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Abstrat. We present a viewpoint on Euler harateristi 0 braided surfaes as grid diagrams. This
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positivity of Whitehead doubles, jump numbers of slie-torus invariants, and ar and braid index. In

partiular we obtain rather sharp (�frying eggs in the pan�-style) information about maximal Thurston-

Bennequin invariants and ar index from the HOMFLY-PT polynomial. We extend some of these re-

sults to quasipositivity. We also onsider the rossing number of grid diagrams and retilinear (planar

grid) polygons, and versions of the braid index related to braided and strongly quasipositive surfaes.
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1 Introdution

This investigation resulted from attempts to understand braided surfaes, in partiular Bennequin and

strongly quasipositive surfaes. Similar to the ase of anonial surfaes [St℄, we were trying to develop

some strutural properties. As it turned out, even in the simplest ase of Euler harateristi 0, the

answer is revealingly ompliated, in that these surfaes are essentially equivalent to grid diagrams D for

knots. It should be noted from the start that grid diagrams of links an be treated by essentially the same

approah, without very major modi�ations, but for tehnial reasons we stik mostly to knots.

However, despite protruding suh omplexity, this onnetion leads to some new viewpoints, and

assimilates a number of known and new results. We present some exposition on it here, in the belief that

the topi ould be bene�ial for further study.

An outline of the paper is as follows.
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2 1 Introdution

After ompiling preliminaries in �2, we give some simple but useful observations in �3 on rossing

number and writhe of grid diagrams. In partiular, we determine the maximal rossing number of a

retilinear polygon of given size exatly in the multi-omponent ase (Lemma 3.1) and nearly exatly in

the one-omponent ase (Proposition 3.3 and Computation 3.4). As a onsequene we observe that for

every link L,
c(L) < (a(L)− 1)2/2, (1.1)

where c(L) is the rossing number and a(L) is the ar index.

In �4 we will see that Euler haratesiti 0 braided surfaes are essentially grid diagrams D, with a

framing attahed, whih we write as λ(D). When the surfae is strongly quasipositive, then

λ(D) = −TB(D) (1.2)

is identi�ed, up to sign, with the Thurston-Bennequin invariant of D. We will establish this in Theorem

4.9 after introduing a weight model for the Thurston-Bennequin invariant from a grid diagram (Lemma

4.4). We give some simple appliations, inluding the determination of the strong quasipositivity of twisted

annuli A(K, t) in terms of the maximal Thurston-Bennequin invariant TB(K) of K (Corollary 4.13). This

is then extended to twisted positively/negatively lasped Whitehead doubles W±(K, t) and Bing doubles

B(K, t) as follows.

Corollary 1.1 Let K be a non-trivial knot. Then

(a) W+(K, t) is strongly quasipositive if and only if t ≥ −TB(K), and
(b) W−(K, t) and B(K, t) are never strongly quasipositive.

As we explain, in onformane with (1.2), we will usually write λ(K) = −TB(K).

In �5 we disuss braid indies b(K), and how the ar index a(K) is fundamentally onneted to a

braid index b(A(K, t)) (see Corollary 5.1 and Conjeture 8.1). We give among others a modi�ation of

Ohyama's [Oh℄ inequality.

Corollary 1.2 For every knot K, we have b(K) ≤ c(K)/2 + 1, and if K is non-alternating, then b(K) ≤
c(K)/2.

We also introdue the framing diagram Φ(K) of a knot K (De�nition 4.12) and its one struture

(Theorem 5.8).

Setion �6 deals with the jump funtion jv of slie-torus invariants v. After we reprodue the

Livingston-Naik [LN℄ estimate (Proposition 6.3), we extend it with the following appliation to the

Bennequin-sharpness problem (2.8) for Whitehead doubles.

Corollary 1.3 Assume there is a slie-torus invariant v so that (6.2) is sharp for K:

λ(K) = jv(K) . (1.3)

Then for every t,

W±(K, t) is Bennequin-sharp ⇐⇒ W±(K, t) is strongly quasipositive . (1.4)

We also know (see Lemma 6.4) that positive �bered knots K satisfy (1.3).

Setion �7 is the longest and ontains a detailed treatment of the HOMFLY-PT polynomial. The

possibibility exists (Conjeture 2.3) that the HOMFLY-PT polynomial determines the braid index, thus

this ould be true for the ar index as well. In the simplest form, we extrat (in a �ulinary� way) an

invariant, we all l(K), whih gives a lower bound for the ar index of K,

l(K) ≤ a(K)
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(see Proposition 7.7). It (apparently, see Question 7.12) already improves upon the Morton-Beltrami [MB℄

bound.

For (even) better etimates, one an use abling, and to limit omplexity problems, we introdue

partial abling (Lemma 7.23). This an be omplemented by some extra arguments, and shows that the

HOMFLY-PT polynomial is e�ient to pratially determine the ar index (see Lemma 7.11 and Remark

7.26) and maximal Thurston-Bennequin number (Proposition 7.31) in most examples. We further outline

(end of �7.3) how to apply the Kau�man polynomial beyond the Morton-Beltrami inequality, and also

prove the Finite-Cone-Theorem 7.3.

Setion �8 mostly deals with a summary of previous onsiderations, inluding a more expliit form of

the Finite-Cone-Theorem in Proposition 8.6. A variant of this statement, whih uses the l-invariant, is as
follows.

Proposition 1.4 When K is a non-trivial knot, then Φ(K) is the union of at most 1+a(K)− l(K) ones.
�

We also highlight potential pathologies about non-oinidene of various types of braid indies. This

omprises Rudolph's problem (5.1). We show that the l-invariant (Propositions 8.8 and 8.10) an be also

used to exlude suh peuliar behavior.

In �9 we only brie�y outline a more general theory, of �grid-embedded graphs� for braided surfaes of

smaller (i.e., negative) Euler harateristi.

The �nal appendix �A, given by the seond author, disusses what previous results on strong quasi-

positivity an be extended to quasipositivity. Compare e.g. Theorem A.17 with Corollary 1.1 above.

When strong quasipositivity is replaed by quasipositivity, then many onsiderations revolve around

slieness. For many (ompanion) knots, we establish that the quasipositivity and strong quasipositivity of

knotted annuli are equivalent (for example, Corollary A.6), but that in general they are not (Proposition

A.8). We also know that some untwisted Whitehead doubles are quasipositive but not strongly quasiposi-

tive (Remark A.10), and that, while Bing doubles are never strongly quasipositive (as stated in Corollary

1.1), some are quasipositive (see Example A.11).

Throughout the treatise, we enounter many suggestive but di�ult to resolve questions. We have

deliberately put emphasis on them, sine their examination would provide various diretions to deepen

the present onsideration.

2 De�nitions and Preliminaries

2.1 Generalities

We say an inequality `a ≥ b' is sharp if a = b and strit (or unsharp) if a > b. We use #E for the

ardinality of a �nite set E and ⌊x⌋ for `greatest integer' part of x ∈ Q. We also a�ord a few standard

abbreviations like `l.h.s.' (for `left hand-side'), `w.r.t.' (for `with respet to') and `w.l.o.g.' (for `without

loss of generality').

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are

alled as follows.

�
�
�✒

❅❅

❅❅■

positive

��

��✒

❅
❅

❅■

negative

smoothing

=⇒ �

�✒

❅

❅■

smoothed out

(2.1)



4 2 De�nitions and Preliminaries

The sign of a positive/negative rossing is assigned to be ±1 aordingly. Let c±(D) be the number

of positive, respetively negative rossings of a link diagram D, so that the rossing number of D is

c(D) = c+(D)+ c−(D) and its writhe is w(D) = c+(D)− c−(D). We write s(D) for the number of Seifert
irles of D, whih are the irles obtained after smoothing all rossings of D. We write c(K) for the
rossing number of a knot K, the minimal rossing number of all diagrams of K. The mirror image of K
will be written !K, and the mirror image of diagram D (in the form obtained by swithing all rossings of

D) will be !D. If K =!K (up to orientation), we all K amphiheiral . We use `©' to denote the unknot

(trivial knot) in formulas. The symbol `#' is used for onneted sum. The number of omponents of a

link L is denoted κ(L). The bridge number br(L) of L is the minimal number of Morse maxima of L (or

equivalently, of any diagram of L). The (Seifert) genus g(L) resp. Euler harateristi χ(L) of a knot or

link L is said to be the minimal genus resp. maximal Euler harateristi of a Seifert surfae of L. We

have

2g(L) = 2− κ(L)− χ(L) .

Similarly write χ4(L) for the smooth 4-ball (maximal) Euler harateristi and

2g4(L) = 2− κ(L)− χ4(L) .

(In the following 4-ball genera and slieness will always be understood smoothly.) A knot K is slie

if g4(K) = 0, or equivalently, χ4(K) = 1. We will refer to the following basi fat: if κ(L) = 2 and

χ4(L) = 2, then both omponents of L must be slie (knots), and have linking number 0.

2.3 Braids and braided surfaes

We write Bn for the braid group on n strands or strings . The relations between the Artin generators σi,

i = 1, . . . , n− 1 are given by

• σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and

• σiσj = σjσi for 1 ≤ i < j − 1 ≤ n− 2.

In diagrams we will orient braids left to right and number strings from top to bottom, for example:

✲
✲
✲
✲

✲

.

.

.

✲
✲
✲
✲

✲

.

.

.

σ2 σ−1
1

The relations an then be drawn as follows:

.

.

. ✲
✲
✲
✲
✲

.

.

.

.

.

. ✲
✲
✲
✲
✲

.

.

.

σiσi+1σi = σi+1σiσi+1

.

.

.

✲
✲

.

.

.

✲
✲

.

.

.

.

.

.

.

.

.

.

.

.

✲
✲

✲
✲

σiσj = σjσi, |i− j| > 1

There is a permutation homomorphism π : Bn → Sn, sending eah σi to the transposition of i and
i + 1. By a subbraid of β ∈ Bn we mean a braid obtained by taking only a subset C ⊂ {1, . . . , n} of the
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strands in β, whih is invariant under the assoiated permutation π(β) of β (i.e., C is a union of yles of

π(β)).

We de�ne band generators in Bn by

σi,j = σi . . . σj−2σj−1σ
−1
j−2 . . . σ

−1
i , (2.2)

For example σ2,7 ∈ B9 looks

✲
✲
✲
✲
✲
✲
✲
✲
✲

Notie that σi,i+1 = σi. A representation of a braid β ∈ Bn in the form

β =

l∏

k=1

σ±1
ik,jk

is alled a band presentation. (See e.g. [BKL℄.) Usually, it will be more legible to use the symbol

[ij] = σi,j

when writing band generators in formulas. Similarly we use −[ij] = σ−1
i,j . In ertain ases, we even omit

the brakets (see De�nition 4.6 and Example 7.25). Also, when j = i + 1, we often simply write i for
σi and −i for σ−1

i , when no ambiguity arises. The image of β under the abelianization Bn → Z is the

writhe (or exponent sum) of β, and is written w(β). A braid β ∈ Bn whose losure β̂ is the link L is a

braid representative of L. Similarly a word for β gives a (braid losure) diagram D = β̂ of L. When β is

a word, then w(β̂) = w(β). A band presentation β naturally spans a Seifert surfae of L = β̂. Following
Rudolph, we all this a braided surfae of L. For example, n = 6 and l = 6,

✲
✲
✲
✲
✲
✲

for the 6-braid β = σ1,4σ3,5σ2,4σ3,6σ1,5σ2,6. The diagram shows the losure L = β̂. It is easily seen

that the six `ellipti' disks joined two by two with six twisted bands form a natural Seifert surfae of L.
Rudolph [Ru℄ proves that every Seifert surfae is a braided surfae. If a braided surfae is of minimal

genus for L, it is alled a Bennequin surfae of L [BM2℄.

A link is alled quasipositive if it is the losure of a braid β of the form

β =

µ∏

k=1

wkσikw
−1
k (2.3)
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where wk is any braid word and σik is a (positive) standard Artin generator of the braid group. (In [Ru4℄

there is some overview of this topi.) If the words wkσikw
−1
k are of the form σik,jk , so that

β =

µ∏

k=1

σik,jk , (2.4)

then they an be regarded as embedded bands. Links whih arise this way, i.e., suh with positive band

presentations , are alled strongly quasipositive links .

Bennequin's inequality [Be, Theorem 3℄ states

−χ(L) ≥ w − n (2.5)

for a n-strand braid representative of L of writhe w. If there is a braid representative β of L making (2.5)

an equality, we all both L and β Bennequin-sharp. This inequality was later extended to

−χ(L) ≥ −χ4(L) ≥ w − n (2.6)

(see e.g. [IS, St2℄). In an analogous way we de�ned that L and β are slie Bennequin-sharp.

It implies that a strongly quasipositive surfae, i.e., obtained from a positive band presentation, is

minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of

writhe w. Thus the surfae S onstruted from the band presentation yields, with (2.6),

−χ(L) ≤ −χ(S) = w − n ≤ −χ4(L) ≤ −χ(L) .

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

χ4(L) = χ(L) . (2.7)

The Bennequin sharpness onjeture (see [FLL, St2℄) asserts

L is Bennequin-sharp ⇐⇒ L is strongly quasipositive . (2.8)

The seond author's e�orts to determine the quasipositivity of the (prime) 13 rossing knots [St4℄ also

provides some evidene for a �4-ball� version of the Bennequin sharpness onjeture (2.8):

L is slie Bennequin-sharp ⇐⇒ L is quasipositive . (2.9)

In pratial terms, every proof of non-quasipositivity of a knot passes via showing that it is not slie

Bennequin-sharp.

De�nition 2.1 • Let b(K) be the braid index of K, the minimal number of strings of a braid repre-

sentative of K.

• Let bb(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin

surfae of K.

• When K is strongly quasipositive, let bsqp(K) be the minimal number of strings to span a strongly

quasipositive surfae of K (only positive bands).

• Further, for a Seifert surfae S, let b(S) be the minimal string number on whih S is spanned as a

braided surfae.

• If S is a strongly quasipositive surfae, let bsqp(S) be the minimal string number on whih S is

spanned as suh (i.e., arises from a positive band presentation).
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We have then (with the right inequality only valid for strongly quasipositive K)

b(K) ≤ bb(K) ≤ bsqp(K) , (2.10)

and by de�nition, with S being a Seifert surfae of K,

bb(K) = min{ b(S) : χ(S) = χ(K) } , bsqp(K) = min{ bsqp(S) : S strongly quasipositive } . (2.11)

We will further disuss these relations in �5 and �8. We also feature the following result. It on�rms an

expetation originally formulated for n = b(L) by Jones [J, end of �8℄ (later also referred to as the �weak�

form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro onjeture [DP, LaM℄) For every link L, there is a number

wmin(L), so that every braid representative β of L on n strands of writhe w satis�es

|w − wmin(L)| ≤ n− b(L) . (2.12)

Generally speaking, we will use this theorem to advane theoretial appliations in our work, but for

pratial ones, another tool will be ruial, whih we introdue next.

2.4 HOMFLY-PT polynomial

We use the HOMFLY-PT polynomial P [LiM℄, in the Morton [Mo℄ onvention

P (©) = 1 , v−1P+ − vP− = zP0 , (2.13)

where P+, P− and P0 refer to the polynomials of three links with diagrams equal exept at one spot,

where they ontain the fragments of (2.1) from left to right. The right part of (2.13) is also alled P 's
skein relation. We will use the suggestive notation min degv P for minimal v-degree of (any monomial

in) P , and similarly maxdegv P , and set span vP = maxdegv P − min degv P . We write [P ]zk for the

oe�ient of zk in P , being a polynomial in v. Then, [P ]vd the oe�ient of degree d in v (whih is itself

treated as a polynomial in z). Also set

min cf vP = [P ]vmin degv P (2.14)

to be the trailing (lowest degree) oe�ient of P . The notation P |z≥k resp. P |z≤k resp. P |z 6=k will mean (the

polynomial onsisting of) all terms in P of z-degree at least k resp. at most k resp. di�erent from k. The z-
variable is left inside. Thus [P ]zk is a polynomial in v, while P |z≥k is a polynomial in z, v. We oasionally

refer to P |z≤k as a (z-)trunated polynomial . We emphasize that muh of the useful information of P an

be obtained from trunations thereof (like (2.20)), whih are muh faster (subexponentially) to ompute

than the full polynomial. A program that alulates suh trunations was introdued in [St3℄, and we will

extensively apply it below.

A CPU-parallelized upgrade of the trunated polynomial alulation was developed to settle the last

16 rossing prime knot standing to resolve for the below problem (5.1); it has now its own desription

page on [St4℄.

Two further standard properties of P are that for a link L of κ(L) omponents, min degz P (L) =
1− κ(L), and P (L) ontains only monomials zpvq for p, q odd (resp. even) when κ(L) is even (resp. odd).

The mirroring behavior of P is (signed) v-onjugation:

P (!L)(v, z) = (−1)κ(L)−1P (L)(v−1, z) . (2.15)

We further use the identity (see [LiM, Proposition 21℄)

P (v, v−1 − v) = 1 . (2.16)
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By the MFW [Mo, FW℄ inequalities, the writhe w of an n-string band presentation of L satis�es

w + n− 1 ≥ maxdegv P (L) ≥ min degv P (L) ≥ w − n+ 1 , (2.17)

thus

MFW(L) :=
1

2
span vP (L) + 1 ≤ b(L) , (2.18)

where the left hand-side is the MFW bound for the braid index b(L). If MFW(L) = b(L), we all L
MFW-sharp.

When L is not MFW-sharp, there are ways to improve the braid index estimate using ables of L:
when L′

is a degree-c able of L, then

MFW(L′) ≤ b(L′) ≤ cb(L) ,

thus

b(L) ≥
⌈
1

c
MFW(L′)

⌉
. (2.19)

The method is well explained in [MS℄ (ertainly when c = 2; some examples for c = 3, 4 an be found in

[St3℄). We refer to suh estimates as the abled MFW .

To relate this to said at the end of �2.3, we point out that MFW plus abled versions thereof is e�ient

to determine the braid index of most links. In some ases alternative methods apply, but there is no link

L known where (2.19) at least for su�iently high c fails to give a sharp estimate. It it thus onjeturable

that this is always the ase (see [St4℄):

Conjeture 2.3 For every link L there is a c > 0 and a degree-c able link L′
of L making (2.19) sharp.

Obviously, when we an prove that a braid representative β of a link L is minimal, then we immediately

also obtain wmin(L) = w(β) in Theorem 2.2. However, it was also noited in [St5℄ that one (2.19) (for

some c) gives a sharp estimate of b(L), it proves along the way that wmin(L) = w(β) is unique. (And

it is not too hard to derive (2.12) either from that argument.) Thus Theorem 2.2 provides a theoretial

underpinning, but is neither partially helpful nor essential to determine b(L) or wmin(L) for a given L.

