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Abstra
t. We present a viewpoint on Euler 
hara
teristi
 0 braided surfa
es as grid diagrams. This

leads to some results regarding estimates of Thurston-Bennequin invariants of knots, strong quasi-

positivity of Whitehead doubles, jump numbers of sli
e-torus invariants, and ar
 and braid index. In

parti
ular we obtain rather sharp (�frying eggs in the pan�-style) information about maximal Thurston-

Bennequin invariants and ar
 index from the HOMFLY-PT polynomial. We extend some of these re-

sults to quasipositivity. We also 
onsider the 
rossing number of grid diagrams and re
tilinear (planar

grid) polygons, and versions of the braid index related to braided and strongly quasipositive surfa
es.
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1 Introdu
tion

This investigation resulted from attempts to understand braided surfa
es, in parti
ular Bennequin and

strongly quasipositive surfa
es. Similar to the 
ase of 
anoni
al surfa
es [St℄, we were trying to develop

some stru
tural properties. As it turned out, even in the simplest 
ase of Euler 
hara
teristi
 0, the

answer is revealingly 
ompli
ated, in that these surfa
es are essentially equivalent to grid diagrams D for

knots. It should be noted from the start that grid diagrams of links 
an be treated by essentially the same

approa
h, without very major modi�
ations, but for te
hni
al reasons we sti
k mostly to knots.

However, despite protruding su
h 
omplexity, this 
onne
tion leads to some new viewpoints, and

assimilates a number of known and new results. We present some exposition on it here, in the belief that

the topi
 
ould be bene�
ial for further study.

An outline of the paper is as follows.
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2 1 Introdu
tion

After 
ompiling preliminaries in �2, we give some simple but useful observations in �3 on 
rossing

number and writhe of grid diagrams. In parti
ular, we determine the maximal 
rossing number of a

re
tilinear polygon of given size exa
tly in the multi-
omponent 
ase (Lemma 3.1) and nearly exa
tly in

the one-
omponent 
ase (Proposition 3.3 and Computation 3.4). As a 
onsequen
e we observe that for

every link L,
c(L) < (a(L)− 1)2/2, (1.1)

where c(L) is the 
rossing number and a(L) is the ar
 index.

In �4 we will see that Euler 
hara
tesiti
 0 braided surfa
es are essentially grid diagrams D, with a

framing atta
hed, whi
h we write as λ(D). When the surfa
e is strongly quasipositive, then

λ(D) = −TB(D) (1.2)

is identi�ed, up to sign, with the Thurston-Bennequin invariant of D. We will establish this in Theorem

4.9 after introdu
ing a weight model for the Thurston-Bennequin invariant from a grid diagram (Lemma

4.4). We give some simple appli
ations, in
luding the determination of the strong quasipositivity of twisted

annuli A(K, t) in terms of the maximal Thurston-Bennequin invariant TB(K) of K (Corollary 4.13). This

is then extended to twisted positively/negatively 
lasped Whitehead doubles W±(K, t) and Bing doubles

B(K, t) as follows.

Corollary 1.1 Let K be a non-trivial knot. Then

(a) W+(K, t) is strongly quasipositive if and only if t ≥ −TB(K), and
(b) W−(K, t) and B(K, t) are never strongly quasipositive.

As we explain, in 
onforman
e with (1.2), we will usually write λ(K) = −TB(K).

In �5 we dis
uss braid indi
es b(K), and how the ar
 index a(K) is fundamentally 
onne
ted to a

braid index b(A(K, t)) (see Corollary 5.1 and Conje
ture 8.1). We give among others a modi�
ation of

Ohyama's [Oh℄ inequality.

Corollary 1.2 For every knot K, we have b(K) ≤ c(K)/2 + 1, and if K is non-alternating, then b(K) ≤
c(K)/2.

We also introdu
e the framing diagram Φ(K) of a knot K (De�nition 4.12) and its 
one stru
ture

(Theorem 5.8).

Se
tion �6 deals with the jump fun
tion jv of sli
e-torus invariants v. After we reprodu
e the

Livingston-Naik [LN℄ estimate (Proposition 6.3), we extend it with the following appli
ation to the

Bennequin-sharpness problem (2.8) for Whitehead doubles.

Corollary 1.3 Assume there is a sli
e-torus invariant v so that (6.2) is sharp for K:

λ(K) = jv(K) . (1.3)

Then for every t,

W±(K, t) is Bennequin-sharp ⇐⇒ W±(K, t) is strongly quasipositive . (1.4)

We also know (see Lemma 6.4) that positive �bered knots K satisfy (1.3).

Se
tion �7 is the longest and 
ontains a detailed treatment of the HOMFLY-PT polynomial. The

possibibility exists (Conje
ture 2.3) that the HOMFLY-PT polynomial determines the braid index, thus

this 
ould be true for the ar
 index as well. In the simplest form, we extra
t (in a �
ulinary� way) an

invariant, we 
all l(K), whi
h gives a lower bound for the ar
 index of K,

l(K) ≤ a(K)



3

(see Proposition 7.7). It (apparently, see Question 7.12) already improves upon the Morton-Beltrami [MB℄

bound.

For (even) better etimates, one 
an use 
abling, and to limit 
omplexity problems, we introdu
e

partial 
abling (Lemma 7.23). This 
an be 
omplemented by some extra arguments, and shows that the

HOMFLY-PT polynomial is e�
ient to pra
ti
ally determine the ar
 index (see Lemma 7.11 and Remark

7.26) and maximal Thurston-Bennequin number (Proposition 7.31) in most examples. We further outline

(end of �7.3) how to apply the Kau�man polynomial beyond the Morton-Beltrami inequality, and also

prove the Finite-Cone-Theorem 7.3.

Se
tion �8 mostly deals with a summary of previous 
onsiderations, in
luding a more expli
it form of

the Finite-Cone-Theorem in Proposition 8.6. A variant of this statement, whi
h uses the l-invariant, is as
follows.

