
SUBSYMMETRIC EXCHANGED BRAIDS AND THE BURAU MATRIX

ALEXANDER STOIMENOW

ABSTRACT. We develop a method based on the Burau matrix to detect conditions on the linking num-

bers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation

fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers

a “subsymmetry” property; in particular at most two such braids can be mutually conjugate. As an ad-

dition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group.

We discuss also some properties of the Burau image.

1. MOTIVATION AND SUMMARY

Alexander’s and Markov’s theorems (§2.1) exhibit a fundamental relation between braids and links

in 3-space. One of the basic problems in understanding braid representatives of a given link L, i.e.,

those braids b ∈ Bn with closure b̂ = L, is to describe the conjugacy classes of such braid representa-

tives.

In this context the exchange move (§2.7) was extensively studied. Assume b ∈ Bn is of the form

b = αβ with α ∈ B1,n−1 having isolated right strand and β ∈ B2,n having isolated left strand, which

we formalize in §2.8 under the term exchangeable structure (ES). Then there is a sequence of braids

bm, indexed by m ∈ Z, with b = b0, obtained by (iterated) exchange moves from b, satisfying

b̂m = b̂ . (1)

The main question we are concerned in is the conjugacy of these bm, which we write ∼.

There is a condition of degeneracy (35), identified in two equivalent forms in [24] and [14], under

which all bm are conjugate. We will exclude this trivial case. Then the work in [24] protruded, and

extensive experimental evidence [28] cemented, the evidence of an unexpected subsymmetric pattern

(Definition 3.3):

there is a µ ∈ Z such that whenever bm ∼ bm′ (for m 6= m′), then m+m′ = µ.

This is a very strong restriction; it implies for instance that at most two bm can be conjugate, and that

bm 6∼ bm′ are pairwise non-conjugate for all m > m′ > 0 or all m < m′ < 0. Both many experimental

examples in Bn for small n and more sporadic but systematically constructable ones for higher n

show that the subsymmetry property cannot be generally strengthened, i.e., there exist symmetric ES.

However, it is very much possible that subsymmetry is universal, as formulated in Conjecture 3.7.

Let π : Bn→ Sn be the permutation homomorphism. When π(b)(1) 6= 1 and π(b)(n) 6= n, then the

conjecture holds by the work in [24] (Theorem 3.4). Here we will be concerned with (sometimes an
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equivalent form of) the case

π(b)(1) = 1 and π(b)(n) 6= n , (2)

which requires a very different (but still quite substantial) treatment. It involves degenerate ES that

obviously have to be excluded somehow. We accomplish this by formulating a linking number condi-

tion (3). Linking numbers can be visually combinatorially defined (§2.6) and calculated. Under (2),

for every j > 1, the linking number lk j = lk(1, j) is an integer, and lkn = 0.

For degenerate moves all lk j for 1 < j < n are equal, say, to some lk ∈ Z (see (37)). In particular,

when C 6= {1} is a cycle of π(b), then

there is a lk ∈ Z so that for every C we have lk(1,C) = lk · |C\{n}|. (3)

(Note that lk(1,C) is the linking number of the corresponding components of the closure link b̂.) This

condition is generically violated (under (2)), and can be rapidly tested from a braid picture (unlike,

e.g., degeneracy). We express (3) in §4 through specifying defective cycles (so that the absence of

such a cycle is a slightly stronger form of (3)).

Theorem 4.2 states, among others, the following.

Theorem 1.1. If there is a defective cycle, then Conjecture 3.7 holds.

This is sufficient to extend, in §8, some knot-theory applications of non-degeneracy given in [28].

Our proof (see §2.1 below) consists in deriving a conjugacy invariant from the Burau matrix (§2.3).

The Burau representation ψn plays a fundamental role in the study of braid groups, and has been

extensively treated, e.g., [17, 4]. By replacing conjugacy of Burau matrices by equality, we gain

some characterization result (Theorem 9.1), which is motivated here by its two following simple

consequences.

Corollary 1.2. (see Corollary 9.4) The Burau kernel ker(ψn) is contained in the commutator sub-

group Pc
n of the pure braid group Pn.

Corollary 1.3. The only scalar matrices that occur in the image of ψn are the image of center(Bn)
(i.e., powers of (12)).

2. SOME BASICS ABOUT BRAIDS AND LINKS

2.1. General background. The braid groups Bn were introduced in the 1930s in the work of Artin

[2]. We consider the n-strand braid group Bn on Artin’s generators σi. Until §9, will assume n≥ 4.

Alexander [1] related braids to links in real 3-dimensional space (henceforth always assumed ori-

ented), by means of a closure operation ˆ. Markov’s theorem relates braid representatives of a link by

two moves, the conjugacy in the braid group, and (de)stabilization, which passes between b ∈ Bn and

bσ±1
n ∈ Bn+1 (see, e.g., [20]). The exchange move was apparently discovered by Markov in an earlier

version of his theorem, but later showed a consequence of his other two moves. It was then, however,

extensively studied by Birman and Menasco [6, 7, 8, 9].

Let α ∈ Bn have isolated right strand (do not involve σ±1
n−1), β have isolated left strand (no σ±1

1 ),

and b = αβ. Write δ2
[2,n−1] for the (right) full-twist on strands 2 to n−1 (see §2.2). Then for m ∈ Z

the braids

bm = αδ2m
[2,n−1]βδ−2m

[2,n−1] (4)
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are obtained by iterated exchange moves on b and have the same closure link (1).

The property (1) (which means that the closure link is useless as a conjugacy invariant), together

with Theorem 3.1 strongly motivate that

{bm : m ∈ Z} (5)

are the most important infinite families of braids, on which the conjugacy problem is worth studying.

The question when the exchange move generates non-conjugate braids has been considered for

some time. In [24] we proved that if π(b)(1) 6= 1 and π(b)(n) 6= n, then infinitely many bm are non-

conjugate (Theorem 3.4), extending the case of a cycle π(b) in [23]. This was later improved by Ito

[14] (Theorem 3.5), using some dilatation bound in the mapping class group.

The main goal here is to study the cases excluded in Theorem 3.4, while obtaining stronger non-

conjugacy properties of iterated exchanged braids bm than those arising from geometric analysis. For

the case (2), we will introduce a method using the Burau matrix, which essentially shows how it can

account for the linking numbers in strands of a pure braid. It applies under very relaxed (and easy to

test) assumptions, but requires effort to derive (Theorems 4.1 and 4.2). The scenario π(b)(1) = 1 and

π(b)(n) = n is (even) more difficult, and will likely require the Lawrence-Krammer matrix (see §7).

Algorithmic decision of conjugacy bm∼ bm′ for particular m,m′ is, of course, possible starting with

Garside’s [11], and later many others’ work. This process runs efficiently on a computer [12], and

is very useful for experimental tests as in [28], on a large – but finite – number of instances. It is

well-known, though, to be too involved to be manually manageable, even on such explicit infinite

families of braids as (4).

The practical approach (behind all results summarized in §3) is rather to seek some, sufficiently

successful, conjugacy invariant υ, for which υ(bm) can be evaluated. The core qualitative contribution

of this paper can be formulated in exploring (and exploiting) a new type of such invariant.

2.2. Braid groups and closures. For many standard terms and facts about braids, see [5].

Definition 2.1. The braid group Bn on n strands can be defined by generators and relations as

Bn =

〈

σ1, . . . ,σn−1

∣

∣

∣

∣

∣

[σi,σ j] = 1 |i− j|> 1

σ jσiσ j = σiσ jσi |i− j|= 1

〉

. (6)

The σi are called Artin standard generators. An element b ∈ Bn is called an n-braid.

For example, in b1 of Figure 1, we have n = 4 and the word b1 = σ−1
3 σ−1

2 σ−1
3 σ2

1σ2σ−1
1 .

Let

δn = (σ1 · . . . ·σn−1) · (σ1 · . . . ·σn−2) · . . . · (σ1σ2) ·σ1 (7)

be the (right-handed) half-twist on n strands. The center center (Bn) of Bn (elements that commute

with all Bn) is infinite cyclic and generated by the full twist

δ2
n = (σ1 · . . . ·σn−1)

n .