One main drawbak of (2.19) is that in general the polynomial of a able link L′
is notoriously hard

to alulate. But instead of the whole polynomial, we an use a trunation:

MFWd(L
′) =

1

2
span vP (L′)|z≤d + 1 ≤ MFW(L′) ≤ b(L′) . (2.20)

We refer below to suh type of estimate of the braid index as trunated (abled) MFW .

Returning to surfaes, it follows from the right inequality in (2.17) that a Bennequin-sharp (in parti-

ular strongly quasipositive) link L satis�es

min degv P (L) ≥ 1− χ(L) . (2.21)

Morton also proves in [Mo℄ the anonial genus inequality , for any diagram D of L,

maxdegz P (L) ≤ c(D)− s(D) + 1 . (2.22)

The Conway polynomial ∇ is given by

∇(L)(z) = P (L)(1, z) . (2.23)

The determinant of a knot K an be de�ned by

det(K) = |∇(2
√
−1)| . (2.24)

This is always an odd number (when K is a knot).

The Kau�man polynomial F = F (a, z)(K) will be needed at a few plaes for referene. In Remark

7.20, we use the following well-known properties: for every link L,

• F (L) ontains only monomials apzq for p+ q even

• F (
√
−1, z)(L) = 1.
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2.5 Slie-torus invariants

We brie�y reall Livingston's [Lv℄ formalism of �slie-torus invariant�. An integer-valued invariant v on

knots is a slie-torus invariant if

• v(K) = −v(!K), and v(−K) = v(K), where −K is K with the reverse orientation

• additivity under onneted sum: v(K1#K2) = v(K1) + v(K2)

• rossing swith rule: v(K+)− v(K−) ∈ {0, 1}

• v(K) ≤ g4(K) (or equivalently 2v(K) ≤ 1− χ4(K)), and

• v satis�es Bennequin's inequality:

2v(K) ≥ w − n+ 1

for a braid representative of K on n strings and writhe w.

These properties are not minimal (i.e., some follow from speial ases or ombinations of others), but

they are what we will use in �6. (We emphasize that it is not assumed v to be de�ned on multi-omponent

links κ(K) > 1 in any way.)

There are two known instanes of suh an invariant, the Ozsváth-Szabó τ invariant, and (half of)

Rasmussen's invariant s. Thus the onept was introdued mainly to give these two a uniform treatment.

(The halved signature σ/2 satis�es the �rst four of the above �ve properties, but not the last.)

From the superposition of

2g(K) = 1− χ(K) ≥ 1− χ4(K) ≥ 2v(K) ≥ w − n+ 1

with (2.5), it is straightforward that

if v(K) < g(K), then K is not Bennequin-sharp . (2.25)

In relation, it follows that when K is quasipositive, then

v(K) = g4(K) , (2.26)

and

when K is strongly so, then v(K) = g4(K) = g(K). (2.27)

We will refer to these standard fats a few times below.

2.6 Grid diagrams and ar index

An ar presentation of a knot or a link L is an ambient isotopi image of L ontained in the union of

�nitely many half planes, alled pages, with a ommon boundary line in suh a way that eah half plane

ontains a properly embedded single ar.

✻

θ = 0

✻

θ = π

10

✻

θ = π

5

✻

θ = 3π
10

✻

θ = 2π
5

✻

θ = π

2

✻
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A grid diagram (or, for simpliity simply alled grid often below) is a knot or link diagram whih is

omposed of �nitely many horizontal edges and the same number of vertial edges suh that vertial edges

always ross over horizontal edges. We assume that horizontal/vertial positions of vertial/horizontal

edges are pairwise distint. In partiular, no edge touhes another edge, no vertex lies on the interior of

an edge, and verties are pairwise distint. Up to the adjustment of heights of horizontal and widths of

vertial edges, a grid diagram is thus what an be omposed in the plane by the tiles

(2.28)

See, for example, [AL℄, and also ompare with �9.

It is not hard to see that every knot admits a grid diagram (ompare with the proof of Lemma 4.17).

The �gure below explains that every knot admits an ar presentation.

✻

We set the size µ(D) of a grid diagram to be the number of vertial or (equivalently) horizontal

segments (but not both together). A grid (diagram) of size µ will also be shortly alled a µ-grid .

In general, we will a�ord the sloppiness of abolishing the distintion between an ordinary and a grid

diagram, whenever the grid struture is unneessary. Thus, for instane, c(D) an mean the rossing

number of both an ordinary and grid diagram, whereas µ(D) would imperatively assume that D is given

a grid shape. Let a(L) be the ar index of L, the minimal µ(D) over all grid diagrams D of L. It is the
minimal number of pages among all ar presentations of a link L.

We note that the following is known. For two knots K1, K2,

a(K1#K2) = a(K1) + a(K2)− 2 . (2.29)

It follows from a relationship (7.59), derived by Dynnikov-Prasolov [DP℄, onerning the Thurston�

Bennequin invariant (see �4 for notation), and the additivity of the invariant [EH, To℄.

2.7 Knot tables

For notation from knot tables, we follow Rolfsen's [Ro, Appendix℄ numbering up to 10 rossings, exept

for the removal of the Perko dupliation. For 11 and 12 rossing knots, the notation onverts from [KI℄ by

appending non-alternating knots after alternating ones of the same rossing number. Thus, for instane,

11a[k] = 11[k] for 1 ≤ k ≤ 367, and 12n[k] = 121288+[k] for 1 ≤ k ≤ 888. For higher rossing knots, the

tables of [HT℄ are used with the same adjustment.

If it is relevant, mirror images will be distinguished on a ase-by-ase basis. Spei�ally, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored . The onvention for 10132 is �xed

in Example 4.10. (The knot exhibits ertain phenomena that have to be treated for higher rossing knots

as well, but being the only Rolfsen knot with suh status, it will merit detailed attention.)
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3 Upper bound of Crossing number

A planar grid polygon an be de�ned as the planar projetion of a link grid diagram. Similarly we speify

its size by the number of horizontal/vertial edges. It is obvious that a grid polygon determines uniquely

(when rossing onvention is �xed) a grid diagram, and vie versa. A grid polygon an have multiple

omponents (i.e., PL-immersed irles). Suh objets are of interest in disrete geometry; see for example

[BOS, SG, KLA℄. They are named retilinear polygons, but for us it is (very) relevant that self-rossings

are allowed (i.e., the polygons are not simple).

Lemma 3.1 Every, possibly multiple-omponent, planar grid polygon of size m has the following upper

bounds on the number of intersetions.

{
(m2 − 2m)/2 m is even

(m− 1)2/2− 1 m is odd

(3.1)

These bounds are sharp.

Proof. What ould be a onundrum beomes self-evident after introduing the right way of ounting

rossings. We will group rossings w.r.t. their horizontal segment l. We onsider the horizontal segments

from the middle high segment upward. Whenever l is suh a segment and lh is a horizontal segment above

l, we de�ne the weight wl(lh) ∈ {0, 1, 2} to be the number of neighboring vertial edges of lh interseting

l. Then
#{ intersetions of l } =

∑

lh above l

wl(lh) . (3.2)

This ounting works beause for eah vertial edge lv interseting l, exatly one of its two neighboring

horizontal edges lh is above l. Thus

#{ intersetions of l } ≤ 2#{ lh : lh above l } . (3.3)

Now this sum will aount to

#{ intersetions of upper horizontal edges } ≤ 2

(m−1)/2∑

k=0

k (3.4)

for the upper (m+ 1)/2 edges l when m odd. The lower (m− 1)/2 edges l an be handled by hoosing lh
to be below l, giving a similar sum

#{ intersetions of lower horizontal edges } ≤ 2

(m−3)/2∑

k=0

k . (3.5)

For m even one has 4

m/2−1∑

k=0

k instead of (3.4)+(3.5). Diret alulation gives

#{ intersetions of polygon } ≤
{
(m2 − 2m)/2 m is even

(m− 1)2/2 m is odd

(3.6)

It remains to argue why for m odd, (m− 1)2/2 intersetions are not possible. This would mean that

the middle horizontal edge e satis�es we(e
′) = 2 for every other horizontal edge e′. But there are at least

two edges e′ for whih this is not possible, namely those onneted to the two vertial edges adjaent to

e. This ompletes the proof of (3.1). For the sharpness of the bounds, see Example 3.2 and Proposition

3.3. �
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Example 3.2 If we allow multiple omponents of the polygon, and onsider m even, then the bound in

(3.6) is sharp

When we restrit to 1-omponent polygons, we know the following.

Proposition 3.3 For every m > 2, there exists a 1-omponent planar grid polygon Πm of size m with

(m− 1)2/2−





1 m is odd

5/2 m ≡ 0 mod 4
7/2 m ≡ 2 mod 4

(3.7)

rossings.

Proof. Consider the Lissajous

1

polygon Λ(m1,m2).

Λ(3, 5) Λ(4, 5) Λ(3, 7)

This gives a grid polygon of size m = m1 +m2. When m1 −m2 = 2, we also need the modi�ed Lissajous

polygon Λ′(m1,m2).

Λ′(4, 6) Λ′(6, 8)

1

We hose this name sine they appear as reti�ations of Lissajous urves, although this orrespondene is not preise

for every (m1,m2).
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Then hoose

Πm =





Λ(m−1
2 , m+1

2 ) m is odd

Λ(m2 − 1, m
2 + 1) m ≡ 0 mod 4

Λ′(m2 − 1, m2 + 1) m ≡ 2 mod 4

. (3.8)

The rossing number of these polygons (3.7) follows by expliit alulation. They are 1-omponent by

diret inspetion. (In general, Λ(m1,m2) appears to be 1-omponent when m1 and m2 are relatively

prime.) �

These examples leave not muh room for improvement. For odd m, (3.1) settles their maximality.

When m is even, by modifying the argument at the end of the proof of Lemma 3.1 to the middle two

horizontal edges, it is also easy to onlude that (3.1) annot be made sharp by a 1-omponent polygon.

Thus the examples of Proposition 3.3 an be improved by at most 1 rossing for m ≡ 0 mod 4 and by at

most 2 rossings for m ≡ 2 mod 4.

Computation 3.4 Still, verifying whether the (1-omponent) polygons Πm have maximal rossings (for

even m) is not entirely trivial. We wrote a omputer program to test this, whih in fat found the

family Λ′
in (3.8). For m = 4, 6 there are exeptional maximal rossing polygons Λ′(2, 2) =

(as ompared to Λ(1, 3)) , and , as ompared to Λ′(2, 4) = . We know that

the polygons (3.8) are maximal rossing for even m with 8 ≤ m ≤ 24.

Certainly, we are interested more in grid diagrams of links, with rossing information, and in that ase

Lemma 3.1 easily modi�es to show the following.

Lemma 3.5 Every grid link diagram D of size µ(D) = m has writhe |w(D)| ≤ (m− 1)2/4.

Proof. It is essentially the same proof as for Lemma 3.1, exept noting that (3.2) modi�es to

∑
( signs of intersetions of l ) ≤

∑

lh above l, wl(lh) = 1

wl(lh) , (3.9)

beause signs of rossings on l oming from lh with wl(lh) = 2 anel out. Then the estimates (3.3) and

(3.6) exatly halve. �

Example 3.6 If we allow multiple omponents of the link, and onsider m even, then again the bound

in Lemma 3.1 (in the form of halving (3.6)) is sharp, as shows the (m/2,m/2)-torus link:

At the ost of dereasing the number of rossings by O(m), one may obtain a knot, like the (m/2,m/2+
1)-torus knot, or adjust m to be odd.
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Remark 3.7 Note that Lemma 3.1 immediately gives (1.1) for every link L. While some redutions may

be possible under link isotopy (whih is re�eted in Cromwell's moves [Cr℄), we have failed to signi�antly

improve upon this estimate. This problem develops serious enough to merit a separate aount if later

progress is made. In ontrast to the well-known bounds in [BP, JP℄ (see the proof of Corollary 1.2), it is

striking that an upper estimate of the rossing number of a link in terms of its ar index has apparently

never been previously onsidered in the literature. We note, though, that in Example 3.6, the featured

torus links appear in minimal rossing number diagrams, so that the right of (1.1) annot be redued by

more than a fator of 2 (asymptotially in a(L)).

4 Thurston-Bennequin invariant

4.1 Weight model for the Thurston-Bennequin invariant

The main topi of this work starts from the observation that a braided surfae of Euler harateristi 0,

whih is a K-knotted annulus, is essentially a grid diagram of the underlying ompanion knot K.

De�nition 4.1 Let for a knot K and integer t,

• A(K, t) be the (link of the) t-framed K-knotted annulus,

• W+(K, t) and W−(K, t) the t-framed Whitehead doubles of K with positive and negative lasp, and

• B(K, t) the t-framed Bing double of K.

We will usually abuse the distintion between the annulus and the link whih is its boundary. To

disambiguate among di�erent onventions for framing used elsewhere, we speify that for us, for example,

A(©, 1) is the positive (right-hand) Hopf link, and A(©,−1) the negative one. Also, W+(©, 1) is the
positive (right-hand) trefoil, andW+(©,−1) = W−(©, 1) the �gure-8-knot. We an understandW+(K, t)
resp. W−(K, t) as the result of plumbing a positive resp. negative Hopf band into A(K, t) and taking the

knot whih is the boundary of the resulting Seifert surfae. In a similar way, we an understand B(K, t)
as the 2-omponent link whih is obtained by plumbing both a positive and a negative Hopf band into

A(K, t) and taking the boundary. Thus for instane B(©, 0) is the 2-omponent unlink, and B(©, 1) is
the Whitehead link.

Let D be a grid diagram of a knot K. Replaing eah vertial segment with a half twisted band as

shown below, we get a braid in band presentation, denoted by βD. (Compare with [Nu, Theorem 3.1℄.)

Then the losure β̂D bounds a twisted annulus. Therefore β̂D = A(K, t) for some t.

⇒

✲
✲
✲
✲
✲
✲

D βD

β̂D

⇒ ✲
✲
✲
✲
✲
✲

(4.1)

Consider the situation that the band presentation is positive. Then obviously A(K, t) for the resulting
framing t is strongly quasipositive. A question is what is the framing t, whih we will write as

t = λ(D) , (4.2)
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in dependene of the diagram D, and how to read λ(D) o� D. To explain the formula for λ(D), given
below as (4.5), we �x some notation.

Let the weight of a grid diagram D be

Z(D) =
1

2

∑

e edge of D

sgn(e) , (4.3)

where the signs of the edges are determined as follows:

sgn(e) =

{
1 e is vertial

±1, 0 e is horizontal and one of the following forms

0 +1 −1 0
(4.4)

Example 4.2

D

Z(D) =
1

2


(1 + · · ·+ 1)︸ ︷︷ ︸

vertial, L to R

+(0 + 0 + 1 + 0 + 0)︸ ︷︷ ︸
horizontal, B to T


 = 3

Remark 4.3 This weight formula (4.3) an be generalized to non-positive band presentations by letting

eah vertial edge have the sign of the orresponding band. But we will treat this more general ase only

oasionally here.

We then an identify the framing t in (4.2).

Lemma 4.4 With w(D) being the writhe, we have

λ(D) = Z(D)− w(D) . (4.5)

Proof. One an see that when the Seifert irles of the losed braid diagram β̂D of A(K, t) are made

small, one obtains a diagram of A(K, t), where the band obtained by thikening D is twisted. By a

straightforward ombinatorial observation, the twisting of the band is given by Z(D). The untwisted

band built from D arries the framing −w(D) itself. This gives (4.5). �

Remark 4.5 One has a ertain freedom to vary the diretion from whih to read the bands of the braid

representative βD of A(K, t) o� the grid diagram D of K. We explain our onvention here in an example

to make lear how band presentations are used for spei� knots below. While horizontal and vertial

edges are easily interhangeable in grids, disks and bands are far less so in braid band presentations. The

hange of diretion will give di�erent t, but will hange K only up to mirroring.

The default diretion of reading will be from the left. Reading the grid diagram D in (4.1) from the

left gives the word [14][35][24][36][15][26] , with [ij] = σi,j of (2.2). Reading D from the right is meant

to give the reverse order of (band) letters. This is the result of reading from the left a grid diagram D′
,

whih is obtained from the mirror image !D after a �ip (π rotation along the vertial axis). Reading D
from the bottom gives the word [46][25][13][24][36][15] , whih arises when reading from the left !D after

a rotation by −π/2. Reading from the top again reverses these letters and results in reading from the

left D after the ombination of a �ip (along the horizontal axis) and −π/2 rotation. Note that thus we

onsider braid strands numbered right to left when reading a grid diagram from the right and from the

top (while left to right otherwise).
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De�nition 4.6 Also, we an use the band presentation of βD to speify the grid diagram D itself (see

Example 7.25). The mirroring of D is �xed by default by saying that βD should be obtained when reading

D from the left. This means that we an write the grid diagram D in (4.1), even omitting brakets, as

14 35 24 36 15 26 .

Sine we deal with grids of size 10 or more, let us also already �x here that we use initial apital Latin

letters to denote two-digit integers, so that for example, 4C = [4, 12] = σ4,12.

Let br(D) be the vertial bridge number of D, whih is the number of sign-0 horizontal edges of D of

one of either types in (4.4)

br(D) := #




0

 = #




0




Lemma 4.7 We have

br(D) ≤ Z(D) ≤ µ(D)− br(D) , (4.6)

and thus

br(D)− (µ(D) − 1)2/4 ≤ λ(D) ≤ (µ(D) + 1)2/4− br(D) . (4.7)

Proof. The left inequality in (4.6) holds beause eah piee of the knot between two vertial extrema

ontributes at least 1 to the weight sum, and we have 2br(D) suh piees. The right inequality holds

beause there are 2br(D) edges in D with sign 0. By using Lemma 3.5,

−(µ(D)− 1)2/4 ≤ w(D) ≤ (µ(D) − 1)2/4 . (4.8)

Then, with (4.6), (4.5) and (4.8), we obtain (4.7). �

Let a(K) be the ar index of K, the minimal µ(D) over all grid diagrams D of K. The so far best

idea is, take a minimal grid diagram µ(D) = a(K). Then, with (4.6), (4.5) and (4.8), we have

br(D)− (a(K)− 1)2/4 ≤ λ(D) ≤ (a(K) + 1)2/4− br(D) .

Thus we have:

Theorem 4.8 There exists a number λmin(K) with

br(K)− (a(K)− 1)2/4 ≤ λmin(K) ≤ (a(K) + 1)2/4− br(K) , (4.9)

suh that for all t ≥ λmin(K), we have that A(K, t) is strongly quasipositive on bsqp(A(K, t)) ≤ a(K) +
t− λmin(K) strands .

