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1. Introduction

Fifteen years ago, the appearance of the Jones polynomial V [J] and its immediate successors [H, PT, Ka, BLM, Ho]
gave tremendous impetus to the theory of links. Similarly to the Alexander polynomial ∆ , whose degree was known
to estimate (from below) the genus of a link, several spectacular results have been proved which related classical
link invariants as braid index [Mo, FW] or crossing number [Ka, Mu, Th, St] to the degrees of these polynomials.
Some other, although less spectacular, results concerned the coefficients of the polynomials. Properties of them were
proved by Thistlethwaite [Th] for the Jones polynomial of alternating links, Cromwell [Cr] gave some properties of the
Conway ∇ and HOMFLY P polynomial of homogeneous links, and Kidwell [Ki] and Thistlethwaite [Th2] proved the
positivity of the leading coefficient of the Brandt-Lickorish-Millett-Ho Q resp. Kauffman F polynomial of alternating
links. Recently, in [St2] we showed that any coefficient of the V , P and F polynomial admits only finitely many values
on positive knots.

The aim of this paper is to add to these properties some inequalities estimating exponentially the coefficients of the
polynomials in terms of the number of crossings (and components) of a knot (or link) diagram, similarly to the degree
estimates known for the V , Q and F polynomial.

The origin for seeking such inequalities was the consideration in previous papers (see [St2]) of generating series
associated to knot polynomials, whose convergence had to be assured to justify the calculations performed with them.
It was explained in [St] how estimates (from above) on the coefficients of the polynomials in certain cases yield
estimates on its degrees, which in turn have applications to the braid index and Thurston-Bennequin numbers [St2].
Another motivation is that, although with comparable effort the estimates cannot be made as sharp as the ones for the
degree, they are very self-contained, most of them are easy to prove, and do not seem to have been noticed, at least
explicitly, before. Our approach was inspired and partially follows ideas of Kauffman [Ka2], and especially Kidwell
[Ki], whose concept of the longest bridge is used.�
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2 2 Definitions and preliminaries

For special types of links (and conjecturally in full, or at least larger generality) the general estimates can be sharpened,
leading in the case of the Conway and HOMFLY polynomial to another occurrence of the Fibonacci numbers in a knot
theoretical context, after [St5].

We should remark that, although practical experiments (discussed in
�
4) suggest that the base of the exponential

admits some improvement, one cannot show any subexponential bound of such type. The easiest way to see this
is to consider iterated connected sums of a knot, whose polynomial is not a unit (that is, conjecturally except for
the Alexander/Conway polynomial, any non-trivial knot). One can show, by a simple analytic argument (see below,
or also [St]), that the powers of any non-unit in a (Laurent) polynomial ring over � contain exponentially growing
coefficients. We use this to derive asymptotical lower bounds on the maximal size of coefficients of polynomials of
links with a given number of crossings. These estimates rely on the calculation of specific examples in Thistlethwaite’s
knot tables (see [HTW]).

Since the Mahler measure [Ma] of a polynomial is bounded by the size of its coefficients, a final application our
estimates is that they are simultaneously estimates for the Mahler measure of the link polynomials. (See [GH] for a
recent survey exposition on the Mahler measure and related topics.)

2. Definitions and preliminaries

We start by fixing some (although mostly standard) notation and terminology and recalling some well-known basic
facts. A few more definitions fill follow later in the text.

2.1. Braids

The n-strand braid group Bn is generated by the elementary (Artin) braid generators σi for 1 � i � n � 1 with braid
relations σiσi � 1σi � σi � 1σiσi � 1, called YB relation, and � σi 	 σ j 
�� 1 for � i � j �� 1 (the brackets denoting the commu-
tator).

We introduce an alternative notation for braid( word)s by replacing the σi by their subscripts and their inverses by the
negated subscripts, and putting the result into brackets, e. g., � σ1σ2

2 � 5σ � 1
1 σ2 � ��� 122 � 5 � 12 
 .

A braid (word) is called alternating if it contains no generators σi and σ j occurring with powers of opposite sign, such
that i � j is even. A braid word is called positive if it contains no generators occurring with negative powers.

In this paper we shall be particularly concerned with the 4-strand braid group B4 and will consider its distinguished
element ξ4 � � 123121 
 , whose square is central in B4, and in fact generates its center. In the other Bn there are similar
elements ξn. They are called half twist braids, and their squares full twist braids.

By α̂ we denote link, which is the braid closure of a braid α. For a braid word α � representing α, the closure operation
gives a specific diagram of α̂, which we denote by α̂ � .
For a word α � a1 ����� an we say that a word β � b1 ����� bm is a subword of α iff there is an 1 � i � n � m � 1 such that
b j � ai � 1 � j for any 1 � j � m. We say that β is a weak subword of α iff there are numbers 1 � i1 � i2 ��������� im � n
with b j � ai j for any 1 � j � m.

2.2. Links and diagrams

Diagrams and links will for convenience always be assumed oriented, although the orientation is not always needed. A
component of a link (resp. link diagram) is one of the embedded circles (resp. the subdiagram representing it). Knots
are considered links with only one component.

A split component of a link is an equivalence class of link components modulo the (equivalence) relation, which is the
transitive expansion of the relation “inseparable”, where two link components are inseparable, if there is no isotopy in� 3 making them separable by a hyperplane (or their projections in a diagram in

� 2 separable by a line disjoint from
the link). A split component may contain several link components. A split component is trivial, if it is the unknot.

A link is split if it has more than one split component. Otherwise it is non-split.
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A split component of a link diagram is a connected component of the plane curve of the diagram. Obviously, a link
diagram cannot have more split components than the link it represents.

A link is called prime if for any embedded sphere S � � 3 intersecting L (transversely) in exactly 2 points, we have
that one of the two links obtained by joining an arc on S connecting these 2 points and the intersection of the interior
resp. exterior of S with L is an unknot.

A diagram D is called prime if there is no closed curve in the plane intersecting D transversely in exactly two points
and containing in both its in- and exterior crossings or a whole (possibly trivial) split component of D. Per convention
we exclude the trivial unknot diagram (no crossing, one split component) from being prime.

A crossing p of D is called nugatory if there is a closed curve in the plane intersecting D transversely only in p.
A diagram D is called connected or non-split if it has only one split component, that is, there is no curve in its
complement, such that both the in- and exterior of the curve contain parts of D. Otherwise it is called split.

According to our definition, the addition of a trivial split component is the connected sum with the 2 component unlink,
and the addition of a non-trivial split component L is the sequence of 2 connected sums, first with the 2 component
unlink, and then with L. Accordingly, the only prime split link is the 2 component unlink (as listed also in the tables
of [Ro, appendix]).

A braid diagram α̂ � with α ��� Bn is prime iff for any 1 � i � n � 1, α � contains a weak subword of the form
σ � 1

i σ � 1
i � 1σ � 1

i σ � 1
i � 1 or σ � 1

i � 1σ � 1
i σ � 1

i � 1σ � 1
i , all ‘  ’ being independently choosable. A nugatory crossing in α̂ � corresponds

to a letter σ � 1
i occurring only once in α � .

Any diagram D can be written in a unique way (up to permutation) as the connected sum of prime diagrams. Latter are
called the prime components or prime factors of D. (Note again that by our definition, the number of prime components
of D is never less than the number of split components, since every split union accounts for a 2 component unlink as
a prime component.) Similarly, a link can be written in a unique way as the connected sum of prime links, also called
its prime factors.

A region of a link diagram is a connected component of the complement of the (plane curve of) the diagram. An edge
of D is the part of the plane curve of D between two crossings (clearly each edge bounds two regions).

A link diagram is called alternating if each strand alternatingly passes crossings as under- and overpass. (Hence, a
diagram of a closed braid word β is alternating, if and only if β is an alternating braid word.) There is always a way
to switch the crossings of any link diagram so as it to become alternating, canonical up to simultaneous switch of all
crossings in each split component.

A link diagram D is called alternating along some region R, if all of D’s edges in the boundary of R join an overcrossing
and an undercrossing. (Clearly, a diagram is alternating iff it is alternating along any of its regions.)

A clasp is a region with 2 edges. It is called trivial or resolved, if the diagram is not alternating along it.

2.3. Polynomials and sequences

For two sequences of integers � an � ∞n ! 1 and � bn � ∞n ! 1 we write

an " bn, if lim
n # ∞

an $ bn � 1, and an � o � bn � , if limsup
n # ∞

%% an $ bn
%% � 0 �

For the definitions of the various link polynomials we refer to the papers [LM, Ka, BLM, J].