Let similarly

δ2
[i, j] = (σi · . . . ·σ j−1)

j−i+1
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be the restricted full twist on strands i to j. Let also for 1≤ i < j ≤ n,

Bi, j := 〈σi, . . . ,σ j−1 〉 (8)

be the subgroup of Bn of braids operating on strands i, . . . , j. Where ambiguity is avoided (as indicated

by diagrams we will draw), we can identify Bi, j ≃ B j−i+1. Specifically, Bn−1 as a subset of Bn will by

default be considered to be B1,n−1, e.g., in (10).

FIGURE 1. An n-braid

There is a permutation homomorphism of Bn,

π : Bn→ Sn , given by π(σi) = (i, i+1) . (9)

The permutation on the right is a transposition. More generally, we will write (x1 x2 . . . xl) for the

cycle xi 7→ xi+1 for i = 1, . . . , l−1, and xl 7→ x1. By abuse of notation, we will also sometimes identify

C = {x1, . . . ,xl} with its set of elements. In particular, we will use |C| for the length of the cycle.

We call π(b) the braid permutation of b. We call b a pure braid if π(b) = Id. We write Pn = kerπ
for the pure braid group.

Also, there is a homomorphism e : Bn → Z sending all σi to 1. We will write e = e(b) for the

image, and call it exponent sum or writhe of b.

When we choose a (non-empty) subset C of {1, . . . ,n} whose elements form a subset of the cycles

of π(b), we can define a subbraid b′ = b[C] of b by choosing only strings numbered in C. Then b̂[C]

is a sublink of b̂. For example, in b2 of Figure 1, the two components b̂′2 and b̂′′2 of b̂2 are given

by the subbraids b′2 = (b2)[{1,3,5}] comprising the strings starting at the top as number 1,3,5, and

b′′2 = (b2)[{2,4}] of strings 2,4.

Markov’s theorem (see, e.g., [20]) relates braid representatives [29] of the same link by two moves,

the conjugacy in the braid group, and the pair of stabilization, which is the move to the right in

b ∈ Bn−1←→ bσ±1
n−1 ∈ Bn , (10)

together with its inverse (move to the left), called destabilization. As mentioned, Markov’s moves

have gained importance in knot theory, among others, as a tool for defining link invariants via braids.

We call a braid b′ ∈ Bn positively resp. negatively stabilized if b′σ−1
n−1 resp. b′σn−1 lies in B1,n−1.

We say that b ∈ Bn is irreducible, if b is not conjugate to a stabilized braid b′.
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2.3. Burau representation. The (reduced) n-strand Burau representation ψn, of dimension n− 1,

which we simply call ‘Burau’, can be found for example in [15, §2]. It associates to a braid β ∈ Bn a

matrix ψn(β) of size (n−1)× (n−1) and entries in Z[t±1].

Let us for square matrices M,N write for their block sum

M⊕N =









M 0

0 N









.

Then ψn is defined by

ψn(σi)(t) = Idi−2⊕





1 0 0

t −t 1

0 0 1



⊕ Idn−i−2 , (11)

with the first (resp. last) row and column of the 3×3 block removed for σ1 (resp. σn−1).

The following formula for the Burau matrix of the center is well-known (see e.g. [27, 15]):

ψn(δ
2
n) = tn · Idn−1. (12)

2.4. Links and link polynomials. Among the different braid representatives of a link L the one with

the fewest strands is called a minimal braid. The number of strands of a minimal braid is called the

braid index b(L) of L (see e.g. [18, 22, 10, 26]). It makes sense to consider throughout

n≥max(4,b(L)) . (13)

Obviously for a braid minimal implies irreducible, but the converse is not true [19] (although it is for

n≤ 3 [7]).

Consider links with diagrams differing just near one crossing. We call the three diagram fragments

in (14) from left to right a positive crossing, a negative crossing and a smoothed out crossing (in the

skein sense).

L+ L− L0

(14)

Below ∆ is the Alexander polynomial. It is an invariant with values in Z[t, t−1], and can be defined

by being 1 on the unknot and the relation

∆(L+) − ∆(L−) = (t1/2− t−1/2)∆(L0) .

The Conway polynomial is an oriented link invariant that takes values in Z[z]. It is given by the

value 1 on the unknot and the skein relation

∇(L+)−∇(L−) = z∇(L0) . (15)

We have

∇(L)(t1/2− t−1/2) = ∆(L)(t) ,

so that ∇ and ∆ are interconvertible (and equivalent as invariants).
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If β ∈ Bn has exponent sum e, then for the Alexander polynomial there is the formula in terms of

the Burau matrix
(

−
√

t
)e−n+1

∆
β̂
(t)

1− tn

1− t
= det(Idn−1−ψn(β)) . (16)

This is discussed, for instance, in [15].

2.5. Combed normal form. We present below some argument based on the combed normal form of

a pure braid. (See [5] for some more detailed discussion.)

For 1≤ i < j ≤ n, let

κi, j = δ2
[i, j]δ

−2
[i, j−1] (17)

(“strand i goes around strands i+ 1, . . . , j”), with δ2
[i,i] = Id. Then every pure braid α ∈ Pn can be

written as

α =
n−1

∏
i=1

αi αi =
ki

∏
j=1

κ
εi, j

i,pi, j
, (18)

for pi, j > i and εi, j =±1. This representation is also unique, except for obvious cancellations κ±1
i,k κ∓1

i,k .

More often one seems to use this form with

κ′i, j = κi, jκ
−1
i, j−1 (19)

(“strand i goes around strand j on top of strands i+1, . . . , j−1”), setting κi,i = Id.

Both forms are equivalent, because a group is free in e1, . . . ,el if and only if it is free in e1,e1e2, . . . ,
e1 · · ·el . We will be more convenienced to use (17).

2.6. Linking numbers. For b ∈ Pn, one can define the linking number lki j = lki, j(b) by numbering

strands from left to right, and taking half the sum of the signs of all crossings (exponents of letters

σk) involving strands i and j.

This definition can be extended to non-pure braids b, when for π(b)(i) 6= i one has to fix that strands

are numbered where (with their orientation) they enter the braid, and if (π(b)(i)−π(b)( j))(i− j)<
0, then lki, j will only be a half-integer. For example, in b2 of Figure 1, we have lk(2,3) = 1 and

lk(3,5) =−1/2.

For subbraids b′ = b[C′] and b′′ = b[C′′] of a fixed braid b one can define the subbraid linking number

lk(C′,C′′) by the linking number

lk(b̂′, b̂′′) = ∑
i∈C′, j∈C′′

lki j

between sublinks of b̂. In (3), let lk(1,C) = lk({1},C). For example, in b2 of Figure 1, we have

lk({1,3,5},{2,4}) = 0.

In the presentation (18), one can see for α ∈ Pn that for i < j,

∑
k:pi,k= j

εi,k = lki, j− lki, j+1 , (20)

with lki,n+1 set to 0. We will use this property several times below.

When G is a group. we will write Gc for the commutator subgroup of G, generated by elements

ghg−1h−1. (We do not prefer to use the more standard notation [G,G] to avoid confusion, since we
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will heavily deploy commutators starting from (56) in a ring-theoretic sense.) Then set Ga = G/Gc

to be the abelianization.

It follows easily from the combed normal form that the abelianization Pa
n is isomorphic to Zn(n−1)/2,

with the identification given by the vector of linking numbers α 7→ (lki, j(α))1≤i< j≤n. Also note that

e(α) = 2 ∑
i< j

lki, j , (21)

which is what specifies the braid commutator subgroup Bc
n = {β : e(β) = 0}, so that the inclusion

Pc
n ⊂ Bc

n∩Pn is (very) proper.

Since we need this a few times, let us write

Λn := Pc
n · center(Bn) (22)

for the set of pure braids with equal linking numbers.

Also, for a few schematic displays, it is useful to introduce the linking graph ϒ(b), which has

vertices labeled |C| for each cycle C of π(b) and edges between C,C′ labeled by lk(C,C′).

2.7. Exchange move. We say that b ∈ Bn admits an exchange move or is exchangeable, if b is as

illustrated in Figure 2, where α ∈ B1,n−1, β ∈ B2,n, and n≥ 4.

FIGURE 2. The exchangeable n-braid b.

An (iterated) exchange move [6] is the transformation between the braid b and the braids (4) shown

in Figure 3. Here m is some non-zero integer, and the boxes labeled ±m represent the full twists

δ±2m
[2,n−1] respectively, acting on the middle n− 2 strands. (Thus a positive number of full twists are

understood to be right full twists, and −m full twists mean m full left-handed twists.) We can set

b0 = b.

