D) ≤ 17a(L)−9+9s(L)

2
+maxdegz F(L) . (3.20)

Proof. We replace in theorem 3.1 and its proof 1−χ(L) by s or 2τ, using (3.18). The argument goes through, except
in the case that D is negative. For a negative diagram, (3.8) becomes

1−χ(D) ≤ 2τ(L)+2+2c−(D) . (3.21)

This case is handled by noting that in passing from (3.7) to (3.8), we ignore the (strongly negative) Seifert circles of
valence at least 3. So in fact, instead of (3.21), we have

1−χ(D) ≤ 2τ(L)+2+2c−(D)−2s∗(D) ,

where we write s∗(D) for the number of strongly negative Seifert circles of valence at least 3. To remedy the modi-
fication of (3.8), we need just to exclude the case s∗(D) = 0. But the only (negative) diagrams D with s∗(D) = 0 are
those of the T k (for k ≤ 0), which are not knot diagrams. �

As opposed to σ, the new “signatures” τ and s are more limitedly computable, and also lack proper definition for
links. This makes the application of estimates like (3.19) or (3.20), and the practical handling of some examples (see
in particular §4.4) more difficult. The advantage of τ and s is, though, that, unlike σ, they allow for a Bennequin type
inequality, yet, unlike 1−χs = 2gs, admit negative values. So when τ can be calculated, and is negative, (3.19) gives
a better result than theorem 3.1. One can propagate the treatment of τ and s at places below where χs occurs (and L is
a knot), but we omit this discussion for space reasons.

We can then further replace the slice Euler characteristic by the unknotting (or unlinking) number u(L) and number of
components n(L), as −χs(L) ≤ 2u(L)−n(L):

c(D) ≤ 17a(L)+18u(L)−9n(L)

2
+maxdegz F(L) .

Let us also say something more in a different special case. Often when the Bennequin-Rudolph inequality detects
non-sliceness, the estimates can be improved by an additional argument.

Theorem 3.4 Assume L satisfies a(L) < −2χc(L). Then all previous estimates for c(D) can be improved by adding
a(L)+2χc(L)+1

2 .

Proof. This results from improving the estimate for the crossing number of D′′ in the proof of theorem 3.1. In that
proof D′′ was chosen so that it transforms into D under t̄ ′2-moves, and so that it is A-semiadequate. If a(L) < −χc(L),
we can choose D′′ more economically (w.r.t. crossing number).

Assume w.l.o.g. that in D (and hence D′′) ∼-equivalent crossings are neighbored equivalent. Assume first that D’s
generator has the maximal number −3χ(D) of ∼-equivalence classes. (Since for χc(L) = 0 there is nothing to prove
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by remark 3.5, we can assume that χ(D) < 0.) Then D has −2χ(D) essential Seifert circles, i.e. such not enclosed
between two ∼-equivalent crossings. Call Seifert circles of latter type intermediate.

Consider the Seifert graph G of D, and sign the edges according to the (skein) sign of the crossings. Each valence-2-
vertex of G is incident to two edges of the same sign, and corresponds to an intermediate Seifert circle of D. Obtain
a (signed) graph G′, by removing all these vertices by undoing bisections. The vertices of G′ are ≥ 3-valent, and
correspond to essential Seifert circles of D. The edges of G′ correspond to ∼-equivalence classes of D. (Note that G′

is still 2-connected, but may have loop edges. It may also have multiple edges, even with the different copies of the
single edge differently signed.)

The loops in the A-state of D are obtained from the Seifert circles of D, in which intermediate Seifert circles of a
negative ∼-equivalence class are removed, and the two essential Seifert circles connected (possibly via intermediate
Seifert circles) by crossings in such a class are joined. We call the loops in the A-state of D thus obtained essential.
Essential loops include essential Seifert circles, which have not been involved in a join of the described type. The
intermediate loops are the intermediate Seifert circles of positive ∼-equivalence classes, which remain also unaffected
by joins. So any loop in the A-state is either essential or intermediate.

Take a spanning tree T of G′ containing the minimal number of positive edges. We claim now that any positive edge
e of T corresponds to a positive ∼-equivalence class of D, connecting (possibly via intermediate loops) two different
essential loops in the A-state. Otherwise, there must be a path in G′ made of only negative edges, connecting the
endpoints of e. This gives a spanning tree with fewer positive edges than T .

We assumed that D has the maximal number −3χ(D) of ∼-equivalence classes, so that G′ has the maximal number
−2χ(G′) =−2χ(G) =−2χ(D) of vertices, i.e., is trivalent. Then T has −2χ(D)−1 edges, and at most c−(D) ≤ a(L)
of them are negative. Thus G′ has at least −2χ(D)− 1− a(L) ≥ −2χc(L)− 1− a(L) positive edges, whose ∼-
equivalence class connects two different essential loops in the A-state. We call such classes good. The number of
crossings in such a class can be reduced to ≤ 2 (and not as before ≤ 3) crossings, without spoiling A-semiadequacy.

Thus we save for each good ∼-equivalence class one crossing in c(D′′), and hence 1/2 from the estimate on c(D) by
(3.11).

If now, the number of ∼-equivalence classes of D decreases by 1, so does the estimate for the number of positive good
∼-equivalence classes, and we save 1 crossing less. However, in this case the disappearing ∼-equivalence class saves
at least one crossing, and so the estimate remains valid. �

The inequality a < −2χc is satisfied by many non-slice (but also some slice) links. Of course, the statement remains
true even if this condition fails (in particular also if χc(L) = 0), only that the estimate becomes weaker. The improve-
ment is particularly efficient when a = 0, but this case was treated well in §3.1. One can also vary on this theme. For
example, we have:

Corollary 3.9 Under the hypothesis of theorem 3.1, we have

c(D) ≤ 19a(L)

2
+

9mindegl P(L)

2
−3−maxdegm P(L)+maxdegz F(L) ,

if L 6= T k for k ≥ 2 (and ‘−5/2’ for ‘−3’ otherwise).

