
INFINITELY MANY NON-CONJUGATE BRAID REPRESENTATIVES OF LINKS
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ABSTRACT. We prove that under a fairly general condition (that the edge strands are not fixed by the

braid permutation) an iterated exchange move gives infinitely many non-conjugate braid representatives

of links. More precisely, almost all braids obtained by iterated positive exchange moves are pairwise

non-conjugate. As a consequence, every link with no trivial components has infinitely many conjugacy

classes of n-braid representatives if and only if it has one admitting an exchange move.

1. OVERVIEW

The braid groups Bn were studied in the 1930s in the work of Artin [2]. Alexander’s and Markov’s

theorems (see §2.1) have laid a fundament for the use, and increased the importance of braids in the

theory of links with the development of polynomial [13] and quantum link invariants. In that realm,

extensive study focused on the braid representatives of a given link L, i.e., those braids whose closure

is L. Markov’s theorem relates these representatives by two moves, the conjugacy in the braid group,

and (de)stabilization (3), which passes between different braid groups. Conjugacy is, starting with

Garside’s [9], and later many others’ work, now relatively well group-theoretically understood. In

contrast, the effect of (de)stabilization on conjugacy classes of braid representatives of a given link

is in general difficult to grasp. Only in very special situations can these conjugacy classes be well

described, e.g., [7].

Some non-conjugate braids close to isotopic links. Birman had observed [4] that stabilizations of

different sign are non-conjugate, because of different exponent sum. However, it is well known now

that for any link L and n≥ b(L), there are only finitely many exponent sums of n-braid representatives

of L for given n. It was also known from [7] that only finitely many conjugacy classes occur when

n≤ 3.

In this paper we study the question when infinitely many conjugacy classes of n-braid representa-

tives of a given link occur. The first such construction is likely due to Morton [15], who discovered

an infinite sequence of conjugacy classes of 4-braids with closure being the unknot. Later different

types of examples were obtained [16, 8].

Birman and Menasco [6] introduced a move called exchange move (see §2.2), and proved that it

necessarily underlies the switch between many conjugacy classes of braid representatives of L. We

will prove here that it is also sufficient for generating infinitely many such classes, under a very mild

restriction. Our work extends the result for knots in [22], which is included in the statement below

(and will be needed in the proof, so that it requires some detailed review in §3).
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Theorem 1.1. Let L be a knot, or a link without trivial components, and n≥ 4. Then L has infinitely

many conjugacy classes of n-braid representatives if and only if it has one admitting an exchange

move.

In §8 we will cover many links with trivial components. This result is a consequence of a stronger

property of the exchange move we prove in Theorem 1.2, when combined with the work of Birman

and Menasco.

Whenever an n-braid representative b of a link L admits such a move, one obtains by iteration from

b a sequence of n-braid representatives (bm) of L, indexed by integers m ∈ Z (with b = b0). Our

concern is when are bm conjugate. The proof of the following theorem occupies §4, §5 and §6.

Theorem 1.2. Let a link L have an n-braid representative b admitting an exchange move, such that

the permutation π(b) satisfies

π(b)(k) 6= k for k = 1,n . (1)

Then

(1) every (fixed) conjugacy class of n-braids contains bm for at most two m, and

(2) bm are pairwise non-conjugate for all m≥ 0, or for all m≤ 0.

In §4, §5 we will first prove that infinitely many bm are non-conjugate. The full statement of

Theorem 1.2 is completed in §6 with Proposition 6.1. It transpires more precisely that indices m of

conjugate exchanged braids must satisfy a certain reflectional symmetry in the real line. (See end of

the proof of Proposition 6.1.) This symmetry occurs naturally in many instances and thus cannot be

further restricted (Remark 6.2).

There is also a short treatise of composite links in §9. A few problems are summarized at the end

of the paper in §10.

We conclude the introduction with further historical remarks and related updates.

In the case of minimal braids, Birman had conjectured that there would always be a single con-

jugacy class of minimal braids representing a link. However, Murasugi and Thomas [20] disproved

Birman’s conjecture, exhibiting some counterexamples in B4. Our result can be seen as such a con-

struction of nearly exhaustive generality. The few braids on which our method fails are more sub-

tle, and we discuss them briefly in §7. In particular, we will notice that, in terms of π(b) alone,

Theorem 1.2 requires the weakest possible condition (1) under which the exchange move can yield

non-conjugate representatives.

Originally, we had only claimed in Theorem 1.2 that infinitely many bm are non-conjugate (arXiv:

1103.2510). Our proof was submitted as part of [22], but the editors requested the paper to be

shortened to the form later published. The special case for non-minimal braid representatives had

been known (in slightly greater generality) from work by the second author in [24] (which is dis-

cussed in §2, but uses an entirely different Lie group theoretic approach).

Later, T. Ito [12] found a very similar version of our infinite non-conjugacy result. He uses a

simpler geometric argument, based on the topological entropy corresponding to the dilation of a

pseudo-Anosov map coming from a braid. His version replaces (1) by a more (in fact, the most)

general assumption of “non-degeneracy”. (We had also previously identified this condition. See (59)
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and the second author’s further discussion in [27].) Then we noticed that our method easily gives

the improvement of the conclusion stated in Theorem 1.2. (Ito’s method can only show that at most

finitely many bm are mutually conjugate.)

An algebraic proof in a style close to Theorem 1.2 for π(b)(1) = 1, π(b)(n) 6= n (instead of (1)) is

given by the second author in [28]. A natural condition, similar to (60), must be excluded to avoid

degenerate braids, but the assertion remains the same. This also protrudes the relation to the Burau

representation. The final case π(b)(1)= 1, π(b)(n)= n is being worked out in [29]. There we exclude

precisely (60) (and its analogue for strand n), but obtain the assertion of Theorem 1.2 up to a finite

number of exceptions m. We also show how to apply these theorems for specific families of links.

2. PRELIMINARIES

’W.l.o.g.’ means ’without loss of generality’, and ’w.r.t.’ means ‘with respect to’.

2.1. Braids, permutations and closures.

Definition 2.1. The braid group Bn on n strands (or strings) can be defined by generators and relations

as

Bn =

〈

σ1, . . . ,σn−1

∣

∣

∣

∣

∣

[σi,σ j] = 1 |i− j|> 1

σ jσiσ j = σiσ jσi |i− j|= 1

〉

. (2)

The σi are called Artin standard generators. An element b ∈ Bn is called an n-braid.

There is a graphical representative of braids, where in σi strands i and i+1 cross, and multiplication

is given by stacking. (We number strands from left to right and, for most of the time, orient them

downward.)

The closure b̂ of a braid b is a knot or link (with orientation) in S3:

.

Alexander [1] proved that for every link L there is a b ∈ Bn (when n is large enough) with b̂ = L.

We call b a braid representative of L.

Among the different braid representatives of a link L the one with the fewest strands is called

a minimal braid. The number of strands of a minimal braid is called the braid index b(L) of L.

Obviously it makes sense to consider braid representatives β ∈ Bn of L only for n≥ b(L).
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Markov’s theorem (see, e.g., [17]) relates these representatives by two moves, the conjugacy in the

braid group, and (de)stabilization, which is the move

b ∈ Bn−1←→ bσ±1
n−1 ∈ Bn . (3)

As mentioned, Markov’s moves and braid groups have gained importance in knot theory, among

others, as a tool for defining link invariants via braids.

FIGURE 1. An n-braid

There is a homomorphism Bn→ Z, given by σi 7→ 1, which is the exponent sum mentioned in the

introduction. More important for us will be the permutation homomorphism π of Bn,

π : Bn→ Sn , given by π(σi) = (i, i+1) .

(The permutation on the right is a transposition.) We call π(b) the braid permutation of b. We call b

a pure braid if π(b) = Id.

Let further b for b∈Bn be the automorphism of Bn given by the mirroring σ±1
i 7→σ∓1

i and rev(b) be

the anti-automorphism given by word-reversal (word written with letters σ±1
i in the opposite order).

Let b be an n-braid with numbered endpoints as in Figure 1. Suppose that b has its strings connected

as follows: 1 to i1, 2 to i2, . . . , n to in, i.e., π(b)(k) = ik. Then we write

π(b) =

(

1 2 . . . n

i1 i2 . . . in

)

.

For example the braid b1 in Figure 1 has the permutation
(

1 2 3 4

2 4 1 3

)

=
(

1 2 4 3
)

, (4)

where (1 2 4 3) is our notation for a cyclic permutation. (Sometimes we will comma-separate ele-

ments for readability.) Let

στ = τ◦σ (5)

be the compositive multiplication of permutations. Thus we can write the permutation of the braid b2

in the figure as π(b2) = (1 3 5)(2 4). (While immaterial for cycle decomposition, this specified order

of multiplication in (5) will be relevant later, and should be paid attention to.) By abuse of notation,

we will often identify a cycle (subpermutation of π(b)) with its elements (subset of {1, . . . ,n}).
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We remark that when the closure of b is a k-component link, the braid permutation of b is a product

of k disjoint cycles. The length |C| of each cycle C is equal to the number of strings of b which make

up a component of b̂.