Of course, no non-trivial braid on 2 strands admits an exchange move, and all exchange moves on

3 strands are trivial, so that we will naturally assume n≥ 4 throughout.

There is another, more common, way to describe the exchange move, namely by

αβ ←→ ακ−mβκm , where κ = (σ1 · . . . ·σn−2)(σn−2 · . . . ·σ1) . (23)

Thus κ = κ1,n−1 in (17). This description is equivalent to the previous one, because κ · δ2
[2,n−1] =

δ2
[1,n−1], and this element commutes with α.

Up to conjugating and changing the sign of m, a further equivalent formulation of the move is

b0 = α̃σ1β̃σ−1
1 ←→ b1 = α̃σ−1

1 β̃σ1 , (24)
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FIGURE 3. The braid bm

with α̃, β̃ ∈ B2,n, which can be generalized (up to conjugacy) by

bm = δ2m
[3,n]α̃δ−2m

[3,n] σ1β̃σ−1
1 . (25)

This form will be more convenient for our treatment of exchangeable braids from §5 on.

Note that the exchange move in Figure 3 is trivial when the leftmost strand of α (or the rightmost

strand of β) are isolated, i.e.,

α ∈ B2,n−1

(for B2,n−1 from (8)). We observed in [24] this failure to extend to braids b with

α ∈ 〈κ〉 ·B2,n−1, (26)

for κ in (23), since this element commutes with B2,n−1.

Note that the exchange move preserves the linking graph: there is an obvious identification of

cycles in π(b) and π(bm) so that ϒ(b) = ϒ(bm).

2.8. Exchangeable structure. It should me kept in mind that the result bm in (4) does depend on the

decomposition

b = αβ with α ∈ B1,n−1 and β ∈ B2,n , (27)

although some different pairs (α,β) give equal or conjugate bm. To formalize this, let us say that the

pair

(α,β) ∈ B1,n−1×B2,n with (27) ,

regarded up to the equivalences for γ ∈ B2,n−1

(αγ,β)∼= (α,γβ) and (γα,β)∼= (α,βγ) , (28)

forms an exchangeable structure (ES) of b, regarded up to conjugacy in B2,n−1. An easy argument

with the combed normal form in [28] shows that, if a B2,n−1-conjugacy class admits an exchangeable

structure, then it is unique. An ES for a link L is henceforth to be understood as one of a braid

representative of L.

When we consider the family (5), we will then always understand that the exchangeable structure is

kept fixed. We must point out that when we later talk about braids exchangeable ‘up to conjugacy’, we

will mean conjugacy in the full Bn, though. This raises the question how to identify (all) exchangeable

structures on braids in such a conjugacy class, if such exist. For instance, we know from [28] that a

conjugacy class can have infinitely many different exchangeable structures.
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One should also notice, that an ES has no canonical preferred choice of m = 0 in (5), i.e., the

indexing by m of the family (5) is only unique up to transitions on Z.

2.9. The axis addition link. The axis (addition) link Lb of b ∈ Bn can be specified by the closure of

the braid

b · (σn−1 · . . . ·σ1) · (σ1 · . . . ·σn−1) ∈ Bn+1 . (29)

We call the closure of strand n+1 the axis of b.

If b ∼ b′ are conjugate in Bn, then Lb and Lb′ are isotopic links. Hence, one can deploy link

invariants of Lb as conjugacy invariants of b. In this connection, it is useful here to briefly return to

the Burau matrix.

It can be inferred from formulas (16) and (12) above that the characteristic polynomial of the

Burau matrix χ(ψn(b)) for b ∈ Bn is equivalent to ∇(L∗b), where L∗b is the set of all satellite links of

Lb in which the axis component is cabled (with some braid pattern, say, and arbitrary cable degree

allowed), but without cabling the component(s) of b̂. Another way of expressing ∇(L∗b) is as the

multi-variable Alexander polynomial of Lb, with all variables corresponding to components of b̂ set

equal, but different from the variable for the axis. See, e.g., also [21].

3. NON-CONJUGACY PROPERTIES

In [24] we treated the question when infinitely many conjugacy classes of n-braid representatives

of a given link L occur. Obviously it makes sense to consider only n ≥ b(L). Birman and Menasco

[6] proved that an exchange move necessarily underlies the switch between many conjugacy classes

of braid representatives of L.

Theorem 3.1 (Birman-Menasco [6]). The n-braid representatives of a given link decompose into a

finite number of classes under the combination of exchange moves and conjugacy.

We proved in [24] that it is also sufficient for generating infinitely many such classes, under a very

mild restriction. This leads to the question which braids bm, indexed by m∈Z, of an ES are conjugate

(in Bn).

There has now been a sequence of results in this direction, and to express ourselves succinctly, it is

better to specify some qualities of infiniteness, most of which are rather self-motivating.

Definition 3.2. We will write ∼ for conjugacy. We say an ES (α,β) is

• infinitely non-conjugate (INC) if there are infinitely many mutually non-conjugate bm, i.e., the

intersection

ΣE = {m ∈ Z : bm ∈ E } (30)

is non-empty for infinitely many conjugacy classes E in Bn,

• finitely conjugate (FC) if for only finitely many m, the braids bm are mutually conjugate, i.e.,

ΣE is finite for any conjugacy class E in Bn. We will also write FC(s) if there is an upper

bound s≥ |ΣE | independent of E ,

• totally non-conjugate (TNC) if bm 6∼ bm′ whenever m 6= m′, i.e., FC(1),
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• totally non-conjugate at infinity (TNCI) if, when allowing M > 0 to depend on (α,β) and

choosing M large,

bm 6∼ bm′ are pairwise non-conjugate for all m > m′ > M and all m′ < m <−M. (31)

These properties are interrelated with some other features we considered, which were partly (but

not fully) formalized in [24, 28], and whose role will become evident soon.

Definition 3.3. We specify an ES to be

• symmetric (S) if there is a µ ∈Z so that bm ∼ bm′ whenever m+m′ = µ but bm 6∼ bm′ whenever

m+m′ 6= µ (and m 6= m′).
• subsymmetric (SS) if, whenever bm1

∼ bm′1
and bm2

∼ bm′2
for mi 6= m′i, we have

m1 +m′1 = m2 +m′2. (32)

• quasi-subsymmetric (QSS) if there is a finite set Σ⊂ Z so that (32) holds for mi,m
′
i 6∈ Σ.

The implications are

INC FC TNCI QSS SS

S

TNC

=⇒ =⇒ =⇒ =⇒
=⇒

=⇒

The properties of Definition 3.3 may not appear of obvious relevance at first. They emerged from the

method of proof of Theorem 3.4, but were experimentally found in [28] to be far more than a mere

artifact of this technique. While TNC and S clearly appear too strong to be expected in general, SS

turns out practically omnipresent (see Conjecture 3.7). It then also became clear how to construct

symmetric ES (although, of course, this is far from the generic case).

Theorem 3.4. ([24]) Let a braid b ∈ Bn be exchangeable as in Figure 2 and the permutation π(b)
satisfy

π(b)(1) 6= 1 and π(b)(n) 6= n . (33)

Then the ES is SS. If π(b) is a cycle (i.e., b̂ is a knot) and n is even, then the ES is TNC.

The method consisted of evaluating coefficients of the Conway polynomial ∇ of the axis addition

link Lbm
of bm, or subbraids thereof. More precisely, there is always a conjugacy invariant υ so that

m 7→ υ(bm) (34)

is a (non-constant) at most quadratic polynomial in m. If the polynomial is quadratic, it shows SS,

and if it is linear, TNC. We will apply a similar strategy later, just using as υ an invariant we derive

from the Burau matrix.

Then Ito [14] much more recently obtained using the mapping class group a very similar version

of our theorem, in which (33) is replaced by the most general assumption of non-degeneracy, namely

that in Figure 3

δ2
[2,n−1]α 6= αδ2

[2,n−1] and δ2
[2,n−1]β 6= βδ2

[2,n−1] . (35)

Theorem 3.5. ([14]) If the ES is non-degenerate, then it is INC.
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In fact, despite not stated explicitly, FC follows from his proof (as recalled for Observation 7.1).