Proposition 1.4 When K is a non-trivial knot, then Φ(K) is the union of at most 1+a(K)− l(K) 
ones.
�

We also highlight potential pathologies about non-
oin
iden
e of various types of braid indi
es. This


omprises Rudolph's problem (5.1). We show that the l-invariant (Propositions 8.8 and 8.10) 
an be also

used to ex
lude su
h pe
uliar behavior.

In �9 we only brie�y outline a more general theory, of �grid-embedded graphs� for braided surfa
es of

smaller (i.e., negative) Euler 
hara
teristi
.

The �nal appendix �A, given by the se
ond author, dis
usses what previous results on strong quasi-

positivity 
an be extended to quasipositivity. Compare e.g. Theorem A.17 with Corollary 1.1 above.

When strong quasipositivity is repla
ed by quasipositivity, then many 
onsiderations revolve around

sli
eness. For many (
ompanion) knots, we establish that the quasipositivity and strong quasipositivity of

knotted annuli are equivalent (for example, Corollary A.6), but that in general they are not (Proposition

A.8). We also know that some untwisted Whitehead doubles are quasipositive but not strongly quasiposi-

tive (Remark A.10), and that, while Bing doubles are never strongly quasipositive (as stated in Corollary

1.1), some are quasipositive (see Example A.11).

Throughout the treatise, we en
ounter many suggestive but di�
ult to resolve questions. We have

deliberately put emphasis on them, sin
e their examination would provide various dire
tions to deepen

the present 
onsideration.

2 De�nitions and Preliminaries

2.1 Generalities

We say an inequality `a ≥ b' is sharp if a = b and stri
t (or unsharp) if a > b. We use #E for the


ardinality of a �nite set E and ⌊x⌋ for `greatest integer' part of x ∈ Q. We also a�ord a few standard

abbreviations like `l.h.s.' (for `left hand-side'), `w.r.t.' (for `with respe
t to') and `w.l.o.g.' (for `without

loss of generality').

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are


alled as follows.

�
�
�✒

❅❅

❅❅■

positive

��

��✒

❅
❅

❅■

negative

smoothing

=⇒ �

�✒

❅

❅■

smoothed out

(2.1)
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The sign of a positive/negative 
rossing is assigned to be ±1 a

ordingly. Let c±(D) be the number

of positive, respe
tively negative 
rossings of a link diagram D, so that the 
rossing number of D is

c(D) = c+(D)+ c−(D) and its writhe is w(D) = c+(D)− c−(D). We write s(D) for the number of Seifert

ir
les of D, whi
h are the 
ir
les obtained after smoothing all 
rossings of D. We write c(K) for the

rossing number of a knot K, the minimal 
rossing number of all diagrams of K. The mirror image of K
will be written !K, and the mirror image of diagram D (in the form obtained by swit
hing all 
rossings of

D) will be !D. If K =!K (up to orientation), we 
all K amphi
heiral . We use `©' to denote the unknot

(trivial knot) in formulas. The symbol `#' is used for 
onne
ted sum. The number of 
omponents of a

link L is denoted κ(L). The bridge number br(L) of L is the minimal number of Morse maxima of L (or

equivalently, of any diagram of L). The (Seifert) genus g(L) resp. Euler 
hara
teristi
 χ(L) of a knot or

link L is said to be the minimal genus resp. maximal Euler 
hara
teristi
 of a Seifert surfa
e of L. We

have

2g(L) = 2− κ(L)− χ(L) .

Similarly write χ4(L) for the smooth 4-ball (maximal) Euler 
hara
teristi
 and

2g4(L) = 2− κ(L)− χ4(L) .

(In the following 4-ball genera and sli
eness will always be understood smoothly.) A knot K is sli
e

if g4(K) = 0, or equivalently, χ4(K) = 1. We will refer to the following basi
 fa
t: if κ(L) = 2 and

χ4(L) = 2, then both 
omponents of L must be sli
e (knots), and have linking number 0.

2.3 Braids and braided surfa
es

We write Bn for the braid group on n strands or strings . The relations between the Artin generators σi,

i = 1, . . . , n− 1 are given by

• σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and

• σiσj = σjσi for 1 ≤ i < j − 1 ≤ n− 2.

In diagrams we will orient braids left to right and number strings from top to bottom, for example:

✲
✲
✲
✲

✲

.

.

.

✲
✲
✲
✲

✲

.

.

.

σ2 σ−1
1

The relations 
an then be drawn as follows:

.

.

. ✲
✲
✲
✲
✲

.

.

.

.

.

. ✲
✲
✲
✲
✲

.

.

.

σiσi+1σi = σi+1σiσi+1

.

.

.

✲
✲

.

.

.

✲
✲

.

.

.

.

.

.

.

.

.

.

.

.

✲
✲

✲
✲

σiσj = σjσi, |i− j| > 1

There is a permutation homomorphism π : Bn → Sn, sending ea
h σi to the transposition of i and
i + 1. By a subbraid of β ∈ Bn we mean a braid obtained by taking only a subset C ⊂ {1, . . . , n} of the
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strands in β, whi
h is invariant under the asso
iated permutation π(β) of β (i.e., C is a union of 
y
les of

π(β)).

We de�ne band generators in Bn by

σi,j = σi . . . σj−2σj−1σ
−1
j−2 . . . σ

−1
i , (2.2)

For example σ2,7 ∈ B9 looks

✲
✲
✲
✲
✲
✲
✲
✲
✲

Noti
e that σi,i+1 = σi. A representation of a braid β ∈ Bn in the form

β =

l∏

k=1

σ±1
ik,jk

is 
alled a band presentation. (See e.g. [BKL℄.) Usually, it will be more legible to use the symbol

[ij] = σi,j

when writing band generators in formulas. Similarly we use −[ij] = σ−1
i,j . In 
ertain 
ases, we even omit

the bra
kets (see De�nition 4.6 and Example 7.25). Also, when j = i + 1, we often simply write i for
σi and −i for σ−1

i , when no ambiguity arises. The image of β under the abelianization Bn → Z is the

writhe (or exponent sum) of β, and is written w(β). A braid β ∈ Bn whose 
losure β̂ is the link L is a

braid representative of L. Similarly a word for β gives a (braid 
losure) diagram D = β̂ of L. When β is

a word, then w(β̂) = w(β). A band presentation β naturally spans a Seifert surfa
e of L = β̂. Following
Rudolph, we 
all this a braided surfa
e of L. For example, n = 6 and l = 6,

✲
✲
✲
✲
✲
✲

for the 6-braid β = σ1,4σ3,5σ2,4σ3,6σ1,5σ2,6. The diagram shows the 
losure L = β̂. It is easily seen

that the six `ellipti
' disks joined two by two with six twisted bands form a natural Seifert surfa
e of L.
Rudolph [Ru℄ proves that every Seifert surfa
e is a braided surfa
e. If a braided surfa
e is of minimal

genus for L, it is 
alled a Bennequin surfa
e of L [BM2℄.