We will use λmin(K) often in the following. Two aveats are in order regarding this notation. The `min'

refers to the minimum with respet to number of strings of the surfae A(K, t) (or horizontal segments in

the grid diagram of K), not the framing t itself. And, it is not assumed that λmin is unique. At least for

the unknot K,

both b(A(©, 0)) = b(A(©, 1)) = 2, thus λmin(©) = 0, 1. (4.10)

This speial behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness

and minimality of λmin(K) was settled, as will be disussed below; see Theorem 5.11. But we do not wish

to exlude K = © onsistently. We prefer to maintain the symbol λmin(K), stipulating that formulas

involving λmin(K) are meant to hold whatever of either values (4.10) is hosen for K = ©. For K 6= ©,

the reader may assume that

λmin(K) = λ(K) , (4.11)
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though we will not use this before stating Theorem 5.11.

Proof of Theorem 4.8. When µ is augmented by 1, we an always augment by 1,

1 =⇒
1

1
1

(4.12)

resp. preserve

1 =⇒
1

−1
1

(4.13)

any given framing λ(D) by the above two moves. (Apply an adjusting PL-map on the half-planes above

and below the newly formed horizontal edge.) We all these moves in the following positive and negative

stabilization, resp. Thus, λ(D) augments by 1 under positive stabilization, and negative stabilization

does not hange λ(D). (Neither stabilization hanges w(D). Note that the diagram D1 of A(K, t)
obtained from D always has s(D1) = µ(D) Seifert irles and writhe w(D1) = µ(D).) The laim follows

for a(K) + t − λmin(K) strands from positive stabilization, and for larger strand number by (further)

negative one. �

The Thurston-Bennequin invariant TB(D) of a grid diagram D an be de�ned as is being identi�ed

in the following theorem.

Theorem 4.9 For any grid diagram D, the quantity Z(D) ounts the NW- or SE-orners of D.

Z(D) = #




NW-orners


 = #




SE-orners




(4.14)

Thus (1.2) holds.

Proof. The �rst is a ombinatorial observation. The seond follows from the haraterization of TB(D)
given in [LN℄ or [Ng℄. �

Example 4.10 The [J+℄ diagram D′
of 10132,

10132

read from the right (see Remark 4.5), gives the 9-strand band presentation

βD = [25][14][37][26][15][48][79][38][69] , (4.15)

where D = flip (!D′). We have µ(D) = 9, Z(D) = 3, w(D) = 2, br(D) = 3 and λ(D) = 1. Thus (4.15)

gives a (positive) band presentation of A(10132, 1). The mirroring of 10132, determined by D, is so that
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it has the P polynomial of the positively mirrored 51. We �x this mirroring in the sequel, sine we will

illustratively feature the knot a few more times. Note that it is thus opposite to Rolfsen's [Ro, Appendix℄

mirroring.

We also remark the following straightforward onsequene of Theorem 4.9.

Corollary 4.11 When the grid diagram !D is obtained from D by swithing all rossings, and a −π/2
rotation, then λ(D) + λ(!D) = µ(D).

Proof. The writhe terms of D and !D in (4.5) anel out. Thus λ(D)+λ(!D) = Z(D)+Z(!D). By taking
the average of the two orner ounts in (4.14) for D and its −π/2 rotation, we see that Z(D) + Z(!D) is
half the number of all orners of D, whih is µ(D). �

4.2 Appliation to strong quasipositivity

Let TB(K) be the maximal Thurston-Bennequin invariant of K, an invariant often onsidered in ontat

geometry [FT, LN, Ng, Ma, Ru3℄:

TB(K) := max {TB(D) : D is a diagram of K } .

We also speify a region whih will play an important role throughout the rest of the paper.

De�nition 4.12 We de�ne the framing diagram Φ(K) of K as a subset of R2
by

Φ(K) := { (µ, t) : A(K, t) has a strongly quasipositive band representation on µ strands } .

The following result of Rudolph [Ru3, Proposition 1℄ then follows diretly from Theorem 4.9. (Note

our di�erent sign onvention for t.)

Corollary 4.13 When K is not the unknot, then

λ(K) := min{ t : A(K, t) is strongly quasipositive } = −TB(K) , (4.16)

and more preisely,

A(K, t) is strongly quasipositive ⇐⇒ t ≥ −TB(K) . (4.17)

Proof. When A(K, t) has a positive band presentation, then every disk is onneted by at least two

bands. Disks onneted by one band an be removed, and suh onneted by no band do not exist unless

K = © (and t = 0), whih was exluded. Sine χ(A(K, t)) = 0, it follows that every disk is onneted by

exatly two bands, whih means that the band presentation of A(K, t) gives rise to a grid diagram of K.

It is also well known that every integer t ≥ −TB(K) an be realized as Thurston-Bennequin invariant

of some grid diagram of K. (We mentioned this above; see (4.12).) Note in passing that undoing the

removal of disks onneted by one band is, up to onjugay, positive braid stabilization. This also shows

that

(µ, t) ∈ Φ(K) =⇒ (µ+ 1, t) ∈ Φ(K) , (4.18)

whih equals the e�et of the negative grid stabilization (4.13). �



4.2 Appliation to strong quasipositivity 19

The following diagram illustrates the e�et of the positive grid stabilization within Φ(K):

✲

number of strands µ

✻
twist t

s

s

s

s

s

s

s

s

s

s

s

s

s

s

For the unknot K, we have

−TB(©) = 1 but λ(©) = 0 . (4.19)

The problem with (4.16) there is that A(K, 0) has the empty positive band presentation (on two strands),

but we do not onsider this band presentation orresponding to a grid diagram. For this reason, the

unknot will repeatedly require speial attention below. Despite the identi�ation (4.16), λ(K) will our
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,

even when we exlude K = ©.

Remark 4.14 It is possible to derive similar properties for links K. Then a framing t is needed for

eah omponent, and the relationship in Corollary 4.13 beomes slightly more involved, as beome the

framing diagram of De�nition 4.12 and its properties. We do not wish to deal extensively with links here.

However, in situation where the surfae struture is forgotten, the more self-ontained extensions to links

do emerge, as for Corollaries 5.4, 1.2, and 5.5.

In the following appliation we assume that K 6= ©. For K = ©, all the links in De�nition 4.1 are

(alternating) 2-bridge links, and suh an be handled ad.ho. for strong quasipositivity (see e.g. [Ba℄).

Proof of Corollary 1.1. The minimal genus surfae of W±(K, t) is unique. This is proved by Whitten

[Wh℄, but follows also from a result of Kobayashi [Ko℄: the plumbing S1 ∗ S2 is a unique minimal genus

surfae if and only if one of S1,2 is a unique minimal genus surfae and the other one is a �ber surfae. The

minimal genus surfae of W±(K, t) is a Hopf band plumbed into the annulus A(K, t) (whih is obviously

the unique minimal genus surfae of A(K, t); ompare below De�nition 4.1). Kobayashi's version also

shows that plumbing two Hopf bands into A(K, t) gives a unique minimal genus surfae for B(K, t). It

follows from Rudolph's results on Murasugi sum [Ru2℄ that W−(K, t) and B(K, t) are never strongly

quasipositive: their unique minimal genus surfae Murasugi desums into piees, not all of whih are

strongly quasipositive. Also, W+(K, t) is strongly quasipositive if and only if A(K, t) is. �

Sine we will need this repeatedly later, let us already here notie that the Hopf plumbing W+(K, t) =
A(K, t) ∗H an be realized by doubling a(ny) positive band in a band presentation of A(K, t).
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Example 4.15

✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲

41 A(41, 3) W+(41, 3)

A similar remark applies to W−(K, t) whenever a band presentation of A(K, t) has a negative band.

However, it is important to note that this is not the only way to generate positive band presentations

of Whitehead doubles. (A di�erent example for a trefoil Whitehead double is given in [Be, �g p. 121

bottom℄.) We will disuss Whitehead doubles further in �6.

Here, we give a simple appliation of the weight model, in estimating the Thurston-Bennequin invariant.

A ounterpart will emerge with Lemma 7.4 from the HOMFLY-PT polynomial.

De�nition 4.16 De�ne pbr(D), the plane-bridge number of D as the minimal number of Morse maxima

(or minima, i.e., half of the minimal number of Morse extrema) over all smooth di�eomorphi images of

D in S2
. Obviously br(K) ≤ pbr(D).

Lemma 4.17 For any diagram D of K, we have λ(K) ≤ 2c−(D) + pbr(D).

Proof. First, we an make D into a grid diagram by straightening out edges, and replaing wrong

rossings, i.e., those with the horizontal strand on top, as follows.

=⇒

(4.20)

(Again, as for the stabilization moves that ourred in the proof of Theorem 4.8, some small PL adjustment

is needed.) This does not hange the number of bridges.

Next, the horizontal adjustment tehnique (4.21) an be used to delete a horizontal edge e of label ±1
without rossing on it, again by applying a suitable PL-map on the half-planes above and below e. This
is the reverse of the stabilization moves, but we may need in advane to displae possible vertial edges

above or below e. (If neessary, extend the box A resp. B drawn in the following �gures until above resp.

below the entire grid diagram, to ensure that all edges enter the box horizontally.)



21

A

B

=⇒

A

B B

A

=⇒

B

A

(4.21)

The inequality we wish to prove about the diagram resulting after a move (4.21) is equivalent to the

one about the original diagram. We may therefore assume heneforth that all ±1 signed horizontal edges

are interseted by a rossing. Thus

c(D) ≥ µ(D)− 2br(D) . (4.22)

Also, we an see

Z(D) ≤ µ(D)− br(D) ,

by using that in (4.3) there are 2br(D) edges of label 0.

Then

λ(K) ≤ Z(D)− w(D)

≤ µ(D)− br(D)− w(D)

≤ c(D) + br(D)− w(D)

= 2c−(D) + br(D) .

The rest follows by minimization. �

5 Braid indies

We disuss some relation regarding the braid indies in De�nition 2.1. (Compare

2

with [Nu, Setion 3.3℄.)

As notied, Bennequin's inequality (2.5) implies that a strongly quasipositive surfae is a Bennequin

surfae, thus for K strongly quasipositive, we have (2.10). We know that bb(K) > b(K) is possible [HS℄,
but the examples K known are not strongly quasipositive. Rudolph onjetures that

bsqp(K) = b(K) (5.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16

rossings (see [St2℄). By the proof of the Jones-Kawamuro onjeture (Theorem 2.2), a Bennequin surfae

of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

bb(K) = b(K) (5.2)

implies (5.1) for strongly quasipositive knots K. The problem (5.2) is extensively studied in [St2℄.

Sine a band presentation of A(K, t) always omes from a grid diagram of K, and with a on�rmative

notie about the unknot, we have:

Corollary 5.1

min{bb(A(K, t)) : t ∈ Z } = a(K) . (5.3)

Moreover, there are at least a(K) + 1 onseutive integers t whih realize the minimum.

2

We beame aware of Nutt's paper only at a very advaned stage of this work, and apologize for some overlap.
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Proof. The ase that K is the unknot an be handled diretly: the minimizing t are t = −1, 0, 1.

When K is not the unknot, every maximal Euler harateristi (equal to 0) band presentation of

A(K, t) omes from a grid diagram of K. This shows

min{bb(A(K, t)) : t ∈ Z } ≥ a(K) .

To see the reverse inequality, take a minimal grid diagramD of K. This gives a positive band presentation

βD of A(K, t) for t = λmin(K). Now onseutively turn the a(K) bands negative, whih gives band

presentations of Bennequin surfaes for A(K, t) where t = λmin(K), . . . , λmin(K)− a(K). �

Also, beause hoosing positive bands will give a band presentation of a strongly quasipositive annulus,

we have with Corollary 4.13:

Corollary 5.2 min{bsqp(A(K, t)) : t ≥ λ(K) } = a(K) . �

Forgetting the surfae struture then yields an inequality of (ordinary) braid indies:

Corollary 5.3

min{b(A(K, t)) : t ∈ Z } ≤ min{b(A(K, t)) : t ≥ λ(K) } ≤ a(K) (5.4)

Moreover, there are at least a(K)+1 onseutive integers t whih realize the inequality b(A(K, t)) ≤ a(K).
�

The braid index of a link A(K, t) is obviously not less than the sum of the braid indies of onstituent

omponents. Thus from Corollary 5.3, we also immediately have an inequality, whih was notied by

Cromwell [Cr℄ (with the extension to links K as explained in Remark 4.14):

Corollary 5.4 (Cromwell) For every knot K, we have 2b(K) ≤ a(K). �

We obtain then the (slight) re�nement of Ohyama's inequality [Oh℄ as stated in the introdution.

Proof of Corollary 1.2. It is known that a(K) ≤ c(K) + 2, as proved in [BP℄, and a(K) ≤ c(K) for
K non-alternating [JP℄. �

Sine b(K) ≥ br(K), it further follows:

Corollary 5.5 For any knot K, we have 2(br(K) − 1) ≤ c(K). If K is non-alternating, then 2br(K) ≤
c(K). �

In the obvious extension to links, onneted sums of Hopf links show that the (�rst) inequality is

sharp. But there is a more preise onjeture, apparently due to Fox [Fo℄, and later studied and extended

by Murasugi [Mu℄. For knots K, it states

3(br(K)− 1) ≤ c(K) .

These useful impliations are worth noting, but we will see below that it is muh more important to

work with (5.4) rather than its simpli�ed variant of Corollary 5.4.

We are next going disuss what (say, strongly quasipositive) framings λ are possible for given grid

size µ, and in partiular whether λmin, the framing for a minimal (size a(K)) diagram (see Theorem 4.8)

is unique. Sine µ bounds the braid index of A(K, t), and all have the same χ, Birman-Menaso [BM℄

imply that for given λ, only �nitely many µ are possible. We will later prove a more preise statement

(Finite-Cone-Theorem 7.3).
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Question 5.6 (a) Is b(A(K, t)) ≥ a(K) for any t?
(b) At least, is b(A(K, t)) ≥ a(K) for any strongly quasipositive A(K, t)?

If (b) fails, then it would give an example A(K, t) answering negatively Rudolph's question (5.1). This

question will be further treated in Remark 7.22 and Conjeture 8.1.

To formalize this topi better, we introdue notation relating to the two grid stabilizations (4.12) and

(4.13).

De�nition 5.7 We de�ne the one C(µ, t) ⊂ Z+ × Z by

C(µ, t) = { (s, λ) : s ≥ µ, t ≤ λ ≤ t+ s− µ } .

We say (µ, t) is the tip of the one.

✲

µ number of strands

✻

t

twisting

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

· ·
·




· · ·
C(µ, t)

We an summarize some properties we have derived regarding the region Φ(K) of De�nition 4.12.

Theorem 5.8 (a) The framing diagram Φ(K) of K (see De�nition 4.12) is a union of ones.

(b) It ontains at least one one of the form C(a(K), λmin(K)) and one of the form C(µ, λ(K)).
() It ontains no points with t < λ(K) and µ < a(K).
(d) Every point (µ, t) ∈ Φ(K) satis�es

br(K)− (µ− 1)2/4 ≤ t ≤ (µ+ 1)2/4− br(K) . (5.5)

�

This estimate (5.5), that omes from (4.7), is rather rude, due to our insu�ient ontrol over the

writhe. One problem with (4.8) is that, while it an be (at least asymptotially) sharp on either side,

this unlikely happens (simultaneously) for diagrams D of the same link. Methods to address the writhe

variation exist, based on Thistlethwaite's work on the Kau�man polynomial, but they will lead to no

pleasant results here. A far more e�ient tehnique will be introdued later, whih ultimately leads to

Proposition 8.6. This will yield muh sharper bounds than (5.5), espeially when K is �xed and µ is

large. However, we emphasize that neither (5.5), nor the inequalities in Lemmas 4.17 and 7.4, follow from

alternative estimates we obtain (or, to the best of our knowledge, other known results).

We announed that we will prove later (Finite-Cone-Theorem 7.3) the ones are �nitely many. The

following Jones-Kawamuro type of onjeture (ompare with Theorem 2.2) is then suggestive.
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Question 5.9 IfK is non-trivial, is Φ(K) a single one? (This one would have to be then C(a(K), λmin(K))
with λmin(K) = λ(K).)

Example 5.10 Aording to (4.10), we have

Φ(©) = C(2, 0) ∪ C(2, 1)

being the union of two ones.

The speial ase for µ = a(K) in Question 5.9 (an analogue of the �weak� form of the Jones-Kawamuro

onjeture) was already raised in [Ng℄ in the language of grid diagrams D and Thurston-Bennequin

invariants TB(D). It was answered in [DP, Corollary 3℄.

Theorem 5.11 (Dynnikov-Prasolov [DP℄) The Thurston-Bennequin invariant of minimal grid diagrams

of a given knot K is always equal to TB(K).

We will return to this statement in �7.4 and �8.1. Note that the unknot reates no exeption here,

when using TB instead of λ and avoiding the disrepany (4.19). Despite its importane, we do not

use Theorem 5.11 substantially; it brings only minor simpli�ations, whih an be worked around. We

indiate this at a few plaes, but skip doing it onsistently, beause it does not seem a reasonable ourse

of ation.

6 Jump invariant

Turning to Whitehead doubles, Ozsváth-Szabó de�ned a number jτ (K), the jump invariant of τ , with

τ(W+(K, t)) =

{
1 t ≥ jτ (K)
0 t < jτ (K)

. (6.1)

The existene of suh a number an be seen easily from Livingston's properties of slie-torus invariants

�2.5. We have g(W+(K, t)) = 1, so for strongly quasipositive T = W+(K, t) we have τ(T ) = 1 (see

(2.27)). Also W+(K, t) → W+(K, t − 1) and W+(K, t) → © by a positive-to-negative rossing hange,

thus τ(T ) ∈ {0, 1}. It is not immediately lear that τ 6≡ 1, i.e., jτ (K) > −∞, but this is known, and we

will also be able to derive it in Proposition 6.3.

It is important, for reasons (6.11) that will transpire below, that τ an be replaed by (half of)

Rasmussen's invariant s, or any other (possible) slie-torus invariant v. In partiular, for any suh v we

have the behavior of (6.1), leading to de�ning the jump number jv(K), as studied in [LN℄. In fat, note

that one an de�ne jσ for the signature σ as well (after some modi�ation (σ+1)/2 to �t values 0, 1), but
for obvious reasons jσ(K) = 1 regardless of K. Corollary 1.1 shows then that there are many Whitehead

doubles T whih are not strongly quasipositive despite σ(T ) = 2g(T ) = 2. We obtain then the following.