However, there is no control on the size of (30): it can depend not only on n, but on (the ES of) b

and on m (or, equivalently, E). In contrast, QSS implies FC(|Σ|+ 2) with a bound depending on b

only (but not on m), and SS implies FC(2). Both SS and QSS imply TNCI from (31). (Cf. also the

remarks below Observation 7.1.)

We found that Ito’s conditions (35) coincide with our previously observed instances (26) of failure:

α is of the form (26) ⇐⇒ α fails (35) . (36)

(Only the reverse direction is non-trivial.) The form (26) also makes clear why degeneracy can be

defined on the ES (rather than the braid itself).

After finding a proof of (36) using Theorem 3.4 and the combed normal form, I was pointed by

González-Meneses that (36) also follows from his work with Wiest on describing the centralizer in

braid groups [13]. This rendered the alternative argument obsolete, but we may note that our proof of

Theorem 9.1 can be used to show a related form of the reverse direction in (36): when α fails (35) in

Bn/ker(ψn), then α is of the form (26) in Bn/Pc
n .

We have in [28] the following version of Theorem 3.4. This led to the property QSS, sharpening

the conclusion of Theorem 3.5 under still very general circumstances.

Proposition 3.6. ([28]) Assume some Q-Vassiliev braid conjugacy invariant υ distinguishes some bm1

and bm2
(for some m1 6= m2). Then the ES is QSS.

A Q-Vassiliev conjugacy invariant is meant to be a conjugacy invariant of n-braids which is a Q-

valued Vassiliev invariant of braids [3]. (By standard arguments, Q-valued is equivalent to Z-valued.)

Polynomial invariants of Lb, as well as ∇(L∗b) or its equivalent χ(ψn(b)) (see §2.9), can be understood

as infinite collections of such υ. Thus, while (35) remains the most general assumption, it is clear

that, practically, the one of Proposition 3.6 is very likely no restriction. One can conjecture this

equivalence directly, but still, the construction of such invariant for large classes of exchange moves

is not straightforward. The invariants of [24], operating under (33), and yielding Theorem 3.4, can be

argued to lie in this class.

We formulated in [28] the most optimistic (and simplest) expectation regarding the (non-)conjugacy

of bm, which combines Ito’s (weakest) assumption and our (strongest) assertion, and which is sup-

ported not only by the above results but also by some (and not yet refuted by any) computational

evidence.

Conjecture 3.7. Every non-degenerate ES is SS.

Our main results can be seen as adding further pieces towards this conjecture.

4. MAIN RESULTS

There is some insight in [28] that failures of the method behind Theorem 3.4 are related to braids

where strand 1 in α must have equal linking number with all strands 2, . . . ,n−1:

lk2 = · · ·= lkn−1 , (37)
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which can be written as

α ∈ Pc
n−1 · center(Bn−1) ·B2,n−1 . (38)

(Note that this turns into (26) when removing the first factor.) It was tempting to expect that under

exclusion of this situation, and its analogue for β, one can always use the Conway polynomial to

distinguish Lbm
.

We will show below that when replacing the Conway polynomial by the Burau matrix, there is a

way to perform a manageable calculation to get out this linking number equality. While it is evident

in (26), we will be led then to stronger non-conjugacy properties of bm than FC, that one would have

from Theorem 3.5.

We have a complete result on linking number equality for two cycles in π(b). (Note that, by the

freedom of conjugating in B2,n−1, the form (39), and likewise (41), is chosen only for convenience of

notation and is no restriction of generality.)

Theorem 4.1. Let α, β as in Figure 2 have π(α) = Id and

π(β) = (2 3 . . . n−1 n) (39)

be a cycle. Let lk j = lk1, j be the linking number between strands 1 and j in α for j = 2, . . . ,n−1. If

the linking vector

(lk2, . . . , lkn−1) (40)

is not palindromic, then the ES is TNC. If not all lk j are equal, then the ES is SS.

Now consider, w.l.o.g., that (still α is pure and) n lies in a non-trivial cycle

C0 = (n0 n0 +1 . . . n−1 n) (41)

in π(b) = π(β), but not of length n−1, so 2 < n0 < n. To convey the exact meaning of Thorem 1.1,

let us say that C0 is (linking-)defective if the equality

lkn0
= · · ·= lkn−1 (42)

is not satisfied. (Keep in mind that always lkn = 0.)

While Burau cannot yet, as least completely, detect linking number equality of individual strands j

outside C0, it can still detect it on cycles in π(b). To make this precise, let

lk = lkn0
, (43)

and write

{2, . . . ,n0−1}=C1∪C2∪· · ·∪Cr

for the rest cycles of π(b). We also need to consider cycle lengths

λi = |Ci| . (44)

We include

λ0 = |C0|= n−n0 +1

in the notation, as it will be often needed. Set similarly

λ−1 = 1, C−1 = {1} .
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(See also Example 6.1.) Once lk is fixed in (43) from C0, define for each cycle Ci, 1≤ i≤ r (with the

notation in §2.6) the linking defect

τ(Ci) = lk ·λi− ∑
j∈Ci

lk j = lk ·λi− lk({1},Ci) . (45)

We may call the cycle Ci (linking-)defective if τ(Ci) 6= 0.

It is obvious that the presence of defective cycles depends on the ES only, that it will generically

occur, and that it can be examined directly from a braid picture (like Figure 1) without any braid-group

calculations.

Theorem 4.2. (1) Theorem 4.1 holds if in (39) and (40) we replace ‘2’ by ‘n0’.

(2) Now assume (42) and set (43) in (45). If

τ(Ci0) 6= 0 for some 1≤ i0 ≤ r, (46)

then the ES is SS.

5. PROOF FOR TWO CYCLES

Proof of Theorem 4.1. Fundamentally, throughout this proof, we will be concerned with the evalu-

ation of ψ
(k)
n (1), where the superscript means derivative taken w.r.t. t, entrywise, and the resulting

matrix in GLn−1(Z[t
±1]) is evaluated at t = 1.

We prepare the following formulas for ψn(κ1,l), l = 2, . . . ,n−1.

ψn(κ1,l) =























t l 0 0 · · · 0 1− t

t l− t2 t 0 · · · 0 1− t

t l− t3 0 t 1− t

...
...

. . .
...

t l− t l−1 0 · · · 0 t 1− t

0 0 · · · 0 0 1























⊕ Idn−1−l , (47)

whence

Âl = ψ′n(κ1,l)(1) =



















l 0 0 · · · 0 −1

l−2 1 0 0 −1

l−3 0 1 0 −1
...

...
. . .

...
1 0 · · · 0 1 −1

0 · · · 0 0



















⊕0n−1−l .

One can check (47) as follows. There are explicit matrices Xn (which are not difficult to find directly,

and also will be given in [27]), so that the embedding

ι1 : Bn−1 ≃ B1,n−1 ⊂ Bn (48)

gives

ψn ◦ ι1 = Xn(ψn−1⊕1)X−1
n . (49)
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With (12), one can then calculate ψn(δ
2
[1,n−1]) and ψn(δ

2
[1,n−2]) = ψn−1(δ

2
[1,n−2])⊕ 1. The rest for

obtaining (47) follows from (17).

We have the (non-commutative) matrix Leibniz rule (where prime refers to the derivative in t),

(AB)′ = AB′+A′B( 6= AB′+BA′) . (50)

By differentiating AA−1 = Id for A = ψn(κ1,l), and using A(1) = Id, we see also

ψ′n(κ
−1
1,l )(1) =−ψ′n(κ

−1
1,l )(1) =−Âl . (51)

It will be better in the following to move from ψn to the non-reduced Burau representation ψ×n of

Bn acting on Cn by

ψ×n (σi)(t) = Idi−1⊕
[

1− t 1

t 0

]

⊕ Idn−i−1 .

The form (11) comes from looking at the action of ψ×n on (the linear span of) the set of vectors

ei− ei+1, with ei the standard basis vector. There is an extra dimension coming from the fixvector

∑ei. Thus

ψ×n = T (1⊕ψn)T
−1 T =





















1 1 0 · · · 0

1 −1 1
...

1 0
. . .

. . . 0
...