A link is 
alled quasipositive if it is the 
losure of a braid β of the form

β =

µ∏

k=1

wkσikw
−1
k (2.3)
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where wk is any braid word and σik is a (positive) standard Artin generator of the braid group. (In [Ru4℄

there is some overview of this topi
.) If the words wkσikw
−1
k are of the form σik,jk , so that

β =

µ∏

k=1

σik,jk , (2.4)

then they 
an be regarded as embedded bands. Links whi
h arise this way, i.e., su
h with positive band

presentations , are 
alled strongly quasipositive links .

Bennequin's inequality [Be, Theorem 3℄ states

−χ(L) ≥ w − n (2.5)

for a n-strand braid representative of L of writhe w. If there is a braid representative β of L making (2.5)

an equality, we 
all both L and β Bennequin-sharp. This inequality was later extended to

−χ(L) ≥ −χ4(L) ≥ w − n (2.6)

(see e.g. [IS, St2℄). In an analogous way we de�ned that L and β are sli
e Bennequin-sharp.

It implies that a strongly quasipositive surfa
e, i.e., obtained from a positive band presentation, is

minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of

writhe w. Thus the surfa
e S 
onstru
ted from the band presentation yields, with (2.6),

−χ(L) ≤ −χ(S) = w − n ≤ −χ4(L) ≤ −χ(L) .

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

χ4(L) = χ(L) . (2.7)

The Bennequin sharpness 
onje
ture (see [FLL, St2℄) asserts

L is Bennequin-sharp ⇐⇒ L is strongly quasipositive . (2.8)

The se
ond author's e�orts to determine the quasipositivity of the (prime) 13 
rossing knots [St4℄ also

provides some eviden
e for a �4-ball� version of the Bennequin sharpness 
onje
ture (2.8):

L is sli
e Bennequin-sharp ⇐⇒ L is quasipositive . (2.9)

In pra
ti
al terms, every proof of non-quasipositivity of a knot passes via showing that it is not sli
e

Bennequin-sharp.

De�nition 2.1 • Let b(K) be the braid index of K, the minimal number of strings of a braid repre-

sentative of K.

• Let bb(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin

surfa
e of K.

• When K is strongly quasipositive, let bsqp(K) be the minimal number of strings to span a strongly

quasipositive surfa
e of K (only positive bands).

• Further, for a Seifert surfa
e S, let b(S) be the minimal string number on whi
h S is spanned as a

braided surfa
e.

• If S is a strongly quasipositive surfa
e, let bsqp(S) be the minimal string number on whi
h S is

spanned as su
h (i.e., arises from a positive band presentation).
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We have then (with the right inequality only valid for strongly quasipositive K)

b(K) ≤ bb(K) ≤ bsqp(K) , (2.10)

and by de�nition, with S being a Seifert surfa
e of K,

bb(K) = min{ b(S) : χ(S) = χ(K) } , bsqp(K) = min{ bsqp(S) : S strongly quasipositive } . (2.11)

We will further dis
uss these relations in �5 and �8. We also feature the following result. It 
on�rms an

expe
tation originally formulated for n = b(L) by Jones [J, end of �8℄ (later also referred to as the �weak�

form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro 
onje
ture [DP, LaM℄) For every link L, there is a number

wmin(L), so that every braid representative β of L on n strands of writhe w satis�es

|w − wmin(L)| ≤ n− b(L) . (2.12)

Generally speaking, we will use this theorem to advan
e theoreti
al appli
ations in our work, but for

pra
ti
al ones, another tool will be 
ru
ial, whi
h we introdu
e next.

2.4 HOMFLY-PT polynomial

We use the HOMFLY-PT polynomial P [LiM℄, in the Morton [Mo℄ 
onvention

P (©) = 1 , v−1P+ − vP− = zP0 , (2.13)

where P+, P− and P0 refer to the polynomials of three links with diagrams equal ex
ept at one spot,

where they 
ontain the fragments of (2.1) from left to right. The right part of (2.13) is also 
alled P 's
skein relation. We will use the suggestive notation min degv P for minimal v-degree of (any monomial

in) P , and similarly maxdegv P , and set span vP = maxdegv P − min degv P . We write [P ]zk for the


oe�
ient of zk in P , being a polynomial in v. Then, [P ]vd the 
oe�
ient of degree d in v (whi
h is itself

treated as a polynomial in z). Also set

min cf vP = [P ]vmin degv P (2.14)

to be the trailing (lowest degree) 
oe�
ient of P . The notation P |z≥k resp. P |z≤k resp. P |z 6=k will mean (the

polynomial 
onsisting of) all terms in P of z-degree at least k resp. at most k resp. di�erent from k. The z-
variable is left inside. Thus [P ]zk is a polynomial in v, while P |z≥k is a polynomial in z, v. We o

asionally

refer to P |z≤k as a (z-)trun
ated polynomial . We emphasize that mu
h of the useful information of P 
an

be obtained from trun
ations thereof (like (2.20)), whi
h are mu
h faster (subexponentially) to 
ompute

than the full polynomial. A program that 
al
ulates su
h trun
ations was introdu
ed in [St3℄, and we will

extensively apply it below.

A CPU-parallelized upgrade of the trun
ated polynomial 
al
ulation was developed to settle the last

16 
rossing prime knot standing to resolve for the below problem (5.1); it has now its own des
ription

page on [St4℄.

