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Abstract. Alink diagram is said to be (orientedly) everywhere equéwaif all the diagrams obtained by changing
exactly one crossing (but not necessarily including thgioal diagram itself) represent the same (oriented) link.
We classify such diagrams of two components, using the Kaarffbracket and checkerboard colorings.
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1 Introduction

How does a diagra® of a knot (or link)L look, which has the following property: all diagrars$ obtained by
changing exactly one crossing inrepresent the same knot (or link) (which we allow to be different fronh)?

For example, wheb is the alternating diagram af= (2,n)-torus knot/link, then alD’ depictL’ = (2,n— 2)-torus
knot/link. K. Taniyama called such diagramgerywhere equivaleritee Definitions 1 and 2 ig8) and was likely
the first to ask (in oral communication) how to describe them.

Taniyama’s problem motivated us to make in [St2] a study wsfphoperty. We conjectured a general description of
everywhere equivalent diagrams for a knot, and proved s@®esoof low genus diagrams. We also proposed some
graph-theoretic constructions of everywhere equival@aygrams for links.

In this note we show how some well-known (and powerful) rissabout alternating links can quickly lead to the
solution for diagrams of two components (agreeing with thees predicted in [St2]).

Theorem 1 A diagramD is an orientedly everywhere equivalent non-split 2-congmitink diagram if and only
if it is among the following families:

1. the pretzel link diagram(q, p) = (p, . .., p) with q copies ofp, for p,q > 0, p odd andg even, or

2. the arborescent link diagrarRéq, p,3) = (P(p,3),...,P(p,3)) with q copies ofP(p, 3), for p > 1 odd and
g> 2 even.

See (13) for typical examples of either families (drawn igrted, but any orientation will apply).

Theorem 1 gives a sharp contrast to the rather complicat#dghboring’ cases. From [SA] and [St2], the classifi-
cation of everywhere equivalent diagrams of knots was knimaoe rather difficult in general. For three (or more)
components, major difficulties are suggested already ftarclassification in another special case, this of closed
3-braids, which is worked out in a parallel paper [St3].
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2 Link diagrams and link polynomials

All link diagrams are considered oriented, even if origotais sometimes ignored. We also assume here that we
actually regard a link diagram to live &, that is, we consider as equivalent diagrams in the planetvdiffer by
the choice of the point at infinity.

TheJones polynomial \& Z[t*1/?] is an oriented link invariant which can be specified byskein relation

() () = e ()(), 8

and the normalization to take the valMé()) = 1 on the unknot. In each triple as in (1) the link diagrams are
understood to be identical except at the designated spot. frElgments are said to depictpasitive crossing
negative crossingandsmoothed outrossing. The&skein) smoothings the replacement of a crossing by the third
fragment. A well-known consequence of (1) (and our nornaditin) is thatv € Z[t*!] (i.e., only integral powers
occur) for odd number of link components (in particular, kaots), whileV e t¥/2. Z[t*1] (i.e., only half-integral
powers occur) for even number of components.

Write ¢(D) for the crossing numbenpf a link diagramD. Thewrithe w(D) of D is the sum of the signs of all
crossings oD. If all crossings oD are positive, thel is called apositive diagram

TheConway polynomiall = O, (z) of oriented linksL satisfied](()) = 1 and the skein relation
() -0() =20() ). @

For a Laurent polynomidP € Z[x,x 1], let [P]x be the coefficient ok in P. The minimal or maximal degree
mindegP or maxded is the minimal resp. maximal exponeki Z of x with non-zero coefficienfP)x. Let
spanP = maxded® — mindegP.

Let for a linkL and a diagrand of L the numben(L) = n(D) be thenumber of componentf L or D. Then itis
well known that
mindegl(L) > n(L) — 1. 3)

For knotsK, i.e.,n(K) = 1, this inequality is exact, and
[O(K)Jo=1. (4)

For links, it is possible to expregsl(L)],)-1 using component linking numbers, using a formula of Hoste-
Hosokawa [Ht, Hs].