Proof. This is obtained from theorem 3.4 using the Morton inequality 1− χc ≥ maxdegm P in [Mo] and theorem
3.2. �

3.5. Hyperbolic volume

When encountering the canonical Euler characteristic, it is worth making a few remarks on the hyperbolic volume.
Even if it is not the most useful invariant in our situation, it is still possible to extract some applicable information
from it. Beside for semiadequacy, one can establish some properties of the volume for itself.
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The hyperbolic volume was related to our context by a preprint of Brittenham [Br], in which he came up simultaneously
and independently from us with the generator approach for the canonical genus. His motivation was to show that, in
the case n = 1 of knots, the supremum

vn,χ := sup { vol(L) : n(L) = n, χc(L) = χ }

is finite, that is, the canonical genus bounds the hyperbolic volume of the knot. The generator estimates he obtained
were better than the one I gave originally in [St], but were slightly improved in [St6] by referring to our work in [STV].
The volume bound was also improved, by Lackenby [La], and later by Ian Agol and Dylan Thurston (see the appendix
to Lackenby’s paper):

Theorem 3.5 (Agol and Thurston) Let V0 ≈ 1.01494 be the volume of the ideal tetrahedron. Then we have for any
(non-trivial) diagram D of a link L the inequality

vol(L) ≤ 10V0
(

t(D)−1
)

, (3.22)

where t(D) is the twist number of D, and with the convention that vol(L) = 0 if L is not hyperbolic.

Note that t(D) is always less than or equal to the number of ∼-equivalence classes of D. Then, using this result and
theorem 2.3, we can state Brittenham’s result in a sharper and more general form. (We omit the obvious proof.)

Theorem 3.6 Any link L with χc(L) < 0 satisfies

vol(L) ≤−10V0
(

3χc(L)+1
)

. (3.23) �

This inequality can be applied wherever χc occurs with a positive sign in the estimate. (Note that (3.23) does not hold
for χc = 0, as the r.h.s. is negative, but its below consequences are easily checked for the T k.) Thus we have, for
example,

Corollary 3.10 Under the same hypothesis as in theorem 3.1, and if L 6= T k, k > 0, we have

c(D) ≤ 18a(L)−9χ(L)

2
+maxdegz F(L)+

1
6
− vol(L)

30V0
.

If L = T k, k > 0, we replace 1/6 by 1.

Proof. Combine theorems 3.1, 3.4 and 3.6. For L = T k, k > 0, use the previously established fact that c(D) = c(L). �

Since we have from [Br] that vol(L) ≤ 4V0 c(L), the volume term can improve the inequality only limitedly. Although
Agol-Thurston show that their inequality (3.22) is (asymptotically) sharp in general, it does not seem so in our context.
For example, it follows from the computation in [St6] that for canonical knot genus two (3.23) gets sharp up to a
factor of about 1.3, but it is weaker in general. with a hypothetical improvement coming from having the Agol-
Thurston’s inequality sharp, the volume term will remain smaller in magnitude than the crossing number term. Thus,
as mentioned, in practice it is not optimal to apply the volume, at least for our purpose.

More optimistically, under special conditions theorem 3.6 can be improved. For example, we have:

Proposition 3.7 In corollary 3.10 we have for a rational (or 2-bridge) link L

c(D) ≤ 18a(L)−9χ(L)

2
+maxdegz F(L)+

1
2
− vol(L)

10V0
, (3.24)

if L 6= T k for k ≥ 2. For such L, replace 1/2 above by 1.
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Proof. If a link L has a diagram D̃, which is an iterated plumbing of Hopf bands (not necessarily with ±1 full twist),
then we know from the results of Gabai [Ga, Ga2] that χ(D̃) = χc(L) = χ(L), and the number of such bands is
1−χc(L) = 1−χ(L). Since any band gives a ∼-equivalence class, we have from (3.22)

vol(L) ≤ −10V0 χ(L) .

This inequality seems the best possible estimate that one obtains with the Brittenham-Lackenby-Agol-Thurstonmethod
of proof, at least as far the generator part of the argument goes. However, it is achieved for all links with a diagram
D̃. This includes the rational links. Thus we obtain the stated result. (For L = T k, k > 0, we again adjust the estimate
directly.) �

Remark 3.7 Note that there are many more links having such a diagram D̃, and hence for which (3.24) holds. For
example consider Montesinos links L = M(p1/q1, . . . , pn/qn;e) with even e 6= 0 when the pi,qi can be adjusted so that
|pi| < qi and all piqi are even, and there is an appropriate orientation. (In fact they are a generalization of rational
links.)

Again one has a (straightforward, and hence omitted) version for achiral and slice rational knots. One can also obtain
further (more general) inequalities using theorem 3.4.

There is more to say on sliceness, but for this we must discuss two further major tools, the Jones polynomial and
signature. The approach of genus generators has also further applications to the volume on its own, but since they are
not directly related to semiadequacy, we defer them to a separate paper [St13].

3.6. Signature and sliceness

The appearance of the signature σ seems in some way closely related to Hirasawa’s algorithm, as investigated in
[St5, St10]. It is clear from theorem 3.1 that the largest economy can be achieved if one can properly bound a(L).
The easy inequality a(L) ≤ c(L) is in general highly unsharp. In practice this fact causes no problem, since one can
calculate a(L) directly for any given L. If one wants to improve the inequality for a(L) in theory, one can use properties
of L. For example, using σ, we have:

Proposition 3.8 Assume that σ(L)≤ 1−χ(L)−2a(L). Then the estimate in theorem 3.1 can for L 6= T k, k ≥ 2 (under
the same hypothesis) be improved to

c(D) ≤ 43
4

a(L)− 27
8

χ(L)− 9
8

+maxdegz F(L)+
9
8

σ(L) .

Proof. We apply lemma 2.1, which is possible since for any diagram D of L, 1− χ(D) ≥ 1− χ(L), and if D is
A-semiadequate, a(D) = a(L), so that

k(D) ≥ k(L) :=
1−χ(L)−2a(L)−σ(L)

2
≥ 0 .

Then the estimate for the crossing number of D′′ in the proof of theorem 2.3 reduces by

3 ·
(

3
2

k(D)

)

≥ 9
2

k(L) ,

and hence by one half of this quantity does the estimate for c(D). Thus

c(D) ≤ 17a(L)−9χ(L)

2
+maxdegz F(L) − 9

8
(

1−χ(L)−2a(L)−σ(L)
)

,

which is the inequality we claimed. �

Using lemma 2.1, one can make use of σ and χ also to improve the inequalities involving the skein and Jones polyno-
mial, but this is now straightforward and not worth discussing about. However, for V there is a new way to bring σ, χ
and mindegV into interplay. This happens when one uses corollary 3.5 and a result of Murasugi.
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Proposition 3.9 For a reduced A-semiadequate diagram D of a link L we have

c(D) ≤ 19
2

c(L)+
17
4

n(L)− 17
2

maxdegV (L)− 35
4

χs(L)−1 , (3.25)

with equality only if L is alternating. If L is alternating, then also

c(D) ≤ c(L)+
17
4

n(L)− 17
2

mindegV (L)− 35
4

χs(L)−1 . (3.26)

Proof. From Theorem 13.3 of [Mu4] we have that if L is A-semiadequate,

a(L) ≥ σ(L)

2
−mindegV (L) , (3.27)

with equality if L is alternating. (Keep in mind our convention for σ.) By applying Murasugi’s estimate (3.27) on a
minimal crossing diagram of !L and using corollary 2.1, we find also

a(L) ≤ c(L)+
σ(L)

2
−maxdegV (L) .