Corollary 6.1 For any slie-torus invariant v, we have

jv(K) ≤ λ(K) . (6.2)

Proof. By Corollary 1.1, W+(K, t) is strongly quasipositive for t ≥ λ(K), thus from (2.27), we have

v(W+(K, t)) = 1 for t ≥ λ(K). �

Example 6.2 Equality does not always hold. An example for v = τ is T = W+(31, 3) = 1445575, whih is

a Whitehead double of the negative (left-hand) trefoil 31. There τ(T ) = 1, but T = 1445575 is not strongly
quasipositive. We have λ(31) = 6 (see [KI℄).
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Now we an also easily reover the Livingston-Naik result [LN℄.

Proposition 6.3 For any slie-torus invariant v, we have

−λ(!K) < jv(K) ≤ λ(K) . (6.3)

Proof. The right inequality in (6.3) was given in Corollary 6.1. To obtain the left inequality, we prove

that

v(W+(K, t)#W+(!K,−t)) ≤ 1 . (6.4)

We remind that both onneted sum fators have v-invariant 0 or 1.

Assume (6.4) is proved. Then sine v(W+(!K,−t)) = 1 for −t ≤ −λ(!K) for the same reasons as

Corollary 6.1, we need from (6.4) that v(W+(K, t)) = 0 for t ≤ −λ(!K), so we have the left inequality in

(6.3).

To prove (6.4), assume by ontradition that l.h.s. is 2. Thus χ4(W+(K, t)#W+(!K,−t)) ≤ −3.

By onneting with a band as indiated in Figure 1, we obtain a 2-omponent link in Figure 2, with

presumably

χ4[(6.7)] ≤ −2 . (6.5)

K!K

✲

✻ ❄

✲ ✲

framing −t framing t

❅❅■

(6.6)

Figure 1: Splie at the plae indiated by the arrow, by adding a band

But the disk region of (6.7) represents an annulus of the slie knot K#!K with framing t − t = 0.
However, pay attention that there is an orientation issue here. When K is non-invertible, then K#!K is

slie only if !K is oriented in a proper way. To resolve this issue, notie that the onstrution of W+(K, t)
does not depend on the orientation of K, and moreover, W+(K, t) is easily seen to be invertible regardless

of whether K is or not. This means one an suitably hoose orientations of W+(K, t),W+(!K,−t) when
their onneted sum in (6.4) is built. The v invariant obviously is not a�eted by this hoie. Then by

smoothing out any one of the four displayed rossings in (6.7), we obtain the unframed Whitehead double

(6.8) = W+(K#!K, 0) of a slie knot, in Figure 3, whih must be slie itself and thus have χ4 = 1. But
from (6.5), we would need χ4[(6.8)] ≤ −1, a ontradition. �

We have then the following ontribution to the Bennequin sharpness onjeture (2.8), stated in Corol-

lary 1.3.

Proof of Corollary 1.3. If K is the unknot, then W±(K, t) are twist knots, so alternating, and for

them (2.8) is resolved; see [FLL, St2℄. (Or one an make an expliit hek.) Thus we assume below that

K 6= ©.
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K# !K

✲

✲ ✲✲

Slie, framing 0, and χ4 ≥ 0

✁
✁✁☛

(6.7)

Figure 2: One of the four rossings should be smoothed out, and then one nugatory rossing removed

K# !K

✲

✲ ✲

(6.8)

Figure 3: Slie knot, χ4 = 1

We �rst deal with W+. If (1.3) holds, then beause of Corollary 1.1,

W+(K, t) is not strongly quasipositive ⇐⇒ v(W+(K, t)) = 0 . (6.9)

Furthermore, g(W+(K, t)) = 1, thus by (2.27),

v(W+(K, t)) = 0 =⇒ W+(K, t) is not Bennequin-sharp . (6.10)

Combining (6.9) and (6.10) gives the `=⇒' diretion in (1.4). The reverse diretion,

not Bennequin-sharp =⇒ not strongly quasipositive,

is among the standard ausalities following from Bennequin's inequality (2.5).

For W− notie that it unknots by a negative-to-positive rossing hange, so that v(W−) ≤ 0, while
g(W−) = 1. Thus W−(K, t) annot be Bennequin-sharp by (2.25). (The ase that K is the unknot, and

t = 0, an be handled extra.) �
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Of ourse, when v is e�etively omputable, so is jv(K). But at least for v = τ , there is a more losed

expression. Hedden [He℄ has found that

jτ (K) = 1− 2τ(K) , (6.11)

whih further eluidates Example 6.2. But the piture for Rasmussen's invariant remains less lear.

We an �t (6.11) into the general relationship

λ(K) = −TB(K) ≥ 1− 2τ(K) = jτ (K) ≥ χ4(K) . (6.12)

For the leftmost inequality, whih is due to Plamenevskaya, see the proof of Theorem 1.5 in [He2℄. One

an use (6.12) to easily obtain the property (6.3) for v = τ , whih motivated treating there a general v
rather than only foussing on this speial instane. The relationship (6.11) also identi�es when (1.3) holds

for v = τ , namely whih ours when

λ(K) = 1− 2τ(K) . (6.13)

This raises the question what knots satisfy (6.13). The ondition learly must relate to positivity

somehow , but the absene of the rotation term rot(D) in TB (ompare with [Fe, FT℄) should hint to

aution.

Lemma 6.4 Every positive �bered knot K satis�es (6.13).

Proof. A positive �bered knot has a positive diagram D where the redued Seifert graph is a tree, i.e.,

D is a diagrammati Murasugi sum of (2, n)-torus link diagrams (see [Cr2℄).

This diagram D an be Morsi�ed as done for a braid diagram in [He2, Fig. 3℄, without the addition of

extra usps for negative (braid) rossings. Like for a losed positive braid diagram, in the slightly more

general situation that the redued Seifert graph is a tree, one an arrange the Seifert irles of D so that

eah Seifert irle of D ontributes exatly one left and exatly one right usp. Thus w(D) = c(D) and
in (4.5) (after a −π/4 rotation) Z(D) = s(D). Then

−λ(K) ≥ −λ(D) = c(D)− s(D) = 2g(K)− 1 ,

where the last equality omes from Seifert's algorithm.

Next, it is known by Yokota [Yo℄ that for K positive, min dega F (K) = 2g(K), so that with the known

bound (see [FT, Fe, Ta℄)

λ(K) ≥ −min dega F (K) + 1 , (6.14)

we have

−λ(K) ≥ 2g(K)− 1 = min dega F (K)− 1 ≥ −λ(K) .

This gives that λ(K) = 1−2g(K), and �nally τ(K) = g(K) when K is positive (or more generally strongly

quasipositive). �

We do not know if for (6.13) it su�es K to be positive. This is related to the problem whether in a

positive diagram D we have |rot(D)| = 0. In the above proof, for eah pair of usps of the same Seifert

irle of D, either the left is up and the right is down or vie versa. This means by the formula [He2,

p. 625, l. -9℄ that |rot(D)| = 0. For a general positive diagram D, the proess of [He2, Fig. 3℄ is not

straightforward, though. We ertainly also know that strong quasipositivity is not su�ient for (6.13).

Example 6.5 Consider K = 161379216, the losure of the 3-braid

1 1 [13℄ 2 1 [13℄ 2 1 [13℄ 2,



28 7 HOMFLY-PT polynomial

161379216

It has min dega F (K) = 7 (and g4(K) = 4), thus by (6.14) we an onlude that (6.13) fails even for

strongly quasipositive K. (This is the only strongly quasipositive example K up to 16 rossings with

min dega F (K) < 2g4(K), so it undersores the value of the tabulation reported in [St2, Appendix℄.)

A further series of instanes satisfying (6.13), whih will play a speial role in the appendix, are

slie knots K with (A.5). They an be suspeted to be quasipositive (see Remark A.4). But for (6.13)

quasipositivity not neessary, as shows the below example.

Example 6.6 The knot K = 121628 has λ = 1 and τ = 0 (see [KI℄), thus were it to be quasipositive, it

would have τ = g4 = 0, so it would be slie. But this is easily ruled out from the Milnor-Fox ondition;

the determinant det(121628) = 17 (see (2.24)) is not a square.

7 HOMFLY-PT polynomial

7.1 Some degree inequalities

We now turn our attention to the HOMFLY-PT polynomial P in (2.13). Our goal is to use the polynomial

to prove that when t is su�iently small, then A(K, t) is not strongly quasipositive with a good lower

bound on t. The w(D) term in (4.5), as we have seen, makes bounds somewhat inelegant and ine�ient.

We use some notation from �2.4.

Lemma 7.1 For every knot K, there exists a strongly quasipositive framing t = λmin(K) ≥ λ(K) of

A(K, t), so that

min degv P (A(K, t)) ≥ 1 , maxdegv P (A(K, t)) ≤ 2a(K)− 1 . (7.1)

Proof. When K = ©, then t = 1 su�es. Thus assume again below that K is non-trivial. When L is

strongly quasipositive, then (2.7) and L being Bennequin-sharp mean that the right inequality in (2.6)

beomes an equality. By using the right inequality in (2.17), we have

min degv P (L) ≥ 1− χ(L) = 1− χ4(L) . (7.2)

In partiular for L = A(K, t), we have χ(L) ≤ 0, so

min degv P (A(K, t)) > 0 . (7.3)

We have from the skein relation (2.13)

P (A(K, t)) = v2P (A(K, t− 1)) + vz . (7.4)

Notie, by further remarks from �2.4, that for the 2-omponent link A(K, t)) the only monomials in

P (A(K, t)) that our are zpvr with odd p, r. Also min degz P (A(K, t)) = −1, and by [LiM℄ it is known

that

[P (A(K, t))]z−1 = v2t(v−1 − v)([P (K)]z0 )2 6= 0 . (7.5)
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We now know that there is a (at least one) framing (we denoted) t = λmin, so that b(A(K, t)) ≤ a(K).

Also by MFW inequality (2.18) we have

span vP (A(K, t)) ≤ 2(a(K)− 1)

for t = λmin. Now, the diagram D1 of A(K,λmin) obtained from a minimal grid diagram D of K by

replaing vertial segments by positive bands has w(D1) = µ(D) = a(K) and s(D1) = µ(D) = a(K).

Thus by MFW inequalities, we have

min degv P (D1) ≥ 1 , maxdegv P (D1) ≤ 2a(K)− 1 . (7.6)

�

Lemma 7.2 If K 6= ©,

λ(K) > max{λ(D)− µ(D) : D is a grid diagram of K} , (7.7)

with non-strit inequality if K = ©.

Proof. By using the right inequality (7.1) and the reursion (7.4) reversely a(K) times, we see

min degv P (A(K,λmin − a(K))) ≤ maxdegv P (A(K,λmin − a(K))) ≤ −1 ,

so from (7.3), we have that

A(K,λmin − a(K)) is not strongly quasipositive,

if K 6= ©. For K = ©, we an onlude that

A(K,λmin − a(K)− 1) is not strongly quasipositive .

In a similar way, for every grid diagram D of size µ(D), the annulus A(K,λ(D)) will appear in a

diagram D1 with w(D1) = s(D1) = µ(D), so

A(K,λ(D) − µ(D)) is not strongly quasipositive (7.8)

when K 6= ©, and same for A(K,λ(D) − µ(D)− 1) when K = ©. �

Sine this maximum is �nite, we have:

Theorem 7.3 (Finite-Cone-Theorem) The framing diagram Φ(K) is a union of �nitely many ones.

Proof. Note that a one C′ = C(µ′, t′) ontains a one C = C(µ, t) if and only if (µ, t) ∈ C′
. Thus if

C ⊂ ⋃
i

Ci, then C ⊂ Ci0 for some Ci0 .

Call a one C ⊂ Φ(K) essential if there is no one C′ ⊂ Φ(K) with C ( C′
. Now onsider the essential

ones Ci = C(µi, ti) in Φ(K) one by one. Order them as a (�rst potentially in�nite) sequene C1, C2, . . .
by inreasing ti, i.e., so that ti > ti−1. Note that there annot be two essential ones Ci, Cj with ti = tj ,
sine otherwise µi < µj would lead to Ci ⊃ Cj . Also there is a smallest t1 beause ti ≥ λ(K) for all i.
De�ne then

νi = max{t− µ : (µ, t) ∈ Ci} .
And now argue that νi > νi−1. Beause of (7.7), there an be only �nitely many inreases of νi. (See

Proposition 8.6 for a more preise statement and argument.) �

Another appliation of (7.7) gives an inequality we promised in stark symmetry to Lemma 4.17. (Unlike

its ounterpart, it thus does rely on the HOMFLY-PT polynomial in an essential way, though.)
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Lemma 7.4 For any diagram D of K, we have λ(K) > −2c+(D)− pbr(D).

Proof. If K = ©, then λ(K) = 0, pbr(D) > 0 and c+(D) ≥ 0, so the inequality is trivial. Thus assume

K 6= ©. We use the onversion (4.20) and the horizontal adjustment (4.21) of the proof of Lemma 4.17.

We may then assume w.l.o.g. that D is a grid diagram and all ±1 signed horizontal edges are interseted

by a rossing. Then using (7.7), we have

λ(K) > λ(D) − µ(D)

= Z(D)− w(D) − µ(D)

≥ 1

2

(
2µ(D)− 2c(D)− 2br(D)

)
− µ(D)− w(D)

= −c(D)− br(D) − w(D)

= −2c+(D)− br(D) .

In the third line we used that eah −1 edge has a rossing, and there are 2br(D) sign 0 edges. �

Remark 7.5 The number l(K), introdued later, allows for improvements of (7.8), (7.7) and Lemma

7.4. However, the present versions maintain the advantage of involving only simple geometri data of the

diagram itself, without protruding algebrai onstrutions derived from it. Sine we will �nd a number of

(other) appliations of l(K), we do not like to return here to resume this spei� line of argument. One

plae where this reasoning is inorporated is (A.13). The quantity l(K) will serve as a lower estimate for

the ar index, of whih we put ahead a simpli�ed variant.

Let P = P (A(K, t)) for some t. Keep in mind by �2.4 that P |z 6=1 is the polynomial P with all terms

of z-degree 1 removed. Beause of (7.5), talking about its degrees makes sense.

Lemma 7.6 The integer

l′(K) :=
1

2
span vP (A(K, t))|z 6=1 + 1 (7.9)

does not depend on t and satis�es

a(K) ≥ l′(K) . (7.10)

Proof. By onstrution, b(A(K,λmin)) ≤ a(K), so by MFW inequality (2.18), we see that (7.10) is true

for t = λmin. And for other t, note that the relation (7.4) does not add any terms of z-degree di�erent
from 1. That l′(K) does not depend on t follows for this same reason. �

But in fat, the z1-term of P is also interesting, and its study relates to the �ooking� alluded to in

the abstrat of the paper.

7.2 Estimating a(K): the pan

Like for the rossing number, there are only �nitely many knots of given ar index. However, one some

lassial tool like (7.27) fails to give a sharp lower estimate, the method used so far, like in [J+℄, is to

exhaustively enumerate all grids of smaller size, a feat whih quiky beomes laborious and unreliable

when the size inreases. To hange this situation here, we explain next how not to disard the z1-term in

(7.10), and use it to determine a(K), and later λ(K), from the P polynomial with onsiderable preision.

Write in the rest of this setion for simpliity

Kt = A(K, t)

for (the boundary of) the t-framed annulus around K. We have then from (7.4),

P (Kt) = zv + v2P (Kt−1) . (7.11)
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To visualize the polynomial P (Kt), it will be helpful to plot its oe�ients in the plane, with (odd) v
degrees going from left to right and z degrees going top-down. Thus negative v-degree terms, left on the

y-axis, our, and will be onsidered. But negative z-degree terms, above the x-axis, our only for z−1
,

and we stipulate to hide them. We emphasize again that the z−1
-term in P (Kt) is known (see (7.5))

[P (Kt)]z−1 = (v−1 − v) · v2t([P (K)]z0)2 . (7.12)

By iterating (7.11), we an see that for su�iently high t, the polynomial P (Kt), displayed as we just

explained, starts exhibiting the pan-like shape

✲

❄

v v3 · · · v powers

z powers

z

z3

.

.

.

1 1 1 1 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · · · · ·

· · ·

︸ ︷︷ ︸
W

(7.13)

Now remove all 1's in the panhandle of (7.13). To formalize this, we onsider the leftmost and rightmost

olumn [P ]vd in (7.13), for the smallest d = dmin > 0 whih is not of the shape

[P ]vd = z , (7.14)

and

dmax = maxdegv P . (7.15)

We an easily treat arbitrary t, and will do below. In that ase, we an modify the ondition (7.14)

for dmax < 0 (keep in mind that for a 2-omponent link, d is always odd) to

[P ]vd = −z (7.16)

and dmin < 0 is set as min degv P . But, keeping the pan shape (7.13) in mind, assume here for simpliity

t ≫ 0.

Write then

l(K) =
dmax − dmin

2
+ 1 (7.17)

for the (pan) width of W in (7.13). (For the formalization of this proedure, see the expressions given at

the end of �7.4. Compare also with [Nu, Theorem 3.3℄.) In result, we have a way to �normalize out� the

t-dependene of the degrees of P (Kt) in the z1-term, giving an improved version of the lower bound l′(K)
in (7.10) for a(K). Due to the attention inited by the unknot, let us remark here that

a(©) = l(©) = l′(©) = 2 . (7.18)

Proposition 7.7 With (7.9) and (7.17), for every knot K, we have l′(K) ≤ l(K) ≤ a(K).
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30 1 0 14

-2 4 9 -33 41 -16

-12 4 1 1 1 1 1 25 -164 221 -80

-2 4 22 -342 468 -148

-2 4 8 -376 496 -128

-2 4 1 -231 286 -56

0 4 -79 91 -12

0 4 -14 15 -1

0 2 -1 1

38 1 0 18

-2 4 16 -56 66 -25

-16 4 1 1 1 1 1 1 1 81 -420 541 -200

-2 4 148 -1316 1778 -610

-2 4 128 -2248 3040 -920

-2 4 56 -2298 3013 -771

-2 4 12 -1457 1821 -376

-2 4 1 -575 680 -106

0 4 -137 153 -16

0 4 -18 19 -1

0 2 -1 1

Table 1: Polynomials of the Whitehead doubles W+(71, 7) and W+(91, 9) of the negatively mirrored 71
and 91. The framing t an be read o�, beause of (7.34), from the sum of the oe�ients in the seond

row.

It should be emphasized that what appears as a panhandle is not what is illustrated in (7.13). It is at

the �wrong� end and will remain part of the pan when t is large.

Had the oe�ients in these �false� panhandles been signed in the opposite way, i.e., to be −1, the

polynomials of A(!71, t) and A(!91, t) would have instantiated the possibility (7.19). (Being signed +1,

these oe�ients will beome 2 for large t.)

Proof. Obviously l′(K) ≤ l(K), so we prove the right inequality. Beause of (7.18), we also assume

K 6= ©.