In a link diagranD a crossing is aelf-crossingif both crossing strands belong to the same component.rite
we call the crossingnixed Thelinking numberk (Lj,L;) of two component$;,L; of a link L is half of the sum
of the signs of all crossings between these componentsheénking graph/A(L) of L havel; as vertices and an
edge betweeh; andLj iff Ik (Lj,L;j) # 0. The Hoste-Hosokawa formula states

OWhw-1=> T[] *(LLj)), (%)
r (Li,Lj)Er

where the sum goes over spanning trees A(L).

Lemma 1 If L is alink with a connected diagrahwhere all mixed crossings are of the same sign, then mifldeg=
n(L) —1.

Proof. Note that with (4), the case thhtis a knot fits well into the statement, so we can assurhasn(L) > 2
components we denote ly. Itis clear that all IKL;,L;) # 0 have the same sign. Thus in (5) all products in the
sum come with the same sign. The connectednes8siofplies thatA(L) is connected, and has a spanning tree.
Thus at least one summand occurs. O

We will also need to recall the alternative description @& fones polynomidl via Kauffman’s state model [Kf].



The diagrams in (6) below show A- and B-corners of a crossamgl, its bothsplittings The corner A (respec-
tively B) is the one passed by the overcrossing strand whiae counterclockwise (resp. clockwise) towards the
undercrossing strand. #pe A (resp. B) splittings obtained by connecting the A (resp. B) corners of the angss

SR

A state Sof a link diagramD is a choice of splittings of typ@ or B for any single crossing db, i.e., it can be
formally seen as a map: { crossings oD} — {A B}. When for a stat&all splittings are performed, we obtain
a collection of (disjointjoopsof Sin the plane.

TheKauffman bracketD) [Kf] of a link diagramD is a Laurent polynomial in a variabke satisfying thebracket

relations <X> o <X> +A<><>, <qu> = (—=A2-A2)(X). )

By applying the first relation to each crossingdfand then evaluating the bracket on a collection of loopsgisi
the second relation, we can expréBs as a sum over all stat&of D:

D) = 3 AAS B9 (_p2 A2)St -
S

Here #A(S) and #B(S) denote the number of type A (respectively, type B) spliiagd|S| the number of loops of
S. (Our normalization is thus that the diagram of one circléhwio crossings has unit bracket.)

The Jones polynomial of a link can be determined from the Kauffman bracket of some diadparfiL by

vi(t) = () o ©)
A=t=1/4

with w(D) being the writhe oD. This is another way, different from (1), to determine theelpolynomial.

3 Everywhere equivalence properties for 2-component links

We stipulate that in generBl will be used for a link diagram and’ for a diagram obtained from by exactly one
crossing change. If we want to indicate that we switch a éngssumbered as we also writeD;.

Definition 1 We call a link diagranD everywhere equivaleiftall diagramsD; depict the same link for ail (This
link may be different from the one representedhy

Between the rather complicated cases of knots and 3-compbnles, for two components it turns out that some
tangible properties can be given even for arbitrary diagtamorder to leave the subtleties for knots to their own
merit, we will assume below that all link diagrams are non-sgli., there is no closed curve disjoint from the
diagram which contains parts of it in both interior and extier

Component orientation issues must be taken seriously foergélink diagrams (unlike the special cases treated in
[St3]), and thus it is helpful in the sequel to make a cleatimtison.

Definition 2 We call a link diagranD orientedly everywhere equivaleifiall D} depict links isotopic with orien-
tation, up to simultaneously reversing orientation of alinponents. LeD beunorientedly everywhere equivalent
if all D} depict links isotopic as unoriented links. (Again, in eitcase we do not prescribe how isotopies should
map between specific components; see Remark 1 below.)

We will almost exclusively consider oriented everywheraiealence, and we will often omit the word ‘oriented’
in the sequel. We start by observing the following necessanglition:
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Lemma 2 Let D be an orientedly everywhere equivalent non-split link déag. TherD is a knot diagram, or all
components oD appear as unknotted circles (i.B.has no self-crossings).

Proof. Since the Jones polynomial of & must be equal, by the skein relation (1), so must be the Jaigsp
mials of the crossing-smoothed versiondgfwhen crossings of the same sign are smoothed out. The nwhber
components of these diagrams is captured by the Jones poigh@ts valueV (1); see e.g. [J§12]), and on the
other hand it is determined by whether the two componentsingeat a crossing are the same or different. Both
cases can thus not occur simultaneously.