Two further standard properties of P are that for a link L of κ(L) 
omponents, min degz P (L) =
1− κ(L), and P (L) 
ontains only monomials zpvq for p, q odd (resp. even) when κ(L) is even (resp. odd).

The mirroring behavior of P is (signed) v-
onjugation:

P (!L)(v, z) = (−1)κ(L)−1P (L)(v−1, z) . (2.15)

We further use the identity (see [LiM, Proposition 21℄)

P (v, v−1 − v) = 1 . (2.16)
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By the MFW [Mo, FW℄ inequalities, the writhe w of an n-string band presentation of L satis�es

w + n− 1 ≥ maxdegv P (L) ≥ min degv P (L) ≥ w − n+ 1 , (2.17)

thus

MFW(L) :=
1

2
span vP (L) + 1 ≤ b(L) , (2.18)

where the left hand-side is the MFW bound for the braid index b(L). If MFW(L) = b(L), we 
all L
MFW-sharp.

When L is not MFW-sharp, there are ways to improve the braid index estimate using 
ables of L:
when L′

is a degree-c 
able of L, then

MFW(L′) ≤ b(L′) ≤ cb(L) ,

thus

b(L) ≥
⌈
1

c
MFW(L′)

⌉
. (2.19)

The method is well explained in [MS℄ (
ertainly when c = 2; some examples for c = 3, 4 
an be found in

[St3℄). We refer to su
h estimates as the 
abled MFW .

To relate this to said at the end of �2.3, we point out that MFW plus 
abled versions thereof is e�
ient

to determine the braid index of most links. In some 
ases alternative methods apply, but there is no link

L known where (2.19) at least for su�
iently high c fails to give a sharp estimate. It it thus 
onje
turable

that this is always the 
ase (see [St4℄):

Conje
ture 2.3 For every link L there is a c > 0 and a degree-c 
able link L′
of L making (2.19) sharp.

Obviously, when we 
an prove that a braid representative β of a link L is minimal, then we immediately

also obtain wmin(L) = w(β) in Theorem 2.2. However, it was also no
ited in [St5℄ that on
e (2.19) (for

some c) gives a sharp estimate of b(L), it proves along the way that wmin(L) = w(β) is unique. (And

it is not too hard to derive (2.12) either from that argument.) Thus Theorem 2.2 provides a theoreti
al

underpinning, but is neither parti
ally helpful nor essential to determine b(L) or wmin(L) for a given L.

One main drawba
k of (2.19) is that in general the polynomial of a 
able link L′
is notoriously hard

to 
al
ulate. But instead of the whole polynomial, we 
an use a trun
ation:

MFWd(L
′) =

1

2
span vP (L′)|z≤d + 1 ≤ MFW(L′) ≤ b(L′) . (2.20)

We refer below to su
h type of estimate of the braid index as trun
ated (
abled) MFW .

Returning to surfa
es, it follows from the right inequality in (2.17) that a Bennequin-sharp (in parti
-

ular strongly quasipositive) link L satis�es

min degv P (L) ≥ 1− χ(L) . (2.21)

Morton also proves in [Mo℄ the 
anoni
al genus inequality , for any diagram D of L,

maxdegz P (L) ≤ c(D)− s(D) + 1 . (2.22)

The Conway polynomial ∇ is given by

∇(L)(z) = P (L)(1, z) . (2.23)

The determinant of a knot K 
an be de�ned by

det(K) = |∇(2
√
−1)| . (2.24)

This is always an odd number (when K is a knot).

The Kau�man polynomial F = F (a, z)(K) will be needed at a few pla
es for referen
e. In Remark

7.20, we use the following well-known properties: for every link L,

• F (L) 
ontains only monomials apzq for p+ q even

• F (
√
−1, z)(L) = 1.
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2.5 Sli
e-torus invariants

We brie�y re
all Livingston's [Lv℄ formalism of �sli
e-torus invariant�. An integer-valued invariant v on

knots is a sli
e-torus invariant if

• v(K) = −v(!K), and v(−K) = v(K), where −K is K with the reverse orientation

• additivity under 
onne
ted sum: v(K1#K2) = v(K1) + v(K2)

• 
rossing swit
h rule: v(K+)− v(K−) ∈ {0, 1}

• v(K) ≤ g4(K) (or equivalently 2v(K) ≤ 1− χ4(K)), and

• v satis�es Bennequin's inequality:

2v(K) ≥ w − n+ 1

for a braid representative of K on n strings and writhe w.

These properties are not minimal (i.e., some follow from spe
ial 
ases or 
ombinations of others), but

they are what we will use in �6. (We emphasize that it is not assumed v to be de�ned on multi-
omponent

links κ(K) > 1 in any way.)

There are two known instan
es of su
h an invariant, the Ozsváth-Szabó τ invariant, and (half of)

Rasmussen's invariant s. Thus the 
on
ept was introdu
ed mainly to give these two a uniform treatment.

(The halved signature σ/2 satis�es the �rst four of the above �ve properties, but not the last.)

From the superposition of

2g(K) = 1− χ(K) ≥ 1− χ4(K) ≥ 2v(K) ≥ w − n+ 1

with (2.5), it is straightforward that

if v(K) < g(K), then K is not Bennequin-sharp . (2.25)

In relation, it follows that when K is quasipositive, then

v(K) = g4(K) , (2.26)

and

when K is strongly so, then v(K) = g4(K) = g(K). (2.27)

We will refer to these standard fa
ts a few times below.

2.6 Grid diagrams and ar
 index

An ar
 presentation of a knot or a link L is an ambient isotopi
 image of L 
ontained in the union of

�nitely many half planes, 
alled pages, with a 
ommon boundary line in su
h a way that ea
h half plane


ontains a properly embedded single ar
.