When we set (7.15), it is possible that some P (Kt) for small t has MFW bound < l(K). This an

happen if

[P ]vd = z for d = dmax and possibly dmax − 2, dmax − 4, et. (7.19)

In partiular, we would need

dmax > maxdegv P |z 6=1 (7.20)

for suh terms to our. These terms (7.19) an be anelled by the inverse proess of (7.11) when their

v degree shifts down to 1 and then goes from 1 to −1.

We pause here for some autionary illustrations. We do not know if (7.19) an our. But examples

warn that it �almost� does. It an be seen from Table 2 that when K =!10132, suh a anellation (when

t = 1) ours in degree dmax − 2. But it does not in degree dmax, whih prevents a ollapse in degree.

Consider also the polynomials from Table 1. By smoothing out a rossing in the Whitehead double

lasp and taking the mirror image, one an see that when K are positive (2, n)-torus knots, then terms

[P ]vd = −z do our in large amounts. They di�er from (7.19) only by one wrong sign. In partiular

these terms also make a signi�ant di�erene to l′(K) = 4 in (7.10), evidening the prie tag of ignoring

the z1-term all out. This is emented by further knots like K = 820, 943, with l′(K) < l(K). At least, we
refer here to the inequality (7.33) whih, under mirroring (2.15), provides some limit on how many terms

an anel in (7.19).

Sine we annot exlude the situation (7.19), using

a(K) ≥ min
t∈Z

MFW(Kt) (7.21)
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(for (2.18)) will not be enough, at least in theory (see, though, Remark 7.8). However, notie that the ar

index, as bound for b(Kt), has a ertain stability: there is a number t = λmin with

b(Kt′) ≤ a(K) + |t′ − λmin| (7.22)

for every t′. (We know by Theorem 5.11 that λmin is unique for K 6= ©.) Using (7.22), we an replae

(7.21) by

a(K) ≥ min
t∈Z

max
t′∈Z

MFW(Kt′)− |t′ − t| . (7.23)

This will prevent the sporadi ollapsing of the MFW bound from deteriorating the ar index bound. It

an be seen, with a bit of tehnial argument based on (7.11), that the right of (7.23) is preisely what

was de�ned as l(K).

For instane, there an be at most two hypothetial values of t for whih MFW(Kt) < l(K), and for

them hoosing |t′ − t| = 1 should su�e to see

MFW(Kt′)− |t′ − t| ≥ l(K) .

An instrutive example of the argument, allowing for two suh t to our, is the following sequene.

We show a transformation of the [P (Kt)]z1
terms with inreasing t, where only the oe�ients are written,

and vertial bar stands for the separation between v-degrees −1 and 1 (making lear the degrees of all

other oe�ients; even degrees are obviously omitted). The pan edge oe�ients are boxed at some plaes

(similarly to (7.49); see also (7.57)).

−1 − 1 2 0 0 − 1
∣∣∣ → −1 − 1 2 0 0

∣∣∣ → −1 − 1 2 0
∣∣∣1 → . . . (7.24)

. . . → −1
∣∣∣ 0 3 1 1 →

∣∣∣ 0 0 3 1 1 →
∣∣∣ 1 0 0 3 1 1

In that ase l(K) = 5, while for two t, MFW(Kt) = 3 is possible. But for either t and one of the two

|t′ − t| = 1, we have MFW(Kt′) = 6 = l(K) + 1.

This argument based on (7.23) justi�es that using (7.15) is appropriate to ahieve l(K) in (7.17) to

estimate a(K) as laimed. �

Remark 7.8 There is a way to modify the alulation of l(K) to determine the r.h.s. of (7.21). Remove

all highest v-degree terms (7.14) for d > 0 and [P ]vd = 0 for d < 0, until you reah a degree d′max

(with oe�ient [P ]vd) not of that form. Similarly, remove all lowest v-degree terms (7.16) for d < 0 and

[P ]vd = 0 for d > 0, �nding d′min. Then

l(K) ≥ min
t∈Z

MFW(Kt) ≥
d′max − d′min

2
+ 1 .

Note that on the right there is still no equality, beause when t is �xed, the just desribed anellation

of terms in P (Kt) an only our on one side (either for low, or for high powers of v, but not for both).
Still, in the present form the estimate is good enough to allow us to on�rm that in fat

l(K) = min
t∈Z

MFW(Kt) (7.25)

for all prime knots K up to 10 rossings. We do not know whether this equality holds in general.

Sine P (A(K, t)) are interonvertible for all t, one an determine l(K) from P (A(K, t)) for any t, and
then hope to determine a(K) if a(K) = l(K).

De�nition 7.9 We say that K is l-sharp if a(K) = l(K).
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[25℄[14℄[37℄[26℄[15℄[48℄[79℄[38℄-[69℄

55 132 -1 17

7 13 9 -21 16 -4

5 15 -15 109 -186 86 31 -25

1 15 -2 0 -80 452 -724 285 169 -100

5 15 -148 870 -1493 659 272 -160

5 15 -128 895 -1771 932 202 -130

5 15 -56 520 -1256 772 76 -56

5 15 -12 170 -536 376 14 -12

5 15 -1 29 -134 106 1 -1

7 11 2 -18 16

9 11 -1 1

[25℄[14℄[37℄[26℄-[15℄-[48℄-[79℄-[38℄-[69℄^2

56 1 0 18

-2 4 -8 21 -16 4

-8 6 1 1 16 -108 186 -86 -31 25

-8 6 2 0 80 -452 724 -285 -169 100

-4 6 148 -870 1493 -659 -272 160

-4 6 128 -895 1771 -932 -202 130

-4 6 56 -520 1256 -772 -76 56

-4 6 12 -170 536 -376 -14 12

-4 6 1 -29 134 -106 -1 1

-2 2 -2 18 -16

0 2 1 -1

Table 2: Polynomial of the annulus link A(10132, 0) and the Whitehead double W−(10132,−4) of 10132
and negative lasp, framing t = −4, together with the band presentation used, as obtained from (4.15)

(where ±[ij℄ stands for σ±1

i,j in (2.2)).

The mirroring of 10132 an be easily on�rmed from the z−1
-term of P (A(10132, 0)) and (7.5) to be

the one spei�ed in Example 4.10.

For A(10132, 0) we see the disappearane of the (short) �false� panhandle. It omprises two monomials

in z-degree 1. We all the panhandle �false� beause in the same v-degrees, a term with z3 ours, so

that this �panhandle� is not removed when reduing the framing t. Note that A(10132, 0) is not strongly

quasipositive despite min degv P > 0.
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Example 7.10 Among the Rolfsen [Ro, Appendix℄ knots, K = 10132 is the only one whih is not l-sharp.
Then l(K) = 8 (as shown in Table 2) but [J+℄ (see Example 4.10) and KnotInfo [KI℄ report a(K) = 9.

There are four non-l-sharp 11 rossing knots K (up to mirror images), i.e., suh with

a(K) > l(K) , (7.26)

namely 11379, 11424, 11455, 11459 (for whih l(K) = 9 and a(K) = 10), and 21 further examples of 12 ross-

ings.

In ase of 10132 (and a series of other examples), there is a linking number argument that an help out

determining the ar index. We formulate it as a lemma. (It an also be easily modi�ed to other knots,

but for simpliity we just present the prototype and leave it to the reader to adapt it.)

Lemma 7.11 We have a(10132) = 9.

Proof. Assume a(10132) ≤ 8. From the polynomial of the annulus link A(10132, 0) in Table 2, and (7.4),

we an see that MFW(A(10132, t)) ≤ 8 ours for t = −8, . . . , 0, and then MFW(A(10132, t)) = 8. Beause
of the bottom statement of Corollary 5.3, it is enough to prove that b(A(10132, 0)) 6= 8. We laim that

the polynomial of A(10132, 0) in Table 2 is su�ient to see that b(A(10132, 0)) > 8, as follows.

Assume b(A(10132, 0)) = 8, and β is an 8-braid whose losure is A(10132, 0). Now, the exponent sum
w(β) is made up of the exponent sums w(βi) of the two subbraids βi of β, whih give the individual

omponents β̂1 = C1 and β̂2 = C2 of A(10132, 0), and the linking number lk(C1, C2) = t = 0 of these

omponents. Sine both C1 and C2 have the knot type of 10132, and b(10132) = 4, both omponents C1

and C2 of A(10132, 0) must be losures of 4-string subbraids βi of β. Then their individual exponent sums

must be w(βi) = wmin(10132), whih is determined to be 3 (see the tables [St4℄ and the remarks below

(2.19)). Thus

w(β) = w(β1) + w(β2) + lk(C1, C2) = 3 + 3 + 0 = 6 .

But the polynomial P = P (A(10132, 0)) in Table 2 exhibits

min degv P = 1 ≤ 15 = maxdegv P ,

and looking at the re�ned inequality (2.17), we see that a braid β with n = 8 strands must have writhe

w = w(β) = 8. This is a ontradition. �

The �lassial� lower bound for a(K) omes from Kau�man's polynomial F [MB℄:

a(K) ≥ span aF (K) + 2 . (7.27)

This an also be obtained from the bound (6.14) and Matsuda's inequality (7.58). For all of the 26 non-

l-sharp knots of Example 7.10 we have span aF (K) + 2 = l(K). But span aF (K) + 2 < l(K) obviously
ours for some �F -sparse� knots like K = 942. (However, ompare also`with Example 7.30.) Likewise,

l′(K) < span aF (K) + 2 ours in Table 1 (due to (7.28)), thus the z-term retains its redentials.

Question 7.12 Is span aF (K) + 2 ≤ l(K) for all non-trivial knots K?

Example 7.13 In general the approximation l(K) ≤ a(K) is rather good. There are 2049 ar index 11

prime knots up to 16 rossings. The inequality (7.27) is sharp for 1666 of them, while 1977 (inuding all

those 1666) are l-sharp.

Computation 7.14 At least up to 12 rossings no prime alternating non-l-sharpness example was found

(i.e., l(K) = a(K) = c(K) + 2 holds for eah suh knot K). Also no anomalies ourred with the

Murasugi-Przytyki 18 rossing alternating knot (and thus inl. its mutant) with unsharp (2.18).

Question 7.15 Is a(K) = l(K) for all (non-trivial) alternating K?
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Sine Thistlethwaite [Th℄ proved that for K alternating

span aF (K) = c(K) , (7.28)

this would also be a part of Question 7.12 (as an be seen from the proof of Corollary 1.2 in �5).

Remark 7.16 In general F (K) is easier to obtain than P (A(K, t)). However, for small values of k, the
trunation P |z≤k(A(K, t)) may ome out faster than F (K). When F (K) is too slow, this raises the issue

of omputing z-trunations thereof (sine there are trunated versions of (7.27) as well). While the teh-

nology is implemented [St3℄ and ready to use, we hoose not to delve into this here at all. As long as K is

not exessively ompliated, F (K) is omparatively e�ient to obtain, and thus, in pratial terms, there

seems little wrong to always try (7.27) �rst as a lower bound for a(K). For suggestive reasons, (7.27) will
aompany us onstantly (see e.g. end of �7.3), but we like to fous on the HOMFLY-PT polynomial, and

thus will not make the omparison to (7.27) everywhere.

A further ondition we temporarily onsider is that

maxdegz P (A(K, t)) > 1 . (7.29)

Keep in mind that maxdegz P (A(K, t)) does not depend on t if for some t it is greater than 1.

The inequality (7.29) seems in pratie to always hold when K is not the unknot. Indeed, it is

onjetured more preisely (see [KS℄) that, for K 6= ©,

maxdegz P (A(K, t)) = 2maxdegz F (K) + 1 (7.30)

for the Kau�man polynomial F . (Often W±(K, t) is used instead of A(K, t), but the onversions are

straightforward.) In partiular (7.30) subsumes the expetation that

maxdegz P (A(K, t)) = 2c(K)− 1 (7.31)

for K prime and alternating. The onjeture (7.31) is still open. The most general results are due to

Brittenham-Jensen [BJ℄. We do not know about work on the extension (7.30).

Computation 7.17 We have veri�ed using Whitehead doubles that (7.30) is true for prime knots up to

12 rossings. Thus in partiular, all suh knots satisfy (7.29).

By taking the reverse parallel with the blakboard framing of a minimal rossing diagram of K,

ounting the Seifert irles, and using Morton's inequality (2.22), one always has

maxdegz P (A(K, t)) ≤ 2c(K)− 1 (7.32)

for an arbitrary non-trivial K and any t (see [BJ℄). This inequality (7.32) is not always sharp. But

the onjetured equality is that the anonial genus of the Whitehead double of a knot K (regardless of

framing and sign of lasp) oinides with the rossing number of K. And this onjeture follows for K
prime and alternating if (7.31) is on�rmed. From the identity (2.16), we remark then for every non-trivial

K and every t,
min degv P (A(K, t)) ≤ maxdegz P (A(K, t)) ≤ 2c(K)− 1 . (7.33)

This was mentioned in the proof of Proposition 7.7, and implies that the number of (potentially existing)

terms in (7.19) that lead to anellations an be at most c(K)− 1.

In general, l(K) is not easy to alulate on in�nite families of knots. Notie that, unlike (2.29) and

a orresponding property of the r.h.s. of (7.27), it is not even evidently (2 sub-)additive under onneted

sum.
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Question 7.18 Is l(K1#K2) = l(K1) + l(K2)− 2?

This turns out to be the ase in a few examples, like 10132#(!)31 and 10132#(!)10132, but as long as it
is not on�rmed, the possibility exists to extrat further information from l as a lower ar index bound,

using the relationship (2.29).

We use (7.29) for at least one partial result regarding l(K).

Lemma 7.19 We have l(K) ≥ 3 for every knot K with (7.29).

Proof. Note the speial form of the Conway polynomial (2.23) in our examples:

∇(Kt) = P (Kt)(1, z) = tz . (7.34)

Thus in partiular setting v = 1 will ollapse P (Kt) in z-degrees > 1.

By (7.29) and the ollapsing in (7.34), if the bound l(K) is at most 2, it is 2, and all Pzd terms for

d > 1 are of the form

(cuv
dmin − cuv

dmin+2)zu . (7.35)

By hoosing t properly, let w.l.o.g. dmin = 1 and dmax = dmin + 2 = 3. Note that the reverse appliation
of (7.11) will gradually annihilate all terms [P ]vd for d < dmin. Thus with dmin = 1 and dmax = 3, we
have in fat

min degv P |z≥1 = 1 ,mindegv P |z≥1 = 3 .

But beause of the form (7.35) and cu 6= 0 for u = maxdegz P ≥ 3, the substitution in (2.16) will give

min degv P |z≥1(v, v−1 − v) = 1− u (7.36)

and

maxdegv P |z≥1(v, v−1 − v) = 3 + u . (7.37)

With (7.12),

P = P |z≥1 + v2t(v−1 − v)([P (K)]z0 )2/z

for some t, and we have then

1 = P (Kt)(v, v
−1 − v) = P1 + P2 ,

where

P1 = P |z≥1(v, v−1 − v) and P2 = v2t([P (K)]z0)2 .

Now we know (7.36) and (7.37) about P1. Also 1 − u < 0 < 3 + u. Thus, adding v2t times a square for

any t annot anel all terms in v-degree 6= 0, unless span v([P (K)]z0)2 = 2 + 2u. Thus from (7.12),

span v[P (Kt)]z−1 ≥ 4 + 2u .

Sine by de�nition, dmin ≤ min degv[P (Kt)]z−1
and dmax ≥ maxdegv[P (Kt)]z−1

, we have l(K) ≥ 3+u ≥
6. This ontradition shows that l(K) annot be (at most) 2. �

Remark 7.20 By the properties of F listed in �2.4, it follows straightforwardly when F (K) 6= 1, then
span aF (K) + 2 ≥ 4. Thus, through Question 7.12, Lemma 7.19 illustrates the di�ulty to ontrol l(K).
This unpreditable behavior may, though, ontribute to its e�ieny as ar index bound.
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7.3 Appliations of Cabling

Conjeture 2.3 undersores the importane of abling in settling braid, and thus also ar index issues.

This is a perhaps less pleasant, but still more universal means than Lemma 7.11, to treat some l-unsharp
knots K.

Computation 7.21 For K = 10132 the links L we onsider with MFW(L) = 8 < a(10132) = 9 are

• L = A(K, t) = Kt for t = 0, . . . ,−8,

• L = W+(K, t) for t = 0, . . . ,−7, and

• L = W−(K, t) for t = −1, . . . ,−8.

(Of ourse, for the rest values of t we an onlude MFW(L) ≥ 9 using the relation (7.11), or a similar

relation for Whitehead double polynomials.)

All the links listed above have b(L) = 9. We easily observe b(L) ≤ 9. One an obtain a 9-string band

presentation from that for A(10132, 1) with positive bands, given in (4.15), by making some bands negative

and doubling a positive band for W+ and a negative one for W−. (Table 2 gives some examples.) At

the opposite end, we tested b(L) ≥ 9 with parallelized trunated 2-able (MFW) P , as disussed in �2.4.

The proedure took on a 4-CPU 10-year-old 2013 laptop between 2 and 15 h depending on individual

examples: an agreeable performane, when taking into aount that the diagrams resulting from 2-abling

the modi�ations of (4.15) have more than 200 rossings. (They depit ↑↑↓↓ oriented degree-4 satellites

of 10132.)

This omparative e�ieny o�ers the opportunity for more extensive heks (for other K). However,

this option was waived on, sine it still is not readily amenable to larger quantities, and it leaves unlear

what insight to expet. (We will use the above ompiled examples for later referene, though.)

Remark 7.22 Using Computation 7.21 for K = 10132, and the veri�ation of (7.25) and l(K) = a(K)
(see Example 7.10) for all other prime knots K up to 10 rossings, we an onlude that the answer to

(both parts of) Question 5.6 is a�rmative for all these 249 knots.

When (7.26) ours, i.e., K is not l-sharp, the following simpli�ation of abling may potentially be

useful. Sine κ(A(K, t)) = 2, one an able an individual omponent of A(K, t), obtaining a ↑↑↓ oriented

parallel A∗(K, t, t′) of K, where t′ is the framing of the doubled omponent. (Here thus t′ an be a

half-integer when the two opies of the doubled omponent get onneted, i.e., κ(A∗(K, t, t′)) = 2 when

2t ∈ Z but t 6∈ Z.) Cabling an individual omponent only roughly doubles (and does not quadruple) the

rossings in the braid word βD for A(K, t) = β̂D.

