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1 Introduction

How does a diagramD of a knot (or link)L look, which has the following property: all diagramsD′ obtained by
changing exactly one crossing inD represent the same knot (or link)L′ (which we allow to be different fromL)?
For example, whenD is the alternating diagram ofL = (2,n)-torus knot/link, then allD′ depictL′ = (2,n−2)-torus
knot/link. K. Taniyama called such diagramseverywhere equivalent(see Definitions 1 and 2 in§3) and was likely
the first to ask (in oral communication) how to describe them.

Taniyama’s problem motivated us to make in [St2] a study of this property. We conjectured a general description of
everywhere equivalent diagrams for a knot, and proved some cases of low genus diagrams. We also proposed some
graph-theoretic constructions of everywhere equivalent diagrams for links.

In this note we show how some well-known (and powerful) results about alternating links can quickly lead to the
solution for diagrams of two components (agreeing with the cases predicted in [St2]).

Theorem 1 A diagramD is an orientedly everywhere equivalent non-split 2-component link diagram if and only
if it is among the following families:

1. the pretzel link diagramsP(q, p) = (p, . . . , p) with q copies ofp, for p,q> 0, p odd andq even, or

2. the arborescent link diagramsP(q, p,3) = (P(p,3), . . . ,P(p,3)) with q copies ofP(p,3), for p> 1 odd and
q> 2 even.

See (13) for typical examples of either families (drawn unoriented, but any orientation will apply).

Theorem 1 gives a sharp contrast to the rather complicated ‘neighboring’ cases. From [SA] and [St2], the classifi-
cation of everywhere equivalent diagrams of knots was knownto be rather difficult in general. For three (or more)
components, major difficulties are suggested already from the classification in another special case, this of closed
3-braids, which is worked out in a parallel paper [St3].
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2 2 Link diagrams and link polynomials

2 Link diagrams and link polynomials

All link diagrams are considered oriented, even if orientation is sometimes ignored. We also assume here that we
actually regard a link diagram to live inS2, that is, we consider as equivalent diagrams in the plane which differ by
the choice of the point at infinity.

TheJones polynomial V∈ Z[t±1/2] is an oriented link invariant which can be specified by theskein relation

t−1V
( )

− tV
( )

= (t1/2− t−1/2)V
( )

, (1)

and the normalization to take the valueV(©) = 1 on the unknot. In each triple as in (1) the link diagrams are
understood to be identical except at the designated spot. The fragments are said to depict apositive crossing,
negative crossing, andsmoothed outcrossing. The(skein) smoothingis the replacement of a crossing by the third
fragment. A well-known consequence of (1) (and our normalization) is thatV ∈ Z[t±1] (i.e., only integral powers
occur) for odd number of link components (in particular, forknots), whileV ∈ t1/2 ·Z[t±1] (i.e., only half-integral
powers occur) for even number of components.

Write c(D) for the crossing numberof a link diagramD. The writhe w(D) of D is the sum of the signs of all
crossings ofD. If all crossings ofD are positive, thenD is called apositive diagram.

TheConway polynomial∇ = ∇L(z) of oriented linksL satisfies∇(©) = 1 and the skein relation

∇
( )

− ∇
( )

= z∇
( )

. (2)

For a Laurent polynomialP ∈ Z[x,x−1], let [P]k be the coefficient ofxk in P. The minimal or maximal degree
mindegP or maxdegP is the minimal resp. maximal exponentk ∈ Z of x with non-zero coefficient[P]k. Let
spanxP= maxdegP−mindegP.

Let for a link L and a diagramD of L the numbern(L) = n(D) be thenumber of componentsof L or D. Then it is
well known that

mindeg∇(L)≥ n(L)−1. (3)

For knotsK, i.e.,n(K) = 1, this inequality is exact, and

[∇(K)]0 = 1. (4)

For links, it is possible to express[∇(L)]n(L)−1 using component linking numbers, using a formula of Hoste-
Hosokawa [Ht, Hs].

In a link diagramD a crossing is aself-crossing, if both crossing strands belong to the same component. Otherwise
we call the crossingmixed. The linking numberlk (Li ,L j) of two componentsLi ,L j of a link L is half of the sum
of the signs of all crossings between these components. Let the linking graphΛ(L) of L haveLi as vertices and an
edge betweenLi andL j iff lk (Li ,L j ) 6= 0. The Hoste-Hosokawa formula states

[∇(L)]n(L)−1 = ∑
Γ

∏
(Li ,L j )∈Γ

lk (Li ,L j) , (5)

where the sum goes over spanning treesΓ of Λ(L).