Using the 4-ball modification of corollary 3.5 (which holds by the remark in the beginning of §3.4), we obtain for a
reduced A-semiadequate diagram D of L

c(D) ≤ 19
2

c(L)+
17
4

σ(L)− 17
2

maxdegV (L)− 9
2

χs(L)−1 . (3.28)

Now apply the Tristram-Murasugi inequality σ ≤ n−χs, and (3.25) follows. For L alternating use [Ka, Mu2, Th2]
that c(L) = spanV (L) to obtain (3.26). �

For a strongly slice link, σ(L) = 0 and χs(L) = n(L), so that the inequality (3.28) simplifies to

c(D) ≤ 19
2

c(L)− 9
2

n(L)−1− 17
2

maxdegV (L) .

Since obviously c(D) ≥ c(L), we obtain in particular:

Corollary 3.11 If a strongly slice non-trivial non-split link of n(L) components is A-semiadequate, then

maxdegV (L) ≤ c(L)− 2+9n(L)

17
. �

Note that strongly slice links of > 1 component have vanishing Alexander polynomial, in particular there are no
alternating (non-split) such links. (There are, though, a plenty of slice alternating knots.) So again by the non-
alternation argument in corollary 3.5, we can replace ‘2’ by ‘4’ for n(L) > 1. We see also that (3.26) becomes vacuous
for strongly slice (alternating) links with n(L) > 1, but we obtain a new statement for knots.

Corollary 3.12 If a non-trivial alternating knot K is slice, then any A-semiadequate reduced diagram D of K satisfies

c(D)− c(K) ≤ −17
2

mindegV (K)− 11
2

.

In particular, mindegV (K) < 0. Also, the number of A-semiadequate reduced diagrams of alternating slice knots K
with given mindegV (K) grows polynomially in c(K).

Proof. The inequality we claim follows directly from the above proposition. As for the statement on the number of
diagrams, we observe from Murasugi’s (now sharp in)equality (3.27) and the slice Bennequin inequality that

−mindegV (K) = a(K) ≥ gc(K) .

So we must consider diagrams of canonical genus at most −mindegV (K) and crossing number at most c(K)−
17/2mindegV (K)− 11/2 (see §4.2). Then we can apply the polynomial growth property in theorem 2.2. (Precisely
speaking, we must argue that it is not changed even after allowing flypes. This can be done as explained in [St11].) �
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Remark 3.8 The condition mindegV (K) to be fixed is clearly necessary. It is easy to construct otherwise exponen-
tially growing diagram families of the same alternating slice knot. The easiest example is to take connected sums of
square knots, and to turn some of the positive trefoils therein into their positive 4 crossing diagrams.

Remark 3.9 The property mindegV (K) < 0 can also be deduced from Murasugi’s remark that his inequality (3.27)
is sharp for alternating links and the property σ = 0 for a slice knot and a > 0 (since non-trivial positive links are not
slice).

4. Applications and examples

4.1. Initial examples

We start with a brief account on theorems 1.3 and 1.2. These simplest examples do not formally rely on our new
theoretical results. How they later come into practice is shown in §4.4 and 4.5.

A-adequate examples. For the property A-semiadequate an easy example follows from our previous work [St3]. The
knot 11550 was found there to have a positive diagram, but no such diagram of minimal crossing number. We mentioned
in [St3] that 11550 has a single 11 crossing diagram, which is almost positive (that is, has exactly one negative crossing).
For the same reason why positive diagrams are A-semiadequate, almost positive diagrams are never A-semiadequate.
Therefore, 11550 has no A-semiadequate diagrams of minimal crossing number. (The mirror image of 11550 applies
then for the property B-semiadequate.) However, the 11 crossing diagram of 11550 is B-semiadequate, and thus it
cannot serve as an example for the property semiadequate in theorem 1.3. On the other hand, this also shows that a
knot may have diagrams which are A-semiadequate, and such which are B-semiadequate, but no diagrams which are
simultaneously both. (Perko’s knot 10161 is another such example.)

Inadequate examples. Let us next discuss some examples showing theorem 1.2. We remarked before that up to 10
crossings all knots are semiadequate. As Cromwell pointed out [Cr3, figure 9.12], the knot 11462 is inadequate (and
thus a lowest crossing number example). Its inadequacy is exhibited by its Jones polynomial and the results in [LT].
The other inadequate 11 crossing knot is 11485 of figure 3, but we need the work in this paper to prove its inadequacy
(see example 4.3). The claim of Thistlethwaite, quoted in the introduction, that all minimal crossing number diagrams
of 11 crossing knots are semiadequate is thus, taken precisely, not correct due to these two knots (though it is true for
all the other 11 crossing knots).

From the point of view of the methods of this paper, the theoretically (though not in crossing number) easiest examples
rely merely on the tests (2.9) and (2.10). Thus we are seeking knots with polynomials which admit both pairs (l,m)
and (l′,m′). It already follows from our above remarks that such knots can not be of very low crossing number. It
turned out that in fact the simplest examples have 15 crossings, and they are 36. (These examples were comparatively
easy to spot by means of requiring merely the calculation of the Kauffman polynomial, even although this calculation
can be time consuming.) Two of the knots are shown in figure 3. It is worth remarking that all 36 knots have leading
z-coefficient maxcfzF of the form −ak(1+a2) for some k ∈ Z.

Semiadequate examples. Examples for the property semiadequate in theorem 1.3 were much harder to find. Consider
the knot 15249826 in figure 4. The 15 crossing diagram on the left is its only minimal crossing number diagram, which is
not semiadequate. However, the same knot has the 16 crossing diagram on the right, which is semiadequate. There are
6 further such knots of 15 crossings, only with 16 crossing semiadequate diagrams. Apparently they are the simplest
examples of this type. They emerged from a calculation which was more substantial both theoretically and practically,
but we skip details for space reasons.