When we choose a (non-empty) subset C of {1, . . . ,n} whose elements form a subset of the cycles

of π(b), we can define a subbraid b′= b[C] of b by choosing only strings numbered in C. For subbraids

b′ and b′′ of b one can define the (strand) linking number lk(b′,b′′) by the linking number lk(b̂′, b̂′′)
between sublinks of b̂. For example, in b2 of Figure 1, we have lk(b′2,b

′′
2) = 0, where b̂′2 and b̂′′2 are

the two components of b̂2. (The subbraid b′2 = (b2)[{1,3,5}] comprises the strings starting at the top as

number 1,3,5, and b′′2 = (b2)[{2,4}] strings 2,4.)

2.2. Exchange moves, conjugacy of braids, and axis link. Let

∆2
n = (σ1 · . . . ·σn−1)

n

be the (right-handed) full twist on n strands. (The square in the notation refers to the existence of a

well-known square root of this element, the ‘half-twist’, which will not be needed here, though.) The

center of Bn (elements that commute with all Bn) is infinite cyclic and generated by ∆2
n. Let similarly

∆2
[i, j] = (σi · . . . ·σ j−1)

j−i+1

be the restricted full twist on strands i to j. Let also for 1≤ i < j ≤ n,

Bi, j := 〈σi, . . . ,σ j−1 〉 (6)

be the subgroup of Bn of braids operating on strands i . . . , j. Where ambiguity is avoided (as indicated

by diagrams we will draw), we can identify Bi, j ≃ B j−i+1.

We say that b ∈ Bn admits an exchange move, if b is as illustrated in Figure 2, where α ∈ B1,n−1,

β ∈ B2,n, and n≥ 4.

FIGURE 2. The n-braid b.

A (positive/negative) exchange move [6] is the transformation between the braids b = b0 and b±1

shown in Figure 3. When iterated, it can transform b into

bm = α∆2m
[2,n−1]β∆−2m

[2,n−1] . (7)

Here m is some non-zero integer, and the boxes labeled ±m represent the full twists ∆±2m
[2,n−1] respec-

tively, acting on the middle n−2 strands. (Thus a positive number of full twists are understood to be

right full twists, and −m full twists mean m full left-handed twists.)
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FIGURE 3. The braid bm

Of course, no non-trivial braid on 2 strands admits an exchange move, and all exchange moves

on 3 strands are trivial, so that we will naturally assume n ≥ 4 throughout. There is another, more

common, way to describe the exchange move, namely by

αβ ←→ ακmβκ−m , where κ = (σ1 · . . . ·σn−2)(σn−2 · . . . ·σ1) . (8)

This description is equivalent to the previous one, because κ · ∆2
[2,n−1] = ∆2

[1,n−1], and this element

commutes with α.

A further equivalent formulation of the move is

b0 = βσn−1β′σ−1
n−1 ←→ b1 = βσ−1

n−1β′σn−1 , (9)

with β,β′ ∈ B1,n−1, which can be generalized (up to conjugacy) by

bm = ∆2m
[1,n−2]β∆−2m

[1,n−2]σn−1β′σ−1
n−1 . (10)

This form is less convenient for our treatment, so we will not use it below.

Historical note: Birman and Menasco [6] originally used the form (9) of the exchange move. In

this shape, its iterability (10) (or (7)) is not very evident. We do not know to whom exactly to attribute

the insight that the exchange move can be iterated. But for example, Fiedler [8] clearly does make

use of this construction.

The exchange move underlies the switch between conjugacy classes with the same closure link, in

a universal way.

Theorem 2.2 (Birman-Menasco [6]). The n-braid representatives of a given link decompose into a

finite number of classes under the combination of exchange moves and conjugacy.

Let us fix throughout that failure or success of the exchange move are always meant w.r.t. yielding

non-conjugate representatives.

Notice that the form admitting an exchange move (for n≥ 4) is attained by all stabilized braids as

on the right of (3) up to conjugacy, for we can set α = b and β = σ±1
n−1. Thus Theorem 1.1 can be

applied for

n > max(b(L),3) , (11)

unless

π(b)(1) = 1 . (12)
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This special case for non-minimal braid representatives follows (for a few more links L = b̂, with b

on the left of (3) satisfying (12)) from work in [24], which we recall now.

In [24] we addressed the case of stabilized braids, when in Figure 3 we have β = σ±1
n−1, and the±m

full twists can be replaced by any braid γ on strands 1, . . . ,n− 1 and its inverse. Then Theorem 1.2

was proved for all α which are not central in Bn−1≃ B1,n−1 (this obviously being the weakest possible

assumption).

Theorem 2.3 ([24]). Let α ∈ B1,n−1 and α 6= ∆2k
[1,n−1] for any k ∈ Z. Then the set

{γαγ−1σn−1 : γ ∈ B1,n−1 } (13)

contains infinitely many non-conjugate braids.

Remark that n ≥ 4 follows directly from the choice of α. We can conclude that for n with (11),

there are infinitely many non-conjugate n-braid representatives of L, unless n = b(L)+ 1 and L is a

torus link of type (m, lm) for l ∈ Z and m = n−1 = b(L). (This includes, for l = 0, the m-component

unlink L.)

Theorem 2.3 is an application of some Lie group approach showing the density of the image of

braid representatives in unitary groups under the Burau and Lawrence-Krammer representation. This

method has its own disadvantages; among others, it promises no satisfactory adaptation to exchange

moves, i.e., cannot restrict the choice of γ in (13). Also, it cannot yield explicit estimates like (57)

below. Still, we will use Theorem 2.3 to complement Theorem 1.1 by the extra case in Corollary 7.2,

as well as for the treatise of trivial components in §8.

We finish this subsection with introducing one of the main objects we will work with throughout

the paper.

Definition 2.4. The axis (addition) link of a braid b, denoted by Lb, is the oriented link consisting of

the closure of b and an unknotted curve k, the axis of the closed braid, as in Figure 4. (The orientation

of the axis is chosen so that its linking with the braid strands is positive.)

FIGURE 4. The axis-addition link of b

We remark that the axis-addition links of conjugate braids are ambient isotopic. Thus for a proof

of non-conjugacy we will study invariants of the axis link.
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2.3. Conway polynomial and graph evaluations. As an invariant of the axis link we will employ

the Conway polynomial ∇. The Conway polynomial is an oriented link invariant that takes values in

Z[z]. It is given by the value 1 on the unknot and the relation

∇(L+)−∇(L−) = z∇(L0) . (14)

This relation involves three links with diagrams

L+ L− L0

(15)

differing just at one crossing. They are called a skein triple. We write [P]m for the coefficient of zm

in P ∈ Z[z], and more shortly am = [∇]m for the coefficient of zm in the Conway polynomial. It is

well-known that for an n-component link L, all coefficients of ∇ in z-degree m vanish when m < n−1

or m+n is even. We recall also that

∇(L) = ∇(−L) , (16)

where −L is L with orientations on all components reversed.

We denote the linking number of two components of L by lk(·, ·). Now we recall a formula, given

by Hoste [11], which expresses the lowest non-trivial coefficient an−1 of ∇(L) in terms of component

linking numbers.

Theorem 2.5 (see [11]). Let L = L1∪ · · ·∪Lp be a p-component link of components L1, . . . ,Lp. Let

lkm = lk(Lk,Lm). Then the coefficient ap−1 of the Conway polynomial in degree p−1 is

ap−1(L) = ∑
T

∏
(k,m)∈T

lkm . (17)

In this formula, the sum ranges over spanning trees T of the complete graph G on the vertex set

{1, . . . , p}, and (k,m) denotes the edge in G connecting the k-th and m-th vertex.

We will need several evaluations of this expression below, so let us make some preparations.

We will consider G = Gp to be a complete graph on the vertex set {1, . . . , p} and each edge (i, j)
of G between vertices i and j (1 ≤ i < j ≤ p) will be labeled by an integer li j. Let T be a spanning

tree of G. We write then

{T} := ∏
(i, j)∈T

li j , {G} := ∑
T (G)

{T (G)} , (18)

where T (G) will indicate that we understand T as a spanning tree of G.

To save further overhead, let us now also make the following convention. When we draw G, we

will assume each edge (i, j) of G has label li j if a label is not drawn near the edge (i, j), and label

li j + k if a label k is drawn near (i, j).