Lemma 1 If L is a link with a connected diagramD where all mixed crossings are of the same sign, then mindeg∇(L)=
n(L)−1.

Proof. Note that with (4), the case thatL is a knot fits well into the statement, so we can assumeL hasn(L) ≥ 2
components we denote byLi . It is clear that all lk(Li ,L j ) 6= 0 have the same sign. Thus in (5) all products in the
sum come with the same sign. The connectedness ofD implies thatΛ(L) is connected, and has a spanning tree.
Thus at least one summand occurs. ✷

We will also need to recall the alternative description of the Jones polynomialV via Kauffman’s state model [Kf].
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The diagrams in (6) below show A- and B-corners of a crossing,and its bothsplittings. The corner A (respec-
tively B) is the one passed by the overcrossing strand when rotated counterclockwise (resp. clockwise) towards the
undercrossing strand. Atype A (resp. B) splittingis obtained by connecting the A (resp. B) corners of the crossing.

AA
B

B
AA

B

B

(6)

A state Sof a link diagramD is a choice of splittings of typeA or B for any single crossing ofD, i.e., it can be
formally seen as a mapS : {crossings ofD} → {A,B}. When for a stateSall splittings are performed, we obtain
a collection of (disjoint)loopsof S in the plane.

TheKauffman bracket〈D〉 [Kf] of a link diagramD is a Laurent polynomial in a variableA, satisfying thebracket
relations

〈 〉

= A−1
〈 〉

+ A
〈 〉

,
〈

∪ X
〉

= (−A2−A−2) 〈X〉 . (7)

By applying the first relation to each crossing ofD, and then evaluating the bracket on a collection of loops using
the second relation, we can express〈D〉 as a sum over all statesSof D:

〈D〉 = ∑
S

A#A(S)−#B(S) (−A2−A−2)|S|−1
. (8)

Here #A(S) and #B(S) denote the number of type A (respectively, type B) splittings and|S| the number of loops of
S. (Our normalization is thus that the diagram of one circle with no crossings has unit bracket.)

The Jones polynomial of a linkL can be determined from the Kauffman bracket of some diagramD of L by

VL(t) =
(

−t−3/4
)−w(D)

〈D〉
∣

∣

∣

A=t−1/4

, (9)

with w(D) being the writhe ofD. This is another way, different from (1), to determine the Jones polynomial.

3 Everywhere equivalence properties for 2-component links

We stipulate that in generalD will be used for a link diagram andD′ for a diagram obtained fromD by exactly one
crossing change. If we want to indicate that we switch a crossing numbered asi, we also writeD′i .

Definition 1 We call a link diagramD everywhere equivalentif all diagramsD′i depict the same link for alli. (This
link may be different from the one represented byD.)

Between the rather complicated cases of knots and 3-component links, for two components it turns out that some
tangible properties can be given even for arbitrary diagrams. In order to leave the subtleties for knots to their own
merit, we will assume below that all link diagrams are non-split, i.e., there is no closed curve disjoint from the
diagram which contains parts of it in both interior and exterior.

Component orientation issues must be taken seriously for general link diagrams (unlike the special cases treated in
[St3]), and thus it is helpful in the sequel to make a clear distinction.

Definition 2 We call a link diagramD orientedly everywhere equivalentif all D′i depict links isotopic with orien-
tation, up to simultaneously reversing orientation of all components. LetD beunorientedly everywhere equivalent
if all D′i depict links isotopic as unoriented links. (Again, in either case we do not prescribe how isotopies should
map between specific components; see Remark 1 below.)

We will almost exclusively consider oriented everywhere equivalence, and we will often omit the word ‘oriented’
in the sequel. We start by observing the following necessarycondition:
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Lemma 2 Let D be an orientedly everywhere equivalent non-split link diagram. ThenD is a knot diagram, or all
components ofD appear as unknotted circles (i.e.,D has no self-crossings).

Proof. Since the Jones polynomial of allD′ must be equal, by the skein relation (1), so must be the Jones polyno-
mials of the crossing-smoothed versions ofD, when crossings of the same sign are smoothed out. The numberof
components of these diagrams is captured by the Jones polynomial (its valueV(1); see e.g. [J,§12]), and on the
other hand it is determined by whether the two components meeting at a crossing are the same or different. Both
cases can thus not occur simultaneously.