4.2. Properties of generic alternating or positive knots of given genus

Given a class of knots, it is suggestive to ask how a generic representative of this class looks like. We give a precise
meaning to ‘generic’ with the following definition:

Definition 4.1 A subclass C ⊂ B in a class B of links is called asymptotically dense or generic, if

lim
n→∞

∣

∣{K ∈ C : c(K) = n}
∣

∣

∣

∣{K ∈ B : c(K) = n}
∣

∣

= 1 .
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11485 15125441 15216196

Figure 3: Knots with no semiadequate diagrams.

15249826

Figure 4: Two diagrams of the knot 15249826. On the left its (only) minimal diagram, which
is not semiadequate, and on the right a semiadequate 16 crossing diagram.

For example, in [Th3] Thistlethwaite showed that the non-alternating links are generic in the class of all (unoriented)
links. Similarly, a result of [St7] implies that any generic subclass of the class of alternating links contains mutants.

In [SV] we showed that a generic alternating knot of some genus is special alternating, that is, its alternating diagram
has only positive or only negative crossings. (It will be convenient to identify in the sequel a special alternating knot
with its mirror image, and so to assume that all crossings are positive.) We will now apply the methods of [SV],
together with the inequality for positive diagrams in the previous section, to extend this result. We describe precisely
the situation for the class

Bg := { K alternating or positive knot, g(K) = g } .

Theorem 4.1 Define the class

Cg := { K special alternating knot, with a unique positive diagram and g(K) = g } .

Then Cg is asymptotically dense in Bg for g > 1.

Note that in particular the knots in Cg have also a unique alternating diagram (see [N]). We also remark, that for any
diagram two of the properties special, positive and alternating imply the third.

Remark 4.1 One should note that, although theorem 4.1 shows that Cg contains a plenty of knots, it is difficult to
show for any single particular example to belong to this class. We have a description of Cg only for g = 1, as it follows
from [St] that C1 is made up of the pretzel knots P(p,q,r) with p,q,r ≥ 3 odd. For g ≥ 2 we know from [St6] that
!10120 ∈ C2, but further examples are not known.
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Here and below ‘ai ∼i bi’ denotes limi→∞ ai/bi = 1. We omit the index of ‘∼’ if it is clear.

Proof of theorem 4.1. By [STV] a genus g knot diagram has ≤ 6g− 3 ∼-equivalence classes. If it has exactly
6g−3 ∼-equivalence classes, then by theorem 5.3 and theorem 5.7 of [SV] it is special alternating and (its alternating
diagram) does not admit a flype. The number of generators is finite, and positive for both crossing number parities if
g > 1.

Now we must argue for both crossing number parities separately. Since the argument is the same, we consider below
only odd crossing number c.

Then we have

#{ c crossing alternating genus g diagrams of n ∼-equivalence classes } ∼c Ag,ncn−1 ,

for some constant Ag,n.

Since Cg,o := Ag,6g−3 > 0 for g > 1, as shown in [SV], it follows that special alternating knots with alternating diagrams
of 6g−3 ∼-equivalence classes are asymptotically dense in the subclass of alternating knots in Bg. We also know that
all such diagrams are special.

We now show that these knots are also asymptotically dense in the subclass of positive knots in Bg.

For this we use corollary 3.2. We have for a knot K of genus g(K) that −χ(K) = 2g(K)− 1 . Thus the corollary
implies that a positive reduced diagram of K has at most c(K)+2g(K)−1 crossings.

Alternating diagrams up to mirroring and positive diagrams correspond bijectively, and thus we have again

sg,n(c) := #{ c crossing positive genus g diagrams of n ∼-equivalence classes } ∼c Ag,ncn−1 .

Since by [SV] a non-special positive diagram has < 6g−3 ∼-equivalence classes, by proposition 3.2

#
{

non-special positive diagrams D of
a knot K with c(K) = c, g(K) = g

}

≤
c+2g−1

∑
c′=c

sg,6g−4(c′) ∼c O(c6g−5) . (4.1)

(Here we must allow for c′ of the opposite parity to c, but the estimate remains valid as written.) However,

# { special c crossing diagrams with 6g−3 ∼-equivalence classes } ∼c Cg,o c6g−4 .

Since by Theorem 5.7 of [SV] such diagrams do not admit flypes, we have

#
{

knots K with c(K) = c, g(K) = g, and alternating
diagrams of 6g−3 ∼-equivalence classes

}

∼c Cg,o c6g−4 . (4.2)

Combining (4.1) and (4.2) shows that for genus g > 1 there are asymptotically fewer non-special positive diagrams
representing positive knots of crossing number c, than special alternating knots of crossing number c with alternating
diagrams of 6g−3∼-equivalence classes. This argument implies that a generic positive knot (alike an alternating knot,
as we already concluded above) is special alternating with an alternating diagram of 6g−3 ∼-equivalence classes, as
desired. But the same argument also implies that a generic special alternating knot with an alternating diagram of
6g− 3 ∼-equivalence classes has no non-special positive diagrams. Then any positive diagram of such a knot is
special, hence special alternating, and, as argued, from Theorem 5.7 of [SV] we have that such a diagram is unique. �

Remark 4.2 The constant Cg,o, and its counterpart Cg,e for even crossing number, also have an interpretation, as
described in [SV] – they are, up to the factor (6g− 4)!, equal to the number of maximal planar odd and even Wicks
forms of genus g defined there.

As a consequence, we have the exact asymptotical behaviour of the number of positive knots of given genus.

Corollary 4.1 The number cn,g of positive genus g knots of crossing number n satisfies cn,g ∼n Cg,n mod 2 n6g−4 as
n → ∞ keeps the same parity. (Here in the index of C we identify e = 0, o = 1.)
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Proof. We know from [SV] that the number of special alternating genus g knots of n crossings has the stated asymp-
totics. �

Let an ∼̇ bn if there are constants C0,1 > 0 with an ∼Cn mod 2bn for n → ∞ even/odd. Let furthermore bxc be the largest
integer not exceeding x, and dxe = −b−xc. Then one proves similarly using lemma 2.1 (and the integrality of several
of the quantities occurring in its proof):

Proposition 4.1 The number cn,χ,σ of non-split positive links of crossing number n, Euler characteristic χ < 0 and
signature σ satisfies for n → ∞

cn,χ,σ ∼̇ O(np(χ,σ)) with p(χ,σ) =

⌊

−3χ−1− 3
2

⌈

1−χ−σ
2

⌉⌋

.