... · · · −1 1

1 0 · · · 0 −1





















. (52)

This map (.)× augments matrix size, however, adding this extra dimension will simplify calculation

enormously. For instance, the embedding ι1 in (48) simplifies (49) to ψ×n+1 ◦ ι1 = ψ×n ⊕1, while the

one

ι2 : Bn−1 ≃ B2,n ⊂ Bn (53)

gives ψ×n+1 ◦ ι2 = 1⊕ψ×n . Also

Π = Π(b) = ψ×n (b)(1) (54)

is just the permutation matrix of π(b), with Πi,π(b)(i) = 1 and Πi j = 0 otherwise. Since the transition

matrix T does not depend on t, it is also clear that (ψ×n )
(k) = (ψ

(k)
n )×.

One can calculate straightforwardly that

Al = ψ×n (κ2,l+1)
′(1) = 0⊕ (Âl)

×⊖0 , (55)

where (M⊕N)⊖N = M and (with a matrix having l−1 rows and columns with a ‘−1’ entry)

(Âl)
× =



















l−1 −1 −1 · · · −1

−1 1 0 · · · 0

−1 0
. . . 0

...
... · · · . . .

...

−1 0 · · · 0 1



















⊕0n−l .
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Letting the commutator be

[A,B] = AB−BA , (56)

we also prepare for l = 2, . . . ,n−2,

[Al,An−1] = 0⊕

























0 n−1− l 1− l

l−n+1
... 0 1

l−n+1

l−1
... −1 0

l−1

























(57)

with the blocks of (both horizontal and vertical) size 1, l− 1,n− 1− l, respectively (and all entries

within each block identical).

It will be easier to work with the form (25), which can be obtained from (4) by conjugating β by

σ1σ2 · · · σn−1 , (58)

and isolating the two letters σ±1
1 (so that (39) remains the same), while changing α to ι2(α) from (53).

For the rest of the proof, we will use (25), but continue writing α for α̃ and β for β̃. Furthermore, we

keep n fixed and often simplify notation ψ× = ψ×n .

Consider now the combed normal form for α. In (18), we can assume α1 = Id because α ∈ B2,n.

Also, since any right factor of α in B3,n can be moved into β (and, being pure, will not affect (39)),

we can assume w.l.o.g. αi = Id for i > 2.

We write thus

α =
k

∏
i=1

κεi

2, ji
. (59)

Using that δ2
[2,n] commutes with α, we will also rewrite (25) in the form that, to obtain b1 from b0,

one adds a κ−1
2,n at the beginning and a κ2,n at the end of the product in (59).

Next, we will start evaluating

(ψ×)(k)(b1)(1)− (ψ×)(k)(b0)(1) (60)

by using the product (59) and its modification in b1 explained below (59).

The case k = 0 is completely trivial, thus let k = 1. Using (50) iteratedly on the form (59), one

can see that the terms for (ψ×)′(b1)(1) are the same as for (ψ×)′(b0)(1), except those coming from

taking the derivative in the factors κ±1
2,n added. But since α is pure (and ψ×n (κ2, j) = Id) and because

of (51), these two terms cancel as well. The result of (60) is thus 0 for k = 1.

But so prepared, we examine now k = 2. This requires somewhat more careful collection of terms,

but the procedure is clear. Since we need them often later, let us fix the permutation matrices of the

cycle and transposition

P = Π((2 3 · · · n)) and Γ = Π((1 2)) . (61)
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Only products involving the terms κ±1
2,n added to α will contribute. We use again ψ×n (α)(1) = Id,

and it is helpful to note that

(ψ×)′′(κ−1
2,n)(1)+2(ψ×)′(κ−1

2,n)(1)(ψ
×)′(κ2,n)(1)+(ψ×)′′(κ2,n)(1) = 0 ,

which is (51) taken one derivative further.

The result is given thus. Let in (59) for l = 2, . . . ,n−2

ηl = ∑
j:k j=l+1

ε j

be the exponent sum of κ2,l+1, also written as

ηl = lk2,l+1− lk2,l+2 , (62)

from (20). Then let Al be as in (55), and with (56) and (57),

Ω =
n−2

∑
l=2

ηl[Al,An−1] . (63)

Then we have with (61)

(ψ×)′′(b1)(1)− (ψ×)′′(b0)(1) = ΩΓPΓ . (64)

The only conjugacy invariant we can really control from this is the trace, since it is linear:

tr((ψ×n )
(k)(bm)(1)) = (trψ×n (bm))

(k)(1) .

Assume the non-vanishing condition

tr
(

(ψ×)′′(b1)(1)− (ψ×)′′(b0)(1)
)

= tr(ΩΓPΓ) 6= 0 . (65)

Now note that this expression does not change when we modify b1 to bm+1 and b0 to bm, since the

contribution of κ±m
2,n added in (59) does not change (63). Then (65) will imply that tr((ψ×)′′(bm))(1)

is a linear progression in m, so all tr(ψ×(bm)) will be distinct, all bm will be non-conjugate, and the

ES will be TNC. We will now regard the opposite of (65) via (63) as a linear condition on the ηl.

The goal is to collect enough similar linear conditions, until only the trivial solution ηl = 0 remains.

Now obviously, tr((ψ×)′′(bm)(1)) will give a scalar, which is utterly insufficient. To help ourselves,

we replace bm by b
p
m and repeat the process. This means that for p > 0 we consider (34) for the series

of conjugacy invariants

υ(b) = υp(b) = tr((ψ×n )
′′(bp)(1)) . (66)

It is a technical, but with the above explanation straightforward, thought, that

(ψ×)′′(bp
1)(1)− (ψ×)′′(bp

0)(1) =
p−1

∑
q=0

ΓPqΓΩΓPp−qΓ . (67)

The matrices summed are conjugated, thus the generalization of the negative of (65) becomes

p · tr(ΩΓPpΓ) = 0 , (68)

wherein we remove the unnecessary first factor. Since π(b) = π(β) has order n−1, it is also clear that

only

1≤ p < n−1 (69)
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makes sense. (The case p = 0 will give nothing.) This is again a linear condition

n−2

∑
l=2

qp,lηl = 0 ,

where

qp,l = tr([Al,An−1] ·ΓPpΓ) .

Since ΓPpΓ is a permutation matrix from (61), and the commutator is given in (57), one can directly

evaluate qp,l. We obtain a homogeneous linear system with n−2 equations for (69) and n−3 variables

for l = 2, . . . ,n−2. The matrix (qp,l) of this system (with rows indexed by p and columns by l) looks






























1 1 1 · · · · · · 1 1 1

0 1 1 · · · · · · 1 1 0

0 0 1 · · · · · · 1 0 0
...

...
. . . . .

. ...
...

...
... . .

. . . .
...

...
... −1 · · · · · · −1

...
0 −1 −1 · · · · · · −1 −1 0

−1 −1 −1 · · · · · · −1 −1 −1































. (70)

(When n is odd, there will be a zero row in the middle.) Its kernel elements (η2, . . . ,ηn−2)
T satisfy

ηl =−ηn−l , (71)

which with (62) (and shifting indices down by 1, to undo the change of form of the exchange move

we performed at the beginning of the proof), gives the palindromicity of (40). In this situation, (66)

run out of use.

This palindromicity problem was well-known in [28], with an example showing that then indeed

two distinct bm can be conjugate. Under such circumstance for any conjugacy invariant υ a linear

progression (34) will be trivial. So we look for a quadratic one.

We will take k = 3, in the context of (60), and replace in (34)

υ(b) = υp(b) = tr((ψ×n )
′′′(bp)(1)) . (72)

Our goal is, instead of (60), to determine

υp(bm+2)−2υp(bm+1)+υp(bm) (73)

first for m = 0, and notice that this expression again does not depend on m (for fixed p), and to show

that it is not zero (for some p), unless all ηl = 0. This will complete the proof.

Write

b(α,β) = ασ1βσ−1
1 (74)

and

b(m,m′) = b
(

κ−m
2,n ακm

2,n, κm′
2,nβκ−m′

2,n

)

,

so that with (25)

bm+m′ ∼ b(m,m′) .
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Instead of (73), we will evaluate, equivalently up to sign,

(

υp(b(1,1))−υp(b(1,0))
)

−
(

υp(b(0,1))−υp(b(0,0))
)

. (75)

The calculation will also make soon clear that this expression (75) remains the same if we replace 1

by m+1 and 0 by m in the first argument of b(., .).

It will thus be enough to show that (75) 6= 0 for some p.

Again apply the Leibniz rule on the product form (59). The linear combination (75) was designed

again so as to see that most terms cancel.