The skein polynomial P is a Laurent polynomial in two variables l and m of oriented knots and links and can be defined
by being 1 on the unknot and the (skein) relation

l � 1 P & '(� l P & ' � � mP & ' � (1)



4 2 Definitions and preliminaries

The Kauffman polynomial is usually defined via a regular isotopy invariant Λ � a 	 z � of unoriented links with the prop-
erties

Λ & ')� Λ & ' � z & Λ & ')� Λ & '*' 	
Λ & ' � a Λ & ' ; Λ & ' � a � 1 Λ & ' 	

Λ � unknot � � 1 �
The Kauffman polynomial F � D � of a link represented by an oriented diagram D is then defined as a � w + D , Λ � a 	 z � ,
where w � D � is the writhe of D.

The Jones polynomial V , Brandt-Lickorish-Millett-Ho polynomial Q, (one variable) Alexander polynomial ∆ and
Conway polynomial ∇ are obtained from P any F by the substitutions

V � t � � P �-� it 	 i � t � 1 . 2 � t1 . 2 ��� � F �-� t � 3 . 4 	 t1 . 4 � t � 1 . 4 � 	
∇ � z � � P � i 	 iz � 	
∆ � t � � ∇ � t1 . 2 � t � 1 . 2 � � P � i 	 i � t1 . 2 � t � 1 . 2 ��� 	
Q � z � � F � 1 	 z � �

For P and F there are several other variable conventions, differing from each other by possible inversion and/or
multiplication of some variable by some fourth root of unity. However, it will not be of any importance neither for
the results nor for the arguments which one we use. We should only assume the invariants to be normalized so as the
unknot to have polynomial 1.

We will sometimes alternatively write VD 	 ∆ D 	 ����� for V � D � 	 ∆ � D � 	 ����� etc. Also, we will not notationally distinguish
arguments to the polynomials, which are variables/numbers, diagrams, or links, since the meaning of the expression
will not be ambiguous.

Let �Y 
 ta � �Y 
 a be the coefficient of ta in a polynomial Y �/�0� t � 1
 . Let

mindegY � min 1 a �2� : �Y 
 a 3� 0 4 	 maxdegY � max 1 a �/� : �Y 
 a 3� 0 4 	 spanY � maxdegY � mindegY

be the minimal and maximal degree and span (or breadth) of Y , respectively. Similarly one defines for Y �0�0� x1 	 ����� 	 xn 

the coefficient �Y 
 X for some monomial X in the xi, and mindegxi

Y etc. maxcfY denotes the leading coefficient of Y ,
i.e. �Y 
 maxdegY .

The (1-)norm �Y � 1 � �Y � of a Laurent polynomial Y is defined as�Y � 1 � ∑
X

%% �Y 
 X %% 	
where the (formally infinite) sum runs over all applicable monomials X .

If L is a link of n components, then for the Jones polynomial Y � VL and Alexander polynomial Y � ∆ L, the applicable
monomials X would be of the form t + n � 1 ,5. 2 � m for m �6� , for the skein polynomial Y � PL, we would have X �
ln � 1 � 2rmn � 1 � 2s and for the Conway polynomial X � zn � 1 � 2r for r	 s �7� , for the Q polynomial Y � QL, we would
have X � zr for r �/� , and for the Kauffman polynomial Y � FL, we would have X � arzs with r � s � n odd.

Clearly, the 1-norm is both subadditive and submultiplicative.

2.4. Knot tables

A remark on knot tables is in order. We use here the convention of Rolfsen’s tables [Ro, appendix] for � 10 crossing
knots and that of Thistlethwaite (see [HTW]) for 8 11 crossing knots, which coincides with those of the first tabulators
for any crossing number except 11, where the initial tables were compiled by Conway [Co]. We apologize for not
using his numbering. An excuse is that all calculations have been performed by Thistlethwaite’s program KnotScape,
which yet does not provide a translator between its notation and that of Conway. For uniformity reasons, we will need
to continue using this convention in subsequent papers, too. It is understood that alternative work on knot tabulation
is being done by Aneziris [An].
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3. The inequalities

3.1. Maximal bridge length

Following Kidwell [Ki], let us first recall the definition of the longest bridge.

Definition 3.1 The maximal bridge length d � D � of a link diagram D is the maximal number of consecutive crossing
over- or underpasses when following the orientation of some component of D.

We start with an inequality for the F and Q polynomial.

Theorem 3.1 Let D be a link diagram of c � D � crossings, maximal bridge length d � D � and n � D � components. Then%%Q � D � %% 1 � %% F � D � %% 1 � 5c + D , � d + D , 3n + D , � 1 � (2)

Proof. We use (nested) induction on c � D � (outer one) and for fixed c � D � (inner) induction on c � D � � d � D � .
For c � D � � 0 the formula follows from the formulas of the polynomials of the unlinks.

Thus consider the induction step in c � D � (outer induction). It is clear that we can work with the framed version Λ of
F . We consider the resolution of D according to the Kauffman relation of Λ obtained by applying the relation to an
under(over-)crossing immediately following a bridge of over(under-)crossings of length d � D � in D.

If this crossing belongs to the bridge itself, then we would be able to remove a trivial loop from D (which does not
augment c � D � � d � D � ), and would be through by induction on c. This in particular always happens when for given c,
c � d is minimal, so that we have the induction start for the inner induction on c � d.

Now if D � D (the subscript referring to the crossing considered), then all of D , D and D have smaller c � d
and not higher c than D , so for them the inequality holds by induction.

If the crossing we consider is not mixed, that is, involves strands of the same component, the number of components of
one of D and D , say of D , differs by  1 from this of D, and n � D � � n � D � � n � D � . Then, the contribution
of D and D to �F � D � � is 1$ 5 of the r.h.s. of (2), while the contribution of D is (in the worse case that n � D � �
n � D � � 1) at most 3$ 5 of it, so the inequality follows.

If the crossing is mixed, that is, involves strands of different components, then n � D � � n � D � � n � D � � 1, with a
similar conclusion. 9
Using the results of [Ki], we obtain

Corollary 3.1 If K is an alternating knot, then �FK � 1 � 5maxdegz FK . 9
Another consequence gives a (hypothetical, at least) obstruction against F-maximality. Analogously to [St3], where
the picture for Q was considered, we call a knot (or link) K to be F-maximal, iff

maxdegz FK � min
D diagram of K

c � D � � d � D � �
Corollary 3.2 If �F � 1  5maxdegz FK for a knot K, then it is not F-maximal. 9
See, however, the discussion in

�
4.

Let us turn back to more inequalities. The same argument as for theorem 3.1 can be applied for the P and V polynomial.

Theorem 3.2 Under the same conditions as in theorem 3.1, we have�P � D � � 1 � 3c + D , � d + D , 2n + D , � 1�V � D � � 1 � 5c + D , � d + D , 2n + D , � 1 � (3)
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Proof. Again this is essentially applying the previous argument, this time replacing the Kauffman relation by a skein
relation. One needs to take care that for the V polynomial one of the polynomials in the skein relation is multiplied by
a 2-monomial expression � t1 . 2 � t � 1 . 2 � , which forces us to increase the first base by second one. 9
The same reasoning works also for the (1-variable) Conway/Alexander polynomial. Note that here the second expo-
nential is unnecessary, as split (un)links have zero polynomial.

Theorem 3.3 Under the above conditions, we have� ∆ � D � � 1 � 3c + D , � d + D , (4)�∇ � D � � 1 � 2c + D , � d + D , � 9
Remark 3.1 Using the above arguments, one can give an estimate on the number of different polynomials admissible
by links of given crossing number, but such an estimate would be too crude to be of any interest, and it is not clear
(to me) how to enhance the method in this direction. An effective estimate, using more sophisticated tools, is given in
[St4].

Remark 3.2 On the positive side, one can apply arguments similar to [KS] to give a different version of the in-
equalities above on diagrams which admit a tangle decomposition. If a diagram D can be obtained from another
diagram D̃ by replacing n crossings in D̃ by tangles T1 	 ����� 	 Tn, then in all previous formulas ‘d � D � ’ can be replaced

by ‘
n

∑
i ! 1

d � Ti � � n � 1’, with the obvious definition of d � Ti � . In this case some inequalities may because more relevant,

because a long bridge, whose rerouting (also called ‘wave move’) to simplify the diagram in some obvious way, may
not exist.

3.2. Canonical genus

Another type of inequalities should only be mentioned briefly here. They follow from the more elaborate inequalities
involving the diagram genus, which can be found in [St].

Definition 3.2 By g̃ � K � we denote the weak genus of K, that is, the minimal genus of all its diagrams, and the genus
g � D � of a diagram D we will call the genus of the surface, obtained by applying the Seifert algorithm to this diagram:

g̃ � K � � min : g � D � � c � D � � s � D � � 1
2

: D is a diagram of K ; 	
with c � D � and s � D � being the crossing and Seifert circle number of D, respectively.