✻

θ = 0

✻

θ = π

10

✻

θ = π

5

✻

θ = 3π
10

✻

θ = 2π
5

✻

θ = π

2

✻
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A grid diagram (or, for simpli
ity simply 
alled grid often below) is a knot or link diagram whi
h is


omposed of �nitely many horizontal edges and the same number of verti
al edges su
h that verti
al edges

always 
ross over horizontal edges. We assume that horizontal/verti
al positions of verti
al/horizontal

edges are pairwise distin
t. In parti
ular, no edge tou
hes another edge, no vertex lies on the interior of

an edge, and verti
es are pairwise distin
t. Up to the adjustment of heights of horizontal and widths of

verti
al edges, a grid diagram is thus what 
an be 
omposed in the plane by the tiles

(2.28)

See, for example, [AL℄, and also 
ompare with �9.

It is not hard to see that every knot admits a grid diagram (
ompare with the proof of Lemma 4.17).

The �gure below explains that every knot admits an ar
 presentation.

✻

We set the size µ(D) of a grid diagram to be the number of verti
al or (equivalently) horizontal

segments (but not both together). A grid (diagram) of size µ will also be shortly 
alled a µ-grid .

In general, we will a�ord the sloppiness of abolishing the distin
tion between an ordinary and a grid

diagram, whenever the grid stru
ture is unne
essary. Thus, for instan
e, c(D) 
an mean the 
rossing

number of both an ordinary and grid diagram, whereas µ(D) would imperatively assume that D is given

a grid shape. Let a(L) be the ar
 index of L, the minimal µ(D) over all grid diagrams D of L. It is the
minimal number of pages among all ar
 presentations of a link L.

We note that the following is known. For two knots K1, K2,

a(K1#K2) = a(K1) + a(K2)− 2 . (2.29)

It follows from a relationship (7.59), derived by Dynnikov-Prasolov [DP℄, 
on
erning the Thurston�

Bennequin invariant (see �4 for notation), and the additivity of the invariant [EH, To℄.

2.7 Knot tables

For notation from knot tables, we follow Rolfsen's [Ro, Appendix℄ numbering up to 10 
rossings, ex
ept

for the removal of the Perko dupli
ation. For 11 and 12 
rossing knots, the notation 
onverts from [KI℄ by

appending non-alternating knots after alternating ones of the same 
rossing number. Thus, for instan
e,

11a[k] = 11[k] for 1 ≤ k ≤ 367, and 12n[k] = 121288+[k] for 1 ≤ k ≤ 888. For higher 
rossing knots, the

tables of [HT℄ are used with the same adjustment.

If it is relevant, mirror images will be distinguished on a 
ase-by-
ase basis. Spe
i�
ally, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored . The 
onvention for 10132 is �xed

in Example 4.10. (The knot exhibits 
ertain phenomena that have to be treated for higher 
rossing knots

as well, but being the only Rolfsen knot with su
h status, it will merit detailed attention.)
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3 Upper bound of Crossing number

A planar grid polygon 
an be de�ned as the planar proje
tion of a link grid diagram. Similarly we spe
ify

its size by the number of horizontal/verti
al edges. It is obvious that a grid polygon determines uniquely

(when 
rossing 
onvention is �xed) a grid diagram, and vi
e versa. A grid polygon 
an have multiple


omponents (i.e., PL-immersed 
ir
les). Su
h obje
ts are of interest in dis
rete geometry; see for example

[BOS, SG, KLA℄. They are named re
tilinear polygons, but for us it is (very) relevant that self-
rossings

are allowed (i.e., the polygons are not simple).

Lemma 3.1 Every, possibly multiple-
omponent, planar grid polygon of size m has the following upper

bounds on the number of interse
tions.

{
(m2 − 2m)/2 m is even

(m− 1)2/2− 1 m is odd

(3.1)

These bounds are sharp.

Proof. What 
ould be a 
onundrum be
omes self-evident after introdu
ing the right way of 
ounting


rossings. We will group 
rossings w.r.t. their horizontal segment l. We 
onsider the horizontal segments

from the middle high segment upward. Whenever l is su
h a segment and lh is a horizontal segment above

l, we de�ne the weight wl(lh) ∈ {0, 1, 2} to be the number of neighboring verti
al edges of lh interse
ting

l. Then
#{ interse
tions of l } =

∑

lh above l

wl(lh) . (3.2)

This 
ounting works be
ause for ea
h verti
al edge lv interse
ting l, exa
tly one of its two neighboring

horizontal edges lh is above l. Thus

#{ interse
tions of l } ≤ 2#{ lh : lh above l } . (3.3)

Now this sum will a

ount to

#{ interse
tions of upper horizontal edges } ≤ 2

(m−1)/2∑

k=0

k (3.4)

for the upper (m+ 1)/2 edges l when m odd. The lower (m− 1)/2 edges l 
an be handled by 
hoosing lh
to be below l, giving a similar sum

#{ interse
tions of lower horizontal edges } ≤ 2

(m−3)/2∑

k=0

k . (3.5)

For m even one has 4

m/2−1∑

k=0

k instead of (3.4)+(3.5). Dire
t 
al
ulation gives

#{ interse
tions of polygon } ≤
{
(m2 − 2m)/2 m is even

(m− 1)2/2 m is odd

(3.6)

It remains to argue why for m odd, (m− 1)2/2 interse
tions are not possible. This would mean that

the middle horizontal edge e satis�es we(e
′) = 2 for every other horizontal edge e′. But there are at least

two edges e′ for whi
h this is not possible, namely those 
onne
ted to the two verti
al edges adja
ent to

e. This 
ompletes the proof of (3.1). For the sharpness of the bounds, see Example 3.2 and Proposition

3.3. �
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Example 3.2 If we allow multiple 
omponents of the polygon, and 
onsider m even, then the bound in

(3.6) is sharp

When we restri
t to 1-
omponent polygons, we know the following.

Proposition 3.3 For every m > 2, there exists a 1-
omponent planar grid polygon Πm of size m with

(m− 1)2/2−





1 m is odd

5/2 m ≡ 0 mod 4
7/2 m ≡ 2 mod 4

(3.7)


rossings.

Proof. Consider the Lissajous

1

polygon Λ(m1,m2).

Λ(3, 5) Λ(4, 5) Λ(3, 7)

This gives a grid polygon of size m = m1 +m2. When m1 −m2 = 2, we also need the modi�ed Lissajous

polygon Λ′(m1,m2).