Lemma 7.23 For every t with b(A(K, t)) = a(K) and every 2t′ ∈ Z, we have

b(A∗(K, t, t′)) ≤ 3a(K)/2 . (7.38)

Proof. When b(A(K, t)) = a(K), then one of the omponents of A(K, t) in an a(K)-braid representative

β is a subbraid on at most a(K)/2 strands. Thus doubling this omponent C, regardless of what framing

t′ is used, an be done by adding at most a(K)/2 braid strands. (The framing an be orreted by adding

half-twists whih do not add more strands.) This gives a braid representative of A∗(K, t, t′) of at most

3a(K)/2 strands, resulting in (7.38).

Note that A(K, t) is exhangeable up to simultaneous reversal of orientation of both omponents, whih

does not a�et braid index arguments. Thus whether C is the omponent we 2-able to obtain A∗(K, t, t′)
from A(K, t), or we able the other omponent, is not relevant. (Note, though, that the framing t′ of the

abled omponent may be di�erent w.r.t. the blakboard framing of the diagram β̂.) �
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Algorithm 7.24 The following explains how one an try to use this lemma. Sine the ontrapositive of

its statement is really used, some are is needed how to proeed, and we formulate it in several steps as

an algorithm.

1. Use a band presentation βD (as in (4.1)) for a grid diagram D of K of size µ. This gives a band

presentation of A(K, t) for some t.

2. Make some bands negative to asertain that P (A(K, t)) has no panhandle. For example, when

K = 10132 and µ = 9, then we know that there are nine values of t ∈ Z for whih MFW(A(K, t)) =
l(K) = 8, namely t = −8, . . . , 0. The statement below (5.4) says that it is enough to treat one of

these t. Thus we an onsider t = 0 (whih requires one negative band), and use the polynomial in

Figure 2. In general, one an remove the panhandle (i.e., adjust t by making bands negative) only

by looking at P (A(K, t))|z≤1 .

3. Then double, with blakboard framing w.r.t. the diagram β̂D, one of the omponents of the link

β̂D = A(K, t). One obtains a link A∗(K, t, t′). There are in general two possibly (but not always)

distint integers t′, depending on whih omponent of β̂D one hooses to double. (It an be argued

that these two t′ will add up modulo 2 to the same parity as the �band width� sum

µ∑
k=1

(jk − ik − 1)

in (2.4); whih in turn has the same parity as µ; thus two distint t′ will in partiular always our

when µ is odd.)

4. Try to prove that suh a link A∗(K, t, t′) has braid index stritly greater than ⌊3(µ− 1)/2⌋. This

will prove a(K) = µ.

Example 7.25 For instane, when we do this onstrution for K = 10132 with (4.15) (one band needs

to be made negative here), this gives A∗(10132, 0, t
′) for t′ = 3, 4. We found (see (2.20)), though, that

MFW10(A
∗(10132, 0, t

′)) = 12

for both t′. Thus unfortunately, for K = 10132, the observation (7.38) does not seem useful to show

a(10132) = 9, at least as far as (2.20) is applied (within reasonable omputability).

However, there is a number of suessful ases. For example, when we arry out this proess for

K = 1427072, with the size-12 grid

13 24 58 7C 3B 1A 6C 59 8B 7A 49 26

(where A,B,C stand for 10,11,12; see De�nition 4.6), we �nd l(1427072) = 11, but making 3 bands negative,

we obtain

MFW2(A
∗(1427072, 2, 1)) = 17

(here t′ = 1 is the same for both hoies of doubled omponent), whih rules out a(1427072) = 11.

Other examples, again with µ = 12 (and a single t′), are

16 466746: 13 46 25 7A 8B 9C 3A 4B 16 7C 28 59

15 123702: 13 24 57 9C 6A 38 17 5B 49 8C 2A 6B

and

14 19935: 13 25 48 7B 3A 16 59 8B 7A 49 26

16 459158: 14 25 38 6A 7B 49 18 5A 29 6B 37

for µ = 11 (using 5 negative bands, with two di�erent t′, both having MFW2(A
∗(K, t, t′)) = 16).
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These examples do require some searh, but keep in mind that even for trunated polynomials, the

inrease in rossing number has severe (omplexity) onsequenes. (Here we tried only trunation degree

d = 2, whih does not ost muh time and allows for testing a larger number of examples.) Thus Lemma

7.23 provides a viable option to try out.

Remark 7.26 We add the following pratial hints about the determination of the ar index.

1) For more ompliated knots K, it is better to approximate l(K) from below by using z-trunations
of the HOMFLY-PT polynomial, as explained in �2.4. This was used to assist the �rst and third

authors' ongoing e�ort to tabulate the ar indies of the (non-alternating prime) 14 rossing knots.

But it also emphasizes that it is useful to have a good upper estimate of a(K) in advane. One

oinidene with the lower bound is reahed, one an then save alulation of further trunations

(and the full polynomial).

We larify that how an upper estimate of a(K) was obtained relates to the (knot-spoke) method of

[JP℄, �nding ertain proper non-alternating ars in diagrams of K. It is not neessary (and takes

extra e�ort) to obtain a minimal grid diagram expliitly.

2) As notied while proving Lemma 7.11, the statement below (5.4) provides another signi�ant short-

ut to help determining a(K) when l(K) fails. For instane, to see (in an alternative way to Lemma

7.11) that a(10132) 6= 8, it su�es to alulate a (trunated) 2-able polynomial of A(10132, t) for
only (any) one of the nine values of t that our in the enumeration of Computation 7.21.

3) Observe that the linking number argument of Lemma 7.11 an be adapted to A∗(K, t, t′) as well. One
has to onsider instead of lk(C1, C2) = t the total linking number of the omponents of A∗(K, t, t′),
whih is 2t+ t′ for t′ ∈ Z (and κ(A∗(K, t, t′)) = 3) and 2t otherwise (when κ(A∗(K, t, t′)) = 2). We

will give relevant examples at a separate plae, where we disuss the ar indies of the 14 rossing

knots.

4) Notie also Question 7.18 and the remarks below it.

To give a lookout at where we stand thus far, regarding the said at the beginning of �7.2, we have now

gained a toolkit to rule out ertain values of the ar index. We related it to a braid index (see Conjeture

8.1 below, although Part 2 of Remark 7.26 explains that we need a weaker statement), and then in turn

to the HOMFLY-PT polynomial (ompare Conjeture 2.3). These onnetions work out at least in a

pratial sense, whih gives an approah to determine a(K) for most K.

We �nish the subsetion on abling with some remarks on the relation to ar indies of ables of K,

and a prospetive (new) use of the Kau�man polynomial.

Proposition 7.27

a(Kt0) = 2a(K) when w(D) = −t0 is a writhe of a minimal grid diagram D of K. (7.39)

Moreover, eah suh w(D) satis�es

maxdega F (K) + 1 + br(K)− a(K) ≤ w(D) ≤ min dega F (K)− 1− br(K) + a(K) . (7.40)

Also

min { a(Kt) : w(D) = −t statis�es (7.40) } = min { a(Kt) : t ∈ Z } = 2a(K) . (7.41)

Proof. For `≥' in the �rst statement, notie that the ar index of a link is not less than the sum of ar

indies of its omponents. To see equality, take a minimal size a(K) grid diagram D of K and build the

(disonneted) blakboard-framed 2-parallel of D with reverse orientation of both omponents. This gives
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a grid diagram of size 2a(K) of Kt0 for t0 = −w(D). (Compare with the proof of Lemma 4.4.) With the

same reasoning, we have (7.41).

An issue with using (7.39) as an ar index obstrution is that one does not really know a priori well

what t0 would have to be. One way to restrit t0 is from Lemma 3.5. A generally better alternative arises

using a known value or estimates of λ(K). The form (7.40) we o�er uses Corollary 4.11 with µ(D) = a(K).
Note further that Z(D) ≥ br(K), sine rotating D by −π/4 would turn NW-orners into loal maxima

(and SE into loal minima) of a Morse presentation of K. This obviously holds for NE (or SW) orners

as well (when rotating by π/4), and shows

br(K) ≤ Z(D) ≤ a(K)− br(K) . (7.42)

Then we have from (4.5), and (6.14), when K 6= ©, that

w(D) − Z(D) = −λ(D) ≤ −λ(K) ≤ min dega F (K)− 1 ,

whih yields

w(D) ≤ min dega F (K)− 1 + Z(D) . (7.43)

Applying the argument on the mirror image !D gives

w(D) ≥ maxdega F (K) + 1− Z(!D) = max dega F (K) + 1− a(K) + Z(D) . (7.44)

Use now (7.42) in (7.43) and (7.44), whih shows (7.40). (When K = ©, the laim is trivially heked.)

�

Further notie that altering individual omponent orientation of a link does not hange the ar index,

and thus, for an unrestrited t ∈ Z, we may regard hereKt as a disonneted 2-able ofK. This would also

lend a meaning to Kt for a half-integer t ∈ 1
2Z \ Z, as a onneted 2-able. This situation was onsidered

by the �rst author and Takioka [LT℄, where they write q = 2t. Still, one must be areful with the sign

swith of t that ours. To avoid onfusion, let us write K̂t for the 2-able of K with framing t ∈ 1
2Z, so

that when t ∈ Z, then K̂t arises by reversing one omponent in K−t.

From here we see that we an also �2-able� (7.27).

Corollary 7.28

2 + min { span a F (Kt) : t ∈ Z } ≤ 2a(K) . (7.45)

Proof. For span a F as well, it is immaterial how individual link omponents are oriented, and thus

span a F (Kt) = span a F (K̂−t). This is the reason why when miminizing over t ∈ Z, one an replae Kt

by K̂t. �

It is not neessary to expliitly alulate F (K̂t) for more than two values t ∈ 1
2Z, sine there are

reurrene relations (analogous to (7.11)), whih determine all other F (K̂t) therefrom. Thus in pratie,

a onstraint like (7.40) is not very helpful, and it seems a bit easier to use t ∈ Z in (7.41).

Example 7.29 The �rst author and Takioka have employed this idea to determine span a F (K̂t) for prime

knots K of up to 8 rossings (and any t ∈ 1
2Z), and show that (7.27) an be used to �nd (inter alia) a(K̂t)

(and thus also a(Kt) when t ∈ Z) in all these ases. They did not onsider a(K), but their alulations
[LT, Appendix A℄ establish that the pratial variant of (7.45),

a(K) ≥ 1 +

⌈
1

2
min { span a F (Kt) : t ∈ Z }

⌉
, (7.46)

is sharp in their range. This was of ourse of little interest there, sine a(K) had long been determined

previously. But it does motivate now a loser look at (7.46).
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Example 7.30 Sine (7.27) is not sharp for K = 819, there is some improvement from (7.46) over (7.27).

In omparison to Proposition 7.7, the obvious instane to try out is again K = 10132. It an be heked

with some tehnialities (of the same style as those handled by Lee and Takioka) that (7.46) is sharp for

K = 10132. (Still (7.45) is o� by 1. Thus (7.27) does not yield enough information to determine a(K̂t) for
K = 10132, at least when t ∈ 1

2Z\Z and the sublink argument at the beginning of the proof of Proposition

7.27 fails.)

This suggests the possiblility that (7.46) is in fat quite powerful as an ar index bound. Inhowfar

(7.46) is useful in general remains to be seen. Certainly, when K has more rossings, the alulation of

F (K̂t) is very strenuous. But the trunation tehnique (Remark 7.16) ould again ome into e�et.

Trunations ould also beome even more useful for higher ables. For instane, we an modify (7.46)

to

a(K) ≥
⌈
1

3

(
2 + min { span a F (A∗(K,−w(D), w(D))) : w(D) satis�es (7.40) }

)⌉
, (7.47)

and here (7.40) beomes rather relevant again, sine the reursions between F (A∗(K, t,−t)) (exist but)
are muh more umbersome. Pay attention that (7.40) also involves a(K), but this poses no problem in

using (7.47) as an obstrution, in trying to falsify it when a partiular value of a(K) is �xed.

This approah does merit further study, but it de�nitely has to �nd its plae in a separate paper,

where we try it out on some 14 rossing knots.

7.4 Estimating λ(K): a ooking reipe

Returning to (7.13), we use the substitution (7.34) to extrat further information from the pan.

Let a1, . . . , al, for l = l(K), be the z-degree 1 oe�ients in W in (7.13):

[W ]z1 =

l∑

i=1

aiv
dmin+2i−2 . (7.48)

Obviously ai form the edge of the pan (drawn below without its handle) � whose general use is to break

your eggs when frying them.

a1 a2 · · · al

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

(7.49)

Note, though, that the possibility a1 = 0 (or al = 0) does exist (although we did not investigate whether

or how often it materializes). Furthermore, a0 = 1 an our also for dmin > 0 if [P ]vdmin has terms in

z-degree 6= 1. Here is the way we put the pan edge to our own use.

Proposition 7.31

l∑

i=1

ai ≤ λ(K) ≤
l∑

i=1

ai + (a(K)− l(K)) . (7.50)

Proof. Now remember that min degv P (Kt) > 0 (property (7.3)) for Kt strongly quasipositive (i.e.,

t ≥ λ(K)), as well as that there is a t ≥ λ(K), namely t = λmin, so that maxdegv P (Kt) ≤ 2a(K) − 1
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(property (7.1)). Thus, for the polynomial P (Kλ(K)) we have a(K)− l(K) + 1 possibilities

✲

❄

1 2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai

✲

❄

3

1

2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + 1

· · ·

✲

❄

2a(K)− 1

1 1 · · · 1︸ ︷︷ ︸
a(K)−l

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + a(K)− l

(7.51)

distinguished by the panhandle length 0, . . . , a(K)− l(K).

The pan edge oe�ients ai are not hanged for di�erent panhandle length, and by looking at (7.34),

we see (7.50). �

Thus, rather preise, information about the Thurston-Bennequin invariant manifests itself in the o-

e�ients of the polynomial, not in its degrees

3

. It provides an additional bonus of omputing P (Kt) (for
some t), beyond determining l(K). Namely, if l(K) = a(K), then one obtains λ(K) pratially for free.

This �frying eggs in the pan� proedure an be useful, for instane, in omparison to Theorem 5.11, when

a(K) is found without onstruting a minimal grid diagram expliitly (see Part 1 of Remark 7.26), or as

additional information in obstruting to the existene of ertain grid diagrams of a given knot. Remark

7.38 gives a hint how to proeed when l(K) < a(K).

To illustrate the use of (7.50), onsider the following examples.

Example 7.32 The polynomial

4

✲

❄

1 1 1 1

❵❵❵❵❵❵❵

1 2 3

7 5 6

6=1

has panhandle length 4 and pan-width l(K) = 3. If a(K) = 5, then (7.50) has on the right (5− 3) + (1 +
2 + 3) = 8, so (7.50) reads 6 ≤ λ(K) ≤ 8.

3

Of ourse, if one is allowed to use [P (K)]z0 , then t an be retrieved from [P (Kt)]z−1 using (7.12) as well.

4

We emphasize that the polynomials in this and the next example are not HOMFLY-PT polynomials of real knotted

annuli, i.e., the reader should not try to guess what K they were obtained from; we just hand-invented the polynomials for

illustrative purposes.



44 7 HOMFLY-PT polynomial

Example 7.33

✲

❄

1 1 2

❳❳❳❳❳❳❳❳❳❳❳❳

1 1 2 3

7 5 6

W

6=1

has panhandle length 2 and pan-width l(K) = 5. If a(K) = 6, then (7.50) has on the right (6− 5) + (2 +
1 + 1 + 2 + 3) = 10, so (7.50) reads 9 ≤ λ(K) ≤ 10.

We have then the following �Matsuda-Dynnikov-Prasolov� (see Remark 7.36) type of relationship.

Proposition 7.34 With the notation of �2.2 for mirror image,

l(K) ≤ λ(K) + λ(!K) ≤ 2a(K)− l(K) . (7.52)

Proof. We prove the right inequality. The argument an easily be modi�ed to show the left one. We also

assume, after inspetion, that K is non-trivial. We have (!K)−t =!(Kt) . Note that (2.15) (with κ = 2 as

for Kt = A(K, t)) gives
P (!Kt)(v, z) = −P (Kt)(v

−1, z) . (7.53)

Now by mirroring property (7.1) using (7.53), we see that there is a t = λmin(K) ≥ λ(K) with

maxdegv P ((!K)−t) ≤ −1 , min degv P ((!K)−t) ≥ 1− 2a(K) .

By how l(K) was de�ned, and again using the mirroring (7.53), there is an odd

0 > d ≥ −1− 2a(K) + 2l(K) (7.54)

so that

[P ((!K)−t)]vd 6= −z (7.55)

holds. (The ondition (7.14) mirrors through (7.53) to (7.16).)

✲

❄

1− 2a(K)
P ((!K)−t)

powers of v

pan

edge

a1 · · · al

powers of z

a1 a2 · · · al −1 −1 · · · −1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

−1

0

0
.

.

.

0

6=
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The repeated appliation of (7.11) then shows

min degv P ((!K)a(K)−t) ≥ 1

and by (7.54)

maxdegv P ((!K)a(K)−t) ≥ 2l(K)− 1 . (7.56)

✲

❄

2l− 1

2a(K)− 1

P ((!K)a(K)−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

To see this last inequality (7.56), note that the terms annihilated by (7.11) when t inreases are exatly
those for d < 0 where (7.55) does not hold. Sine a(K) = a(!K), the inequality (7.56) means that the

largest t′ with maxdegv P ((!K)t′) ≤ 2a(!K)− 1 satis�es

t′ ≤ 2a(K)− l(K)− t .

✲

❄

2a(K)− 1
P ((!K)2a(K)−l−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l1 1 · · · 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

Now we an apply Lemma 7.1 on !K. We have

λ(!K) ≤ t′ ≤ 2a(K)− l(K)− t = 2a(K)− l(K)− λmin(K) ≤ 2a(K)− l(K)− λ(K) ,

as we laimed. �

Example 7.35 We show a (�titious) exemplary transformation of the [P (Kt)]z1
terms with inreasing

t, with the symbolis used in (7.24).

5 4 1 − 1 − 1
∣∣∣ → 5 4 1 − 1

∣∣∣ → 5 4 1
∣∣∣ → (7.57)

→ 5 4
∣∣∣ 2 → 5

∣∣∣ 5 2 →
∣∣∣ 6 5 2 →

∣∣∣ 1 6 5 2 →
∣∣∣ 1 1 6 5 2



46 8 Braid indies revisited (and problematized)

It onsists of 7 steps: a(K) = 5, l(K) = 3, thus 2a(K)− l(K) = 7.

Remark 7.36 Matsuda [Ma℄ (see also [Ng℄) proved

a(K) ≥ λ(K) + λ(!K), (7.58)

whih improves the right inequality in (7.52). But in fat, Theorem 5.11 with Corollary 4.11 shows that

equality holds, answering [Ng, Question 1℄:

a(K) = λ(K) + λ(!K) . (7.59)

Then Proposition 7.34 an be interpreted by saying how muh the HOMFLY-PT polynomial �sees� from

that geometri reasoning. But we approah (7.52) from the viewpoint of strong quasipositivity, whih an

later be adapted to quasipositivity (see Proposition A.2). Thus even with Theorem 5.11, our argument is

not redundant.