Also cn,χ,1−χ ∼̇ n−3χ−1 .

Proof sketch. The first claim follows along similar lines as in the proof of theorem 4.1, while for the second claim
(for σ = 1−χ) one must argue like in the proof of theorem 2.2. We will, however, not repeat all the details. �

This means in particular that at most O(1/n2) of the links of given χ have σ < 1− χ. But such examples exist in
multitude, and in fact it is not known, apart from its positivity, how small σ can become as compared to 1−χ. What
we know now is that generically for fixed χ the value of σ is the maximal possible.

Remark 4.3 Similarly one can use lemma 2.1 for positive links with σ < 1−χ to improve theorem 3.6; we have for
such a positive link L the inequality

vol(L) ≤ 10V0 p(χ(L),σ(L)) .

4.3. Hyperbolicity of Montesinos links

We give some applications of our formulas to Montesinos links, which in particular imply the classification of Seifert
fibered and non-hyperbolic ones. We resume the language of §2.7.

Let us note the following easy and useful application of proposition 3.3.

Corollary 4.2 Let L = M( q1
p1

, . . . , qn
pn

,e) be a Montesinos link in the representation giving a minimal crossing diagram
D(L) of [LT] (as described at the end of §2.7). Then

maxdegz F(L) = c(D(L))−1−min(#{ i : qi < 0}, #{ i : qi > 0}) .

Proof. The inequality ‘≥’ is easy to see by applying proposition 3.3 to maxdegz φ±(D(L)). For the opposite, let us
assume modulo mirroring that at least as many qi are positive as negative. We can also assume that some qi is negative;
otherwise L is alternating, and the equality we claim is known from [Ki]. Permute the tangles Ti = T (pi/qi) so that
qiqi+1 < 0 for as many i = 1, . . . ,n− 1 as possible. (This results in mutations, which do not change F.) Thus one
can group the Ti into tangles U j consisting of the sums of consecutive Ti for exactly one negative qi and at least one
positive qi. Then apply Theorem 1.3 of [KSt] to the tangle decomposition that breaks D(L) into the sums of U j. �

We start with a statement, which is more general, and a priori not related to Seifert fibered links.

Proposition 4.2 Let K be a fibered positive link with a minimal crossing positive diagram. Then K is not a Montesinos
link, except the torus link T (2,k) with k > 0 and the (p,q,−2)-pretzel link with p,q > 0.

Remark 4.4 The existence of a minimal (crossing) positive diagram, i.e. a diagram which realizes the crossing number
of the link, and which is simultaneously positive, is a technical assumption. Presumably it can be removed using an
extra argument based on [St15]. However, this argument appears involved, and would lead us too far aside. Such a
diagram often exists, but not always, as shown in [St3, St12]. The related question about a minimal positive braid
diagram of a positive braid link is open. It was known to exist (and hence so does a minimal positive diagram) from
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[St14] for closed positive braids of at most 4 strings, and from [St3] for positive braid knots of up to 16 crossings. It
also easily follows from [FW, Mu] for closed positive braids with a full twist, which includes torus links.

On the opposite side, Hirasawa and Murasugi [HM] determined the fiberedness for all Montesinos knots, but it appears
too awkward to derive our statement (even for knots) from their work.

Proof of proposition 4.2. The case that K is an alternating (including rational) link, the statement is easy to see:
using [St4] and that K is prime, we have only T (2,k). So assume that K is non-alternating, and in particular its length
n ≥ 3.

Case 1. Assume the minimal crossing diagram D of K of [LT] is not A-adequate. This means that w.l.o.g. (applying a
cyclic permutation) q1 > 0 but qi < 0 for i = 2, . . . ,n. Then D is B-adequate, and by direct calculation of m(D) for the
B-state of D as for corollary 4.2 (or alternatively from [LT]), we have maxdegφ−(D) = c(D)−2 = c(K)−2, but by
[Th] also φ+(D) = 0.

Now looking at the coefficient of zc(K)−2 in the identity F(
√
−1,z) ≡ 1, and using [Th], we see that a positive (i.e.

A-adequate) minimal diagram D′ of K must have maxdegφ+(D′) = c(K)− 2 = c(D′)− 2. So by proposition 3.3,
m(D′) = 2, and this easily implies that D′ is a diagram of a closed positive 3-braid.

Now were D′ not B-adequate, K would not be either by proposition 3.5. Thus D′ is adequate, and hence so is K. But
by [Th], all minimal crossing diagrams of an adequate link are adequate, in contradiction to our assumption D is not
A-adequate.

Case 2. So we can assume that D is A-adequate (i.e. positive). Now we know from [St12, St15] that the second
coefficient V1 of the Jones polynomial of a fibered positive link is 0. We can apply to D the formula for V1 of an
A-adequate diagram given there. Then by a combinatorial observation we can conclude that D must be a (p,q,−2)-
pretzel diagram, with p,q > 0. �

Note that the (p,q,−2)-pretzel link, with the positive orientation, is the closure of the 3-braid σ1σp
2 σ1σq

2. If p,q ≥ 2,
this braid can always be written as δ2α with δ = σ1σ2σ1 and α positive. If some of p or q is 1, it reduces to a 2-braid.

It is for many problems useful to decide whether a link is hyperbolic. By Thurston and Jaco-Shalen-Johannson (JSJ)
this amounts to deciding about essential tori and a Seifert fibration in the link complement. For Montesinos links, both
were studied, but a proper account, at least on latter, seems lacking. Essential tori in Montesinos link complements
were classified by Oertel [Oe] and (under a mild restriction) Boileau–Zimmermann [BZi, proposition 2.1]. Both papers
then go on to treat hyperbolicity, but their accounts are incomplete and contain errors and inaccuracies, which convey
a confusing impression. This motivated us to record the list of Seifert fibered and hyperbolic Montesinos links with
some care. Our proof can be obtained by combining several results from this paper with the work in [BM, St12].

The following case is attributed in [Oe] to Bonahon-Siebenmann. Sadly, their monograph has not appeared in the 30
years since it was announced. (This contributes further to the aforementioned confusion. Update: there seems finally
a completed version available, in [BS].) We understand that there is now also a proof of this corollary using Khovanov
homology.