Since β is not pure, the above argument for k = 1 does not fully apply to β, rather one is left to

cancel terms of differentiated κ±1
2,n in β in a different way.

In the end, when writing b(m, l)p as p copies of the r.h.s. of (74) one after the other, one is left with

terms

(ψ×n )
′′′(b(1,1)p)(1)− (ψ×n )

′′′(b(1,0)p)(1)− (ψ×n )
′′′(b(0,1)p)(1)+(ψ×n )

′′′(b(0,0)p)(1) = (76)
p

∑
i, j=1

(

2 derivatives

in i-th α

)

·
(

one derivative

in j-th β

)

.

The two derivatives in α are known to give Ω from (63), while those of κ−1
2,n in the j-th β and of κ2,n

in the j+1-st copy (up to cyclic permutations) cancel. There remain one derivative of κ−1
2,n in a β and

one of κ2,n for each Ω, those not separated by a copy of P from Ω (but by a copy of Γ). We set

Ξl = [Γ[Al,An−1]Γ,An−1] =





























0 0 n−1− l 1− l

0 0 l +1−n l−1

n− l−1 l +1−n
...

... 0 0

n− l−1 l +1−n

1− l l−1
...

... 0 0

1− l l−1





























, (77)

with the blocks of sizes 1,1, l− 1,n− 1− l, respectively (in both rows and columns, and all entries

within each block identical).

When the κ−1
2,n in the last copy of β is differentiated, we cycle it to the left, and get, up to this

modification (which does not affect the trace),

(76) =
p−1

∑
d=0

ΓPd[ΓΘΓ,An−1]P
p−dΓ . (78)

As Ω does not depend on m, it is also already clear that (73) does not either. We will evaluate it for

m = 0 via (75).
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Since when taking traces, one can, as passing from (67) to (68), cycle powers of ΓPΓ (the remnants

of undifferentiated copies of β) to one side, we obtain

(75) = p · tr
(

n−2

∑
l=2

ηlΞlP
p

)

, (79)

wherein we again discard the factor p.

Build a matrix M (of n−2 rows), whose n−3 columns,











φ(1)
φ(2)
...

φ(n−2)











,

for l = 2, . . . ,n−2 and φ = φl, are given by

φl(p) = tr(ΞlP
p) =



























2l−n p≤ l−1

2l−2 p > l−1, p≤ n−1− l; l−1≤ n−1− l

2l−n p > n− l−1

2l−n p≤ n−1− l

2l +2−2n p > n−1− l, p≤ l−1; l−1 > n−1− l

2l−n p > l−1

. (80)

The matrix M is the analogue of (70), but is now antisymmetric when rows are reflected. (The dotted

diagonals do not meet at the same element, and when n is even, the middle column is zero.)

M =







































4−n 6−n 8−n · · · · · · n−4

2 6−n 8−n · · · · · · n−8 n−6 −2

2 4 8−n · · · · · · n−8 −4 −2

2 4 6 · · · · · · −6 −4 −2
...

...
. . . . .

. ...
...

...
... . .

. . . .
...

...
... 6 · · · · · · −6

...
2 4 8−n · · · · · · n−8 −4 −2

2 6−n 8−n · · · · · · n−8 n−6 −2

4−n 6−n 8−n · · · · · · n−8 n−6 n−4







































. (81)

The resulting equation system from setting (79) to 0 becomes

M · (η2, . . . ,ηn−2)
T = 0 , (82)

and it does enough to enforce

ηl = ηn−l .

With (71), this implies that all ηl = 0, and thus completes the proof of Theorem 4.1. �
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6. PROOF FOR THREE OR MORE CYCLES

For this we use subbraids. There are two ways, outlined in [24]. The first is given in [24, Lemma

4.1]. A better way, though, is to sum over invariants of suitably chosen subbraids of bm, which we

clarify below.

Proof of Theorem 4.2. We will adapt the proof of Theorem 4.1.

Again, it will be easier to work with the form (25). Since we can w.l.o.g. conjugate α,β in (25) by

B3,n, we can assume (41) turning into

C0 = (2 3 . . . n′−1 n′) , (83)

with n′−2 = n−n0 > 0 and λ0 = n′−1. A few (obvious) modifications from the formulation of the

theorem have then to be made below.

Let us first argue that

lk2 = · · ·= lkn′ . (84)

For every n0, we described in the proof of Theorem 4.1 an invariant υ[n∗] on Bn∗ with υ[n∗](bm)
being a quadratic polynomial in m, whose quadratic term we proved to be non-trivial to establish SS.

For b ∈ Bn, define a conjugacy invariant

ξ(b) = ∑
D1,2

υ[|D1|+|D2|](b[D1∪D2]) , (85)

where the sum goes over unordered pairs of (distinct) cycles D1,2 of π(b) whose lengths are

{|D1|, |D2|}= {1,n′−1} .
(This is not immediately relevant, but let us specify already here that in selecting collections of cycles,

their length condition is meant as a multiset, with repeated elements counted, i.e., it is an equality of

tuples modulo permutations.)

This ξ is a well-defined conjugacy invariant, and in ξ(bm) the contribution of all pairs D1,2 of cycles

will vanish, unless 1 ∈C−1 = D1 and 2 ∈C0 = D2. This identifies

ξ(bm) = υ[n′]((bm)[D1∪D2]) ,

and the rest follows from the proof of Theorem 4.1. This establishes (84). (The non-palindromicity

assertion follows similarly.) So we obtain part 1.

For the rest of the proof we deal with part 2 and assume (46).

Also assume (84), so that

ηl = 0 for l = 2, . . . ,n′−2. (86)

We can try to repeat the calculation in the proof of Theorem 4.1, with the only difference being that

now P in (61) is the matrix of the new permutation

π(b) =C0C1 · · ·Cr.

If we try to evaluate (66), we can see that we get nothing new. However, for (75), we do.

Assuming from (86) that l ≥ n′− 1 = λ0, we see that the block in (77) consisting of rows and

columns 2, . . . ,n′ is comprised in the four central blocks in the form on the right of (86) (and includes
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the upper left one among the four). Then for any p not divisible by n′−1, say, p = 1 (here we need

n′ > 2), we get instead of (80),

φl(1) = 2(l+1−n) l = n′−1, . . . ,n−2 .

What remains of (82) is the scalar equation

0 = 2
n−2

∑
l=n′−1

(l+1−n)ηl , (87)

which with (62) can be rewritten as

(n−n′)lkn′ = lkn′+1 + · · ·+ lkn . (88)

(Note that the contributions from Ci, i > 0 in P give nothing for the trace. This observation will

reappear for modification later.)

Also note that the symmetry of the right in n′ < j ≤ n is necessary because of the freedom to

conjugate with Bn′+1,n. If (88) fails, which is the same as saying

r

∑
i=1

τ(Ci) 6= 0 ,

we have in (72) that υ(bm) has a non-trivial quadratic term in m.

The expression on the right of (88) goes over all cycles Ci, 0 < i ≤ r. However, the idea now is

to apply this argument to (bm)[D1∪D2∪D3] where 1 ∈ D1 =C−1, 2 ∈ D2 =C0 and D3 =Ci0 is a proper

single cycle (different from D1,2).

The statement of part 2 is then what one can do about it. A problem is that when one tries to create

an invariant like (85), we need to specify some condition to tell our favorite cycle Ci0 apart from

others. However, this is not a problem if we can “confuse” Ci0 only with “similar” cycles that give the

same contribution to the m-quadratic term of m 7→ υ[n∗](bm). Then this quadratic term only multiplies

by some (non-zero) number.

To this vein, fix (using the notation (44))

lk =
lk(C−1,C0)

λ0−1
,

and an i0 in (46). Modify (85) to

ξ(b) = ∑
D1,2,3

υ[|D1|+|D2|+|D3|](b[D1∪D2∪D3]) , (89)

where the sum goes over ordered triples (D1,D2,D3) of distinct cycles D1,2,3 of π(b), with the fol-

lowing conditions:

(a) |D1|= λ0, |D2|= 1, |D3|= λi0

(b) lk(D1,D2) = (|D1|−1) · lk and

lk(D2,D3) = lk(C−1,Ci0).
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This is again a (suitably chosen) conjugacy invariant of b ∈ Bn.