The following is a simple test for this notation.










12

3

+1 









−











12

3

+1











= l13− l12 (19)
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This is what essentially underlies Lemma 3.2 recalled below (where indices ‘1’ and ‘3’ are inter-

changed).

We will need the extension of (19) to 4 vertices.

Lemma 2.6. Let1

G1 =

12

3 4

+1

G2 =

12

3 4

+1C (20)

Then
{

G1
}

−
{

G2
}

= (l13− l12)(l14 + l24 + l34)+ l14(l34− l24) . (21)

Proof. In applying (18), we first easily see that trees with two edges in the boundary ∂C of face C

with vertices 2,3,4 give canceling contributions, because the labels of all edges in ∂C are equal on

either side, and they complete to a tree by adding exactly one of the edges incident to vertex 1, whose

labels add up to l12 + l13 + l14 +1 on either side.

This leaves 7 of the 16 spanning trees.

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

12

3 4

T1 T2 T3 T4 T5 T6 T7

By direct check, one can find that among the 7 trees Ti, the values of the difference {Ti(G
1)}−

{Ti(G
2)} cancel for i = 1,6. The terms resulting from the other 5 are given in the following table

(where [i j] = li j).

i {Ti(G
1)}−{Ti(G

2)}

2 [14] · [34]
3 ([13]− [12]) · [24]
4 −[14] · [24]
5 ([13]− [12]) · [14]
7 ([13]− [12]) · [34]

This shows (21). �

2.4. Vassiliev invariants. The concept of Vassiliev invariants, perhaps not very obviously, but very

substantially, underlies our strategy of proof, and thus we make some remarks.

Our goal will be to evaluate ak(Lbm
) for bm ∈ Bn with n,k fixed as a function of m. It is very well

known that ak is a Vassiliev invariant of degree (at most) k. (See [3].)

1The letter C on the right of (20) refers to a face in the planar complement of the graph, and will be needed in the proof

shortly.
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In circumstances like ours, links in the family {Lbm
} (as well as similar families we derive from

them) characterize themselves as exhibiting a repeated portion of a pattern, and Vassiliev invariants

show a polynomial behavior. This theme has occurred in many papers; see for example [25]. It can

be formulated as follows.

Lemma 2.7. Let D(x1, . . . ,xn) for xi ∈ Z be link diagrams which differ by insertion of tangles βxi

i

for some pure braids βi. (Thus all D(x1, . . . ,xn) have the same number of components.) Let v be a

Vassiliev invariant of degree at most d. Then

(x1, . . . ,xn) 7→ P(x1, . . . ,xn) = v(D(x1, . . . ,xn))

is a polynomial in x1, . . . ,xn of degree at most d.

Suggestively, the second author calls this point of view on Vassiliev invariants the braiding se-

quence approach. It should be added, that the strands of the braids βi here (unlike how we will

consistently treat them elsewhere) do not need to have a coherent (up/downward) orientation.

Essentially our strategy will be to identify the polynomial function m 7→ P(m) = ak(Lbm
) as non-

constant, which will automatically prove that it takes infinitely many values. (We also see at most

how many times it can take a given value, which we exploit for Proposition 6.1.) It will be enough to

establish that d = degP(m)> 0 by identifying the leading coefficient. Along the way we will have to

argue that certain other contributions are of lower degree.

We will use the standard ‘O’ notation for the behavior as m→ ∞. Then we will be allowed to

dispose of terms which we prove to be O(md−1). Asymptotically they give no contribution to the

leading coefficient [P]d of P. Similarly to §2.3, we will write [P(m)]k = [P(m)]mk for the coefficient

of degree k in a polynomial P.

In many cases, the degree of P is less than the degree of v, and in such a situation, this approach

is often not helpful for estimating degP. In one specific place (proof of Lemma 4.7) we will need to

appeal to a different tool, the Gauß diagram formula for the degree-2 Vassiliev knot invariant (also

known as Casson’s invariant). It is the easiest way to get a polynomial bound (of the desired degree)

there.

We use the Polyak-Viro formula for v2(K) = a2(K) of a knot K, given as [26, (8)],

v2 =
1

2

(

+

)

. (22)

It is obtained by symmetrization (w.r.t. taking the mirror image) from the formula [21, (4)] (see

also the remarks on p. 451 therein). The details of how to read this formula have been explained

in [21], [26], and many other places. Very briefly, one considers a circle S1 parametrizing the knot

and connects preimages of crossings by an arrow from the undercross to the overcross, and labels

the arrow p with the writhe wp =±1 of the crossing. The resulting object is called a Gauß diagram.

Then one chooses a basepoint on the circle (outside of a crossing, and as it turns out, it does not matter

where), and sums the quantity wpwq over pairs (p,q) of arrows that look like in the diagrams of (22).

In the following we will consistently stipulate that when a set of diagrams with dotted lines outside

a circled spot are drawn, we assume the diagrams to be equal outside this spot, and to have strands

connected as displayed by the dotted lines. With this convention, we state a lemma we will need.

(Vertical bars for a set will denote number of elements.)



INFINITELY MANY NON-CONJUGATE BRAIDS 11

Lemma 2.8. Assume we have two knot diagrams differing only at the indicated spot. Assume x

denotes only the part indicated by the dotted line exiting the circles on the right. Then
∣

∣

∣

∣

∣

∣

−a2







+a2









∣

∣

∣

∣

∣

∣

≤
∣

∣{ crossings on x }
∣

∣ ·
∣

∣{ all crossings }
∣

∣ .

(23)

Proof. The important implication of (22) for us is that v2(K) for a knot K can be obtained from any

diagram D of K by counting pairs of crossings of D with weights 0 or ±1/2.

Looking at the left of (23), we see that the difference between the two diagrams is the relocation of

a segment x of the diagram (and Gauß diagram).

It is clear from (22) that this changes v2 at most by the number of pairs of crossings with at least

one crossing (with a crossing point) on x. (The basepoint in the Polyak-Viro formula can be put at a

spot not affected by the move of x.) �

3. THE CASE OF KNOTS

Proof of Theorem 1.1. The ‘only if’ part in Theorem 1.1 immediately follows from Theorem 2.2. The

‘if’ part is a consequence of Theorem 1.2, because under the assumed conditions of L, whatever braid

representative b of L satisfies π(b)(k) 6= k for k = 1,n. �

Proof of Theorem 1.2. We start now the proof of Theorem 1.2, which will extend over several sections

until the end of the paper.

We state one more time clearly the partial case for knots, which we proved in [22]. It is also

necessary to repeat some arguments and figures used in the proof, for later reference and clarification.

Theorem 3.1 ([22]). Let L be a knot and n ≥ 4. Then L has infinitely many conjugacy classes of

n-braid representatives if and only if it has one admitting an exchange move.

In order to exhibit the braids bm in Figure 3 as non-conjugate, we evaluated the second coefficient

of ∇ on the axis addition link Lbm
of bm.

First, we recall a lemma from [22] needed later. A delta move is a local move defined in [18], and

this move is equivalent to the move in Figure 5. We consider the delta move on the left-hand side in

Figure 6, where the dotted arcs show how the strands connect.

FIGURE 5. A delta move

We proved the following lemma using Theorem 2.5, as essentially mentioned in (19). (We remind

that the linking number and i-th coefficient of the Conway polynomial are written lk(·, ·) and ai(·),
respectively.)
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Lemma 3.2 ([22]). Let L, L′ and l = k1∪ k2 ∪ k3 be oriented links related by the local moves as in

Figure 6. Then a3(L)−a3(L
′) = lk(k2,k3)− lk(k3,k1).

FIGURE 6. Three links related by local moves

A full twist of n strings can be deformed as in Figure 7 up to ambient isotopy. (We will henceforth

write ∼ for ambient isotopy.) Then there is a deformation of the axis addition link Lbm
of bm, which

is the leftmost diagram in Figure 8, into the rightmost link in the figure, still denoted by Lbm
. Here k

is the component corresponding to the braid axis and the boxes m and −m represent m-full twists and

−m-full twists respectively. We used this deformation for the proof of Theorem 3.1.

FIGURE 7. A full twist of n-strings

Then there are sequences of links Lbm
= L0,L1,L2, . . . ,Ln−1 = Lbm−1

and l0, l1, l2, . . . , ln−1 such that

Li+1 resp. li are obtained from Li by the delta move ∆i resp. the move ∗i, both illustrated in Figure 9

(i = 0) and 10 (i = 1, . . . ,n−2). In particular, there are n−1 delta moves transforming Lbm
into Lbm−1

:

the first is chosen to undo a full twist in the box of m on the right diagram of Figure 8, and the other

n−2 undo one full winding of the band below that box.