Corollary 4.3 The only torus links T (m,n) among the Montesinos links are T (2,n), T (3,3), T (3,4) and T (3,5).

Proof. By applying proposition 4.2, we are left to deal only with (p,q,−2)-pretzel links P(p,q,−2) on the Montesinos
link side, and torus links T (m,n) for m ≤ 3. Now q = 1 gives T (2,n), p = q = 2 gives T (3,3), p = q = 3 gives T (3,4)
and p = 3, q = 5 gives T (3,5). It remains to to show that T (3,n) for n ≥ 6 do not occur.

Assume P(−2, p,q) = T (3,n) for n ≥ 6. We can also assume that p,q ≥ 2. Note that by comparing crossing numbers
we have 2n = p+q+2, so it is enough to consider p+q even. If both p,q are even, we have a 3-component link, so
3 | n. In that case one of the component linking numbers of P(−2, p,q) is one, and looking at those for T (3,n), we
have n = 3.

So consider the knot case, and assume p,q are odd and 3 - n. Then p,q ≥ 3 and p+q = 2n−2 ≥ 12. To distinguish
P(−2, p,q) and T (3,n) we can use the determinant det = |∆ (−1)|= |V (−1)|. Using the skein relation (2.4) for ∆ it is
easy to calculate that

det(P(−2, p,q)) = 2(p+q)− pq , (4.3)
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up to sign. (This formula is valid also if some of p,q is even.) On the opposite hand-side (again up to sign),

det(T (3,n)) =

{

1 2 - n
3 2 | n

,

as can be found easily for example from Jones’ formula for V (T (p,q)) in [J2]. An easy check shows that for p+q =
2n−2, p,q ≥ 3 and n ≥ 7, determinants cannot match (even up to sign), except in the cases we already had. �

Proposition 4.3 The Seifert fibered Montesinos links are, up to mirroring

• the torus links T (m,n) for m = 2, or m = 3 and 3 ≤ n ≤ 5, latter realized as P(−2,2,2), P(−2,3,3) and
P(−2,3,5),

• the (4,3,−2)-pretzel link,

• or the (−2,2, p)-pretzel links for p ≥ 3.

Proof. The Seifert fibered links are given by Burde-Murasugi [BM]. They consist of a torus link T (m,n), by possibly
joining one or both cores of the solid tori complementary to the torus on which T (m,n) lies. Such links can always be
oriented so as to be closed positive braids. We will choose this orientation, which we have the freedom to do, since
the property a link to be Montesinos does not depend on orientation. It is easy to see then that such links satisfy the
hypothesis of proposition 4.2. This is true for T (m,n) by choosing a positive m-string braid representation for m ≤ n,
and the addition of a/the core (unknotted) circle(s) preserves minimality of the crossing number by a linking number
argument.

So the only Seifert fibered Montesinos links are to be sought among the (−2, p,q)-pretzel links. Such links have at
most 3 components and braid index at most 3.

Case 1. The torus links (no unknots are added; case (c) in [BM]) follow from corollary 4.3.

Case 2. The Seifert fibered links with 2 circles added (case (a) in [BM]) have, except the Hopf link, at least 3 compo-
nents. So for braid index reasons the third component must be unknotted, too. Looking at linking numbers we obtain
the (−2,2, p)-pretzel links for even p. (For p = 0 we have the connected sum of two Hopf links, while a Montesinos
link is prime, and P(−2,2,2) = T (3,3).)

Case 3. Finally, consider the links with one circle added in case (b) in [BM].

Case 3.1. If (in the notation there) |β| > 1, there is a non-trivial torus knot component. Because of the braid index
it must be T (2,n) for some n ≥ 3 odd. Thus L has only two components, T (2,n) and an unknot O. The unknotted
circle O is either the braid axis of σn

1, giving the 3-braid representation σ2σ2
1σ2σn

1, or the core of σn
1, giving the 3-braid

(σ1σ2σ1)
n.

Case 3.1.1. The 3-braid representation σ2σ2
1σ2σp

1 leads to the (−2,2, p)-pretzel links for odd p. (If p = ±1, then
P(−2,2,1) = T (2,4).)

Case 3.1.2. So consider (σ1σ2σ1)
n, and the knotted component links the unknotted one n times. We may assume that

n is odd, otherwise we have case 1. The links for odd n occur in [Tr]. They have determinant 2.

Two components mean that in P(−2, p,q) exactly one of p,q is even. Say w.l.o.g. p is even, q is odd. Then the linking
number of the two components is p/2+1, and the knotted component is a (2,q)-torus knot. From the Burde-Murasugi
description it follows that p = 2n−2 and q = n.

In the case p = 4, q = n = 3 the pretzel link matches the Burde-Murasugi link. If n ≥ 5, using (4.3), we see that the
determinants are different.

Case 3.2. If |β| = 1, all components of the Burde-Murasugi links are unknotted and interchangeable. Moreover, they
are three, because for fewer components the Burde-Murasugi description gives only T (2,n) (with even n), while more
components contradict the braid index 3. Then p,q are both even, and thus P(−2, p,q) has a pair of components of
linking number 1. By interchangeability, all linking numbers must be 1. Then p = q = 2, a link we already had.
(Moreover, Burde-Murasugi’s α = 1, contradicting the assumption α > 1 in the beginning of their case (b).)

With this the proof of proposition 4.3 is complete. �

Using the correct part of corollary 5 of [Oe], we can fix its incorrect part. (A graph manifold is one whose all pieces
in the JSJ decomposition are Seifert fibered.)
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Corollary 4.4 The non-hyperbolic Montesinos links are, up to mirroring, T (2,n) and the pretzel links P(2,2,−2,−2),
P(1,−3,−3,−3), P(−2,4,4), P(−2,2, p) for p ≥ 2, and P(−2,3, p) for 3 ≤ p ≤ 6. All their complements are graph
manifolds. �

4.4. More examples on deciding semiadequacy

A couple of examples, ordered by increasing complexity, should demonstrate how the methods of our paper can be
used in practice to show that certain knots are not A-semiadequate. The first one is very simple.

Example 4.1 A consequence of corollary 2.1 is that if a(L) = 1, L is not A-semiadequate, even if no pair (l,m) with
(2.9) exists. One such knot is !10133. (A-semiadequacy is not ruled out by the Jones polynomial either.) A similar
situation occurs if a(L) = 0, but we can show by other means that L is not positive, as for example for !10145 (see
[Cr, St6]).