We recall that by [St6], for every g �=< there is some number dg �7< such that for any knot diagram D, the norm%% � t � 1 � dg > D ? VD � t � %% 1 can be bounded above by something depending just on g � D � , and not c � D � . A similar statement
follows analogously for P. Using the above inequalities, and the result dg � O � g � of [STV], we obtain the following:

Proposition 3.1 There are constants CP and CV such that%% � t � 1 � dg̃ > K ? VK � t � %% 1 � Cg̃ + K ,
V 	

and %% � l2 � 1 � dg̃ > K ? PK � l 	 m � %% 1 � Cg̃ + K ,
P � 9

It is easy to write down explicit values for CP and CV , but they may not be small.
If a knot diagram D has minimal crossing number and minimal genus at the same time, for example if it is alternating,
then we have:

Corollary 3.3 For an alternating knot K we have%% VK
%%
1 � Cg + K ,

V c � K � dg > K ? 	
and %% ∇K

%%
1 � %% PK

%%
1 � Cg + K ,

P c � K � dg > K ? � 9
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3.3. The determinant

There is another way to obtain inequalities for the Jones and Alexander polynomial, using the Kauffman bracket
approach to V and the common value of V and ∆ , the determinant.

To explain this, we recall a fact which is implicit in the analysis of the Kauffman bracket of alternating diagrams. The
arguments are rather standard, so we will be brief. See [Ka2, Ad] for more details.

Lemma 3.1 Let D be an alternating diagram and D � be another diagram obtained from it by switching some set of
crossings. Then there is some n �/� such that%% � tnV � D � � 
 tk

%% � %% �V � D � 
 tk

%% for all 2k �@� .

Proof. Consider the (rooted) resolution tree of D according to the bracket relation, such that only non-nugatory
crossings in the node diagrams are resolved (giving a branching point in the tree), and the leafs are labeled by unlink
diagrams with possible nugatory crossings. The same tree arises for D � , only that the contributions of the leafs are
weighted differently. However, using induction on the number or crossings, it follows that at every branching point
in the tree of D both hand sides contribute to each coefficient of the bracket (and hence of the Jones polynomial) a
quantity of the same sign, so no cancellations occur (as may in the tree for D � ). 9
The fact that the coefficients of the Jones polynomial of an alternating connected diagram alternate in sign [Th, theorem
1] (also provable using the Kauffman bracket) implies the

Corollary 3.4 Let D be the set of 2n diagrams obtained by signing in an arbitrary way the n crossings of a (closed)
plane curve with n intersections. Then the two alternating diagrams in D are those which maximize (uniquely, if they
are prime and have no nugatory crossings) the determinant � ∆ �-� 1 � � � �V �-� 1 � � . An analogous property holds for link
diagrams. 9
Lemma 3.2 � ∆ � D � � 1 �A� ∆ � D � � � 1, for D and D � as above, D � alternating. Moreover, the coefficients of ∆ � D � � alternate
in sign.

This fact follows from an observation of Kauffman [Ka3] on the way Alexander originally calculated his polynomial
in [Al]. Since it is outlined only basically in [Ka4], we give a brief description.

Proof. Consider an n crossing diagram D and choose n regions R1 	 ����� 	 Rn in the complement of the diagram, such
that the remaining 2 regions R �1 and R �2 are adjacent (that is, share an edge). Number the crossings of D to be c1 	 ����� 	 cn.
If c j is not adjacent to Ri, then set Ai B j � 0. Else consider the 4 regions around c j and give each of them values of Ai B j
in  1 	  t depending on the side from which Ri meets c j:

1
� t

t � 1

(the orientation of the overcrossing strand is irrelevant). Then ∆ � D � �� det � Ai B j � , ‘ �� ’ denoting equality up to units in�C� t 	 t � 1
 . (This can be seen by establishing the skein relation for det � Ai B j � .) When writing

det � Ai B j � � ∑
σ D Sn

�-� 1 � σ n

∏
i ! 1

Ai B σ + i , 	 (5)

the contribution of a permutation σ is non-zero if and only if Ri EF cσ + i , is an assignment of a crossing to a region
meeting it, such that each crossing is assigned exactly once, and then this contribution is a monomial. But, when
denoting this correspondence by an arrow from the region to the crossing:

Ri � F cσ + i , 	
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and replacing � F � F 	 (6)

it is an easy exercise to see that these splicings of the crossings give only one plane curve. (In the context of the
bracket model for the Jones polynomial this is called a ‘monocyclic state’ [Kr].) To see this, notice that if at some
point the splicing (6) disconnects the diagram into 2 components D1 B 2 of n1 B 2 crossings, then the adjacency of the 2
regions R �1 B 2 implies that for some k �71 1 	 2 4 , all regions of Dk except one are among the Ri’s, such that σ must assign
the nk crossings of Dk to nk � 1 regions, a contradiction. Similarly, one argues that each monocyclic state can be
realized only once, because a rearrangement of the arrows to give the same splicings will result in splicings which
disconnect the diagram. That each monocyclic state is indeed realized by a permutation, will follow from considering
the alternating diagram D � ; see below.

Thus the calculation of the determinant of the matrix � Ai B j � via (5) can be interpreted as a “state sum”, the non-trivial
summands being units and coming from the monocyclic states in the bracket model. The number of such monocyclic
states is the determinant ∆ ��� 1 � � V ��� 1 � of the underlying alternating diagram D � (see [Kr]), and thus a cancellation
of the units contributed by such monocyclic states occurs iff the diagram D is non-alternating. This can be seen directly
from the construction of � Ai B j � , or by using the argument for the bracket model for V and the identity ∆ �-� 1 � � V ��� 1 � .
Applying this same identity to the alternating diagram D � it follows that each monocyclic state must indeed be realized
by a permutation in (5), since � ∆ � is always less than or equal to the number of units, adding up to ∆ .

Since therefore the contribution of monomials in (5) to ∆ � D � � do not cancel, as they may in D, the result follows. 9
Remark 3.3 It may be possible that Lemma 3.1 holds in fact also for the Alexander polynomial.

Thus one is interested in estimating the number of monocyclic states.

Lemma 3.3 Let D be a (connected) link diagram. The number of monocyclic states of D is at most 2c + D , � 1 if c � D �  0.

Proof. Use induction on c � D � , noting that if c � D � � 1, then (at most) one of the two splicings gives a single curve. 9
Using lemmas 3.2 and 3.1 we obtain

Proposition 3.2 Let D be a link diagram of ns � D � split components, each with at least one crossing. Then � ∆ � D � �G�
2c + D , � 1 for ns � D � � 1 (otherwise ∆ � D � � 0) and �V � D � �G� 2c + D ,5� ns + D , � 2. 9
Using [Ka, Mu, Th] we obtain

Corollary 3.5 If for a knot K we have �VK �-� 1 � �� 2spanVK � 1, then K is not alternating. 9
Remark 3.4 This further inequality for � ∆ � D � � and �V � D � � does not involve d � D � , it is more effective because of the
smaller exponent base, at least when d � D � is small compared to c � D � , which is usually the case. In [St3, appendix],
Kidwell showed for knot diagrams that in fact if d � D �  c � D � $ 3, then D can be simplified (according to the crossing
number) by rerouting the longest bridge, so that c � D � � d � D � remains unchanged, unless after the rerouting another
bridge becomes the longest one, in which case it decreases.

3.4. Inequalities involving Fibonacci and Lucas numbers

3.4.1. A conjecture

In the case of the Conway and HOMFLY polynomials, there exist possibly better inequalities, involving Fibonacci and
Lucas numbers.
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It is easy to see that if Tp is the � 2 	 p � -torus knot or link (with parallel orientation), then

�∇Tp 
 k �IH p � k � 1
2
k J 	

and that �∇Tp � � Fp and �PTp � � Lp 	
with F0 � 0, F1 � 1 and Fn � Fn � 1 � Fn � 2 being the Fibonacci numbers, and L0 � 2, L1 � 1, and Ln � Ln � 1 � Ln � 2
being the Lucas numbers. In this subsection we do not consider the Kauffman polynomial, so no notational confusion
with the Fibonacci numbers should arise. We also set F � n � � Fn and L � n � � Ln to improve readability, since some
indices subsequently occurring will be somewhat long.