Note again that the contribution of all (D1,D2,D3) in (89) to ξ(bm) is constant (in m) unless both

C−1 and C0 are among the Di. Also, C−1 and C0 are distinguished by λ−1 = 1 < λ0. Because of (46),

the m-quadratic contribution of

D1 7→C0, D2 7→C−1, D3 7→Ci0 (90)

will be non-zero. Keep in mind that this contribution (as well as the choice of invariant υ[n∗] con-

tributed to) depends only on the ordered quadruple

(λ0,λi0, lk(C−1,C0), lk(C−1,Ci0)) . (91)

To specify what other matchings are possible, let us say that Ci′0
is similar to Ci0 for 1 ≤ i′0 ≤ r, if

λi′0
= λi0 and lk(C−1,Ci′0

) = lk(C−1,Ci0). The contribution of

D1 7→C0, D2 7→C−1, D3 7→ cycle Ci′0
similar to Ci0 (92)

should then be clearly equal to the one of (90).

Only in few situations do extra matchings occur, and they create no harm either.

If λi0 = 1 and ω := lk(Ci0,C0) = lk(C−1,C0), then there is the additional possibility

D1 7→C0, D2 7→Ci0, D3 7→C−1 ,

but its contribution remains the same because (91) does not change compared to (90); it is the vertical

symmetry of the subgraph

λ0

1

1

ω′

ω

ω

of ϒ(b) = ϒ(bm).

Similarly if λi0 = λ0 and ω := lk(C−1,Ci0) = lk(C−1,C0), one can have

D1 7→Ci0, D2 7→C−1, D3 7→C0 .

This corresponds to the vertical reflection of

1

λ0

λ0

ω′

ω

ω

and does not change (91) either. How to proceed with cycles Ci′0
similar to Ci0 instead of Ci0 should

be clear. �

We include one example to illustrate the claim of the theorem.
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Example 6.1. Use the convention (83) for the form (24). Let n = 10, n′ = 4, and

π(b) = (1)(2 3 4)(5 6 7 8)(9 10) ,

so that λ0 = 3, λ1 = 4 and λ2 = 2. Part 1 of the theorem then states that SS (and FC(2)) hold unless

lk := lk2 = lk3 = lk4 are equal, and part 2 amplifies this condition with τ(Ci) = 0, which is

4lk = lk5 + lk6 + lk7 + lk8, 2lk = lk9 + lk10 . (93)

Remark 6.2. Regarding part 2, although this was not needed above, one may also further separate

different Ci in bm by a condition like this. Initially fix a two-cycle conjugacy class E
′
λ (or union of

such), and choose Di0 in (85) so that there is a j 6= i0 with b[Di0
∪D j] ∈E

′
|Di0
|+|D j|. The use of Eλ or Eλ′

can also restrict the matching process that occurs in the proof of [24, Lemma 4.1] and so forth.

7. RELATIONS, LIMITATIONS AND PROSPECTS

Probably, the present method can recover Theorem 3.4 as well, by using for P in (61) a proper

permutation matrix. We will not try, though, to reinvent another proof here; we focused on what is

new.

It is worth pointing to a well-known connection between the eigenvalues of the Burau matrix and

entropy; see e.g. [16]. If we regard b ∈ Bn as a homeomorphism of the punctured disk, then for the

spectral radius ρ, the topological entropy h(b) satisfies

h(b)≥max
{

ln ρ(ψn(b))(t) : t ∈ C , |t|= 1
}

. (94)

Observation 7.1. Every non-degenerate ES is an example where for |m| → ∞, the inequality (94) on

bm becomes arbitrarily unsharp.

Proof. It follows from Ito’s proof of Theorem 3.5 that h(bm)→ ∞ when |m| → ∞. On the other hand,

one can see using (12) and the embedding properties (49) that for fixed unit norm t ∈ C, all entries

of ψn(bm)(t) will remain bounded as |m| → ∞. Thus so need to behave its eigenvalues as well. This

bound is also universal (i.e., depends on b only) for all such t. �

This leaves unclear, at least asymptotically, how to profit from the Burau matrix to improve dilata-

tion bounds (as asked by Ito [14]) for iterated exchanged braids. The proof of our main results (as

well as the one of Theorem 3.4, via the relation in §2.9) thus also reveals to show the eigenvalues

change within a confined domain.

Remark 7.2. The method does definitely hit its limits when π(b)(1) = 1 and π(b)(n) = n. In that

case, one would have to examine two vectors (ηl) for α and (η′l′) for β. The invariants in (60) would

have to be combined as in (75), but for k = 4. This will then give some condition on (η),(η′) under

some bilinear form. Higher p will not bring more than the order of π(b). If π(b) = Id, then all p

would only give multiples of the same form. If taking k > 4, the result like in (75), or other linear

combinations of the same sort, will depend on more than ηl , but on the order of letters in (59).

In general, ψn exhibits some rigidity under operations, which often poses problems if wished to

overcome. In addition to our above experienced difficulties, for example, strand cabling will bring no

new information in the proof of Theorem 4.2 than strand omission.
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Remark 7.3. Similar is the status of the braid power p. We saw that the calculation (87) of the

(now altered) trace (80) does no longer depend on which power p we evaluate υ(b
p
m) on, as long as

n′− 1 ∤ p. However, τ(λ)(bp) will not refine τ(λ)(b) in the distinction between strands n′ < j ≤ n

which lie in the same cycle Ci of π(b), since power of cycles of equal length will split into (possibly

more) cycles of equal (even if smaller) length. Likewise, subbraids of braid powers are conjugate, so

if one uses instead of τ(λ) its refinement τ(Eλ) of Remark 6.2, then τ(Eλ)(b
p
m) will again not improve

upon τ(Eλ)(bm). It is not clear how to profitably adapt [24, Lemma 4.1], either.

In these situations, where algebra (apparently yet) leaves the edge to geometry, it is then interesting

to examine, for instance, what (more) the Lawrence-Krammer representation may reveal about non-

conjugacy. But we will not stretch our account with this separate endeavor.

8. APPLICATION TO LINKS

In connection with the form (26), we studied in [28] a notion of regularity of links that allows one

to exclude a degenerate ES for (a braid representative of) a link L. Theorem 4.1 allows one to extend

some of these considerations while improving the quality of statement about non-conjugacy among

the bm.

We will not repeat all discussion; let a few remarks suffice. The hyperbolicity part of regularity

and twisting cannot be used. The linking number conditions of regularity can be used unless L has

a U[2] sublink with the (there) discussed properties. (We wrote U[2] for the two-component unlink.)

The total linking number of a cycle in Theorem 4.2 is sufficient (instead of individual strand linking

numbers), since this is what transpires in the linking number of components of b̂m.

For demonstration, we revisit more explicitly only the two-component case. We assume L is a

2-component link and write ℓ for the linking number of its components.

Corollary 8.1. If n−2 ∤ ℓ, then every n-braid ES of L is SS.

Proof. Since L has 2 components, π(b)(1) = 1 and π(b)(n) = n will imply n = 2, which is irrelevant

in (13). If (33) holds, apply Theorem 3.4. Thus we are left in the situation of Theorem 4.1. If the ES

is not SS, then all lk j are equal, and ℓ= ∑n−1
j=2 lk j is divisible by n−2. �

Corollary 8.2. If 0 < ℓ < b(L)−2, then every ES of L is SS.

Proof. Because no n≥ b(L) can satisfy n−2 | ℓ. �

This applies, among others, also to arbitrary component links L with no U[2] sublink, for which

0 < lk(U,L\U)< b(L)−2 for every unknotted component U .

One then also obtains some of the consequences of regularity in [28] without using Theorem 3.5.

The below statement, for instance, could be derived in [24, Corollary 6.2] only modulo 2.

Corollary 8.3. If b(L)− 2 ∤ ℓ, then (for any n ≥ b(L)) L has infinitely many conjugacy classes of

n-braid representatives if and only if L has an n-braid representative admitting an exchange move.

Proof. The case n = b(L) follows from combining Theorem 3.1 and Corollary 8.1. Let n > b(L). Let

T (p,q) for the (p,q)-torus link. Since n−1≥ 3 from (13), which is more than the components of L,

we have that L 6= T (n− 1, p(n− 1)) is not such a torus link. Then L has infinitely many conjugacy

classes of (reducible, and hence exchangeable) n-braid representatives by [25]. �
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9. ON THE BURAU KERNEL AND IMAGE

The problem on the kernel of the Burau representation has been long-standing [17, 4]. Our proof

of Theorem 4.1 can be used to obtain a proof of the following (using the designation (22)). The case

n = 3 should create no problem (although less interesting), but n≤ 2 will be continuously excluded.