Example 4.2 As a consequence of proposition 3.5, we see that !819, !10124 and !10139 are not A-semiadequate. The
example !943 falls outside the scope of the proposition, but one can apply to it the (more general) corollary 3.6.

Example 4.3 The knots 943, 10126, 10130, 10132, 10134, 10143, 10146, 10147, 10148 and 10150 can be ruled out from
being B-adequate and 10156 from being A-adequate using (3.3). The same holds for 11485 (figure 3) and 121750 (the
knot of [Th, figure 2]). In some situations, like for !121409 and !121726, we have (3.3) and mincfV = ±1, but the sign
is opposite to the specified one.

Note that (3.3) is a condition formulated enitrely in terms of the Kauffman polynomial; so any other (potential) knot
with the Kauffman polynomial of one of the knots in example 4.3 will not be A/B-adequate either.

Clearly, the genus contradiction of corollary 3.6, as used in example 4.2, will apply only in few cases. For practical
analysis, the structure of the set of knot diagrams of given (canonical) genus turns out useful. As an application of this
classification of series D for genus one and two (see theorem 2.1) we give the next examples.

Example 4.4 The knots !820 and !10140 have a = 2. Thus if they were A-semiadequate, then they would have diagrams
with two negative crossings. Since mindegl P = 0 for both knots, this diagram must have genus ≤ 2. To show that
such a diagram does not exist, use that the knots are slice. A result of [St6] (§6 therein), a consequence of theorem 2.1,
is that the only slice knots with 2-almost positive diagrams of genus ≤ 2 are the unknot and !61. Thus !820 and !10140
are not A-semiadequate. Again their Jones polynomial does not rule out the A-semiadequacy. A similar argument
applies to !10130, with the modification that in [St6] we just used σ = 0 (see the remark at the end of §6 there).

In the following, most general type of example, the classification in theorem 2.1 is used to full extent, and the idea
used in the proofs of §3 comes to practical application in most detail. We formulate the example as a proposition,
since the argument is longer, and explains how to proceed in other cases.

Proposition 4.4 The knot !10137 is not A-semiadequate.

Proof. We have a(!10137) = 3, so an A-semiadequate diagram D of !10137 would have 3 negative crossings. Since
mindegl P(!10137) = −2, D must have genus at most 2, and hence exactly two, since g(!10137) = 2. Thus by theorem
2.1, D lies in the series of one of the 24 knots listed therein. Note that, since !10137 is prime, D cannot be com-
posite. The factors of an A-semiadequate diagram are A-semiadequate, and the unknot has no non-trivial (reduced)
A-semiadequate diagrams.

Consider the diagram D̃, obtained from D by reducing each ∼–equivalence class to at most two elements by undoing t̄ ′2
moves. Then D̃ is obtained from an alternating diagram of one of the above 24 knots by crossing changes and possible
flypes. Moreover, D̃ has one or 3 negative crossings.
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If D̃ has one negative crossing, then the 3 negative crossings of D lie in a tangle, which is the mirror image of the r.h.s.
of (2.17). Thus we have s−(D) ≥ 2 Seifert circles of D bounding only negative crossings. Then using (2.13) and that
g(D) = 2 and w(D) = c(D)−6, we can estimate the slice genus by

gs(!10137) ≥
w(D)− s(D)+1

2
+ s−(D) =

(

g(D)−3
)

+2 = 1 ,

and obtain a contradiction to the sliceness of !10137 (see [Kw, table p. 276]).

Thus D̃ has 3 negative crossings. Since D̃ cannot have trivial clasps, these 3 negative crossings, and hence those of
D, must be either in 3 ∼–equivalence classes of a single crossing, or in 2 ∼–equivalence classes of 1 and 2 (reverse
clasp) elements resp. We obtain this way from the diagrams of the 24 knots up to flypes 386 possible diagrams D̃.

Since D is obtained from D̃ by t̄ ′2 moves at positive crossings, we have for the signature 0 = σ(D) ≥ σ(D̃). Thus we
can discard all diagrams D̃ with positive signature. There remain 173 diagrams.

Note that the A-semiadequacy of D could have been spoiled in building D̃, because we may have reduced some ∼–
equivalence class to a single element. To bring the semiadequacy condition into the game, consider the diagram D̂,
obtained from D̃ by applying t̄ ′2 moves on all ∼–equivalence classes in D̃ having a single (and) positive crossing.

There is a little difference between D̂ and D′′ from the proof of theorem 3.1. Both arise form D̃ by t̄ ′2 moves on ∼–
equivalence classes of a single positive crossing. However, for D′′ we apply t̄ ′2 moves only on some, while for D̂ on all
such classes. Thus D̂ can be obtained from D′′ by t̄ ′2 moves, and since D′′ is A-semiadequate, D̂ must be now, too.

Testing semiadequacy (I tested actually A- or B-semiadequacy), we obtain from the above 173 diagrams D̃ only 36
diagrams D̂.

One finds by calculation of the Kauffman polynomial that for all such diagrams D̂

maxdegφ+(D̂) = max
{

l : mindega[F(D̂)]zl − l = min{m− l : [F(D̂)]zl am 6= 0}
}

≥ c(D̂) −3 . (4.4)

We know that a t̄ ′2 move preserves A-semiadequacy and c( .)−maxdegφ+. Also, D and D̂ are stably equivalent under
t̄ ′2 moves (although one may not be convertible into the other directly). It follows that c(D)−maxdegφ+(D) ≤ 3.
Since for K =!10137 we have

max
{

l : mindega[F(K)]zl − l = min{m− l : [F(K)]zl am 6= 0}
}

= 8 ,

we obtain that D must have at most 11 crossings. Then it is not hard to check all genus two 10 and 11 crossing 3-almost
positive diagrams. We find (e.g. by comparing the Jones polynomial) that !10137 is not represented by such a diagram.
Thus !10137 is not A-semiadequate. �

We could handle by similar arguments 11485 (see §4.1), and Thistlethwaite’s original problem knot 121750. But this is
now obsolete and superseeded in simplicity by example 4.3. (It was our initial proof before we found the test (3.3).)

It is worth remarking that for all examples given no pair (l,m) with (2.9) exists. Thus we see the increase in efficiency
in our tests in comparison to Thistlethwaite’s positivity condition on φ±.