There is some evidence for the following conjecture:

Conjecture 3.1 Let L be a link of n � L � components, and vk � �∇ 
 k. Then (for 2 K k � n � L � )
vk � L � � HML 1$ 2 � c � L � � k � 1 �ON

k J � (7)

Also, if k  0 and 2 K c � L � � k, then strict inequality holds, unless L is the � 2 	 c � L ��� -torus knot or link (with parallel
orientation).

Moreover, beside the inequality �∇L �P�Q�∇Tc > L ? � (8)

following from (7), we have for any link L�PL �P�R�PTc > L ? � 2b + L , � 2 � Lc + L , 2b + L , � 2 	 (9)

b � L � being the braid index of L, again the only links achieving equality being the Tc + L , and their split unions with
unknots.

Here we will be concerned with proving special parts of this conjecture for general k and certain classes of links.
Before we start with our results, we make some remarks, in particular motivating the conjecture:

1) The inequality (7) is trivial for k � 0 and easy to see for k � 1, also including the statement of the sharpness
case. By [PV, theorem 1.E], the inequality (7) is true for k � 2, when L is a knot (and not a 3-component link);
the statement on the sharpness case could also be easily deduced from the proof.

2) The inequality (7) shows in particular that

max
c + L ,TS c

vk � L � " ck

2kk!
� o � c �

as c F ∞. We always have
max

c + L ,TS c
vk � L � " Ckck

for some explicitly computable constant Ck, following from the proof of the Lin-Wang conjecture, see [MS].
But by the methods of proof of this fact, the calculation of Ck is very complicated. We know, by [PV, theorem
1.E], that indeed C2 � 1$ 8 on knots. Using [St7], we obtain that for a special alternating knot (and k even) one
can choose at least

Ck � 1U
8

k �
It is in fact my desire to seek an easy determination of the (optimal) constants Ck that led to the above conjecture.
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3) At least for ∇, the conjectured estimate is not always better than the one of theorem 3.3, even using Kidwell’s
result (quoted in remark 3.4), since

1 � U 5
2

 22 . 3 �
4) One can avoid the exponential factor in b � L � in (9), but at the cost of excluding split links and augmenting the

base of the exponential dependency on c � L � from
1 V2W 5

2
at least to

U
3. That

U
3 is needed show the connected

sums of Hopf links. Prime examples exist also: consider the positively oriented � 2 	 2 	 ����� 	 2 � -pretzel links with
parallel clasps and with an even number of 2’s, and let this number go to ∞.

Theorem 3.4 The inequality (8), with ‘L’ replaced by ‘D’ is true for any link diagram D, which

1) is a diagram of a (closed) 3-braid,

2) is a diagram of a (closed) 4-braid,

3) is a diagram of a (closed) positive braid,

4) is arborescent (or more generally of some Conway polyhedron [Co], if the inequalities hold for the link of this
polyhedron and the polyhedra of smaller crossing number), or

5) has a clasp or two triangle regions with a common edge

	 (10)

supposed they are true for diagrams of smaller crossing number .

For any of these diagrams D, we have �PD � 1 � Lc + D , 2s + D , � 2 	 (11)

where s � D � is the number of Seifert circles of D.

Also, the inequalities (7) hold except (possibly) in case 2).

Proof. We prove the special cases in a different order. The proofs of four of them are simple, but for the fifth one
quite involved, so it will be stated as a separate proposition.

5) If D has a clasp, then one can choose a crossing in D � D � such that D � can be transformed into a diagram of two
crossings less. Then the claim follows.

If D has a fragment (10), then either the fragment is alternating along the two triangle regions or in one of them it is
not. In latter case, one can apply a Reidemeister III move on D transforming it into a diagram with a clasp. In former
case, one applies the skein relation at p, and D � again simplifies by 2 crossings.

4) This follows immediately from the clasp part of 5) by induction on the crossing number, using the fact that each
arborescent diagram has a clasp, and that smoothing out or switching a crossing in this clasp preserves arborescency
(or preserves the Conway polyhedron or transforms it into one with fewer crossings).

3) This also follows from the clasp part of 5), again by induction on the crossing number, since by Boileau-Weber
[BW] and Rudolph [Ru], a positive braid word can always be transformed into one with the square of a(n Artin)
generator.

1) This also follows from 5), since any 3-braid contains a clasp or two triangle regions with a common edge.

2) This is the most difficult part, and follows from the proposition that will be proved in the next subsubsection.

In the case of the Conway polynomial and the (braid) diagram being composite, the estimates (14) and (15) we
will prove may be worse than required (by virtue of p � β̂ �  1). Then one needs to remark that the estimate for
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the polynomial of connected sums follows from the inequality for prime diagrams and the easy to prove inductively
inequality ∇a∇b � ∇a � b for any a 	 b 8 0 (here ∇a � ∇ � Ta � and A � B means �A 
 i �X� B 
 i for any applicable i).

For P one argues the same way for connected sums and split unions. 9
The above result settles a big part of the conjecture at least when a link in one of the above classes has a diagram of
simultaneously minimal crossing and minimal Seifert circle number. In particular, by the results of [FW] and [Mu2]
we have:

Corollary 3.6 The inequalities (8) and (9) are true for a link L which is the closure of an alternating braid of at most
4 strands, or of a positive braid with a full twist (β � ξ2

s + β , α with α a positive braid). 9
3.4.2. Estimates for 4-braids

Definition 3.3 For a braid word β, set s � β � to be the number of strands of β, p � β̂ � the number of prime factors of the
diagram β̂, and let d̃ � β � � d̃ � β̂ � be the length of the longest bridge/tunnel in β̂ from left to right or from right to left,
that is, for s � β � � 4 the length of the longest common subword of β or some of its cyclically letter-permuted versions
and one of � 123 
Y	 �Z� 1 � 2 � 3 
Y	 � 321 
Y	 or ��� 3 � 2 � 1 
 � (12)

In particular, for s � β � � 4 always d̃ � β � 	 p � β̂ � ��1 1 	 2 	 3 4 . Let

d̂ � β � � d̃ � β � � 1 � sp � β̂ � 	
where

sp � β̂ � � # 1 split components of β̂ 4 � 1 � # 1 i �6� 1 	 s � β � � 1 
 : β contains no σ � 1
i 4 �

Set
ŵ � β � � c � β � � p � β̂ � � d̂ � β � and w̃ � β � � c � β � � p � β̂ � � d̃ � β � �

Proposition 3.3 Let β be a braid word of at least 2 and at most 4 strands. Then%% P � β̂ � %% 1 � L � ŵ � β ��� 2s + β , � 2 � (13)

Also, for any such word β we have %% ∇ � β̂ � %% 1 � F � w̃ � β ��� � (14)

The proof is rather technical, involving many subcases, and will occupy the rest of this section.

Proof. Note first that because of the easy to see fact that LaLb � 2La � b whenever a 	 b 8 0, we can recur the proof of
(13) for composite diagrams to their prime factors, using that p and c are additive under connected sum, and d̃ and d̂
are subadditive.

For (14) there is no problem with splitness or primeness anyway, since FaFb � Fa � b for any a 	 b 8 0. The inequalities
(7) follow in the same way inductively proving �∇ � β̂ � 
 zk � �∇w̃ + β , 
 zk 	 (15)

and using ∇a∇b � ∇a � b.

The inequalities (13) and (14) are trivial for s � β � � 2 and easy to prove for s � β � � 3 (by the above argument, one needs
to check just a few small crossing cases).

Thus we need to consider only β with s � β � � 4 and β̂ prime (and hence non-split, so that sp � β̂ � � p � β̂ � � 1), and to
show that %% P � β̂ � %% 1 � L � w � β̂ ��� 2s + β , � 2 and

%% ∇ � β̂ � %% 1 � F � w � β̂ ��� 	
where w � D � is the weight of a braid diagram D � β̂

w � D � � c � D � � 1 � d̃ � D � �
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The idea is as before to work inductively on the crossing number, and for fixed crossing number inductively on w � D � .
Our goal is in D to find either a transformation into a 4-braid diagram D̃ with

c � D̃ � � c � D � or c � D̃ � � c � D � and w � D̃ � � w � D � 	
or a crossing in D � D � such that we can transform by braid (word) moves the diagrams D0 and D [ into diagrams D̃0
and D̃ [ , for which we have

w � D̃0 � � w � D � � � 1 and w � D̃ [ � � w � D � � � 2 �
Here we call D0 and D [ the two diagrams obtained by nullifying (smoothing out) and switching the chosen crossing
in D � D � , the subscripts ‘  ’ and ‘ \ ’ being used throughout the proof without the actual specification what the sign
of the crossing is.