By Lemma 3.2, the change in a3 resulting from ∆0 can be obtained as follows:

a3(L
1)−a3(L

0) = lk(l0
1, l

0
3)− lk(l0

2 , l
0
3) = n−1, (24)

where l0 = l0
1 ∪ l0

2 ∪ l0
3 is the 3-component link illustrated in Figure 9.

Next we considered the change in a3 resulting from ∆i illustrated in the Figure 10 (i = 1,2, . . . ,n−
2). Again, as in (24), lk(li

1, l
i
2) turns out irrelevant. To find the two linking numbers we need, we
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FIGURE 8. Deforming Lbm
by ambient isotopy (‘a.i.’)

FIGURE 9. The moves ∆0 and ∗0

considered SLi (resp. Sli) to be a part of Li (resp. li) as in the left (resp. right) diagram of Figure 11.

Namely SLi and Sli are the unions of n strings and an unknotted component. Some of these (n− 1)
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FIGURE 10. The local moves on Li

strings of Sli belong to li
1 and the other belong to li

2. The numbers of strings determine lk(li
1, l

i
3) and

lk(li
2, l

i
3).

FIGURE 11. Links helping determine the change in a3 from ∆i in Figure 10

Write the braid permutation π(b) = (x1,x2, . . . ,xn), where we fix the cyclic ambiguity of xi by

letting the cycle end on xn = n. Take j = j(i) so that n− i = x j. Then by Lemma 3.2, we found (for

i = 1,2, . . . ,n−2)

a3(L
i+1)−a3(L

i) = lk(li
1, l

i
3)− lk(li

2, l
i
3) = ( j−1)− (n− j) = 2 j−n−1. (25)

From there we succeeded in ultimately evaluating a3(L
n−1)− a3(L

0) = a3(Lbm
)− a3(Lbm−1

) . By

[22, proposition 2.3], it turns out to be non-zero, except in one restricted special case: when

π(b)(n+1)/2(n) = 1 . (26)

In particular, in this case always n is odd.

Then we focused on this special case, and to prove that bm are non-conjugate, we looked at b2
m: if

two braids are conjugate, so are their squares. We showed that a3(Lb2
m
) is a quadratic polynomial in
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m, with non-zero quadratic term. (Note that for n odd when π(bm) is a cycle, so is π(b2
m), and thus

Lb2
m

again has two components.) In particular, there are at most two Lb2
m

whose a3 is equal to some

fixed value, and so at most two of (b2
m and) bm are conjugate. This completed the proof of Theorem

1.1.

4. THE FIRST CASE OF LINKS

We now move to the case of links in Theorem 1.2. A few of the links can be easily dealt with by

a sublink argument. We formulate this argument as a lemma, which will be also crucially needed for

the more complicated general situation.

Let for β ∈ Bn the set B ⊂ {1, . . . ,n} be a union of cycles of π(β). Then the subbraid β′ = β[B] (in

the notation at the end of §2.1) of β obtained by taking only strands (on top or bottom) labeled by

numbers in B gives a closure link β̂′ which is a sublink of β̂. We thus call β′ a sublink braid of β.

Lemma 4.1. Assume B = {β1,β2, . . .} is a set of conjugate braids in Bn, and β′i are sublink braids of

βi. Then B
′ = {β′1,β

′
2, . . .} splits as a finite union

B
′ = B

′
1∪B

′
2∪· · ·∪B

′
s , (27)

such that all braids in B
′
i are conjugate.

This means that if we like to prove that infinitely many braids in B = {β1,β2, . . .} are non-

conjugate, we can transform the problem to any suitably chosen set of sublink braids {β′1,β
′
2, . . .}.

Proof. It is clear that when β and γ are conjugate, for each sublink braid β′ of β there is a sublink

braid γ′ of γ such that β′ and γ′ are conjugate. Now let β′1,1, . . . ,β
′
1,s be the sublink braids of β1. Then

each Bi for a fixed i = 1, . . . ,s can be defined as the set of β′j conjugate to β′1,i. �

With Lemma 4.1 in mind, we split the treatment of links into two major cases, depending on

whether 1 and n belong to the same or to distinct cycles of π(b).

Theorem 4.2. Assume a braid b∈ Bn admits an exchange move, and 1 and n belong to the same cycle

of π(b). Then the link b̂ has infinitely many non-conjugate n-braid representatives.

The following is an analogue of Lemma 3.2.

Lemma 4.3. Let L, L′ and l = l1∪ l2∪ l3∪ l4 be oriented links related by the local change in Figure

12. Then

a4(L)−a4(L
′) = a4





















−a4





















(28)

can be expressed in terms of linking numbers of li in l.
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FIGURE 12. Three links related by local changes

Proof.

a4(L)−a4(L
′) = −a3












+a3







 , (29)

and use Lemma 2.6. �

We note that later we will use Lemma 2.6 to express (28) concretely in terms of linking numbers

of li, rather than using the lemma in its vague general formulation. (The label x in (30) will only be

needed later; see above (36).)

Lemma 4.4. We have

a4







 − a4









= −a2







 + a2







 .

(30)

Proof. We transform the left hand side of (30). By switching the negative crossings on the strands in

the two tangles, we see that the expression is equivalent to

−a3







+a3







 .

By switching one positive crossing in the clasp on either side, we see that this is in turn equivalent

to

−a2







+a2







 .

The claimed equality now follows from resolving the clasps. �

Proof of Theorem 4.2. It is easy to see from the shape in Figure 2 that the cycle C of π(b) containing

1 and n cannot be a transposition. If it has length > 3, then looking at a sublink of Lbm
or Lb2

m
, and

using the argument in the proof of Theorem 1.2 for knots together with Lemma 4.1, we are done.

Therefore, assume that C is of length 3.
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We will choose a subbraid b[C∪C′] of b by taking the strands corresponding to elements in C and one

other cycle C′ of π(b). We can choose this cycle C′ arbitrarily, and forget about the other components

of b̂. It is enough (by Lemma 4.1) to show that the so constructed bm are non-conjugate.

Now we consider again the axis link Lbm
of bm. Again, we can move a permutation of strands

3, . . . ,n−1 between α and β. Thus we assume now

α = σ−1
1 ·α

′ and β = σ2 · . . . ·σn−2σn−1σ−1
n−2 · . . . ·σ

−1
2 · σ3 · . . . ·σn−2 · β′ ,

with α′,β′ pure. In particular,

π(b) =C ·C′ , with C = (1 2 n), C′ = (n−1 n−2 · · · 3) . (31)

The link Lbm
for n = 7 is shown on Figure 13. We must clarify that we made some changes in this

figure as compared to Figure 8 (for visibility). First, we replaced m by −m. Then we also changed

the strand orientation to upward. The latter has the effect of interchanging α and β in Figure 3 and

replacing them by the letter-order-reversed words and σ±1
i by σ±1

n−i. Neither of these changes affects

the following arguments (only on the right of (32) the sign changes).

FIGURE 13. The link Lbm
. The dotted lines indicate spots of insertion of a pure braid.

By pi we designate three specific crossings, to be used in (38).

Now Lbm
can be turned into Lb by undoing m twists in the box, and then undoing the m band turns.

Each undoing of a band turn requires first one move as in (28). This move occurs when the band

passes through strand 3 (counted from the downgoing leftmost strand), because it belongs to the same

link component as the band. When the band passes then through one of the strands 4, . . . ,n, which

belong to a different component, we have n−3 moves as on the left (upper) hand-side of (30).

Our attitude will be now that, to obtain Lb from Lbm
,

1) to undo the m band turns, we first undo in Lbm
the m turns of the band around strand 3 (in

Lemma 4.3), obtaining a link L∗bm
,

2) then we undo the m twists in the box in L∗bm
, obtaining a link L′bm

,
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3) and then care about the m(n−3) moves in Lemma 4.4, which turn L′bm
into Lb.

See Figure 14.

FIGURE 14. The links L∗bm
, L′bm

and Lb.

We claim the following.

Lemma 4.5. We have that a4(Lbm
)−a4(L

∗
bm
) is quadratic in m, and

[a4(Lbm
)−a4(L

∗
bm
)]m2 = (n−3)2 . (32)

Lemma 4.6. The difference a4(L
∗
bm
)−a4(L

′
bm
) is linear in m.

Lemma 4.7. Finally, a4(L
′
bm
)−a4(Lb) is quadratic in m, and

[a4(L
′
bm
)−a4(Lb)]m2 = −2(n−3)2 . (33)

Proof of Lemma 4.5. So, we first undo in L0 = Lbm
the m turns of the band around strand 3 (in Lemma

4.3), obtaining a sequence of links L0,L1, . . . ,Lm = L∗bm
. We consider the k + 1-st of the moves in

Lemma 4.3, for k = 0, . . . ,m−1, which transforms Lk into Lk+1.