Λ′(4, 6) Λ′(6, 8)

1

We 
hose this name sin
e they appear as re
ti�
ations of Lissajous 
urves, although this 
orresponden
e is not pre
ise

for every (m1,m2).
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Then 
hoose

Πm =





Λ(m−1
2 , m+1

2 ) m is odd

Λ(m2 − 1, m
2 + 1) m ≡ 0 mod 4

Λ′(m2 − 1, m2 + 1) m ≡ 2 mod 4

. (3.8)

The 
rossing number of these polygons (3.7) follows by expli
it 
al
ulation. They are 1-
omponent by

dire
t inspe
tion. (In general, Λ(m1,m2) appears to be 1-
omponent when m1 and m2 are relatively

prime.) �

These examples leave not mu
h room for improvement. For odd m, (3.1) settles their maximality.

When m is even, by modifying the argument at the end of the proof of Lemma 3.1 to the middle two

horizontal edges, it is also easy to 
on
lude that (3.1) 
annot be made sharp by a 1-
omponent polygon.

Thus the examples of Proposition 3.3 
an be improved by at most 1 
rossing for m ≡ 0 mod 4 and by at

most 2 
rossings for m ≡ 2 mod 4.

Computation 3.4 Still, verifying whether the (1-
omponent) polygons Πm have maximal 
rossings (for

even m) is not entirely trivial. We wrote a 
omputer program to test this, whi
h in fa
t found the

family Λ′
in (3.8). For m = 4, 6 there are ex
eptional maximal 
rossing polygons Λ′(2, 2) =

(as 
ompared to Λ(1, 3)) , and , as 
ompared to Λ′(2, 4) = . We know that

the polygons (3.8) are maximal 
rossing for even m with 8 ≤ m ≤ 24.

Certainly, we are interested more in grid diagrams of links, with 
rossing information, and in that 
ase

Lemma 3.1 easily modi�es to show the following.

Lemma 3.5 Every grid link diagram D of size µ(D) = m has writhe |w(D)| ≤ (m− 1)2/4.

Proof. It is essentially the same proof as for Lemma 3.1, ex
ept noting that (3.2) modi�es to

∑
( signs of interse
tions of l ) ≤

∑

lh above l, wl(lh) = 1

wl(lh) , (3.9)

be
ause signs of 
rossings on l 
oming from lh with wl(lh) = 2 
an
el out. Then the estimates (3.3) and

(3.6) exa
tly halve. �

Example 3.6 If we allow multiple 
omponents of the link, and 
onsider m even, then again the bound

in Lemma 3.1 (in the form of halving (3.6)) is sharp, as shows the (m/2,m/2)-torus link:

At the 
ost of de
reasing the number of 
rossings by O(m), one may obtain a knot, like the (m/2,m/2+
1)-torus knot, or adjust m to be odd.
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Remark 3.7 Note that Lemma 3.1 immediately gives (1.1) for every link L. While some redu
tions may

be possible under link isotopy (whi
h is re�e
ted in Cromwell's moves [Cr℄), we have failed to signi�
antly

improve upon this estimate. This problem develops serious enough to merit a separate a

ount if later

progress is made. In 
ontrast to the well-known bounds in [BP, JP℄ (see the proof of Corollary 1.2), it is

striking that an upper estimate of the 
rossing number of a link in terms of its ar
 index has apparently

never been previously 
onsidered in the literature. We note, though, that in Example 3.6, the featured

torus links appear in minimal 
rossing number diagrams, so that the right of (1.1) 
annot be redu
ed by

more than a fa
tor of 2 (asymptoti
ally in a(L)).

4 Thurston-Bennequin invariant

4.1 Weight model for the Thurston-Bennequin invariant

The main topi
 of this work starts from the observation that a braided surfa
e of Euler 
hara
teristi
 0,

whi
h is a K-knotted annulus, is essentially a grid diagram of the underlying 
ompanion knot K.

De�nition 4.1 Let for a knot K and integer t,

• A(K, t) be the (link of the) t-framed K-knotted annulus,

• W+(K, t) and W−(K, t) the t-framed Whitehead doubles of K with positive and negative 
lasp, and

• B(K, t) the t-framed Bing double of K.

We will usually abuse the distin
tion between the annulus and the link whi
h is its boundary. To

disambiguate among di�erent 
onventions for framing used elsewhere, we spe
ify that for us, for example,

A(©, 1) is the positive (right-hand) Hopf link, and A(©,−1) the negative one. Also, W+(©, 1) is the
positive (right-hand) trefoil, andW+(©,−1) = W−(©, 1) the �gure-8-knot. We 
an understandW+(K, t)
resp. W−(K, t) as the result of plumbing a positive resp. negative Hopf band into A(K, t) and taking the

knot whi
h is the boundary of the resulting Seifert surfa
e. In a similar way, we 
an understand B(K, t)
as the 2-
omponent link whi
h is obtained by plumbing both a positive and a negative Hopf band into

A(K, t) and taking the boundary. Thus for instan
e B(©, 0) is the 2-
omponent unlink, and B(©, 1) is
the Whitehead link.

Let D be a grid diagram of a knot K. Repla
ing ea
h verti
al segment with a half twisted band as

shown below, we get a braid in band presentation, denoted by βD. (Compare with [Nu, Theorem 3.1℄.)

Then the 
losure β̂D bounds a twisted annulus. Therefore β̂D = A(K, t) for some t.

⇒

✲
✲
✲
✲
✲
✲

D βD

β̂D

⇒ ✲
✲
✲
✲
✲
✲

(4.1)

Consider the situation that the band presentation is positive. Then obviously A(K, t) for the resulting
framing t is strongly quasipositive. A question is what is the framing t, whi
h we will write as

t = λ(D) , (4.2)
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in dependen
e of the diagram D, and how to read λ(D) o� D. To explain the formula for λ(D), given
below as (4.5), we �x some notation.