When considering only prime diagrams D, in order the induction argument to work, we need to ensure that the
diagrams D̃0 � β̂ �0 and D̃ [ � β̂ � [ are prime (and non-split). Since the transformations from D0 to D̃0 and from D [
to D̃ [ will be local (that is, involving subwords of bounded length), the splitness of D̃0 or D̃ [ will mean that some
Artin generator occurs very few times in large portions of β. Similar is the situation with β �0 or β � [ being composite.
Thus if D̃ [ or D̃0 is split or composite, and if c � β � is large, large subwords of β look like 2- and 3-braids. Then they
can be simplified by the above arguments (d̃ can be preserved by fixing some left-right bridge of maximal length, and
working outside of it), not spoiling non-splitness and primeness of D.

The few cases that remain are of small crossing number and can be checked directly. Thus, there is no need to care
about splitness and primeness when describing our transformations. (Alternatively, the reader may check directly for
each case when one of the resulting diagrams D̃ [ or D̃0 is split or composite, and verify (13) for each one of these D
separately.)

The appropriate transformations will be described by distinguishing several cases.

Write modulo cyclic permutations of β’s letters
β � γ α 	 (16)

with γ being subword of one of the words of (12) of length d̃ � β � .
Step I. We first try to transform α according to 5) of theorem 3.4, thereby not affecting d̃. This works whenever α has
a subword of the form � i � 2 
Y	 � i � 1 � i � 1 � � 1i � 1 � i � 1 � � 1 
]	 or � i � 1 � i � 1 � � 1i � 1 � i � 1 � � 1 
Y	 (17)

with all ‘  ’ in each form independently choosable. If α has no clasp, then modulo crossing switches it is of the form

α � � σε0
2 α1σ � 1

2 α2σ � 1
2 ����� αnσε1

2 	 (18)

where αi �^1_� 1 
`	 � 13 
`	 � 3 
 4 and εi �=1 0 	 � 1 4 .
Assume n  2, the other cases have few crossings.

Moreover, if no one of the other subwords of (17) is in α, then either

Case 1. α2 � ε0 � ����� � αn � 1 � ε1 � � 13 
Y	 or

Case 2. α2i � σ1 	 α2i � 1 � σ3 or α2i � σ3 	 α2i � 1 � σ2 .

We wish to show first that we can handle all cases where α is non-alternating.

Case 1. In case 1 one has in the inner part of α fragments (parts of the diagram with crossing signs ignored) of this
type:

c

d

b

a

C

A

B

(19)



3.4 Inequalities involving Fibonacci and Lucas numbers 13

If such a fragment is not alternating along one of the triangles A and B, then by a Reidemeister III move one obtains
a fragment

and can proceed as in 5) of theorem 3.4. By the same argument the two unnamed triangle regions in (19) must be
alternating either.

If the fragment in (19) is not alternating along the square C, then either crossings a and b (or c and d) annihelate,
thus simplifying D, or one chooses one of them as the crossing at which to apply the skein relation, in which case the
crossings annihelate in D [ , giving a diagram D̃ [ with w � D̃ [ � � w � D � � 2, as desired.

A similar argument applies to the edge part of α. There are two cases, where it does not look as in (19).

Case 1.1. ε0 � 0 and α1 � σ3 (analogously one handles α1 � σ1 or ε1 and αn).

By the above arguments we deduce that either it is alternating, or that (modulo switch of all crossings) looks like

�
To deal with this case, we will involve the crossings of γ (and have to take care of what happens to d̃).

a If γ ends on σ1, then there is a simplification in D, under which c goes down by 2 as with crossings a and b in
(19). Note that whenever c goes down by 2, c � d̃ cannot increase.a If γ ends on σ � 1

2 then we can apply case 5) of theorem 3.4; γ has length 2, and as after these transformations D̃ [
is non-alternating, d̃ has not decreased.a If γ ends on σ � 1

3 then there is a simplification in D by resolving a trivial clasp.a If γ ends on σ3 and has length 2, then resolve the clasp; D0 and D̃ [ remain non-alternating.

There remain the cases γ � � σ � 1
3 � σ � 1

2 σ � 1
1 and γ � � 123 
 .

a In case d̃ � 3, γ � σ � 1
3 σ � 1

2 σ � 1
1 , choose the crossing for the skein relation as encircled, and apply the move
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indicated by the dotted line to D [ ; one obtains a diagram D̃ [ with 4 crossings less.

γ

�

Note, that whenever we switch a crossing outside of γ, we always have w � D0 � � w � D � � 1, so there is no need
to care about D0.

In case d̃ � 2, γ � σ � 1
2 σ � 1

1 , the same transformation as for crossings a and b in (19) applies to simplify D [ by
2 crossings, and d̃ remains (at least) two in D̃ [ .a In case γ � σ1σ2σ3,

γ
	

D simplifies by 6 crossings.

Case 1.2. (ε0 � � 1) The edge of α looks like

�
This fragment is found again to be alternating, or (modulo switch of all crossings) looking like

�
Case 1.2.1. First consider the case d̃ � lenγ � 2.a If γ ends on σ2 then D simplifies by resolving a clasp.a If γ ends on σ � 1

2 , then the clasp corresponding to σ � 2
2 can be resolved. We have then that c � D̃ [ � � c � D � � 2, but

since the fragment becomes alternating after resolving the clasp, we might have d̃ � D̃ [ � � 1 � d̃ � D � � 1, and so
only w � D̃ [ � � w � D � � 1. However, in D0 � D̃0 we have a bridge/tunnel of length 3, so that d̃ � D0 � � d̃ � D � � 1,
and hence w � D0 � � w � D � � 2. Then the induction argument works with the estimates for the contributions from
D̃ [ and D̃0 reversed.

There remain the four cases
γ � � 23 
Y	 ��� 2 � 3 
Y	 � 21 
]	 or �Z� 2 � 1 
 �
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They correspond to the diagrams

γ � ��� 2 � 1 
 γ � � 21 
 γ � � 23 
 γ � ��� 2 � 3 


γ γ γ γ

One sees that in all four cases, when switching the encircled crossings, D [ simplifies by 4 crossings.

Case 1.2.2. Consider the 4 cases of γ where d̃ � lenγ � 3.

γ � � 123 
 γ � �Z� 1 � 2 � 3 
 γ � � 321 
 γ � ��� 3 � 2 � 1 


γ γ γ γ

In the first and third case, D [ simplifies by 6 crossings, in the other two cases by 4.

Case 2. The case 2 is easier to handle, for if it were non-alternating, a Reidemeister III move would give a fragment
(10) amenable by case 5) of theorem 3.4, except in some cases with few crossings.

The cases where α is mirrored (σi b σ � 1
i ) are to be handled like the cases where γ is mirrored, and then applying a

mirroring to the whole diagram.

Step II. Now consider β as in (16) with α � α � in (18). Since α can no longer be handled itself, we incorporate again
γ into our transformations. Again modulo a mirroring of the whole braid we can fix a mirroring convention for α and
assume that α contains σ2 with negative and σ1 B 3 with positive exponents.

Since it will be necessary to work with some of α’s letters immediately following and preceding γ, we cyclically
permute the letters of β so that at least 4 of the last letters of α appear before γ, that is, we have the form

β � α0 γ α 	 (20)

with len � α0 � 8 4. We assume, modulo small crossing number cases, that also len � α � 8 4.

We again describe some transformations by diagrams, but some also by words. In latter case we will put a ‘ � ’ at
the start and/or end of γ to separate it from the letters of α and/or α0. By underlining a letter we indicate that the
corresponding crossing is to be switched (that is, applied skein relation at).

We will occasionally use that fact that the form (18) of α � α � has the following property: whenever we have σ1 (resp.
σ3) occurring in αk, then σ3 (resp. σ1) occurs in αk � 1 for 1 � k � n. Also, since σ1 and σ3 commute we will use the
freedom to write them in our fashionable order in some αk.

Case 1. lenγ � 3. By applying a flip, a conjugacy with the square root of the center generator of B4, it suffices to
consider only γ � σ � 1

1 σ � 1
2 σ � 1

3 ; the mirroring convention for α is not affected by a flip.

Case 1.1. γ � σ1σ2σ3. We consider 16 possibilities, made up of the 4 possibilitiesa ε0 � 0 and α1 � σ3 (that is, α � σ3σ � 1
2 ����� ),a ε0 � 0 and α1 � σ1σ3 (that is, α � σ1σ3σ � 1

2 ����� ),
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a ε0 � 0 and α1 � σ1, anda ε0 � � 1 (that is, α � σ � 1
2 ����� ),

and the analogous 4 possibilities for ε1 and αn at the end of α0.

Case 1.1.1. σ1σ2σ3 �σ3σ � 1
2 . D [ simplifies by 4 crossings. Similarly one handles σ � 1

2 σ1 � σ1σ2σ3.