Thus one cannot have a mixed and a self-crossing of the sgmsisiultaneously. There must obviously be mixed
crossings (whe is connected and not a knot diagram). Thus if self-crossngd inD, then they are all positive,
and all mixed crossings are negative (or vice versa; up toomimage).

Let D™ be obtained fronD by smoothing a (negative) mixed crossing, &dbe obtained frond by smoothing a
(positive) self-crossing. The everywhere equivalenc@erty of D and the skein relation (2) give

0D )=-0(D"). (10)
Now n(D*) =n(D) + 1, and thus from (3)
mindegJ(D") > n(D). (11)

On the other handy(D~) =n(D) — 1, and all mixed crossings &f are also mixed crossings Bf and hence have
the same (here, negative) sign. Thus by Lemma 1,

mindegd(D™) =n(D") -1 = n(D) - 2.
With (11), this contradicts (10). O

From now on we will focus on two components. We call a 2-congmrink diagram with no self-crossings a
meander diagramLemma 2 then means that orientedly everywhere equivalagtaims are meander diagrams.
A typical alternatingexample, together with its checkerboard coloring (to beifetal and used later), is shown

below:

(12)

We call an oriented diagraspecialif it becomes alternating when all crossings are switchdaktpositive. (An-
other way of saying it is that there are no separating Seaifertes;cf. [Cr, p.536].)

Lemma 3 Meander diagrams (with any orientation) are special.

Proof. We switch crossings in a meander diagrBnso that they are positive, and we show tBeis alternating.
AssumeD is not alternating.

Thus one component has two consecutive (say) crossing paskers. Because of positivity, both overpass strands
are oriented in the same direction. They belong to the sammpapent, and thus they must connect in one of the
two ways shown below.
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But in either case, the end marked with a bead cannot be eedeioda closed component without creating self-
intersections (or an intersection with the other compobetween the two indicated crossings). O

Lemma 4 Meander diagrams have a bigon region.

Proof. Assume the first component (circle) is drawn, and draw ssbgely the second component. The second
crossing (with the first component) will create a bigon regido spoil this region, one must enter it, then creating
a smaller bigon region. Obviously, the nesting cannot gaéinitely. O

ORNOMOIO

Figure 1: Diagram connected sum

Figure 1 displays theonnected sum B P#Q of the diagram#$ andQ. If a diagramD can be represented as the
connected sum of diagrar®sandQ, such that bott andQ have at least one crossing, theris calledcomposite
otherwise it is calleghrime A knot of link L is primeif wheneverD = P#Q is a composite diagram &f one ofP
andQ represent an unknotted arc.

Lemma 5 Meander diagrams are prime.

Proof. If a meander diagram is composite, one d?, Q on the right of Figure 1 must contain just one component,
and at the absence of self-crossings, be an unknotted arc. O

Lemma 6 Let D be an oriented 2-component link diagramDlIis orientedly everywhere equivalent, it is positive
(up to mirror image).

Proof. If D is orientedly everywhere equivalent, then@limust have the same writh&D/), since (at the absence
of self-crossingsyv(Dj)/2 is the linking number of the components@f Andw(D)—w(D;) is twice the sign of
crossing. O

4 Proof of main result

We can turn now to our main result Theorem 1. The first famiby ttheorem includes, fap = 1, the(2,q)-torus
links as a special case. Fpr= 1, the second family reduces to tf#& 3q)-torus links, and fog = 2 to P(2p, 3),
which is why we excluded these values there. We show beloviitstedisambiguating instance for the second
family, for = 4 andp = 5, even although it already has 60 crossings.
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Proof of Theorem 1. This proof crucially exploits (and owes its brevity to) thensequence of Lemmas 3 and 6
that if an oriented 2-component link diagrddnis orientedly everywhere equivalent, thBnis alternating. This
allows us to put out the heavy arsenal of [Kf] and [MT], whiadis us comfortably win the battle over countless
possibilities.

To clean up the argument, it is better to use induction on thesing number. We thus check first diagrdbnef,
say, up to 4 crossings. For the induction step, we then fix ary@there equivalent diagraB, and assume that all
everywhere equivalent diagrams of smaller crossing numir@iorm to the patterns in Theorem 1.