Let the weight of a grid diagram D be

Z(D) =
1

2

∑

e edge of D

sgn(e) , (4.3)

where the signs of the edges are determined as follows:

sgn(e) =

{
1 e is verti
al

±1, 0 e is horizontal and one of the following forms

0 +1 −1 0
(4.4)

Example 4.2

D

Z(D) =
1

2


(1 + · · ·+ 1)︸ ︷︷ ︸

verti
al, L to R

+(0 + 0 + 1 + 0 + 0)︸ ︷︷ ︸
horizontal, B to T


 = 3

Remark 4.3 This weight formula (4.3) 
an be generalized to non-positive band presentations by letting

ea
h verti
al edge have the sign of the 
orresponding band. But we will treat this more general 
ase only

o

asionally here.

We then 
an identify the framing t in (4.2).

Lemma 4.4 With w(D) being the writhe, we have

λ(D) = Z(D)− w(D) . (4.5)

Proof. One 
an see that when the Seifert 
ir
les of the 
losed braid diagram β̂D of A(K, t) are made

small, one obtains a diagram of A(K, t), where the band obtained by thi
kening D is twisted. By a

straightforward 
ombinatorial observation, the twisting of the band is given by Z(D). The untwisted

band built from D 
arries the framing −w(D) itself. This gives (4.5). �

Remark 4.5 One has a 
ertain freedom to vary the dire
tion from whi
h to read the bands of the braid

representative βD of A(K, t) o� the grid diagram D of K. We explain our 
onvention here in an example

to make 
lear how band presentations are used for spe
i�
 knots below. While horizontal and verti
al

edges are easily inter
hangeable in grids, disks and bands are far less so in braid band presentations. The


hange of dire
tion will give di�erent t, but will 
hange K only up to mirroring.

The default dire
tion of reading will be from the left. Reading the grid diagram D in (4.1) from the

left gives the word [14][35][24][36][15][26] , with [ij] = σi,j of (2.2). Reading D from the right is meant

to give the reverse order of (band) letters. This is the result of reading from the left a grid diagram D′
,

whi
h is obtained from the mirror image !D after a �ip (π rotation along the verti
al axis). Reading D
from the bottom gives the word [46][25][13][24][36][15] , whi
h arises when reading from the left !D after

a rotation by −π/2. Reading from the top again reverses these letters and results in reading from the

left D after the 
ombination of a �ip (along the horizontal axis) and −π/2 rotation. Note that thus we


onsider braid strands numbered right to left when reading a grid diagram from the right and from the

top (while left to right otherwise).
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De�nition 4.6 Also, we 
an use the band presentation of βD to spe
ify the grid diagram D itself (see

Example 7.25). The mirroring of D is �xed by default by saying that βD should be obtained when reading

D from the left. This means that we 
an write the grid diagram D in (4.1), even omitting bra
kets, as

14 35 24 36 15 26 .

Sin
e we deal with grids of size 10 or more, let us also already �x here that we use initial 
apital Latin

letters to denote two-digit integers, so that for example, 4C = [4, 12] = σ4,12.

Let br(D) be the verti
al bridge number of D, whi
h is the number of sign-0 horizontal edges of D of

one of either types in (4.4)

br(D) := #




0

 = #




0




Lemma 4.7 We have

br(D) ≤ Z(D) ≤ µ(D)− br(D) , (4.6)

and thus

br(D)− (µ(D) − 1)2/4 ≤ λ(D) ≤ (µ(D) + 1)2/4− br(D) . (4.7)

Proof. The left inequality in (4.6) holds be
ause ea
h pie
e of the knot between two verti
al extrema


ontributes at least 1 to the weight sum, and we have 2br(D) su
h pie
es. The right inequality holds

be
ause there are 2br(D) edges in D with sign 0. By using Lemma 3.5,

−(µ(D)− 1)2/4 ≤ w(D) ≤ (µ(D) − 1)2/4 . (4.8)

Then, with (4.6), (4.5) and (4.8), we obtain (4.7). �

Let a(K) be the ar
 index of K, the minimal µ(D) over all grid diagrams D of K. The so far best

idea is, take a minimal grid diagram µ(D) = a(K). Then, with (4.6), (4.5) and (4.8), we have

br(D)− (a(K)− 1)2/4 ≤ λ(D) ≤ (a(K) + 1)2/4− br(D) .

Thus we have:

Theorem 4.8 There exists a number λmin(K) with

br(K)− (a(K)− 1)2/4 ≤ λmin(K) ≤ (a(K) + 1)2/4− br(K) , (4.9)

su
h that for all t ≥ λmin(K), we have that A(K, t) is strongly quasipositive on bsqp(A(K, t)) ≤ a(K) +
t− λmin(K) strands .

We will use λmin(K) often in the following. Two 
aveats are in order regarding this notation. The `min'

refers to the minimum with respe
t to number of strings of the surfa
e A(K, t) (or horizontal segments in

the grid diagram of K), not the framing t itself. And, it is not assumed that λmin is unique. At least for

the unknot K,

both b(A(©, 0)) = b(A(©, 1)) = 2, thus λmin(©) = 0, 1. (4.10)

This spe
ial behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness

and minimality of λmin(K) was settled, as will be dis
ussed below; see Theorem 5.11. But we do not wish

to ex
lude K = © 
onsistently. We prefer to maintain the symbol λmin(K), stipulating that formulas

involving λmin(K) are meant to hold whatever of either values (4.10) is 
hosen for K = ©. For K 6= ©,

the reader may assume that

λmin(K) = λ(K) , (4.11)
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though we will not use this before stating Theorem 5.11.

Proof of Theorem 4.8. When µ is augmented by 1, we 
an always augment by 1,

1 =⇒
1

1
1

(4.12)

resp. preserve

1 =⇒
1

−1
1

(4.13)

any given framing λ(D) by the above two moves. (Apply an adjusting PL-map on the half-planes above

and below the newly formed horizontal edge.) We 
all these moves in the following positive and negative

stabilization, resp. Thus, λ(D) augments by 1 under positive stabilization, and negative stabilization

does not 
hange λ(D). (Neither stabilization 
hanges w(D). Note that the diagram D1 of A(K, t)
obtained from D always has s(D1) = µ(D) Seifert 
ir
les and writhe w(D1) = µ(D).) The 
laim follows

for a(K) + t − λmin(K) strands from positive stabilization, and for larger strand number by (further)

negative one. �

The Thurston-Bennequin invariant TB(D) of a grid diagram D 
an be de�ned as is being identi�ed

in the following theorem.