Case 1.1.2. σ1σ2σ3 �σ3σ1σ � 1
2 . D [ simplifies by 4 crossings. Same with σ � 1

2 σ3σ1 �σ1σ2σ3.

So there are 4 cases remaining, made up of the two possibilities σ � 1
2 σ3 or σ � 1

2 before γ (at the end of α0 in (20)) and
σ1σ � 1

2 or σ � 1
2 after γ (at the beginning of α).

Case 1.1.3. σ � 1
2 σ3 �σ1σ2σ3 �σ1σ � 1

2 .

γ

D̃ � has 2 crossings less than D, but still a bridge of length 3.

Case 1.1.4. σ � 1
2 σ3 �σ1σ2σ3 �σ � 1

2 . This simplifies to σ � 1
2 σ1σ2σ3. Similarly σ � 1

2 �σ1σ2σ3 �σ1σ � 1
2 , which can be trans-

formed into the other case by rotating the braid by 180 c (around the axis orthogonal to the projection plane).

Case 1.1.5. σ � 1
2 �σ1σ2σ3 �σ � 1

2 . We distinguish two subcases

Case 1.1.5.1. σ1σ2σ3 �σ � 1
2 σ3σ � 1

2 (that is, α1 � σ3). D̃ [ has 4 crossings less than D. Analogously one handles
σ � 1

2 σ1σ � 1
2 �σ1σ2σ3 (rotate the braid by 180 c ).

Case 1.1.5.2. σ3σ � 1
2 �σ1σ2σ3 �σ � 1

2 σ1. After the switch, σ � 1
1 annihelates with the first ‘σ3’.

Case 1.2. γ � ��� 1 � 2 � 3 
 . Make the same case distinction as for case 1.1.a In the analoga of cases 1.1.1 and 1.1.2, D simplifies (without crossing change),a in the now modified case 1.1.3 the move applies in the same way (only the length-3 bridge being a length-3
tunnel),a in the new cases 1.1.4 and 1.1.5.2 D also simplifies as before.

It remains to handle the new case 1.1.5.1. Then do

and D [ F D̃ [ simplifies by 4 crossings.

Case 2. d̃ � lenγ � 2. We consider γ being one of� 12 
]	 �Z� 1 � 2 
Y	 � 23 
Y	 or �Z� 2 � 3 
Y	 (21)

and as before (by mirroring) α � α � with σ � 1
2 	 σ1 and σ3. The cases for γ being � 21 
 , ��� 2 � 1 
 , � 32 
 and �Z� 3 � 2 
 are

recurred to those in (21) by flip (conjugacy with the square root of the center generator of B4).

Case 2.1. γ � σ1σ2.
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Case 2.1.1. σ1σ2 �σ3 (ε0 � 0 and α1 has a σ3). Then d̃ � 3, a contradiction.

Case 2.1.2. σ1σ2 �σ � 1
2 (ε0 � � 1). Then D simplifies.

Case 2.1.3. σ1σ2 �σ1σ � 1
2 (ε0 � 0 and α1 � σ1). Then D simplifies also.

Case 2.2. γ � σ2σ3 is analogous to case 2.1 by rotating the braid by 180 c .
Case 2.3. γ � σ � 1

1 σ � 1
2 .

Case 2.3.1. σ � 1
1 σ � 1

2 �σ � 1
2 . d

Resolve clasp. Since α is alternating, strand d continues upward by passing an undercrossing, thus D̃ [ after resolving
the (first) clasp either has a second trivial clasp (and simplifies further), or has d̃ � D̃ [ � 8 2 � d̃ � D � , so w � D̃ [ � �
w � D � � 2, as desired.

Case 2.3.2. σ1 �σ � 1
1 σ � 1

2 . D simplifies.

Thus ε0 � 0 and (ε1 � � 1 or αn � σ3).

Case 2.3.3. σ1σ � 1
2 σ3 � σ � 1

1 σ � 1
2 �σ3 (α1 has σ3, ε1 � 0 and αn � σ3, latter in particular implying that αn � 1 contains σ1).

D̃ [ has two crossings less than D, and is non-alternating.

Case 2.3.4. σ � 1
2 �σ � 1

1 σ � 1
2 �σ3 (α1 has σ3 and ε1 � � 1).

Case 2.3.4.1. σ1σ � 1
2 �σ � 1

1 σ � 1
2 �σ3 (αn has σ1). D simplifies.

Case 2.3.4.2. σ1σ � 1
2 σ3σ � 1

2 �σ � 1
1 σ � 1

2 �σ3 (αn � σ3, and consequently αn � 1 has a σ1).

D̃ [ has two crossings less than D, and is non-alternating.

Case 2.3.5. σ1σ � 1
2 σ3 �σ � 1

1 σ � 1
2 �σ1σ � 1

2 (α1 � σ1, ε1 � 0 and αn � σ3, so in particular αn � 1 has a σ1). After a braid
relation, this turns into σ1σ � 1

2 σ3σ2σ � 1
1 σ � 1

2 σ � 1
2 . Resolve the clasp; D̃ [ is still non-alternating, and has two crossings

less than D.

Case 2.3.6. σ � 1
2 �σ � 1

1 σ � 1
2 �σ1. This simplifies to σ � 1

1 σ � 1
2 .

Case 2.4. γ � σ � 1
2 σ � 1

3 is lead back to case 2.3 by turning around the braid by 180 c .
Case 3. lenγ � 1. Then β is an alternating braid (or has a resolved clasp, in which case D simplifies). Then by switching
some crossing corresponding to σ � 1

2 one can create a diagram D̃ [ � D [ with c � D̃ [ � � c � D � and d̃ � D̃ [ � � 3, so that
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w � D̃ [ � � w � D � � 2, as required. As before, d̃ � D0 � � d̃ � D � � 1, but c � D0 � � c � D � � 1, so w � D0 � � w � D � � 1, also as
required.

Thus the case distinction, and hence the induction argument, is now complete. 9
Since even in the special case of 4-braids, the proof is already very complex, it is hard to expect the conjecture to be
solvable, at least affirmatively, in general. The proof of the coefficient inequalities (7) already fails because of the need
to switch the contributions from D̃ [ and D̃0 in case 1.2.1.

On the other hand, one may hope for better. As the braids α � in (18) are basically powers of � 1 � 23 
 and � 1 � 23 � 2 
 ,
one may ask whether a part of the argument could be carried out using the representation theory of the polynomials
[J2]. If one could handle these cases, for example by estimating the Eigenvalues of their Burau matrices, then the proof
can be considerably simplified. In fact, the involvement of γ and the (somewhat technical) quantity d̃, and the lengthy
list of subcases arising this way, was necessary because of the few situations, where no reduction of the crossing
number was possible.

Unfortunately, however, the Jones-Ocneanu parametrization X of P, arising in its Hecke algebra definition (as de-
scribed in [J2]), is different from the skein parametrization, used here, and the change from one to the other is badly
conditioned with respect to the 1-norm of the polynomial. The Jones-Ocneanu parametrization might be on the other
hand helpful in proving similar estimates for the Jones polynomial.

4. Some experimental results

It becomes clear from the proofs of the inequalities for the V , Q and F polynomial, that the price for keeping the
arguments simple is that the estimates cannot be expected to be sharp. The reason is the lack of easy control on the
cancellations occurring in the resolution trees. The way I chose to get some experimental information on possible
improvements was to use corollary 3.1 and proposition 3.2 and to consider for any K the smallest bases on the right
of the estimate which would satisfy (in)equality, and to sort the knots of � 15 crossings in Thistlethwaite’s tables
according to the considered numbers. The results suggest much space for improvement, but, as said, it will be likely
much more elaborate.

First consider F and define
δK : � maxdegFKd �FK � 1 �

Note that this definition would not make sense if maxdegFK � 0 and �F � 1  1. Among the knots considered, there was
no knot with such polynomial, but in general this point should be kept in mind. Note also that the obvious inequality
δK#K e � max � δK 	 δK e � with equality only if (but by far not in general if) δK � δK e renders the discussion of composite
knots (rather) uninteresting.

The “top ten” with respect to δ are given below.

# knot �F � 1 maxdegz F δK f
1 31 7 2 2 � 64575
2 41 11 3 2 � 22398
3 51 21 4 2 � 1407
4 11444 395 8 2 � 11142
5 11440 361 8 2 � 0878

11441 361 8 2 � 0878
7 63 37 5 2 � 05892
8 1425821 2625 11 2 � 04564
9 1425180 2525 11 2 � 03843

10 52 17 4 2 � 03054

(22)

Although the trefoil leads with sensible advance, several of its simple successors are dominated by some exotic knots.
It is also striking that beyond 9 crossings non-alternating knots perform much better than alternating ones. The highest
alternating knot of  9 crossings is 12945 on place 272. One may expect the reason for this in the smaller value of
maxdegz F , but on the other hand, the Perko knot 10161 with maxdegz F � 6 takes “only” place 338.
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Question 4.1 Is the highest value of δ on knots the number
U

7 given by the trefoil? Is it the unique knot maximizing
this value?