One move in Lemma 4.3, as we will show, changes a4 by a quantity a4(L
k+1)− a4(L

k) we can

evaluate. Thus to show (32), we use Lemma 4.3 and look at the two links on the right of (29), using

Figure 15.

The labeling of components in Figure 15 is chosen to conform to (29), in particular l1 is the braid

axis, and l4 = P is the component coming from the length-(n−3) cycle C′ of π(b) in (31).

The linking graphs of the two links on the right of (29) (taken with the signs there) look thus:

0

−(m− k−1)(n−3)+∗

m
−

k
−

1

3

n−3

(m− k−1)(n−3)

l2

l1

l4

l3

−

1

−(m− k−1)(n−3)+∗

m
−

k
−

1

2

n−3

(m− k−1)(n−3)

l2

l1

l4

l3

(34)
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FIGURE 15. A link on the stage between L∗bm
and L′bm

(for m = 4), modified according

to the change to the link l of Figure 12, except that the extra component (part of the

band) hanging on l1 is still depicted (l1 is the braid axis). By k (here k = 2) we designate

the number of changes in (28) already performed.

Here ∗ is a contribution (constant in m) from the linking number of α′ and β′ – both (pure) braids

contribute only to lk(l3, l4). With these signs, we must compare with (28), where now L = Lk and

L′ = Lk+1.

In applying Lemma 2.6 to (34), we have

a4(L
k)−a4(L

k+1) = 2((n−3)+∗)+(n−3)(−2(m− k−1)(n−3)+∗) .

(In the diagrams of (20) vertices 2,3 are interchanged, which cancels with the opposite signs in (34).)

Then

a4(Lbm
)−a4(L

∗
bm
) =

m−1

∑
k=0

−2((n−3)+∗)+(n−3)(2(m− k−1)(n−3)−∗) = m2(n−3)2+O(m).

This shows (32). �

Proof of Lemma 4.6. Now, undoing m twists in the box on Figure 13 contributes a quantity linear in

m, because smoothing out any crossing in the box gives the same link which is independent of m. �

Proof of Lemma 4.7. With Lemmas 4.5 and 4.6 proved, it is enough for Theorem 4.2 to show that

a4(L
′
bm
)−a4(Lb) (35)

is quadratic in m, with a quadratic coefficient which does not cancel (32).
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First, by Lemma 2.7, (35) must be some polynomial expression in m. We will start by showing that

this polynomial is at most quadratical, by proving that it is quadratically bounded.

For this, we study the change of a4 under one application of the move on the left of (30), and use

the expression on the right of that equation. Note that the links on the right are knots, and it involves

values of the Casson invariant a2 = v2.

Note that x is the remainder of the braid axis, like the component li
3 on the right of Figure 11, and

thus the number of crossings on x is 2(n−1), independent of m. Thus by lemma 2.8,

−a2







+a2







 ≤
∣

∣{ crossings on x }
∣

∣ ·
∣

∣{ all crossings }
∣

∣

= O(1) ·O(m) = O(m) (36)

(with ‘O’ depending on n, which is, however, fixed). Very strictly speaking, one must move the

vertical strand close to the clasp, past other vertical strands, in order to look as on the left of (30). But

this can be done at the cost of O(m) (in fact, even O(1)) extra crossings (outside of x), and does not

affect (36).

By iterating this estimate (n− 3)m times, we see that (35) is O(m2), and hence a polynomial at

most quadratic2 in m.

Next, note that, since x does not involve crossings in α′ and β′, the contribution of these crossings

in (36) is bounded in m, and hence contributes to (35) only O(m). This means that the m2-term of

(35),

[a4(L
′
bm
)−a4(Lb)]m2 , (37)

does not depend on α′ and β′, and hence can be evaluated when α′ and β′ are trivial.

Thus it is enough to determine (37) when we think away the dotted lines in Figure 13, and keep in

mind that in L′bm
the box with label ‘m’ is gone and the bands look like Figure 16. That is, they are

‘unhooked’ from both leftmost braid strands (those whose crossings with the axis are labeled p1, p2).

FIGURE 16. A configuration of bands in the proof of Lemma 4.7

Now, in this simple L′bm
, we can evaluate (37) more directly. Ignoring the (m-)constant a4(Lb), we

use the following skein tree resolution for a4(L
′
bm
), at the indicated crossings pi in Figure 13.

2Note that, while (22) readily gives a good degree estimate, it does not clarify easily by itself the polynomial behavior

of (35). Thus the braiding sequence and Gauß diagram formula approach complement each other very usefully here.



INFINITELY MANY NON-CONJUGATE BRAIDS 21

(38)

In applying Hoste’s formula, we notice that in L′bm
(and therewith also in the links of the above

diagram) the only linking numbers depending on m involve the component P coming from the cycle

C′ in (31), which are ±m(n− 3). (Thus the stated m2-terms come from the product of these two

linking numbers.)

Moreover, since the crossings the skein relation is applied at are all positive, the contributions of

these two links to (35) are both positive, showing (33). �

By the preceding three lemmas, the coefficient [a4(Lbm
)−a4(Lb)]m2 = [a4(Lbm

)]m2 is non-zero, as

desired, and thus we conclude the proof of Theorem 4.2. �

5. THE SECOND CASE OF LINKS

The situation when 1 and n belong to distinct cycles of π(b) is the final case needed to complete

the proof of Theorem 1.2.

Theorem 5.1. Let b ∈ Bn admit an exchange move, and let 1 and n belong to distinct non-trivial

cycles of π(b). Then infinitely many of the bm are non-conjugate.

Proof. Let n1 be the length of the cycle of π(b) containing 1, and n2 the length of the cycle containing

n.

By the sublink argument in Lemma 4.1, and by adjusting the permutations of the cycles involving

1 and n, it is enough to consider b in Figure 2, where α,β are given by

α = σ1 · . . . ·σn1−1 ·α
′ and β = σn1+1 · . . . ·σn−1 ·β

′ , (39)

and α′ and β′ are pure braids. In particular,

n1 +n2 = n , (40)

that is, π(b) has only the two relevant cycles.

We will evaluate a4(Lbm
) for fixed α and β as a (polynomial) function in m. (Note that Lbm

is a

3-component link.) Let us from the outset take the attitude that the linear and absolute term in m are

irrelevant.

Throughout the treatment of this final case, we use the description of the exchange move in (8).
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Lemma 5.2. The function m 7→ a4(Lbm
) is an at most cubic polynomial in m. The cubic term does not

depend on α,β. The quadratic term depends on α,β only via linear combinations of linking numbers

of strands in α′,β′.

Proof. It is enough to work with m > 0. Otherwise we can multiply α and β by a proper power of κ.

The argument we give below for m > 0 applied on the modified α and β will give the result for the

original α and β for m > −k, where k can be chosen arbitrarily. Thus the property holds then for all

integers m.

We describe a method for doing a recursive skein calculation of a4(Lbm
), which will be relevant

also after the proof of the lemma. This calculation will be crucial throughout the treatment, and we

will gradually refine it.

We consider a4(Lbm
)−a4(Lbm−1

), where by (8)

bm = ακmβκ−m .

Now we can write

bm = ακm−1(σ1 · . . . ·σn−2σn−1)(σ
−1
n−1σn−2 · . . . ·σ1)β× (41)

×(σ−1
1 · . . . ·σ

−1
n−2σ−1

n−1)(σn−1σ−1
n−2 · . . . ·σ

−1
1 )κ1−m .

Then we have by the skein relation (15)

a4(Lbm
)−a4(Lbm−1

) = −a3(Lm−1,1)+a3(Lm−1,2) , (42)

where Lm−1,i is the axis link of the braid obtained from the word on the right of (41) by omitting the

underlined occurrences of σ−1
n−1 resp. σn−1. Let us write [b] for Lb. Then

Lm,1 = [ακm(σ1 · . . . ·σn−2σn−1)(σn−2 · . . . ·σ1)β× (43)

×(σ−1
1 · . . . ·σ

−1
n−2σ−1

n−1)(σn−1σ−1
n−2 · . . . ·σ

−1
1 )κ−m] .

Lm,2 = [ακm(σ1 · . . . ·σn−2σn−1)(σn−1σn−2 · . . . ·σ1)β× (44)

×(σ−1
1 · . . . ·σ

−1
n−2σ−1

n−1)(σ
−1
n−2 · . . . ·σ

−1
1 )κ−m] .

The complication now is that the links Lm,1 have two components. We need to apply the skein

relation once more before we can use Hoste’s formula.