Remark 7.37 When K is an amphiheiral knot, K =!K, then A(K, 0) is an (orientedly) amphiheiral

link. One an use this and (2.15) to onlude that in that ase both l′(K) and l(K) are even. This is

ompatible with the fat that a(K) is even through (7.59). Furthermore, the ai in (7.48) exhibit a shifted

antisymmetry: in the normalization dmin > 0, they satisfy ai + al+1−i = 1.

For omputational purposes, we repeat here the formal self-ontained (but not very pleasant) expression

for l(K) and the estimate (7.50) that is valid for arbitrary t. Take P = P (Kt) for some t ∈ Z. The

quantities dmin and dmax an be determined as follows. Set

m̃in degvP =

{
min degv P min degv P < 0

min{ d > 0 : [P ]vd 6= z } min degv P > 0

and

m̃ax degvP =

{
maxdegv P maxdegv P > 0

max{ d < 0 : [P ]vd 6= −z } maxdegv P < 0
.

Then

l(K) =
1

2

(
m̃ax degvP − m̃in degvP

)
+ 1 ,

and (7.50) an be stated as

λ(K)−
(
[P ]z1(v = 1) +

{
⌊−1/2min degv P ⌋ min degv P < 0

−
⌊
1/2m̃in degvP

⌋
min degv P > 0

})
∈ [0, a(K)− l(K)] .

Remark 7.38 Again, if (7.26) ours, then one an adapt the arguments in Remark 7.26 to disambiguate

the value for λ(K). This gives a pratial way to alulate this number for any given K.

8 Braid indies revisited (and problematized)

8.1 Framing ones and the ar index

Here we summarize some remarks provided on various braid indies, and add disussion of related natural

questions. They are meant to point out a series of subtleties, whih may be signi�ant or not, but whih

are easy to overlook while less straightforward to resolve. One having some partiular importane in

this ontext is Question 5.6. We reformulate part (a) here as a onjeture, with the insight gained from

Corollary 5.3 and Remark 7.22.
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Conjeture 8.1

a(K) = min
t∈Z

b(A(K, t)) (8.1)

The following reasoning will appear in several modi�ed versions below, thus we reord it as a lemma.

Compare with Theorem 5.11.

Lemma 8.2 Assume (8.1) is true. Then (4.11) holds, in partiular λmin is unique.

Proof. Take an a(K)-band positive band presentation of A(K, t) for t = λmin ≥ λ(K), and make one

band negative. By Remark 4.3, one has then an a(K)-band presentation of A(K, t−1). Now sine A(K, t)
is strongly quasipositive, it is Bennequin-sharp. But

χ(A(K, t)) = χ(A(K, t− 1)) , (8.2)

and thus the a(K)-band presentation of A(K, t − 1) is not Bennequin-sharp, i.e., it does not make (2.5)

an equality. But still b(A(K, t − 1)) = a(K) by (8.1). Now, if A(K, t − 1) is strongly quasipositive,

then beause of Theorem 2.2, every minimal braid representative of b(A(K, t − 1)) would make (2.5) an

equality. Thus we have that A(K, t− 1) is not strongly quasipositive. This means that t− 1 < λ(K), and
so t ≤ λ(K), with the reverse inequality already observed. �

Remark 8.3 Note that Conjeture 8.1, when K is alternating, is related to an a�rmative answer to

Question 7.15. But it is not entirely implied by suh answer, beause of the sporadi ollapsing senario

eluidated in the proof of Proposition 7.7. The way l(K) was de�ned, MFW(Kt) < l(K) for some t an
our. Of ourse, replaing l(K) with the bound l′(K) in (7.10) avoids the ollapsing problem. But we

remind from the proof of Proposition 7.7 that we veri�ed (7.10) to be (even very) unsharp in same ases.

More generally than (4.11), we have:

Lemma 8.4 Conjeture 8.1 implies a positive answer to Question 5.9, that Φ(K) is a single one

Φ(K) = C(a(K), λ(K)) .

Proof. Conjeture 8.1 implies that in any band presentation on s = a(K) + k strings with > k negative

bands will give an non-strongly quasipositive A(K, t). The framing t hanges with the sign of bands in an

obvious way (ompare with Remark 4.3). Thus if (s, t) ∈ Φ(K), then t− (s− a(K)) < λ(K), in partiular

(s, t− (s− a(K))) 6∈ Φ(K). Therefore,

(s, t) ∈ Φ(K) =⇒ t ≤ λ(K) + s− a(K) .

That is there are no points in Φ(K) like the enirled:
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This shows the one shape of Φ(K). �

Lemma 8.4 pertains to the situation one may expet. But one an also use Theorem 2.2 for a version

when Conjeture 8.1 is unresolved (or false).

De�nition 8.5 De�ne the defet of K by

δ(K) = a(K)−min
t∈Z

b(A(K, t))

Then the argument for Lemma 8.4 modi�es to show that an a(K)-band positive band presentation of

A(K, t) gives

λ(K) ≤ t ≤ λ(K) + δ(K) , (8.3)

and any positive band presentation of A(K, t) on s = a(K) + k strings will have

λ(K) ≤ t ≤ λ(K) + δ(K) + k = λ(K) + δ(K) + s− a(K) . (8.4)

From this, we an onlude the following.

Proposition 8.6 For a non-trivial knot K, we have that Φ(K) is the union of at most 1 + δ(K) ones.

Note that for K = ©, we have δ(K) = 0, so that the laim is false due to the irumstane (4.10).

(But, again, this ase an be worked out separately: see Example 5.10.) In Remark 7.22 we have veri�ed

that δ(K) = 0 for all prime knots K up to 10 rossings.

Proof. The ondition (8.4) plaes (s, t) into a trapezoid whih is the union of the ones (a(K), t) for t in
(8.3). Now, Φ(K) in obviously only ontained in this union. Call a one C(µ, t) in Φ(K) essential , if it is
not properly ontained in any other one in Φ(K). Among ones C(µ, t) of �xed t − µ in Φ(K), there is
always a maximal one, namely the one of the smallest µ. The same is true among ones C(µ, t) of �xed t
in Φ(K). Note also that there are no values t with λ(K) ≤ t < λmin, sine for K 6= ©, we have

λmin = λ(K)

by Theorem 5.11.

Also, for eah value x = λ(K) + 1 − a(K), . . . , λ(K) + δ(K) − a(K) there is at most one essential

one C(µ, t) in Φ(K) with t− µ = x. We all this essential one type X . Obviously C(a(K), λ(K)) is also
essential, and every other essential one is of type X, by the above maximality remark. Now we have at

most δ(K) type X essential ones. With C(a(K), λ(K)), this ompletes a set of δ(K) + 1 essential ones,

as laimed. �

Obviously, from the de�nition,

δ(K) ≤ a(K)− 2b(K) .

Thus in partiular from (8.4), we have

λ(K) ≤ t ≤ λ(K) + s− 2b(K)

for any positive band presentation of A(K, t) on s ≥ a(K) strings. Note also that, for omputational

purposes, one may replae `1 + δ(K)' in Proposition 8.6 by `1 + a(K) − l(K)', with an analogous proof

argument. (An analogous aveat regarding K = © is needed, where a(K) = l(K) = 2; see (7.18).) We

thus obtain Proposition 1.4, whih was stated in the introdution.
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8.2 Indies from braided surfaes

We return to De�nition 2.1, and the inequality

bsqp(S) ≥ b(S)

for a strongly quasipositive surfae S.

Question 8.7 While it is more than suggestive, we do not know if always equality holds. I.e., is ev-

ery strongly quasipositive surfae always realizable on its minimal number of strings in a positive band

presentation?

Beause of Theorem 2.2, this is true if b(S) = b(K) (where of ourse K = ∂S). This is also related to

the Baker-Motegi question if all minimal genus surfaes of a strongly quasipositive knot K are strongly

quasipositive (see [St2℄). From [HS℄, we know that b(S) > b(K) for some minimal genus surfae S of K.

But S (and K) is not strongly quasipositive in these examples. Rudolph's question (5.1) is then equivalent

to asking whether

bsqp(S) = b(K) (8.5)

is satis�ed for some strongly quasipositive surfae S of K. It is tempting to ask if (8.5) holds in fat for

every strongly quasipositive surfae S of K.

In ase of the links L = A(K, t) and W±(K, t), the minimal genus surfaes SL of L are unique (and

plumbing equivalent), so there is no need to distinguish between bb(SL) and bb(L), and between bsqp(SL)
and bsqp(L).

Proposition 8.8 We obviously have

min
t≥λ(K)

bsqp(A(K, t)) = a(K) , (8.6)

and for t ≥ λ(K), we an inorporate Whitehead doubles into the diagram as

bsqp(A(K, t)) ≥ b(A(K, t))

(*)

≥

bsqp(W+(K, t)) ≥ b(W+(K, t))

(8.7)

Also, if K is l-sharp, then all inequalities are equalities.

Proof. The vertial inequality (*) holds beause one an double any (positive) band in a strongly quasi-

positive band presentation of a t-twisted annulus for K (Example 4.15).

Now, onsider the ase that l(K) = a(K). Sine for K = © the equality questions in (8.7) an be

settled by diret inspetion, assume that K 6= ©, to avoid ompliations.

Consider L = A(K,λ(K)). We have

maxdegv P (L) = 2a(K)− 1 , (8.8)

and this means by (2.17) that an a(K)-braid (band) presentation of L annot be of writhe less than a(K).
Sine we did not assume l′(K) = a(K), there may be a anellation of terms in z-degree 1 (similarly to

the �rst polynomial in Table 2). Thus min degv P (L) > 1 is, in priniple, possible. But the writhe of an

a(K)-braid (band) presentation of L annot be more than a(K) due to Bennequin's inequality (2.5). This
means that the writhe of an a(K)-braid (band) presentation of L is unique, and hene b(L) = a(K).

Then one an start with t = λ(K) and propagate the bound in (2.17) through the reursion (7.4),

while applying positive stabilizations (see (4.12)). �
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Remark 8.9 By noting that we needed in the above proof only (8.8), for whih l(K) = a(K) is su�ient

but not neessary, one also obtains equalities in (8.7) for K = 10132. Pitorially speaking, this extra

argument sueeds beause the �missing terms� in P (A(K, t)), aounting for the di�erene (7.26), are

missing �at the bottom� (in low v-degrees; see the �rst polynomial in Table 2). Obviously, this immediately

hanges when v-onjugating the polynomial (by (2.15)), whih explains why the trik de�nitely fails for

the mirror image !10132.

It follows from Computation 7.21 that all inequalities in (8.7) are equalities at least when minimum

over t ≥ λ(K) is taken. This then holds for all Rolfsen knots, with mirror images (see also Example 8.11).

We an expet in (8.7) the horizontal `≥' to be `=' in general, in aordane with Rudolph's Question

(5.1). However, we do not know about (*). Obviously SW+(K,t) = SA(K,t) ∗ H is a plumbing with a

positive Hopf band H . But we know that

bsqp(S ∗H) < bsqp(S)

is possible, even for a strongly quasipositive �ber (in partiular unique minimal genus) surfae S; examples

were given in [St2℄. These examples, unsurprisingly, have higher genus, but they should still aution about

seeing (*) as suggestive in some way.

Also, regarding (8.6), we an add

min
t≥λ(K)

bsqp(A(K, t)) = a(K) = min
t∈Z

bb(A(K, t)) , (8.9)

beause every band presentation of Bennequin surfae of A(K, t) gives a grid diagram of K, and gives a

strongly quasipositive surfae of A(K, t′) for some t′ ≥ λ(K) by making all bands positive.

Proposition 8.10 Then for instane for t < λ(K), we have a similar diagram of inequalities to (8.7)

bb(A(K, t)) ≥ b(A(K, t))

(**)

≥

bb(W−(K, t)) ≥ b(W−(K, t))

(8.10)

And if K is l-sharp, then all inequalities are equalities.

Proof. The inequality (**) results from doubling a negative band in a minimal band presentation (a

negative band always exists when t < λ(K); see the remarks following Example 4.15. And if l(K) = a(K),
we an infer with a similar thought to Proposition 8.8 that all inequalities are in fat equalities. (Again,

exlude K = © after a diret hek.) The only framing t for whih anellation may ollapse the bound

MFW(A(K, t)) is when all bands in an a(K)-strand band presentation of A(K, t) are negative. Then the

argument with Bennequin's inequality applies to !A(K, t). �

Again (while it is tempting to suspet) we do not know if equalities hold in general.

Example 8.11 From Computation 7.21, we know that for all t ∈ Z,

b(W±(10132, t)) ≥ 9 = a(10132) . (8.11)

Obviously, as in Table 2, is it possible to write down expliit band presentations of A(10132, t) and

W−(10132, t) for some t < λ(10132) on 9 strings, so that we have

bb(A(10132, t)), bb(W−(10132, t)) ≤ 9 .

With Computation 7.21 we again know that thus for K = 10132, the inequalities (8.10) are equalities at
least when their hand sides are minimized over t < λ(K). Under mirroring (using the omputations and

band presentations for W+(10132, t)), we an onlude the same for K =!10132, and thus for all Rolfsen

knots.
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When (7.26) ours, though, this reasoning always relies on an expliit hek for spei� t using a

2-able polynomial. And while we expet non-l-sharp knots to be relatively rare, suh instanes K learly

inrease with rossing number (see Example 7.10). The method in Computation 7.21 soon beomes

problemati omplexity-wise, despite algorithmi optimizations. This puts a limit to the apaity of our

algebrai approah to takle a geometri issue like the sharpness of the inequalities (8.10). (But of ourse

it is the only information we have available so far.)

9 Conlusion

The work desribed here started with the simple question: how does a braided surfae of Euler hara-

teristi 0 look like? While there seems little hope to give a lassi�ation result, the attempt unfolded a

onnetion into a variety of issues. We enountered many suggestive but di�ult to resolve questions,

whose examination would require deepening this onsideration.

For smaller Euler harateristi, one obtains instead of a grid diagram a �grid-embedded (trivalent)

graph�. It an be desribed as a PL spatial embedding of a trivalent graph whose diagram an be built

up with the tiles in (2.28), and the two extra tiles

but not

Developing a similar theory of grid-embedded graphs will thus also be a long � but nevertheless perhaps

very interesting � undertaking.

A Remarks on quasipositivity

We have deided to stritly fous on strong quasipositivity of W±(K, t) and A(K, t), essentially beause

of the diret relationship in Corollary 4.13 and its extensive onsequenes.

The problem of the quasipositivity of these links is far more obsure, but perhaps also very interesting.

A.1 Knotted annuli

Let us de�ne

λq(K) := min{ t : A(K, t) is quasipositive } . (A.1)

Then we know that

λq(K) ≤ λ(K) = −TB(K) ,

so the obvious question is: is λq(K) = λ(K) for all K? Or, given (4.17), in other words: for every t, if
is A(K, t) quasipositive, is it strongly quasipositive? The answer is �no�. We identify one major reason,

whih we all λ-slieness (De�nition A.3), but it is possible what further, more peuliar, phenomena our.

Question A.1 For what knots is λq(K) = λ(K)?
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Going further, we do not know if always

A(K, t) is quasipositive =⇒ A(K, t+ 1) is quasipositive . (A.2)

That is, between the pans in (7.51), the quasipositivity of the links an swith on and o� a few times

before, for long enough panhandle length, eventually strong quasipositivity settles in. This looks like an

adventurous senario, but see Corollary A.9.

Sine the (exat) onnetion of λq to the Thurston-Bennequin invariant remains elusive, so beome

ertain methods foussing on the latter (like Theorem 5.11). But there are properties of λq that follow

from our work above.

Many of the arguments based on the HOMFLY-PT polynomial do go through. In general, though, the

preeding problems with the unknot extend here to K being slie. This hanges (weakens) the inequalities

a little, but to be preise, we either have to exlude slieness, or work in ases.

Proposition 7.34 an be hanged into the following form.

Proposition A.2 We have

{
l(K) ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) if K is not slie

l(K)− 1 ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) + 1 if K is slie

(A.3)

Proof. Lemma 7.1 holds regardless of K being slie or not. But (7.3) still holds for quasipositive A(K, t)
only if K is not slie, or t 6= 0. Thus, when K is slie, and t = 0, then we must allow, instead of (7.3), for

min degv P (A(K, 0)) = −1 , (A.4)

sine χ4(A(K, 0)) = −2 an our (see end of �2.2). Then the argument goes through, but the numeris

hanges slightly. �

The right inequalities in (A.3) are, as explained, not very interesting now (they follow from Matsuda's

result (7.58)), but the left ones have some useful impliations. To better formulate them, here we de�ne

a ondition whih will repeatedly play some role.

De�nition A.3 Call a knot K to be λ-slie if K is slie and

λ(K) = 1 . (A.5)

We say K to be λ-slie up to mirroring if one of K and !K is λ-slie.

Remark A.4 The ondition (A.5) and Rudolph's version of (2.6) (see the proof of Theorem 1.5 in [He2℄)

then also imply that a λ-slie knot K is slie Bennequin-sharp. The presumption (2.9) then possibly

suggests that a λ-slie knot is quasipositive. (Example 6.6 shows that the τ invariant is insu�ient to see

this, though.)

Example A.5 Among the Rolfsen knots, λ-slie (up to mirroring) are K = 946 and 10140. As Remark

A.4 suggests, they are indeed quasipositive, and we �x here their quasipositive mirroring, whih also

satis�es

min degv P (K) = 0 .

Corollary A.6 Assume K is l-sharp. Then either λq(K) = λ(K), or K is λ-slie and

0 = λq(K) < λ(K) = 1 . (A.6)
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Proof. Assume K is not slie. Then, (A.3) gives

l(K) ≤ λq(K) + λq(!K) ≤ λ(K) + λ(!K) ≤ 2a(K)− l(K) ,

and l(K) = a(K) implies that all inequalities are exat.

If K is slie, notie that K being l-sharp makes (A.4) relevant only if t = 0 = λ(K)− 1, as an be seen

thus.

Deal with K = © by a diret hek. Then take a minimal grid diagram D of K. Beause of l-
sharpness (or Theorem 5.11), we know that λ(D) = λmin(K) = λ(K) is unique. Obviously t ≥ λmin(K)
give strongly quasipositive A(K, t), and are not interesting. So assume t < λmin(K). Then, l(K) = a(K)
also shows iteratively that

min degv P (A(K,λ(K) − k)) = 1− 2k

for k > 0. Then A(K,λ(K) − k) an be quasipositive (and (A.4) is relevant) only if k = 1. And then we

need χ4(A(K,λ(K) − 1)) = −2, whih requires t = 0 = λ(K)− 1, and means the ondition (A.5). �

Corollary A.6 lends further impetus to the study of l(K), and a question like Question 7.15. Among

others, it leaves some prospet that at least for some lasses of alternating links, Question A.1 an be

resolved using the present approah.