Recall that the only general fact we know about δ is that δK � 5 for K alternating.

I did a similar experiment for V using the the numbers

γK : � spanVK g 1d �VK � 1 �
Here a similar remark on the definability of this number applies as for δ. However, we know from [FS] that if
spanVK � 1 for a knot K, then already VK � 1, so the definition of γ would be problematic only for (non-trivial) knots
with unit polynomial, and such knots do not occur at � 15 crossings.

As an outcome I found that
max

c + K ,TS 15

spanVK g 1d �V � 1 � 1 � 89087 ����� 	
attained by some 15 crossing knot 15216514.

Here the picture is entirely dominated by high crossing number knots – there is no Rolfsen knot among the first 2000.
Moreover, not one single of these knots is alternating. This is explained by the fact that for non-alternating knots the
crossing number bound of V is in general much worse than this of F. Thus it appears more interesting to consider just
alternating knots, in which case the listing is as follows:

V � � 3 12 � 25 38 � 48 � 52 
 � 48 40 � 26 13 � 4

15216514

# knot �V � 1 spanV � 1 γK f
1 31 3 2 1 � 73205
2 1582477 2037 14 1 � 72328
3 818 45 7 1 � 72256
4 1417895 1145 13 1 � 71907
5 133478 663 12 1 � 71841
6 1582192 1947 14 1 � 71773
7 1581381 1939 14 1 � 71722
8 1413618 1115 13 1 � 71556
9 940 75 8 1 � 71547

10 1559607 1903 14 1 � 71493

(23)

Further known knots are 41 on position 21, 10123 on position 55 and 934 on position 145. From the Rolfsen knots,
among the first 2000 there were only 5 further 10 crossing knots. Also, we point out that all numbers γ stay visibly
below 2, which suggests possible further improvement.

Question 4.2 1) Is there any highest value for γK on knots? What is it?

2) Is there any highest value for γK on alternating knots? Is it attained by the trefoil?

A final experiment was performed with the Q polynomial. For reasons that we will explain shortly we calculated

βK : �IH max
ξ100 ! 1

�QK � ξ � � J 1 . c + K , �
(In fact, instead of being a root of unity of order 100, the maximum should be taken over all ξ with � ξ � � 1, but this is
computationally intractable.) The 10 prime knots K of � 15 crossings attaining the highest βK are shown below. It is
interesting to remark that among the first 2000 knots there was not one single non-alternating one.
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Q � � 45 
 � 118 � 94 368 170 � 754 � 664
1182 1680 � 608 � 1710 � 388 522 318 52

1584903

# knot βK

1 1584903 1 � 79305
2 1564035 1 � 77796
3 12975 1 � 77267
4 1414501 1 � 76822
5 1582192 1 � 76621
6 1582477 1 � 76574
7 1582478 1 � 76474
8 1573374 1 � 76425
9 133478 1 � 76414

10 1561404 1 � 76403

(24)

There is no a priori evidence the roots with maximal value modulus to be specifically distributed. Therefore, it is
striking that the powers of ξ � eπi . 50 where the maxima are attained are strongly concentrated around 22, and decrease
rapidly (and approximately equally) in both directions away from this number.

5. Lower asymptotical bounds

To motivate the preceding computations also from the theoretical point of view, we mention that any knot K will give
via its iterated connected sums an asymptotical lower bound for a base in corollary 3.1 and proposition 3.2. For V this
bound is given by

c > K ?h maxi
ξ
i ! 1

�VK � ξ � � �
This follows from

Lemma 5.1 Let V �@�j� t 	 t � 1
 be some polynomial. Then

lim
n # ∞

nd �V n � 1 � maxi
ξ
i ! 1

�V � ξ � � �
Proof. Let ξ0 with � ξ0 � � 1 be such that V � ξ0 � has maximal modulus

m � V � : � maxi
ξ
i ! 1

�V � ξ � � �
Then by the triangle inequality,

∑
i D]k �-�V n 
 i ��8l�V n � ξ0 � � 	

whence
liminf

n # ∞
nd �V n � 1 8 m � V � �

On the other hand, we have the identity

∞

∑
i ! � ∞

�V 
 2ti � 1m
0

%% V & e2πiu ' %% 2 du � (25)

Thus �V � 2 : �on ∞

∑
i ! � ∞

�V 
 2ti � m � V � � (26)

If �V � ∞ : � max
i D]k %% �V n 
 i %% 	
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then �V � ∞ �X�V � 2, and �V � 1 � spanV �V � ∞. Applying this to V n, and using spanV n � spanV p n, we have

nd �V n � 1 � nd spanV p n �V n � 2 � nd spanV p nm � V �
the last inequality coming from (26). This shows

limsup
n # ∞

nd �V n � 1 � m � V � 	
and hence the assertion. 9
To apply the above lemma, one needs to consider instead of γK

γ �K : � spanVKd �VK � 1 �
Proposition 5.1

liminf
n # ∞

max
c + K ,5! n

nd �VK � 1 8 15
U

2037 f 1 � 66188

and
liminf

n # ∞
max

spanVK ! n
nd �VK � 1 8 10

U
309 f 1 � 77417 �

Proof. Consider (iterated connected sums of) the knots 1582477 and 15216514 and apply the above lemma. 9
For V and ∆ we know that the maximum modulus on S1 is always attained at t � � 1, but the Q polynomial remains
quite mysterious. Again the r.h.s. can be computed, at least numerically up to some decent accuracy, but this is more
complicated and would pose serious difficulties in evaluating such a long knot list as above. Instead it is easier to
approximate the maximum by considering just special values of ξ, as done above. Thus we have

Proposition 5.2

liminf
n # ∞

max
c + K ,5! n

nd �QK � 1 8 1 � 79305 �����
Proof. This estimate comes from taking iterated connected sums of the knot 1584903 and the above lemma. 9
To examine F and P, one would need the 2-variable analogue of the above identity, which can be proved by an iterated
integral of the type (25):

lim
n # ∞

nd �Pn � 1 � maxi
ξ
i ! 1 B i ζ i ! 1

�P � ξ 	 ζ � � �
If prime examples are desired, they can be manufactured using the copious results and techniques available now
on primeness, see for example [EKT, Me, KL], possibly augmenting the number of components and/or obtaining
somewhat worse estimates.

6. The Mahler measure

Another way to measure the complexity of a polynomial was introduced by Mahler [Ma]. The Mahler measure seems
to me of more number theoretic, although of less intuitive interest. It can be defined for a one-variable polynomial P
by

M � P � � maxcfP p ∏
P + α ,5! 0 B iα i q 1

�α � 	 (27)

with complex zeros α 3� 0 counted and any zero going into the product by its multiplicity. See also [GH] and loc. cit.

It is useful to remark that the estimates given above also serve as estimates for the Mahler measure of the polynomials.
This follows from the inequality M � P � �A�P � 1, which is classic, but whose proof is elementary, and so included here
for completeness.
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Lemma 6.1 If P �@�j� x 	 x � 1
 , then M � P � �X�P � 2 �X�P � 1.

Proof. The second inequality is trivial. To see the first inequality, by Jensen’s integral formula [Je], we have

lnM � P � � m 1

0
ln
%% P & e2πit ' %% dt � 1

2

m 1

0
ln
%% P & e2πit ' %% 2 dt � (28)

Some care must be taken when P has roots on the unit circle, but since the singularities of the integrand are only
logarithmical in this case, the integrals converge as improper Riemann integrals.

Since the function ln is concave, we have ln � a � b � 8 ln � a � � ln � b � for any a 	 b  0, and so, using (25), we obtain

lnM � P � � 1
2

ln
m 1

0

%%P & e2πit ' %% 2 dt � 1
2

ln
∞

∑
i ! � ∞

�P 
 2xi � ln �P � 2 � 9
The Mahler measure can be defined also for polynomials in more variables (as done originally by Mahler), only
that in this case only the integral formula (28), but not the product formula (27) is available. Lemma 6.1 holds in
multi-variable case analogously.