We will calculate instead of a3(Lm−1,i) the difference

a3(Lm−1,i)−a3(L0,i) . (45)

The extra terms a3(L0,i) contribute only something absolute in m to a4(Lbm
)−a4(Lbm−1

), and hence

only something linear in m to a4(Lbm
), which we decided to ignore.

It is clear that one can determine (45) by evaluating

a3(Lm,i)−a3(Lm−1,i) .

For this we turn around two groups of n−2 crossings, namely those needed to trivialize the last of the

m copies of κ before β in (41) (note that we shifted m−1 to m) and the first of the m copies of κ−1

after β. We obtain
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a3(Lm,i)−a3(Lm−1,i) =
n−1

∑
l=2

a2(Lm,i,l)−a2(Lm,i,l̄) . (46)

The link Lm,i,l is the axis link of the braid obtained from the braid in (43) (for i = 1) or (44) (for i = 2)

by replacing the last copy of κ before β by

σ1 . . .σl−2σl−1σl−2 . . .σ1 , (47)

and Lm,i,l̄ is the axis link of the braid obtained from the braid in (43) resp. (44) by replacing the first

copy of κ−1 after β by the inverse of the braid in (47).

Now Lm,i,l and Lm,i,l̄ have three components, and their a2 can be evaluated by Hoste’s formula. Two

of the linking numbers of the components of Lm,i,l and Lm,i,l̄ are independent of m, and the third one is

linear in m, with the linear term independent of α′, β′. From this the claim of the lemma follows. �

Lemma 5.3. In the function m 7→ a4(Lbm
) of Lemma 5.2, the cubic term vanishes.

Proof. By Lemma 5.2, it is enough to prove this when α′ and β′ are trivial. Under this assumption,

we claim the following:

Lbm
∼ Lb−m

, (48)

up to switching orientation (of all components simultaneously). With (48) the lemma follows, since

the function given there is even (by (16)).

To see (48), note that, assuming α′ is trivial,

α = σ1 . . .σn1−1

can be conjugated to its word-reverse rev(α) (as defined in §2.1) without using σ1 and σn−1, and

similarly β. Then κ commutes with the subgroup generated by σ2, . . . ,σn−2. After α and β were

reversed, flip the braid axis link by π along the horizontal axis in projection plane, conjugate by α
to move it to the top, and reverse all orientations (including of the axis) to have strands pointing

downward. �

We thus now are led to look at [a4(Lbm
)]m2, and our goal is to prove that it does not vanish. The

skein calculation in the proof of Lemma 5.2 would be unwieldy. However, we help ourselves here by

taking also the mirrored braids into account.

Let b̄ be b where all σi and σ−1
i are interchanged. Mirroring is an automorphism of Bn, thus if two

braids are conjugate, so are their mirror images. Here bm = b−m. Consider the function

m 7→ a4(Lbm
)+a4(Lbm

) .

(Note that Lbm
is not the mirror image of Lbm

, as the braid axis retains its orientation.) Both terms on

the right are polynomials of degree at most 2 in m. If we show that their sum has degree 2, then at

least one of the two polynomials is non-zero, and we are done. We will thus complete the proof of

Theorem 5.1, and hence also the one of Theorem 1.2, by the following lemma.

Lemma 5.4. We have

[a4(Lbm
)]m2 +[a4(Lbm

)]m2 = 2(n1−1)(n2−1) . (49)
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Proof. By Lemma 5.2 we have that

[a4(Lbm
)]m2

depends only linearly on the linking numbers of α′ and β′. Now, changing a linking number in α′ for

the representative (39) of α changes this linking number oppositely in the representative of α. We see

again that the expression

[a4(Lbm
)]m2 +[a4(Lbm

)]m2 (50)

does not depend on α and β. We will thus evaluate it when α and β are trivial.

We have by (48) then

Lbm
= Lb−m

= Lbm
. (51)

Now we will follow the skein calculation of the proof of Lemma 5.2, simultaneously for bm and bm.

In order to distinguish the links occurring in the calculations for bm and bm, we will write in the latter

case L..., with the proper subscript, for what would have been L... in the case of bm.

The skein calculation could be summarized by saying that we expressed a4(Lbm
)−a4(Lbm−1

) by a

linear combination of terms

a2(Lm′,i,l) and a2(Lm′,i,l̄) (52)

for i = 1,2; 0 ≤ m′ < m; and 2 ≤ l ≤ n−1, up to absolute terms in m. If we sum this up to express

a4(Lbm
), then we have something linear in m (and ignorable), and then for each of the four families in

(52):

((1)) = Lm′,1,l̄ , ((2)) = Lm′,2,l , ((3)) = Lm′,2,l̄ , ((4)) = Lm′,1,l (53)

(determined by the choice i = 1,2 and between l and l̄), there are

m2

2
+O(m) (54)

terms.

Then each of the terms

a2(Lm′,i,l) and a2(Lm′,i,l̄)

enters into the skein calculation for bm with the same sign as does its analogue in (52) for the calcula-

tion for bm. This is because every time a crossing is smoothed out, the sign changes between bm and

bm, but to get (52) we smoothed out two crossings in bm resp. bm. Combining the signs in (42) and

(46), we see that the signs of families ((1)) and ((2)) in (53) are positive, for families ((3)) and ((4))

negative.

Now, the (two) component linking numbers in Lm′,i,l involving the braid axis component are the

same as for Lm′,i,l, and the remaining (third) linking number is opposite. Thus in Hoste’s formula for

a2(Lm′,i,l)+a2(Lm′,i,l), the contributions of trees containing this third linking number cancel. Likewise

occurs for the index ‘l’ replaced by ‘l’.

By Hoste’s formula, it becomes clear that one half of (50) can be evaluated by doing again the skein

calculation for bm only (abandoning bm), and therein replacing a2(L...) in (52) by

〈π(b...)〉 , (55)

where b... is the braid whose axis link is L..., and 〈σ〉 is the product of the (here always two) cycle

lengths of σ. (These are the linking numbers which remain the same in Lm′,i,l and Lm′,i,l.)
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Now this simplifies the calculation considerably. Note first that 〈π(b...)〉 does not depend on m or

m′ (and that, with (54), this accords well with Lemma 5.3). Thus we can evaluate all four families

in (53) just by looking at their permutations. We have then to divide by 2 following (54) to get the

m2-term. This can be compensated by the factor 2 explained in the application of Hoste’s formula

above (55).

From here there are two ways to get done. A ”philosophical” way is to observe that by the skein

calculation, the expression (50) must be some polynomial in n1 and n2. By using that Lbm
has

O(m(n1 +n2)) crossings, that a4 is a Vassiliev invariant of degree 4, and the extension of the (proof

of the) Lin-Wang conjecture to links in [25], we can conclude that the polynomial is of degree at most

4. (This is not implied by, but is very closely related to, Lemma 2.7.) Moreover, the triviality of the

cases ni = 1 explains the factor (n1−1)(n2−1). The polynomial must also be symmetric in n1 and

n2. From this one can obtain the formula (49) in the lemma by calculating the value of the polynomial

for a few explicit (n1,n2). (In the realm of ascertaining the result, we did a few such computer checks

which, via this argument, would establish (49) alternatively.)

Nevertheless, it is possible to make exact calculation. Now let us write ((1)), . . . ,((4)) in (53) for

the contribution (55) of the link in question to a4(Lbm
) according to (42) and (46).

Resuming the notation for permutations from (4) and (5), let [x,y] be the cycle (y, y−1, . . . ,x). We

have

((1)) = 〈(1,n)[n1+1,n](1, l)[1,n1]〉

=

〈(

l +1 if n≥ n1 +1

l if l ≤ n1
,n

)

(1,n)π(b)

〉

,

((2)) = 〈(1, l)[n1+1,n](1,n)[1,n1]〉

=

〈



1,
l if l ≤ n1

n if l = n1 +1

l−1 if l > n1



(1,n)π(b)

〉

,

((3)) = 〈[n1+1,n](1,n)(1, l)[1,n1]〉

= 〈(l,n)(1,n)π(b)〉 ,

((4)) = 〈(1, l)(1,n)π(b)〉 .

Then for l ≤ n1 we have ((1))= ((3)) and ((2))= ((4)), and in the sum over l > n1 of ((1))−((3))
terms cancel with a shift of 1. Similarly for ((2))− ((4)) .

We have then

∑
l

((1))+((2))− ((3))− ((4))= ((1))l=n−1− ((3))l=n1+1 +((2))l=n1+1− ((4))l=n−1 .

The two permutations with positive sign are equal to π(b), while the other two have a fixpoint (and a

cycle of length n−1), and (with (40) in mind) the result follows. �

With Lemma 5.4, Theorem 5.1 is proved, which implies that infinitely many bm are non-conjugate.