The alternation oD means that each region bfcontains onlyA-corners or onl\B-corners of crossings as in figure
(6). There is a black-white coloring of the regionsnfthecheckerboard coloringwhich assigns different colors
to each pair of regions opposite at some edge.ofSee (12), or also, e.g., [Th, Fig. 5], or [St, Kf].) Let us fiigre
the colors so that th&-corners of crossings lie in white regions and Bieorners in black regions.

M) (X
D D/ DE

A
D i
A crossing isnugatoryif it has the same region at its bo# or its bothB-corners. We call a diagrareducedf it
has no nugatory crossings. It is easy to see that nugatosgiogs are always self-crossings, thus in particlar,
is reduced.

Now, for whatever crossingone switches i, the diagram®] have the same writhe (by Lemma 6) and represent
isotopic links. It follows from (9) that their bracket®;) are equal. It will turn out sufficient to just study those
brackets, and since they are unoriented invariants, igitineate to suppress component orientation in our further
treatment.

Now, superposing the first bracket relation in (7) and itsrangd version (withA*! interchanged) with (14), we
see thatD) and(Dj) determing(D") and(DP). Therefore(D{*) are the same for ai| and also similarly DP).
It will be enough to look at thé-span of these polynomials. (That is, for our conclusion Enéies in the families
described in Theorem 1, we will only use that #hapans of these polynomials are equal.)

We call two crossing#é (resp. B)-equivalerif they have the same pair of white (resp. black) regions #aéi) be
the number of crossings-equivalent to crossingin D (itself included), and similarly defines#i).

Let for some crossing both #(i) and #(i) be greater than 1. Thus, first, there is a crosgiggi which is A-
equivalent td. This means that their two white regions coincide, and tieeeeclosed curvg intersectingd only

ini, j, and passing through two white regionsbtherwise. Similarly, there is a closed curyentersectingd
only ini, some crossing’ # i, and passing through two black regions. Both curves canseteonly at crossings
of D, since they pass regions of different color. They inters¢ctand since they must intersect again, but meet
only one other crossing @, they must intersect at the same other crosgiagj’. If some of the four regions of
S\ (yUuy') contains crossings @, thenD is composite, which cannot occur for meander diagrams byrha5.
ThusD has only the crossingsandj, and is the 2-crossing Hopf link diagrag2, 1), which was dealt with.

We assume thus now that a crossing does not simultaneousybloghA- andB-equivalent other crossings .
Then setting crossings andq to be (twist) equivalentf they areA- or B-equivalent defines also an equivalence
relation. Let us for brevity call alass(respectivelyA-class respectivelyB-clasd an equivalence class under twist
equivalence (res@p-equivalence, resfi-equivalence).

We will need another different description of this relatiénflypeis a move on a diagram shown in (15).

There is a natural correspondence between the crossings adidagrams related by a flype:moves position, and
the crossings in tanglézandQ on either side of (15) correspond bijectively.




Assume two crossingg, g are, sayA-equivalent. Thus there is a closed cugiatersectingD only in p, g, and
passing through two white regions Bfotherwise. Then the interior & contains a tangle, on which a flype can
be applied. After this flype the interior gfcontains no crossings, and a black bigon region with corpexsd

g. Similarly one can argue fdB-equivalent crossings. This shows that two crossings aist eguivalent (resp.
A- resp.B-equivalent), if and only if there is a sequence of flypes mgkhem form a bigon region (resp. black
resp. white bigon region). We say that an equivalence classmssings oD is reduced if its crossings form (at
least)n— 1 bigons. Up to flypes we can achieve that every class is reucehich case we call the diagramist
reduced

One important feature of flypes is that they commute with girgs changes, and that thus (both oriented and
unoriented) everywhere equivalence is invariant undeeflyp

Now, returning td># andDB, we observe that they are alternating. The diagidrhasc(D#) = ¢(D) — 1 crossings,
but some are nugatory. These nugatory crossings are gdyettisecrossing®-equivalent toi in D (except fori
itself, which disappeared under the splitting). Thus theee# (i) — 1 of them inDA. Removing these nugatory
crossings, one obtains a reduced alternating diagraoiDf— #a(i) crossings. Similarly foDE. We have then
from the result of [Kf, Th] that

span, (DY) = 4(c(D) —#a(i)), and spag(DP) = 4(c(D) —#a(i)).