Thus one cannot have a mixed and a self-crossing of the same sign simultaneously. There must obviously be mixed
crossings (whenD is connected and not a knot diagram). Thus if self-crossingsexist inD, then they are all positive,
and all mixed crossings are negative (or vice versa; up to mirror image).

Let D− be obtained fromD by smoothing a (negative) mixed crossing, andD+ be obtained fromD by smoothing a
(positive) self-crossing. The everywhere equivalence property ofD and the skein relation (2) give

∇(D−) =−∇(D+) . (10)

Now n(D+) = n(D)+1, and thus from (3)

mindeg∇(D+)≥ n(D) . (11)

On the other hand,n(D−) = n(D)−1, and all mixed crossings ofD′ are also mixed crossings ofD, and hence have
the same (here, negative) sign. Thus by Lemma 1,

mindeg∇(D−) = n(D−)−1 = n(D)−2.

With (11), this contradicts (10). ✷

From now on we will focus on two components. We call a 2-component link diagram with no self-crossings a
meander diagram. Lemma 2 then means that orientedly everywhere equivalent diagrams are meander diagrams.
A typical alternatingexample, together with its checkerboard coloring (to be clarified and used later), is shown
below:

(12)

We call an oriented diagramspecialif it becomes alternating when all crossings are switched tobe positive. (An-
other way of saying it is that there are no separating Seifertcircles;cf. [Cr, p.536].)

Lemma 3 Meander diagrams (with any orientation) are special.

Proof. We switch crossings in a meander diagramD so that they are positive, and we show thatD is alternating.
AssumeD is not alternating.

Thus one component has two consecutive (say) crossing underpasses. Because of positivity, both overpass strands
are oriented in the same direction. They belong to the same component, and thus they must connect in one of the
two ways shown below.
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But in either case, the end marked with a bead cannot be extended to a closed component without creating self-
intersections (or an intersection with the other componentbetween the two indicated crossings). ✷

Lemma 4 Meander diagrams have a bigon region.

Proof. Assume the first component (circle) is drawn, and draw successively the second component. The second
crossing (with the first component) will create a bigon region. To spoil this region, one must enter it, then creating
a smaller bigon region. Obviously, the nesting cannot go on infinitely. ✷

P # Q = P Q

Figure 1: Diagram connected sum

Figure 1 displays theconnected sum D= P#Q of the diagramsP andQ. If a diagramD can be represented as the
connected sum of diagramsP andQ, such that bothP andQ have at least one crossing, thenD is calledcomposite,
otherwise it is calledprime. A knot of link L is prime if wheneverD = P#Q is a composite diagram ofL, one ofP
andQ represent an unknotted arc.

Lemma 5 Meander diagrams are prime.

Proof. If a meander diagramD is composite, one ofP, Q on the right of Figure 1 must contain just one component,
and at the absence of self-crossings, be an unknotted arc. ✷

Lemma 6 Let D be an oriented 2-component link diagram. IfD is orientedly everywhere equivalent, it is positive
(up to mirror image).

Proof. If D is orientedly everywhere equivalent, then allD′i must have the same writhew(D′i), since (at the absence
of self-crossings)w(D′i)/2 is the linking number of the components ofD′i . And w(D)−w(D′i) is twice the sign of
crossingi. ✷

4 Proof of main result

We can turn now to our main result Theorem 1. The first family the theorem includes, forp= 1, the(2,q)-torus
links as a special case. Forp= 1, the second family reduces to the(2,3q)-torus links, and forq= 2 to P(2p,3),
which is why we excluded these values there. We show below thefirst disambiguating instance for the second
family, for q= 4 andp= 5, even although it already has 60 crossings.

P(6,5) P(4,5,3)

(13)
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Proof of Theorem 1. This proof crucially exploits (and owes its brevity to) the consequence of Lemmas 3 and 6
that if an oriented 2-component link diagramD is orientedly everywhere equivalent, thenD is alternating. This
allows us to put out the heavy arsenal of [Kf] and [MT], which helps us comfortably win the battle over countless
possibilities.

To clean up the argument, it is better to use induction on the crossing number. We thus check first diagramsD of,
say, up to 4 crossings. For the induction step, we then fix an everywhere equivalent diagramD, and assume that all
everywhere equivalent diagrams of smaller crossing numberconform to the patterns in Theorem 1.

The alternation ofD means that each region ofD contains onlyA-corners or onlyB-corners of crossings as in figure
(6). There is a black-white coloring of the regions ofD, thecheckerboard coloring, which assigns different colors
to each pair of regions opposite at some edge ofD. (See (12), or also, e.g., [Th, Fig. 5], or [St, Kf].) Let us fixhere
the colors so that theA-corners of crossings lie in white regions and theB-corners in black regions.