The full statement of Theorem 1.2 is completed in §6 with Proposition 6.1. �
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Remark 5.5. It follows from Theorem 1.2 that if b∈Bn satisfies π(b)(n) 6= n, then the braids ∆2k
[1,n−1]b

∆−2k
[1,n−1] are distinct (though conjugate) for any two different k ∈ Z. (Compare with Theorem 2.3.)

6. THE NUMBER OF CONJUGATE EXCHANGED BRAIDS

To conclude the proof of Theorem 1.2, we show the following quantitative amplification of the

infinite non-conjugacy properties of bm. (We noted that Ito’s method [12] only yields ξ < ∞ for (56).)

Proposition 6.1. Under the assumption of Theorem 1.2, for every fixed conjugacy class E ⊂ Bn, the

number of m with bm ∈ E ,

ξ = |{m ∈ Z : bm ∈ E }| , (56)

satisfies the bound, for a suitable cycle C of π(b),

ξ ≤

{

1 if 1,n ∈C and |C| is even

2 otherwise
. (57)

Also, all bm for m ≥ 0 are pairwise non-conjugate, or all bm for m ≤ 0 are pairwise non-conjugate.

That is, for

ξ+,E = |{m≥ 0 : bm ∈ E }| and ξ−,E = |{m≤ 0 : bm ∈ E }| ,

we have that ξ+,E ≤ 1 for every E , or ξ−,E ≤ 1 for every E .

Proof. For knots b̂m we have (57), because we prove in [22] that some conjugacy invariant η(bm) of

bm behaves as a linear or quadratic function in m (cf. the observation at the end of §3). Such a function

will admit a value at most twice, and also be strictly monotonous for all m≥ 0, or for all m≤ 0.

For the cases we used b2
m for knots in [22], recall that n is odd (compare below (25)) and observe

that η(b2
m) can of course also be regarded as a conjugacy invariant of bm.

Now consider links b̂m, and we will adapt the argument for knots. We return to the proofs of

theorems 4.2 and 5.1.

Consider first theorem 5.1, covering the case that 1 ∈C and n ∈C′ for two distinct cycles C 6= C′

of π(b). We consider the conjugacy invariant η of b ∈ Bn given by

η(b) := ∑
C1,C2

a4(Lb[C1∪C2]
) , (58)

where the sum runs over unordered pairs of distinct cycles C1,2 of π(b).

Now observe that when {1,n} 6⊂C1 ∪C2, then the exchange move trivializes to a conjugacy, and

b[C1∪C2] and (bm)[C1∪C2] are conjugate for all m, and similarly are (bm)[C1∪C2].

Thus the contribution of all (C1,C2) to η(bm) will be constant in m, except for the one pair with

1 ∈ C1 and n ∈ C2, i.e., (C1,C2) = (C,C′). What happens for this pair was the subject of the proof

of theorem 5.1. It follows that at least one of the two leading coefficients [η(bm)]m2 and [η(bm)]m2 is

non-zero.

Now consider theorem 4.2. Let C be the cycle of π(b) with 1,n ∈C. We argued against |C|= 2, so

|C| ≥ 3. If |C|> 3, we can use the proof of theorem 3.1 (as summarized in §3). Consider

η1(b) := ∑
C1

a3(Lb[C1]
) ,
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which is linear in m, and unless it is constant in m, will show ξ≤ 1. When |C| is even (and a forteriori

|C| ≥ 4), we can deduce from the knot case above that η1(bm) is non-constant. (We could have stated

in (57) and used the more restrictive, but more technical, condition (26) instead.) If η1(bm) is constant

in m, then evaluate on bm the conjugacy invariant

η
[2]
1 (b) := η1(b

2) = ∑
C1

a3(L(b2)[C1]
) ,

for the sum running over cycles C1 of π(b2) = π(b)2. Since |C| is odd, π(b2) = π(b2
m) have again

1,n ∈ C in the same cycle C. Then, because of the centrality of the full twist, for any fixed cycle

C′ 6=C of π(b2
m), the braids (b2

m)[C′] are in fact equal for all m. It should be clear how to complete the

argument.

Finally, let |C|= 3 (with 1,n ∈C). Then we use η from (58). The contribution of (C1,C2) to η(bm)
is constant in m unless w.l.o.g. C = C1. Thus assume C = C1. Now combine Lemmas 4.5, 4.6 and

4.7, with the attention to the meaning of ‘n’ therein being here |C1∪C2|= |C|+ |C2|= 3+ |C2|. This

shows that the leading coefficient

[η(bm)]m2 =− ∑
C2 6=C

|C2|
2 6= 0 ,

as desired.

Because of the (at most) quadratic behavior of the η-s in m, all conjugate pairs (bm,bm′) (for

m 6= m′, if such exist) must have the same m+m′. In particular, {bm : m≥ 0} are pairwise (distinct

and) non-conjugate, and conjugate pairs in {bm : m < 0} can only be finitely many, or the other way

around. �

Remark 6.2. The condition of equal m+m′ (called ‘subsymmetry’ in [28] and considered there in

detail) appears a priori to be somewhat artificial, transpiring from our method of proof. But in fact

this turns out not to be the case at all. Several examples show that the symmetry indeed occurs, i.e.,

there exist b and µ ∈ Z such that bm and bm′ are conjugate whenever m+m′ = µ. Specifically, for odd

µ there is a natural construction for all n≥ 4. This is discussed in [27].

7. OTHER BRAIDS

The braids b with (12) in Theorem 1.2 are more difficult, and connected to several instances of

failure of the exchange move.

Note that the exchange move in Figure 3 is trivial when the leftmost strand of α (or the rightmost

strand of β) are isolated, i.e.,

α ∈ B2,n−1

(for B2,n−1 from (6)). This immediately explains the conditions (1) on π(b) that Theorem 1.2 requires

(and the remark at the end of the introduction). We observed this failure to extend to braids b with

α ∈ 〈κ〉 ·B2,n−1, (59)

for κ in (8), since this element commutes with B2,n−1. (Angle brackets, as in (2) and (6), and unlike

(55), should mean ‘generated by’.)
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We did not know if under exclusion of these cases (and the analogous conditions on β), the move

can always yield infinitely many conjugacy classes. We understand now that this is true, but the

argument is discussed in the second author’s separate account [27].

However, we were aware of constructions like Stanford’s [23] that allow one to ‘approximate’

these cases of failure by others which cannot be distinguished by any number of Vassiliev invariants

(including coefficients of ∇). With this insight in advance, one must at least be careful about what

conditions would allow some similar approach to distinguish the result of exchange moves applied

on braids with (12). There is, though, a self-contained condition satisfied by all braids obtained from

Stanford’s construction applied on (59):

strand 1 in α must have equal linking number with all strands 2, . . . ,n−1. (60)

It is tempting to expect that under exclusion of this situation, and its analogue for β, one can always

use the Conway polynomial to distinguish Lbm
. Our work in [28] implies that this is the case under

excluding a situation only slightly more general than (60), when one allows for cables of the braid

axis.

At least in one case with (12) an exact calculation is feasible.

Proposition 7.1. Let b ∈ Bn with (12) admit an exchange move and π(b) = (n x1 · · · xn−2) with

2 ≤ xi ≤ n− 1. Assume further w.l.o.g. that α is a pure braid, and let lk j be the linking number

between strands 1 and j in α for j = 2, . . . ,n−1. Then a4(Lbm
) is a linear progression in m, and it is

non-trivial if and only if
n−2

∑
i=1

(2xi−n−1) lkxi
6= 0 . (61)

Proof. Again by rearrangement, we can put w.l.o.g.

π(b) = (n n−1 n−2 · · · 2), i.e., x j = n− j. (62)

Then we will calculate that, up to sign (which, of course, does not depend on m),

a4(Lbm
)−a4(Lbm−1

) =
n−1

∑
j=2

lk j · (2 j−n−1) . (63)

This result is a (somewhat tedious) modification of the evaluation of a4(Lbm
)−a4(Lbm−1

)= a3(L
n−1)−

a3(L
0) summarized in §3. We give only a few details.

The pictures in §3 remain valid, except that the connectivity of strands within α and β is different.

We have an extra component, so instead of Lemma 3.2, we need to apply Lemma 2.6.

With lk j defined above, for j = 2, . . . ,n−1, let

lk0 =
n−1

∑
j=2

lk j (64)

be the total linking number of strand 1 in α.

The change in a4 resulting from ∆0 becomes instead of (24)

a4(L
1)−a4(L

0) = (n−2)(1+ lk0)+ lk0,
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and (25) modifies for the change from ∆i to become (with i = j−1 now)

a4(L
i+1)−a4(L

i) = (2 j−n−2)(1+ lk0)+ lk2 + . . .+ lk j−1− lk j− . . .− lkn−1 .