Remark A.7 Notie that a λ-slie amphiheiral knot is trivial by (7.59). Thus in partiular Corollary

A.6 holds for l-sharp amphiheiral knotsK. But for them (7.59) is not needed: Assume K is amphiheiral.

Then we have from (A.3)

l(K)− 1 ≤ 2λq(K) ≤ 2λ(K) ≤ 2a(K)− l(K) + 1 = l(K) + 1 ,

but l(K) is even by Remark 7.37. This is enough to see that the middle inequality is an equality.

The slie ase ontinues to require speial attention, as witnessed by the following explanation, whih

shows in more detail how to handle individual examples.

Proposition A.8 If K is a prime knot of up to 10 rossings, then λq(K) = λ(K), exept (A.6) for

K = 946 and K = 10140.

The ondition (A.5) also determines the mirroring of the knots, as �xed in Example A.5.

Proof. First onsider the ase l(K) < a(K). This applies only to K = 10132 and K =!10132.

Let K = 10132. Then χ4(A(K, t)) = 0 for all t, and we omputed that min degv P (A(K, t)) > 0 for

t ≥ 0. When t ≥ λ(K) = 1, then A(K, t) is already strongly quasipositive, so onsider only t = 0. But

we omputed that b(A(K, 0)) = 8, and the minimal writhe of a braid representative of A(K, 0) is 6. If

A(K, 0) were to be quasipositive, then χ4(A(K, 0)) = −2, whih is not the ase (as K is not slie). This

�nishes o� K = 10132.

Next letK =!10132. Then again χ4(A(K, t)) = 0 for all t, and we omputed thatmin degv P (A(K, t)) >
0 for t ≥ 8 = λ(K). But then again A(K, t) is strongly quasipositive, so this ase is done either.

Now let a(K) = l(K). We need to onsider only K being λ-slie (and K is non-trivial), so that only

K = 946 and K = 10140 remain (with the mirroring in Example A.5). Their treatment ontinues in the

argument below. �

This leads then to the following autionary tale.

Corollary A.9 For K = 946 and K = 10140, we have (A.6).
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Proof. We heked that, if K = 946 and 10140, then

min degv P (A(K, 0)) = −1 ,

whih indeed leaves the opportunity that L = A(K, 0) is quasipositive. And it is easy to write down

(minimal) braid representatives of L: use the grid diagrams given [J+℄, and make exatly one band

negative (ompare with Example 4.10 and Table 2).

Testing the quasipositivity of these braids is very di�ult. But they satisfy, in (2.6), w − n = −2 =
χ4(L). Thus L are slie Bennequin-sharp.

In attempting a solution, I onsulted Stepan Orevkov. He indeed found the following (everything but

self-evident) quasipositive form (2.3) for one of the braids for 946 given below

5

, where xy
stands for y−1xy.

[36℄ [58℄ [27℄ [16℄ [48℄ -[37℄ [25℄ [14℄ =

[3 4 5 -4 -3 5 6 7 -6 -5 2 3 4 5 6 -5 -4 -3 -2

1 2 3 4 5 -4 -3 -2 -1 4 5 6 7 -6 -5 -4 3 4 5 -6 -5 -4 -3

2 3 4 -3 -2 1 2 3 -2 -1℄ =

4^[3 -4 3 2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 1 -3 4 3 2 -3 -4

-5 4 3 -4 3 6 5 4 7 6 7 6 5 6 7℄*

3^[2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 1 -3 4 3

2 -3 -4 -5 4 3 -4 3 6 5 4 7 6 7 6 5 6 7℄*

4^[3 3 5 5 4 6 5 6 7℄* 2^[3℄* 1^[2 3 -4℄* 6

(He also argued that the other 7 braids obtained by making some of the other bands negative are quasi-

positive as well.) This proves that A(946, 0) is quasipositive, and λq(946) = 0. Orevkov also found

quasipositive presentations for some of the similarly onstruted 9-braids for A(10140, 0). �

Remark A.10 By doubling a positive band (this preserves quasipositivity), we an also obtain a knot

L = W+(946, 0) whih is quasipositive, but not strongly so. A similar argument applies for W+(10140, 0).

Example A.11 By doubling both one positive band and the negative band, one has a band presentation

of B(K, 0) (in De�nition 4.1). Orevkov also found a quasipositive form for some of the thus obtained

braids for B(946, 0), for instane

[36℄ [58℄^2 [27℄ (-[16℄)^2 [48℄ [37℄ [25℄ [14℄=

3^[2 4 4 3 2 -4 -5 4 3 4 6 4 3 7 5 4 7 6 5 7 6℄*

3^[2 4 4 3 2 1 -4 -5 4 3 1 6 5 4 7 6 5 7 6 5 7 7℄*

4^[3 3 5 4 6 5 6℄* 4^[3 3 4 5 6 -7℄* 2^[1 3℄* 2^[3 -4℄

He also proved that the below braid for B(10140, 0) is quasipositive,

[47]2[69][28](−[17])2[59][48][36][25][13] .

(It an then be argued that all other braids obtained in a similar fashion from the brand presentations of

A(K, 0) are quasipositive as well.) Thus B(946, 0) and B(10140, 0) are quasipositive (while not strongly

so; see Corollary 1.1).

The treatment of 10132 for Proposition A.8 exempli�es why non-slie K are far easier to deal with.

The speial role of slie K is also undersored by the following fat, whih an be proved similarly to

Lemma 8.2. (We do not like to repeat the proof here; one mainly has to replae χ by χ4 in (8.2).) It is a

more theoretial (and less pratial) version of Corollary A.6.

5

Here the proper mirroring of 946 is needed, and we hose to read the grid diagram in [J+℄ from the bottom, whih gives

this mirroring; f. Remark 4.5.
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Proposition A.12 If Conjeture 8.1 is true for K, then λq(K) = λ(K), exept if K is λ-slie. �

Note also that A(K, t) for K = 946 (and other knots for whih the ondition (A.5) was relevant) were

onsidered in the paper [Tr℄.

A.2 Whitehead doubles

The quasipositivity problem of Whitehead doubles seems not to have been treated muh in the literature.

The only soure I know is the following.

Example A.13 ([He, Examples, (5)℄) The positive lasped Whitehead double W+(K, t) is not quasipos-
itive when

t ≤ −λ(!K) , (A.7)

and t is not of the form
t = −p(p− 1) , p ∈ N . (A.8)

The �rst ondition (A.7) asertains in Proposition 6.3 that v(W+(K, t)) = 0. Then exluding the values

(A.8) ensures that the determinant

det(W+(K, t)) = |1− 4t|
is not a square, hene W+(K, t) is not slie by the Milnor-Fox property (ompare with Example 6.6).

Then W+(K, t) is neither quasipositive by (2.26).

The ompliation that W±(K, t) (while always having genus 1) an turn slie (i.e., 4-ball genus 0)
beomes more subtle for Whitehead doubles. It is lear when χ4(A(K, t)) = −2, namely when t = 0 and

K is slie, and then always χ4(W±(K, t)) = −1, but these are not all: W+(©,−2) = 61, the stevedore

knot, is slie as well. In fat, the slieness problem for Whitehead doubles has an illustrious history,

whih we only brie�y mention. For K = © see [CG℄, and K being slie is the proposed (and admittably

optimisti) answer [Ki, Problem 1.38℄ when t = 0, but the problem remains unsettled even under that

onstraint.

Not all these doubles are relevant here, but this hinges on the next deision problem, when suh knots

are quasipositive. Unlike for slieness, mirroring is very relevant for quasipositivity, and the sign of the

lasp plays a ruial role. Most negative lasped Whitehead doubles are still provably not quasipositive

(see for example Computation A.21). But the situation for positive lasped Whitehead doubles seems

far less uniform. Even just onsidering the untwisted ase t = 0, Remark A.10 hints to extreme aution.

More of the same is warranted by the following illustration.

Example A.14 The knot 820 is quasipositive and slie, and thus W+(820, 0) is slie. But it is not

quasipositive � essentially this is the reason why 820 falls out of the onsideration in the proof of Proposition
A.8. However, if one takes the +1/2 twisted (onneted) 2-able of 820, i.e., the zero-framed able with the

pattern σ1 ∈ B2 (as lying in a solid torus), then it is both slie (sine 820 is so) and quasipositive (sine

820 is so, by a result of [St2℄).

Remark A.15 The provenane of 946 and 10140 in Proposition A.8 was from being λ-slie. Remark

A.4 then possibly suggests that W+(K, 0) being quasipositive but not strongly so ours only if K is

quasipositive. But Example A.14 shows that quasipositivity is not su�ient.

Sine Murasugi sum makes no sense in the 4-ball, there is no analogous relation for quasipositivity

between A(K, t) and W+(K, t), and Corollary 1.1 annot be proved in this way for quasipositivity. A

similar problem to (A.2),

W+(K, t) is quasipositive =⇒ W+(K, t+ 1) is quasipositive ,
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remains (generally) inaessible, and we annot extend Proposition 6.3 and Corollary 1.3 to λq. Obviously,

one an modify (A.1) to de�ne a number λq+(K) et., but instead of reiterating here a treatment analogous

to λq(K), it seems better to diretly restrit the values of t for whih W±(K, t) is quasipositive.

For W−(K, t), we ollet the following easy remarks, that originate from previous results.

Lemma A.16 If W−(K, t) is quasipositive, then it is slie. Also, for every slie-torus invariant v,

t > −jv(!K) ,

and in partiular

t ≥ −2τ(K) ,

and also

t = p(p− 1) , p ∈ N . (A.9)

Proof. Let v be a slie-torus invariant. BeauseW−(K, t) unknots by a negative rossing hange, we have
v(W−(K, t)) ≤ 0. Were W−(K, t) quasipositive, (2.26) implies that v(W−(K, t)) = g4(W−(K, t)) ≥ 0.

This implies g4(W−(K, t)) = 0, i.e., that W−(K, t) is slie. The property (A.9) follows from the

Milnor-Fox ondition (A.8) under mirroring (the sign in (A.8) hanges, sine we hanged the sign of the

lasp).

But it also implies the equivalent onditions

v(W−(K, t)) = 0

v(W+(!K,−t)) = 0

−t < jv(!K)

t > −jv(!K) ,

and in partiular with (6.11) also that

t > −jτ (!K) = −(1− 2τ(!K)) = −1 + 2τ(!K) = −1− 2τ(K) . �

The HOMFLY-PT polynomial does reover (albeit by entirely di�erent means from the Murasugi sum)

some parts of the omplete result of Corollary 1.1 for quasipositivity. Obviously when W±(K, t) is strongly
quasipositive, then it is also quasipositive, so here is what we obtain on the obstrution part. (Keep trak

of the ase that K = ©, whih is not exluded here, and whih at least gives some hints to the limitations

emerging.)

Theorem A.17 1. For every knot K, there is at most one value t0 so that W−(K, t0) is quasipositive.
If this value t0 ours, then the following hold.

(a) We have (with (2.14))

min cf [P (K)]z0 = ±1 , (A.10)

(b)

min degv[P (K)]z0 = −p(p− 1) , p ∈ N , (A.11)

and

()

t0 = −min degv[P (K)]z0 . (A.12)

(d) Moreover, t0 ≤ λq(K), and equality an hold only if K is slie and λq(K) = 0.
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2. W+(K, t) is not quasipositive for

t ≤ λmin(K)− a(K) + l(K)− 2 . (A.13)

Proof. Part 1. If W−(K, t) is quasipositive, then L = W−(K, t) satis�es the variant of (7.2)

min degv P (L) ≥ 1− χ4(L) . (A.14)

So in partiular

min degv P (L) ≥ 0 . (A.15)

It follows from applying the skein relation (2.13) that

P (W−(K, t)) = v−2 − v−1zP (A(K, t)) . (A.16)

Looking at the z0-term in this formula (for the others, f. Computation A.21), and using (7.5), we see

that

min degv[P (W−(K, t))]z0 ≤ −2 ,

disabling (A.15), unless

min degv(v
2t(v−1 − v)([P (K)]z0)2) = −1 . (A.17)

This ours for exatly one t = t0, namely the one in (A.12), and this t0 must be of the form (A.9), giving

(A.11). But beyond (A.17), we also need

min cf v(v
2t(v−1 − v)([P (K)]z0)2) = 1

for a anellation to our, and this means that (A.10) must hold.

For Part 1d notie that sine when A(K, t) is quasipositive, then beause of (A.14) we need

min degv P (A(K, t)) ≥ −1 . (A.18)

By the skein relation (2.13), we have then

min degv P (A(K, t′)) ≥ 1

for t′ > t, i.e., for eah t′ ≥ λq(K) + 1. Thus in (A.16), the seond summand on the right will not anel

the �rst, and min degv P (W−(K, t′)) < 0 for eah suh t′. This shows t0 < λq(K) + 1.

Also, note that (A.18) being sharp requires χ4(A(K, t)) = −2, i.e., A(K, t) bounds in the 4-ball two

disjoint disks. This an our only if K is slie and t = 0. This shows the equality property in Part 1d.

For Part 2, this is essentially the reasoning behind (7.8), with the improvement oming from l(K), as
outlined in Remark 7.5.

Namely, start with a grid diagram D of K with µ(D) = a(K) and λ(D) = λmin(K). Then apply the

skein relation (7.4) bakward, dereasing t, (at least) a(K)− l(K) + 2 times, and see that for t in (A.13),

we have

min degv P (A(K, t)) ≤ −3 .

The skein relation (2.13) (as in the mirrored variant of (A.16)) then shows that

min degv P (W+(K, t)) ≤ −2 ,

so that W+(K, t) is not quasipositive. �

Remark A.18 The inequality (A.14) and the mirroring property (2.15) also easily yield [He, Examples,

(2)℄: if both a knot K and its mirror image !K are quasipositive, then K is slie. Together with (2.16),

even more follows: we an see P (K) = 1. This tempts to suspet that the only possible K so that K and

!K are quasipositive is the unknot.
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Remark A.19 Even disregarding (A.8), the restrition (A.13) is generally weaker than (A.7). For in-

stane, using the left inequality of (7.52), and λmin(K) ≥ λ(K), we have that

−λ(!K) ≤ λmin(K)− a(K) + l(K)− 2

de�nitely holds if

2l(K) ≥ a(K) + 2 ,

whih is pratially always satis�ed. (It ertainly is for the unknot and all prime knots through 12

rossings.)

Corollary A.20 If K is quasipositive and not slie (in partiular non-trivial and strongly quasipositive),

then no W−(K, t) is quasipositive.

Proof. Beause of (A.14), we have that

min degv[P (K)]z0 ≥ min degv P (K) ≥ 2g4(K) > 0 ,

so that (A.11) annot hold. �

Computation A.21 We now know that for no prime knot K up to 10 rossings is any W−(K, t) quasi-
positive. The value t0 in Theorem A.17 exists up to mirror images for about half of the 249 knots K. For

them one an expliitly ompute a Whitehead double polynomial. (Note that from (A.16) we ignored in

the proof all terms of positive z-degree, whih of ourse an be retrieved from suh a alulation.) This

restrits

min degv P (W−(K, t0)) ≥ 0

only to L = W−(10140, 0) � the knot 10140 reappears. Here, though, it an be �tamed�. We have

min degv P (L) = 0 , maxdegv P (L) = 14 .

If quasipositive, L would have a slie Bennequin-sharp braid representative, and by the argument based on

Theorem 2.2 we repeated multiple times (see the proof of Lemma 8.2), L would have braid index b(L) = 8
(less than a(10140) = 9). But this an be ruled out by a trunated 2-able HOMFLY-PT polynomial

alulation (with the tool used in Computation 7.21).

This strongly suggests that maybe no (non-trivial) negatively lasped Whitehead double is quasipos-

itive. But in fat, there is a more general question, whih at least passed initial veri�ation (rossing

hanges in minimal diagrams of prime knots up to 16 rossings).

Question A.22 If a knot is quasipositive (and slie), an it unknot by swithing a negative rossing to

positive?

A.3 Framing diagrams

The struture of the analogue of De�nition 4.12,

Φq(K) := { (µ, t) : A(K, t) has a quasipositive braid representative on µ strands } ,

remains less lear. Positive braid stabilization still implies, as in (4.18), that

(µ, t) ∈ Φq(K) =⇒ (µ+ 1, t) ∈ Φq(K) ,
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whih gives a, muh poorer, ray struture on Φq(K). But the one struture argument obviously fails so

far: in a quasipositive braid representation, the grid is not evident, and grid stabilization makes no sense.

That is, we annot exlude the type of shape:
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Φq(K)

Nonetheless, some partial information on Φq(K) an be reovered.

Proposition A.23 When K is any knot, then Φq(K) is ontained in the union of at most 2+δ(K) ones,
and in at most 1 + δ(K) ones if K is not slie.

Proof. This is obtained by the same reasoning as for Proposition 8.6. But when K is slie (and t = 0),
then we must allow for (A.4) instead of (7.3) . Sine Φq(K) has no one struture, we an only laim that

Φq(K) is ontained in a union of ones. �

Finally, we obtain the following way to reestablish the expeted shape of Φq(K).

Corollary A.24 If K is not λ-slie and δ(K) = 0, then Φq(K) = Φ(K) is a single one.

Proof. Assume K is not slie. Obviously Φq(K) ⊃ Φ(K), and from Proposition 8.6 we have

Φq(K) ⊃ Φ(K) = C(a(K), λmin(K)) ,

so that Φq(K) ontains a one of the form C = C(a(K), t). On the opposite end, from Proposition A.23

we know that Φq(K) is ontained in a single one C(µ, λmin(K)), and we must have µ ≥ a(K) beause
δ(K) = 0. This is only possible if Φq(K) = Φ(K) = C.

Now if K is slie, but not λ-slie, then the ondition δ(K) = 0 enables us to use, instead of HOMFLY-

PT as in Corollary A.6, the proved Jones-Kawamuro onjeture (Theorem 2.2), as for Lemma 8.4. It is

the type of argument that allows us to state λ-slie in Proposition A.12 (and was outlined above it). �

In onlusion, we note that it was explained in [Ha℄ from the work in [LaM℄ that every quasipositive

link has at least one quasipositive minimal braid representative. Thus at least a problem like (5.1) is

o� the table, and an analogue of muh of the disussion in �8.2, for instane, is not very interesting for

quasipositivity. But Orevkov's question still stands whether in fat all minimal braid representatives of a

quasipositive link are quasipositive � an assertion whih is obviously false for strong quasipositivity.
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