4.5. Knots with up to 10 crossings

Using the above explained methods, and as an extension of the specific examples discussed above, the A/B-semiade-
quacy status of all knots up to 10 crossings could be determined. Note that all such composite knots are alternating,
and alternating knots are adequate, so it is enough to focus on non-alternating (prime) knots. It is essential to specify
mirroring, and we point out again that we use the convention in Rolfsen’s tables [Ro, appendix]. We also shift down by
one the index of the last 4 knots, discarding the Perko duplication 10162 =!10161. (So, the last knot of Rolfsen, 10166,
is for us 10165.) For some (accidental?) reasons, the 50 not adequate knots in Rolfsen’s tables are almost entirely (with
only 4 exceptions) mirrored so as to be A- rather than B-adequate. Thus, the outcome is shortly summarized in the
below statement.
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Proposition 4.5 The following table indicates A/B-semiadequacy status of non-alternating prime knots up to 10 cross-
ings (with Rolfsen’s mirroring, and the Perko duplication removed):

adequate
A- and B-adequate
but not adequate

B-adequate but
not A-adequate

A-adequate but
not B-adequate

10152 – 10154 10161 10155 – 10157, 10165 all others

Proof. The A/B-semiadequacy is directly checked in Rolfsen’s diagrams, so we need to rule out the other semiade-
quacy. Let us mirror the knot so that it is A-semiadequate. The easiest test comes from V . Several knots are done by
seeing that the minimal coefficient is not ±1. One can also use corollary 3.3 (see example 4.3). The exclusion of the
other knots is mainly an application of the methods of this paper, so we indicate only specific features that differ from
the preceding examples.

First we determine a(L) from the Kauffman polynomial, and then use the left inequality in (3.13) to bound the genus
of an A-adequate diagram. It turns out that it always suffices to consider genus 2 or 3, where we have the list of
generators. For !10132, !10150 and 10156 Morton’s inequality is not sharp, and one should use either corollary 3.3, or
the 2-cabled skein polynomial, as explained in [MS], to rule out g(D) = 4. For !10132, one can also argue using the
second Jones polynomial coefficient V1 = 0. By [St12], if A-adequate, it would be positive, which it is clearly not (for
example because σ = 0 or a > 0).

There are two further useful simplifications during the search for A-adequate diagrams D. Call two crossings Seifert
equivalent, if they connect the same pair of Seifert circles. Now combinatorially using [MP] or geometrically using
[Ga, Ga2], we see that whenever the diagram D is of minimal genus (i.e. g(D) = g(K)), there are no Seifert equivalent
crossings in D of opposite sign.

Also, there is an additional condition, which we call S condition, resulting from an improvement of Morton’s inequal-
ities (3.13). This improvement is given in [MP2, Theorem 8.3] (modulo a correction which is required, as described
in [St11]). It implies that when the left (resp. right) inequality (3.13) is exact (i.e. equality) for D, no negative (resp.
positive) crossing in D forms a trivial (one-crossing) Seifert equivalence class. For negative crossings this implies that
there are no ∼-equivalence classes of > 2 negative crossings in D. In particular D is obtained from D′′ by positive t̄ ′2
twists only. One can establish the S condition also for some diagrams with inexact (3.13) by arguing with the 2-cabled
polynomial.

When the S condition does not apply, and a(L) > 2, one must consider also the possibility of negative t̄ ′2 twists from
D′′ to D. Often, however, the use of σ, and the s and τ invariants can rule this case out, or restrict it. If a(L) is large,
then we switched positive crossings one by one and checked the signature at intermediate stages, to discard crossing
switches that do not lower σ sufficiently.

The work took, using a computer and proper programming, a few minutes per knot. (Some knots can be handled
simultaneously.) Note that we have also a crossing bound from proposition 3.1. But using only this bound and a(L),
i.e. the information that follows easily from [Th], would blow up the effort per knot from several minutes likely to
several days. �

As a consequence, using corollary 2.1, we can determine for what k the knots up to 10 crossings are k-almost positive.

Corollary 4.5 Let K be a knot up to 10 crossings, and a minimal crossing diagram of K have k+ positive crossings,
and k− negative crossings. Then K is k−-almost positive, and !K is k+-almost positive. The exception is K = 10161,
which is 9-almost positive, and !10161, which is positive. �

5. Conclusions and problems

Since all steps in the proof of the inequality (3.4) are constructive, this allows – in theory – to decide whether a link
is semiadequate or not: we can write down an explicit list of (semiadequate) diagrams among which it would have
to be if it is semiadequate. As said, the crossing number inequalities are intended primarily in a theoretical spirit. In
practice, by using the arguments in their proof, the list of potential diagrams becomes much smaller than simply the
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list of all diagrams up to the crossing number stated in the inequality. Nonetheless, this list may still be quite long
even for some simple examples. In particular, the number of genus generators will quickly grow beyond our compiling
capacity for genus > 4.

On the other hand, the condition of semiadequacy is much weaker than that of adequacy, and thus our estimates are
much more generally applicable. A good illustration, roughly mentioned before, is that of the prime knots of 15
crossings given in [HT]. As opposed to the 85,263 alternating knots, among the diagrams, in which the 168,030 non-
alternating knots are tabulated there, 148,720 are semiadequate, while only 15,669 are adequate. Thus, in practice, the
concept of adequacy seems – unlike semiadequacy – to be only a slight generalization of alternation.

Since we noted that for an A-semiadequate link A-semiadequate diagrams are exactly those with the minimal number
of negative crossings, one may ask for a possible extension of our main result:

Question 5.1 Does any oriented link have only finitely many reduced diagrams with the minimal number of negative
(or positive) crossings?

We proved above that this is true if this minimal number is 0, what we already knew for knots from [St2]. For knots
we settled in [St8] also the case that this minimal number is 1. The methods of these papers can, however, unlikely be
pushed forward in the here desired direction.

Another problem is contained implicitly in the consideration of sliceness. We observed that the (slice) Bennequin
inequality cannot distinguish between achiral and slice knots since it fails to react to (change of) orientation. One can
ask how significant this failure can become.

Question 5.2 Are there achiral knots of arbitrarily large 4-genus?

A final question is whether the visual primeness results of Menasco [Me] (for alternating links) and Cromwell-Ozawa
[Cr2, O] (for positive links) can be extended.

Question 5.3 Is a prime semiadequate diagram always representing a prime link?

This is true for knot diagrams up to 16 crossings. It is a partial case of problem (2) in §4 of [O2].

Acknowledgements. I would like to thank to D. Bar-Natan, N. Dunfield, M. Hirasawa, M. Kidwell, M. Ozawa and
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