Then, using (64) and ∑n−1
j=2(2 j−n−1) = 0, we have

a4(L
n−1)−a4(L

0) = (n−2)(1+ lk0)+ lk0 +

+
n−1

∑
j=2

(2 j−n−2)(1+ lk0)+
n−1

∑
j=2

(n−2 j)lk j

=
n−1

∑
j=2

(2 j−n−1)(1+ lk0)+
n−1

∑
j=2

(n−2 j+1)lk j

= −
n−1

∑
j=2

(2 j−n−1)lk j ,

agreeing with (63). �

Combining with Theorem 2.3 allows us to complement Theorem 1.1 by one more self-contained

case.

Corollary 7.2. The assertion of Theorem 1.1 holds for two-component links L with even braid index

and odd linking number.

Proof. We mentioned in the introduction that [7] deals with n≤ 3 (both sides of the equivalence are

false), thus let n≥ 4. When n > b(L), we can use Theorem 2.3, as explained. Choose β = σ±1
n−1, and

the statement follows (with both sides of the equivalence true), unless α is central. But central braids

are pure, and then the link L = b̂ would have n−1≥ 3 components.

Thus assume n = b(L)≥ 4, and n is even. By using Theorem 2.2 (as in the proof of Theorem 1.1),

again we remain to show that the exchange move gives infinitely many non-conjugate bm. If (12) fails

(and similarly for strand n), we can use Theorem 1.2. Now, if (12) holds, for two component links

L = b̂, we can use Proposition 7.1. Note that the expression on the left of (61) is for even n congruent

modulo 2 to lk0 in (64), which becomes the linking number of (the two components of) L. �

One should observe that the expression on the left of (61) vanishes if all lk j are equal, which was

explained below (59) (and was used to test our calculation). The second author can address equality

of all lk j with a new (but related) method using the Burau matrix. It extends (61) in the form that,

under (w.l.o.g.) (62), all bm are pairwise non-conjugate unless the linking vector (lk2, . . . , lkn−1) is

palindromic. This palindromicity underlies the following cautionary example illustrating the difficul-

ties to continue with ∇. Probably some completely different (calculable) conjugacy invariant (or some

method like Ito’s mentioned in the introduction) may be needed to detect the success of the exchange

move in some instances.

Example 7.3. Let n = 6. We conform here to bm shown in Figure 3 with β = σ2σ3σ4σ5 and α =
σ1σ2σ3σ2

4σ−1
3 σ−1

2 σ1 (with linking vector (1,0,0,1)). Then as we checked (with the program [10]),

b = b0 is conjugate to b−1, but not to b−2. Nevertheless, since any link invariant, incl. ∇, coincides on

Lbm
for m = 0,−1, the arguments for Proposition 7.1 easily imply that m 7→ ak(Lbm

) will be constant
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in m when k = 2,4. (We computationally checked the coincidence for m = 0,−2.) Also one can

calculate that ak(Lb2) = ak(Lb2
−2
) for k = 2,4, which suffices to conclude that m 7→ ak(Lb2

m
) is constant

as well. (For the meaning in using squares, see the remark at the end of §3 and note that here Lbl
m

is a

3-component link whenever l is not divisible by 5.) Moreover, the lowest two terms Pk = [P]zk of the

skein polynomial P, in z-degrees k =−2,0, give Pk(Lb) = Pk(Lb−2
). (We have that Pk is a refinement

of ak, and for a p-component link, generally Pk 6= 0 already when k ≥ 1− p.) One manifestation of

the non-conjugacy is in P0(Lb2) 6= P0(Lb2
−2
). (The coincidence of P−2 will always occur for reasons

similar to those for a2.) Standard Vassiliev invariant arguments (outlined in §2.4, and applied for

Proposition 6.1) then show that except for finitely many m, at most two bm can be mutually conjugate.

8. LINKS WITH TRIVIAL COMPONENTS

We formulate an effectively verifiable condition for links with trivial (that is, unknotted) compo-

nents to which we can apply our methods. When U is a trivial component of L, write LU,k for a link

obtained by taking in L a k-cable of U with pattern any k-braid. (The k-braid is regarded as lying

in a solid torus given by the complement of its braid axis; see, e.g., [30] for more details on this

kind of construction.) In particular, any framing is allowed, and the cable of the component need

not be connected (i.e., LU,k may have more components than L). The following can be regarded as a

generalization of Theorem 1.1.

Proposition 8.1. Let L be a link with the following property: whenever U is a trivial component, then

there is a k > 1 and a link L′ = LU,k such that b(L′) ≥ b(L)+ k. Then the assertion of Theorem 1.1

holds for L.

Proof. If n > b(L), Theorem 2.3 will apply, unless L is a torus link of the type (m, lm). But such

links do not have the assumed property. This can be seen because a minimal (m-)string representative

exhibits all components as closures of 1-string subbraids.

Thus take now n = b(L). The assumed property of L is precisely a way to exclude that any n-braid

representative has a (trivial) component as a closure of a 1-string subbraid. (Otherwise, we readily

have a b(L)+ k−1-string representative of L′.) Thus we can apply Theorem 1.2. �

Example 8.2. Take any minimal (e.g., alternating [19]) braid representative β of a link L∗= β̂=K∪U

with two components, one knotted K, and one unknoted U , such that U is the closure of a subbraid

of at least 2 strings of β. For example, β = σ3
1(σ3σ−1

2 )3σ3 ∈ B4. Let L = L∗K,k be obtained from L∗ by

a fully disconnected k-cable (k > 1) along the knotted component (so that L has k+1 components).

Then any fully disconnected k-cable L′= LU,k (of 2k components) of L along its unknotted component

makes L satisfy the premise of Proposition 8.1. This is very easy to see by a sublink argument related

to the multiplicativity of the braid index b(L′) = kb(L∗) under fully disconnected cabling (of every

component of L∗).

This construction was chosen for illustration here by virtue of providing (like almost throughout

this paper) for a computer-independent reasoning. (One can readily replace K by multiple knotted

components in L∗, etc.) With electronic help (properly estimating b(L′) using the Morton-Franks-

Williams inequality, for example) one could certainly add many more instances. It is presumable that

this condition will be generically satisfied by sufficiently complicated links L (with trivial compo-

nents), even although it fails in many simple cases.
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9. COMPOSITE LINKS

As a consequence of Theorem 4.2, we obtain the following result in [24].

Corollary 9.1. Let L be a composite link of braid index b(L) ≥ 4, which factors as L1#L2 in such

a way, that either components K1,2 of L1,2 the connected sum is performed at are not unknots that

appear as 1-string subbraids in every minimal braid representative of Li. Then L has infinitely many

non-conjugate minimal braid representatives.

E.g., knotted Ki, or Ki satisfying the condition on U in Proposition 8.1 will do. In particular, the

corollary always applies for a composite knot L.

Proof. By the 1-subadditivity of the braid index under connected sum proved by Birman and Menasco

[5], L has a composite minimal braid representative b, of the sort illustrated in Figure 17 (where

b̂i =Li). Such a representative admits an exchange move if it has n= b(L)≥ 4 strands. By assumption,

the component of the common strand of b1 and b2 can be chosen to have at least one other strand in

either of these. By conjugation of bi it can be made to be strand 1 and n (in b), so that the cycle

condition of Theorem 4.2 also holds. �

FIGURE 17. A composite braid

10. PROBLEMS

Apart from the difficulties discussed in §7, we conclude with two more remaining problems.

Problem 10.1. Theorem 1.2 suggests to seek braids admitting exchange moves, but the identification

what links have such (minimal) braids is still difficult.

A partial study for alternating links is being worked out in [29].

Problem 10.2. We do not say anything about Markov irreducible b ∈ Bn with n > b(L), i.e., such not

conjugate to stabilizations bσ±1
n−1 for b ∈ Bn−1.

Only few constructions of Markov irreducible braids are known. Morton and Fiedler [16, 8] gave

examples for n = 4 and K = b̂ being the unknot. In [14], some conditions using Dehornoy’s ordering

were given on a braid not to be a stabilization, or admit exchange moves, etc. It should be noted,

though, that this ordering is not conjugacy invariant, so the conditions are not effectively testable on

an entire conjugacy class. In any event, these methods require further background, and thus, also for

length reasons, we may investigate their merits at a separate place.
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The general problem to describe the conjugacy classes for a given link exactly, even when n =
4, remains a problem with no reachable (and likely no meaningful) solution. Even for n = 3, a

simplification of (or alternative to) Birman and Menasco’s substantial work has not been found for

decades (except in special cases).
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