D D′i DA
i DB

i

(14)

A crossing isnugatoryif it has the same region at its bothA- or its bothB-corners. We call a diagramreducedif it
has no nugatory crossings. It is easy to see that nugatory crossings are always self-crossings, thus in particular,D
is reduced.

Now, for whatever crossingi one switches inD, the diagramsD′i have the same writhe (by Lemma 6) and represent
isotopic links. It follows from (9) that their brackets〈D′i〉 are equal. It will turn out sufficient to just study those
brackets, and since they are unoriented invariants, it is legitimate to suppress component orientation in our further
treatment.

Now, superposing the first bracket relation in (7) and its mirrored version (withA±1 interchanged) with (14), we
see that〈D〉 and〈D′i〉 determine

〈

DA
i

〉

and
〈

DB
i

〉

. Therefore,
〈

DA
i

〉

are the same for alli, and also similarly
〈

DB
i

〉

.
It will be enough to look at theA-span of these polynomials. (That is, for our conclusion that D lies in the families
described in Theorem 1, we will only use that theA-spans of these polynomials are equal.)

We call two crossingsA (resp. B)-equivalentif they have the same pair of white (resp. black) regions. Let#A(i) be
the number of crossingsA-equivalent to crossingi in D (itself included), and similarly define #B(i).

Let for some crossingi both #A(i) and #B(i) be greater than 1. Thus, first, there is a crossingj 6= i which is A-
equivalent toi. This means that their two white regions coincide, and thereis a closed curveγ intersectingD only
in i, j, and passing through two white regions ofD otherwise. Similarly, there is a closed curveγ′ intersectingD
only in i, some crossingj ′ 6= i, and passing through two black regions. Both curves can intersect only at crossings
of D, since they pass regions of different color. They intersectat i, and since they must intersect again, but meet
only one other crossing ofD, they must intersect at the same other crossingj = j ′. If some of the four regions of
S2\ (γ∪ γ′) contains crossings ofD, thenD is composite, which cannot occur for meander diagrams by Lemma 5.
ThusD has only the crossingsi and j, and is the 2-crossing Hopf link diagramP(2,1), which was dealt with.

We assume thus now that a crossing does not simultaneously have bothA- andB-equivalent other crossings inD.
Then setting crossingsp andq to be(twist) equivalentif they areA- or B-equivalent defines also an equivalence
relation. Let us for brevity call aclass(respectivelyA-class, respectivelyB-class) an equivalence class under twist
equivalence (resp.A-equivalence, resp.B-equivalence).

We will need another different description of this relation. A flypeis a move on a diagram shown in (15).

p
PQ ←→

p
P

Q (15)

There is a natural correspondence between the crossings of two diagrams related by a flype:p moves position, and
the crossings in tanglesP andQ on either side of (15) correspond bijectively.
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Assume two crossingsp, q are, say,A-equivalent. Thus there is a closed curveγ intersectingD only in p, q, and
passing through two white regions ofD otherwise. Then the interior ofD contains a tangle, on which a flype can
be applied. After this flype the interior ofγ contains no crossings, and a black bigon region with cornersp and
q. Similarly one can argue forB-equivalent crossings. This shows that two crossings are twist equivalent (resp.
A- resp.B-equivalent), if and only if there is a sequence of flypes making them form a bigon region (resp. black
resp. white bigon region). We say that an equivalence class of n crossings ofD is reduced, if its crossings form (at
least)n−1 bigons. Up to flypes we can achieve that every class is reduced, in which case we call the diagramtwist
reduced.

One important feature of flypes is that they commute with crossing changes, and that thus (both oriented and
unoriented) everywhere equivalence is invariant under flypes.

Now, returning toDA
i andDB

i , we observe that they are alternating. The diagramDA
i hasc(DA

i ) = c(D)−1 crossings,
but some are nugatory. These nugatory crossings are precisely the crossingsA-equivalent toi in D (except fori
itself, which disappeared under the splitting). Thus thereare #A(i)−1 of them inDA

i . Removing these nugatory
crossings, one obtains a reduced alternating diagram ofc(D)− #A(i) crossings. Similarly forDB

i . We have then
from the result of [Kf, Th] that

spanA
〈

DA
i

〉

= 4(c(D)−#A(i)) , and spanA
〈

DB
i

〉

= 4(c(D)−#B(i)) .