Since we obtained thdD{*) is equal for alii, and similarly(DP), it follows now that #(i) does not depend on the
crossing, and neither doesgfi).

Every meander diagram must have some bigon region (Lemnsa #)at for somé, max{#a(i),#g(i)} > 1. Thus
there is a numbét > 1, such that the crossingsBfdecompose into equivalence classes of kjzehich are either
all A-classes, or aB-classes. Let us assume the latter; for the former, repBid®/* A’ in the rest of the argument.
Also assum@® is twist-reduced, with the promise to take care of flypeglate

Let firstk be even. We draw one componentfdashed, while we isotope the diagram in the plane so that the
other component, drawn as a solid line, is a visible circle rdplace eacB-class ofD by a box. The solid line
enters these boxes in some order. Skieeven, the dashed line enters each of these boxes and exitthe same
side of the solid line.

Thus we have a picture like this:

Now, all crossings ob have been included in boxes, thus we have to connect thedlaslds without self-crossings
to form a component. This can be done only in the obvious vesylting in &2, nk)-torus link diagram, and flypes
do not yield from it any further diagram.

If kis odd (withk > 3), we use induction.

Let D be the diagram obtained froB by replacing eaclB-class, numbereij of k crossings by a single crossing,
also numberedl This means that we obtaifrom D by A-splittingk — 1 crossings in each-class (ofk crossings),
i.e., so that their white regions are joined. Sikég odd, this procedure does not change the number of comggnen
and clearlyD is a meander diagram also.

We will argue below in Lemma 7 th&d is everywhere equivalent. AZD) = ¢(D)/k < ¢(D), by induction,D is
a diagram in Theorem 1, arid is obtained fronD by replacing each crossing with a fixed odd numberf B-
equivalent crossings (for one of the two checkerboard gus). Since the resulting diagrasare all alternating
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and have an explicit shape, it is easy to test, using [MT}, tteeverywhere equivalent ones remain in the families
described in Theorem 1 (and that flypes do not yield anythawg either). That is, the change frdinto D does
not lead to any further everywhere equivalent diagrams.

For example, whe® = P(q, p), then, depending on the coloring,= P(q,kp) or D = P(q, p,k). The former type

is obviously nothing new, and the latter type is not everywelegjuivalent whek > 5. In that case, namely, dllf
would simplify to alternating diagrams of two crossingssleshich admit no flypes, and not all are equivalent in
& (exceptifp =1 orq = 2, which are again covered before). The special role-ef3 in the second family is that
when under a crossing change the class reduces to one grossacan apply flypes to move it along. The case
thatD = P(q, p, 3) can be discussed similarly. O

Lemma 7 If D is everywhere equivalent, solis

Proof. Let Dj and Ijj be the diagrams obtained frof by switching crossings and j. These correspond to
(B-)classes numbereéandj in D.

We reduce the number of crossings in clae§D from k to k — 2, obtaining a diagrar®;. SinceD is everywhere
equivalent and alD; are alternating, by [MT], there is a sequence of flypes cagyverD; to Dj. Let Di be the
diagram obtained fromd; by switching|k/2| crossings in eachB)class ofD;. (Note that these classes hdve
crossings, except one, wilt-2.) It is not necessary to reduce the number of crossings lsy removing trivial
clasps by Reidemeister Il moves. The flypes turriago D; carry over to transforr®; into D;. But D; (resp.D))
depicts the same link d3; (resp.Dj). In fact,D; andD; also become equivalent under flypes. m

Remark 1 Note that the use of the Jones and Conway polynomial doesestiiat us to (excluding) isotopies
between the links oD] mapping components in prescribed ways. For example, thggatiaD gives a natural
bijection between componentsBf andD’;, but this correspondence was never relevant.

Remark 2 For unoriented everywhere equivalence, the treatise gnogefinitely more complicated at several
places, even though we have again concrete examples fr@h(Etd can suspect them to be exhaustive). For
instance, the proof of Lemma 2 fails, and meander diagrams@tonger (arguably) positive, and hence neither
they are alternating.
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