Theorem 9.1. Let β ∈ Bn be so that ψn(β) commutes with every matrix in ψn(Pn), i.e.,

[ψn(β),ψn(γ)] = 0 (95)

for all γ ∈ Pn. Then

β ∈ Λn = Pc
n · center(Bn) . (96)

Proof. Let us first argue that β ∈ Pn. Assume π(β) has a non-trivial cycle C. W.l.o.g. conjugate β so

that 1 ∈C. Take some α ∈ B2,n+1 with π(βα) being a single cycle. Then consider

bm = δ2m
[2,n]βδ−2m

[2,n] α = κ−m
1,n βκm

1,nα .

They satisfy (33), with n replaced by n+1. On the other hand, since ψn(β) commutes with ψn(κ1,n),
all ψn+1(bm) are equal, in particular by the remarks in §2.9, so are ∇(Lbm

). Under (33) we proved

Theorem 3.4 in [24] (as explained below its formulation in §3) by using some coefficient of ∇(Lbm
).

(Since in our case, b̂m is a knot, no subbraids of bm were taken.) This gives a contradiction. So β is

pure.

The assertion β∈Λn now can be read as saying that all linking numbers in β are equal. This is most

easily proved by assuming the opposite. Assume again w.l.o.g. by conjugacy (in Bn) that lk1, j 6= lk1,k

and choose the maximal such j < k. So by combed normal form,

β = β0 ·β′ , β0 =
k1

∏
i=1

κεi

1, ji
,

with β′ ∈ P2,n = B2,n∩Pn, and the exponent sums

ηl =
k1

∑
i = 1
ji = l

εi ,

satisfying η j 6= 0. But by looking at the form (57), we see that [Al,An] are linearly independent

matrices for 1 < l < n, and

(ψ×n )
′′(β0κ1,n)(1)− (ψ×n )

′′(κ1,nβ0)(1) =
n−1

∑
l=2

ηl[Al,An] 6= 0 . (97)

(Since we assume equality of matrices, and not only conjugacy, we do no longer need to restrict

ourselves to their traces.) Thus

ψn(β0κ1,n) 6= ψn(κ1,nβ0) ,

and by noting that β′ ∈ P2,n commutes with κ1,n ∈ Pn,

ψn(βκ1,n) = ψn(β0κ1,nβ′) 6= ψn(κ1,nβ0β′) = ψn(κ1,nβ) .

So ψn(β) does not commute with ψn(κ1,n). This gives the contradiction to finish the proof. �
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Remark 9.2.

(a) Since we proved in [25] that ψn is dense in a unitary group for proper t even on some sub-

groups of Pn, it also follows that ψn is irreducible on Pn, and that thus ψn(β) is a scalar matrix.

(b) Also, if β ∈ Pn (not Bn), one sees from (97) that one can replace ψn by ψn/(t − 1)3 ∈
GLn−1(Z[t

±1]/(t−1)3) (where t−1 = t2−3t +3).

We say that an element g in a group G is a root of another element h ∈ G if gd = h for some d 6= 0.

A matrix is considered here to be idempotent if it is a root (in G = GLn−1(Z[t
±1])) of the identity

matrix. (This is to be separated from the common conflicting terminology for a projector.)

Corollary 9.3. Assume additionally β ∈ Pn. Then it is enough to demand that for some non-zero p,

the power ψn(β)
p commutes in (95),

[ψn(β)
p,ψn(γ)] = 0 (98)

(or then, equivalently, is scalar). That is, we have

{β ∈ Pn : ψn(β) is a root of a scalar matrix } ⊂ Λn . (99)

Proof. If β ∈ Pn, then (99) follows from the remainder of the proof of Theorem 9.1. One can general-

ize (97) to

(ψ×n )
′′(βp

0κ1,n)(1)− (ψ×n )
′′(κ1,nβ

p
0)(1) = p ·

n−1

∑
l=2

ηl[Al,An] 6= 0 .

(Note that thus we may even allow in (98), p to depend on γ, but this remains equivalent, as Pn is

finitely generated.) �

Corollary 9.4. Any b ∈ Pn with idempotent ψn(b) must lie in Pc
n . In particular, ker(ψn) ⊂ Bn is

contained in Pc
n .

Proof. If ψn(b) is idempotent, then again because of the determinant, e(b) = 0, and the central part

in (96) would vanish. This leaves b ∈ Pc
n .

For the second assertion, observe that b ∈ ker(ψn) readily implies b ∈ Pn by setting t = 1 (and

keeping (52) and (54) in mind). �

It is known that Pn is residually nilpotent (and thus residually solvable). Since ψn is not faithful in

general, one could ask how far down in the derived (or lower central) series the kernel lies. The above

corollary shows that ψn will detect at least the first (coinciding) part of both filtrations.

The property (99) is obviously false for β∈ Bn \Pn, as central elements have non-pure roots, like δn

or (58). However, something more interesting happens if we replace ‘scalar’ by ‘identity’. We would

like to know if all roots (in Bn) of ker(ψn) must lie in Pc
n , but it seems not obvious whether there are

non-pure b whose ψn(b) is idempotent.

In fact, it is not even clear if there are non-identity idempotent Burau matrices, i.e., does the Burau

image have torsion in GLn−1(Z[t
±1])? For example, t−1 ·ψn(σ1σ2 · · · σn−1) has finite order. That this

is not a Burau matrix is an application of Corollary 1.3 and cannot be concluded by setting t = 1 or,

for n odd, by the determinant.

At least we can say the following:
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Proposition 9.5. Assume b ∈ Bn so that ψn(b) is idempotent. Then for each cycle C of π(b), the

subbraid exponent sum e(b[C]) = 0. In particular, π(b) has only odd(-length) cycles. Also

lk(C,C′) = 0 (100)

for every other cycle C′ 6=C.

Proof. We return to the explanation in Remark 7.3, which now brings something.

Let C be a cycle of π(b) with λ = |C| and e(b[C]) 6= 0. Then, because of (21), for l = λ, in bl, we

have

lki j 6= 0 for some i, j ∈C . (101)

If (100) fails, then take l = lcm(λ,λ′) for λ′ = |C′|, showing in bl

lki j 6= 0 for some i ∈C, j ∈C′ . (102)

Then there is some p > 0 so that b∗ = bpl is pure, and (101) or (102) still holds in b∗. Now, if ψn(b
∗)

were idempotent, then by corollary 9.4, b∗ ∈ Pc
n , contradicting (101) or (102). Thus ψn(b

∗) is not

idempotent, and neither is ψn(b).

If e(b[C]) = 0, then it is easy to see, essentially because even cycles require an odd number of

transpositions, that λ must be odd. �

If gcd(λ,λ′) > 1, then (102) may hold even with (100). An example is b = σ1σ−1
2 σ4σ−1

5 κ′3,4κ′−1
3,5

in B6, with κ′ from (19).

Returning to another thought, one can again replace in corollary 9.3, and its progeny, ψn by ψn/(t−
1)3. A similar remark applies to our last proved statement, with a short extra calculation.

Proof of Corollary 1.3. From the determinant one can restrict diagonal entries to ±t l. Then, setting

t = 1, one also easily sees with (52) and (54) that a minus sign is ruled out (when n is odd), and next

that a β ∈ Bn with scalar ψn(β) is pure. Then use (96) and (21) to identify l. �
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Mathématiques Pures et Appliquées 94(5) (2010), 470–496.

[26] Stoimenow, A., Properties of Closed 3-Braids and Braid Representations of Links, Springer Briefs in Mathematics

(2017), ISBN 978-3-319-68148-1

[27] Stoimenow, A., The Burau spectral test, to appear.

[28] Stoimenow, A., Exchangeability and non-conjugacy of braid representatives, preprint, http://www.stoimeno

v.net/stoimeno/homepage/papers.html.

[29] Vogel, P., Representation of links by braids: A new algorithm, Comment. Math. Helv. 65 (1990), 104–113.

SCHOOL OF COMPUTING,

KOREAN ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY,

DAEJEON 34141, KOREA

Email address: stoimeno@stoimenov.net

URL: http://stoimenov.net/stoimeno/homepage/