Since we obtained that
〈

DA
i

〉

is equal for alli, and similarly
〈

DB
i

〉

, it follows now that #A(i) does not depend on the
crossingi, and neither does #B(i).

Every meander diagram must have some bigon region (Lemma 4),so that for somei, max{#A(i),#B(i)} > 1. Thus
there is a numberk> 1, such that the crossings ofD decompose into equivalence classes of sizek, which are either
all A-classes, or allB-classes. Let us assume the latter; for the former, replace ‘B’ by ‘ A’ in the rest of the argument.
Also assumeD is twist-reduced, with the promise to take care of flypes later.

Let first k be even. We draw one component ofD dashed, while we isotope the diagram in the plane so that the
other component, drawn as a solid line, is a visible circle. We replace eachB-class ofD by a box. The solid line
enters these boxes in some order. Sincek is even, the dashed line enters each of these boxes and exits it on the same
side of the solid line.

Thus we have a picture like this:

.

Now, all crossings ofD have been included in boxes, thus we have to connect the dashed ends without self-crossings
to form a component. This can be done only in the obvious way, resulting in a(2,nk)-torus link diagram, and flypes
do not yield from it any further diagram.

If k is odd (withk≥ 3), we use induction.

Let D̂ be the diagram obtained fromD by replacing eachB-class, numberedi, of k crossings by a single crossing,
also numberedi. This means that we obtain̂D from D by A-splittingk−1 crossings in eachB-class (ofk crossings),
i.e., so that their white regions are joined. Sincek is odd, this procedure does not change the number of components,
and clearlyD̂ is a meander diagram also.

We will argue below in Lemma 7 that̂D is everywhere equivalent. Asc(D̂) = c(D)/k < c(D), by induction,D̂ is
a diagram in Theorem 1, andD is obtained fromD̂ by replacing each crossing with a fixed odd numberk of B-
equivalent crossings (for one of the two checkerboard colorings). Since the resulting diagramsD are all alternating
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and have an explicit shape, it is easy to test, using [MT], that the everywhere equivalent ones remain in the families
described in Theorem 1 (and that flypes do not yield anything new either). That is, the change from̂D to D does
not lead to any further everywhere equivalent diagrams.

For example, when̂D = P(q, p), then, depending on the coloring,D = P(q,kp) or D = P(q, p,k). The former type
is obviously nothing new, and the latter type is not everywhere equivalent whenk≥ 5. In that case, namely, allD′i
would simplify to alternating diagrams of two crossings less, which admit no flypes, and not all are equivalent in
S2 (except ifp= 1 orq= 2, which are again covered before). The special role ofk= 3 in the second family is that
when under a crossing change the class reduces to one crossing, one can apply flypes to move it along. The case
thatD̂ = P(q, p,3) can be discussed similarly. ✷

Lemma 7 If D is everywhere equivalent, so iŝD.

Proof. Let D̂i and D̂ j be the diagrams obtained from̂D by switching crossingsi and j. These correspond to
(B-)classes numberedi and j in D.

We reduce the number of crossings in classi of D from k to k−2, obtaining a diagramDi . SinceD is everywhere
equivalent and allDi are alternating, by [MT], there is a sequence of flypes carrying overDi to D j . Let D̃i be the
diagram obtained fromDi by switching⌊k/2⌋ crossings in each (B-)class ofDi . (Note that these classes havek
crossings, except one, withk−2.) It is not necessary to reduce the number of crossings inD̃i by removing trivial
clasps by Reidemeister II moves. The flypes turningDi to D j carry over to transform̃Di into D̃ j . But D̃i (resp.D̃ j )
depicts the same link aŝDi (resp.D̂ j ). In fact,D̂i andD̂ j also become equivalent under flypes. ✷

Remark 1 Note that the use of the Jones and Conway polynomial does not restrict us to (excluding) isotopies
between the links ofD′i mapping components in prescribed ways. For example, the diagramD gives a natural
bijection between components ofD′i andD′j , but this correspondence was never relevant.

Remark 2 For unoriented everywhere equivalence, the treatise growsindefinitely more complicated at several
places, even though we have again concrete examples from [St2] (and can suspect them to be exhaustive). For
instance, the proof of Lemma 2 fails, and meander diagrams are no longer (arguably) positive, and hence neither
they are alternating.

Acknowledgment. I would wish to thank to K. Taniyama and R. Shinjo for proposing the problem to me. The
referees have provided some very helpful remarks, in particular helping me to discover some flaws in a previous
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