One should note that the inequality in lemma 6.1 is not always very sharp. In particular, contrarily to � � � 1 and � � � 2,
there are non-trivial polynomials with unit Mahler measure. By a classical result of Kronecker these are exactly the
polynomials all of whose roots are roots of unity, that is, divisors of � xd � 1 � n for some d 	 n �^< . Lin asked in [L]
(see also [Oh, p. 3 bottom]) whether the Jones polynomial V of a non-trivial knot has M � V �  1 (in his notation
m � V � � ln M � V � ). As remarked, the answer to this question is negative because of the Jones polynomial of the figure
8 knot (whose roots are the primitive roots of unity of order 10). A possible relation to the achirality of the figure 8
knot was asked. There is in fact some causality, which follows from the proposition below.

Proposition 6.1 If V if the Jones polynomial of a knot and M � V � � 1, then V � t � 1 � � V � t � (that is, V is self-conjugate),
and maxcfV � 1.

Proof. If M � V � � 1 and maxcfV �  1 and all roots of V have unit norm (this follows from Kronecker’s theorem or
directly considering the lowest degree coefficient of V ). Since V � 1 � � 1 and (hence) V ��� 1 � 3� 0, all roots of V are
complex, and occur in pairs � t 	 t̄ � t � 1 � with equal multiplicities. Thus V is self-conjugate up to a unit in �0� t 	 t � 1
 .
This unit cannot be � tn because V � 1 � 3� 0, so it is � tn. Then, using again V � 1 � � 1, and V �r� 1 � � 0 we conclude n � 0.
Finally, the lack of real zeros of V and V � 1 � � 1 show that V � t �  0 for any t � � � . Letting t F ∞ shows maxcfV  0.9
One should note that much more than this may not be expected. For example, the knot 942 is not achiral, but yet has a
Jones polynomial with unit Mahler measure (its roots are the primitive roots of unity of order 14).

7. Questions

The inequalities proved above open several problems and questions. We conclude by proposing some of them.

The fact that the estimate for � ∆ � 1 gives also an estimate for the determinant ∆ �-� 1 � makes it appropriate to compile
some related problems on the structure of H1 � H1 � DK 	 � � , where DK denotes the double branched cover of S3 along
K.

Question 7.1 Let t � K � for a knot K be the number of torsion coefficients of H1 � DK 	 � � , and tp � K � for some odd natural
number p the number of those divisible by p.

1. We know from (4), that t � K � � c � D � � d � D � for any diagram D of K, and from the Seifert matrix representation
of H1 that t � K � � 2g � K � .

a) Is it always true that 2g � K � � c � D � � d � D � for any D, that is, is the new estimate obsolete?

b) Is it even true that 2g � K � � maxdegz F � K � ?
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1.b), and hence 1.a), is true for alternating knots by [Ki] and for positive knots by [Yo]. It is also true for all
examples so far decidable in the tables of [HTW], including all prime knots of � 14 crossings. (For all knots up
to 16 crossings we have 2maxdeg ∆ � maxdegz F .) However, such an inequality would in general imply that
no non-trivial knot has F � 1; another odd against a general positive answer is that it is not true for Q: the knot
K � 137960 has 2g � K � 8 σ � K � � 6, but maxdegQ � K � � 4.

2. a) Can one give a better estimate for tp � K � than logp 3 p & c � D � � d � D � ' coming from (4)? More specifically,

b) is t3 � K � � c � K � $ 3 for any K? Are the only knots with equality the connected sums of trefoils? Is weaker
the inequality true at least for knots K 3-equivalent (in the sense of [Pr]) to an unlink (of t3 � K � � 1 compo-
nents)?

3. Is for any non-trivial fibered positive knot t � K � � g � K � ? Are connected sums of (this time only positive) trefoils
again the only knots satisfying equality? The answer to the first question is true from [BW] and [We] for positive
braid knots, since for them u � K � � g � K � . It is also true for prime knots up to 16 crossings. This question is
motivated (and a positive answer to it is implied) by a conjecture of [MP], where u � K � � g � K � is conjectured to
hold more generally for fibred positive knots.

4. Do the tp of achiral knots have other special features except that 2 � t3? (If p s 3 � 4 � is a prime, and the linking
form does not degenerate on the subgroup generated by elements of order p in H1, then 2 � tp. This follows by
considering the action of the involution of the ambient space on H1.)

Acknowledgement. I would like to thank to M. Kidwell, the referee, and E. Hironaka for some helpful remarks.
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[J] V. F. R. Jones, A polynomial invariant of knots and links via von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985),
103–111.

[J2] ” , Hecke algebra representations of of braid groups and link polynomials, Ann. of Math. 126 (1987), 335–
388.



24 References

[Ka] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417–471.

[Ka2] ” , State models and the Jones polynomial, Topology 26 (1987), 395–407.

[Ka3] ” , Quantum invariants of knots, links and three-manifolds, talks given at the knot theory workshop “Journées
Toulousaines autour des tresses et des nœuds” in Toulouse, France, June 2000.

[Ka4] ” , Formal knot theory, Mathematical Notes 30, Princeton University Press, Princeton, NJ, 1983.

[Ki] M. Kidwell, On the degree of the Brandt-Lickorish-Millett-Ho polynomial of a link, Proc. Amer. Math. Soc. 100 (1987),
755–761.

[KS] ” and T. B. Stanford, On the z-degree of the Kauffman polynomial of a tangle decomposition, preprint
math.GT/9903055.

[KL] R. C. Kirby and W. B. R. Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86(3) (1979),
437–441.

[Kr] D. Krebes, An obstruction to embedding 4-tangles in links, Jour. of Knot Theory and its Ramifications 8(3) (1999), 321–
352.

[LM] W. B. R. Lickorish and K. C. Millett, A polynomial invariant for oriented links, Topology 26 (1) (1987), 107–141.

[L] X.-S. Lin, Problems in Knot Theory, http://math.ucr.edu/˜xl/knotprob/knotprob.html.

[Ma] K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344.

[Me] W. W. Menasco, Closed incompressible surfaces in alternating knot and link complements, Topology 23 (1) (1986), 37–44.

[Mo] H. R. Morton, Seifert circles and knot polynomials, Proc. Camb. Phil. Soc. 99 (1986), 107–109.

[Mu] K. Murasugi, Jones polynomial and classical conjectures in knot theory, Topology 26 (1987), 187–194.

[Mu2] ” , On the braid index of alternating links, Trans. Amer. Math. Soc. 326 (1) (1991), 237–260.

[MP] ” and J. Przytycki, The skein polynomial of a planar star product of two links, Math. Proc. Cambridge
Philos. Soc. 106(2) (1989), 273–276.

[MS] ” and A. Stoimenow, The Alexander polynomial of planar even valence graphs, preprint.

[Oh] T. Ohtsuki (ed.), Problems on invariants of knots and 3-manifolds, Proceedings of the Workshop on ”Invariants of knots
and 3-manifolds”, Kyoto, September 2001, to appear. Draft version available on http://www.is.titech.ac.jp/

˜tomotada/proj01/

[PV] M. Polyak and O. Viro, On the Casson knot invariant, preprint math.GT/9903158.

[Pr] J. Przytycki, tk moves on links, in “Braids”, Santa Cruz, 1986 (J. S. Birman and A. L. Libgober, eds.), Contemp. Math. 78,
615–656.

[PT] ” and P. Traczyk, Invariants of links of Conway type, Kobe J. Math. 4(2) (1988), 115–139.

[Ro] D. Rolfsen, Knots and links, Publish or Parish, 1976.

[Ru] L. Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), 1–37.

[St] A. Stoimenow, The Jones polynomial, genus and weak genus of a knot, Ann. Fac. Sci. Toulouse VIII(4) (1999), 677–693.

[St2] ” , Polynomial and polynomially growing knot invariants, preprint.

[St3] ” , The crossing number and maximal bridge length of a knot diagram, with an appendix by M. Kidwell, to
appear in Pacific J. Math.

[St4] ” , On the number of links and link polynomials, preprint.

[St5] ” , Fibonacci numbers and the ’fibered’ Bleiler conjecture, Int. Math. Res. Notices 23 (2000), 1207–1212.

[St6] ” , Knots of genus one, Proc. Amer. Math. Soc. 129(7) (2001), 2141–2156.

[St7] ” , The Conway polynomial of special alternating links, preprint.

[STV] ” , V. Tchernov and A. Vdovina, The canonical genus of a classical and virtual knot, accepted by Geometriae
Dedicata.

[Th] M. B. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987), 297–309.

[Th2] ” , Kauffman’s polynomial and alternating links, Topology 27(3) (1988), 311–318.

[We] H. Wendt, Die Gordische Auflösung von Knoten, Math. Z. 42 (1937), 680–696.

[Yo] Y. Yokota, Polynomial invariants of positive links, Topology 31(4) (1992), 805–811.