Theorem 4.9 For any grid diagram D, the quantity Z(D) 
ounts the NW- or SE-
orners of D.

Z(D) = #




NW-
orners


 = #




SE-
orners




(4.14)

Thus (1.2) holds.

Proof. The �rst is a 
ombinatorial observation. The se
ond follows from the 
hara
terization of TB(D)
given in [LN℄ or [Ng℄. �

Example 4.10 The [J+℄ diagram D′
of 10132,

10132

read from the right (see Remark 4.5), gives the 9-strand band presentation

βD = [25][14][37][26][15][48][79][38][69] , (4.15)

where D = flip (!D′). We have µ(D) = 9, Z(D) = 3, w(D) = 2, br(D) = 3 and λ(D) = 1. Thus (4.15)

gives a (positive) band presentation of A(10132, 1). The mirroring of 10132, determined by D, is so that
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it has the P polynomial of the positively mirrored 51. We �x this mirroring in the sequel, sin
e we will

illustratively feature the knot a few more times. Note that it is thus opposite to Rolfsen's [Ro, Appendix℄

mirroring.

We also remark the following straightforward 
onsequen
e of Theorem 4.9.

Corollary 4.11 When the grid diagram !D is obtained from D by swit
hing all 
rossings, and a −π/2
rotation, then λ(D) + λ(!D) = µ(D).

Proof. The writhe terms of D and !D in (4.5) 
an
el out. Thus λ(D)+λ(!D) = Z(D)+Z(!D). By taking
the average of the two 
orner 
ounts in (4.14) for D and its −π/2 rotation, we see that Z(D) + Z(!D) is
half the number of all 
orners of D, whi
h is µ(D). �

4.2 Appli
ation to strong quasipositivity

Let TB(K) be the maximal Thurston-Bennequin invariant of K, an invariant often 
onsidered in 
onta
t

geometry [FT, LN, Ng, Ma, Ru3℄:

TB(K) := max {TB(D) : D is a diagram of K } .

We also spe
ify a region whi
h will play an important role throughout the rest of the paper.

De�nition 4.12 We de�ne the framing diagram Φ(K) of K as a subset of R2
by

Φ(K) := { (µ, t) : A(K, t) has a strongly quasipositive band representation on µ strands } .

The following result of Rudolph [Ru3, Proposition 1℄ then follows dire
tly from Theorem 4.9. (Note

our di�erent sign 
onvention for t.)

Corollary 4.13 When K is not the unknot, then

λ(K) := min{ t : A(K, t) is strongly quasipositive } = −TB(K) , (4.16)

and more pre
isely,

A(K, t) is strongly quasipositive ⇐⇒ t ≥ −TB(K) . (4.17)

Proof. When A(K, t) has a positive band presentation, then every disk is 
onne
ted by at least two

bands. Disks 
onne
ted by one band 
an be removed, and su
h 
onne
ted by no band do not exist unless

K = © (and t = 0), whi
h was ex
luded. Sin
e χ(A(K, t)) = 0, it follows that every disk is 
onne
ted by

exa
tly two bands, whi
h means that the band presentation of A(K, t) gives rise to a grid diagram of K.

It is also well known that every integer t ≥ −TB(K) 
an be realized as Thurston-Bennequin invariant

of some grid diagram of K. (We mentioned this above; see (4.12).) Note in passing that undoing the

removal of disks 
onne
ted by one band is, up to 
onjuga
y, positive braid stabilization. This also shows

that

(µ, t) ∈ Φ(K) =⇒ (µ+ 1, t) ∈ Φ(K) , (4.18)

whi
h equals the e�e
t of the negative grid stabilization (4.13). �
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The following diagram illustrates the e�e
t of the positive grid stabilization within Φ(K):

✲

number of strands µ

✻
twist t

s

s

s

s

s

s

s

s

s

s

s

s

s

s

For the unknot K, we have

−TB(©) = 1 but λ(©) = 0 . (4.19)

The problem with (4.16) there is that A(K, 0) has the empty positive band presentation (on two strands),

but we do not 
onsider this band presentation 
orresponding to a grid diagram. For this reason, the

unknot will repeatedly require spe
ial attention below. Despite the identi�
ation (4.16), λ(K) will o

ur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,

even when we ex
lude K = ©.

Remark 4.14 It is possible to derive similar properties for links K. Then a framing t is needed for

ea
h 
omponent, and the relationship in Corollary 4.13 be
omes slightly more involved, as be
ome the

framing diagram of De�nition 4.12 and its properties. We do not wish to deal extensively with links here.

However, in situation where the surfa
e stru
ture is forgotten, the more self-
ontained extensions to links

do emerge, as for Corollaries 5.4, 1.2, and 5.5.

In the following appli
ation we assume that K 6= ©. For K = ©, all the links in De�nition 4.1 are

(alternating) 2-bridge links, and su
h 
an be handled ad.ho
. for strong quasipositivity (see e.g. [Ba℄).

Proof of Corollary 1.1. The minimal genus surfa
e of W±(K, t) is unique. This is proved by Whitten

[Wh℄, but follows also from a result of Kobayashi [Ko℄: the plumbing S1 ∗ S2 is a unique minimal genus

surfa
e if and only if one of S1,2 is a unique minimal genus surfa
e and the other one is a �ber surfa
e. The

minimal genus surfa
e of W±(K, t) is a Hopf band plumbed into the annulus A(K, t) (whi
h is obviously

the unique minimal genus surfa
e of A(K, t); 
ompare below De�nition 4.1). Kobayashi's version also

shows that plumbing two Hopf bands into A(K, t) gives a unique minimal genus surfa
e for B(K, t). It

follows from Rudolph's results on Murasugi sum [Ru2℄ that W−(K, t) and B(K, t) are never strongly

quasipositive: their unique minimal genus surfa
e Murasugi desums into pie
es, not all of whi
h are

strongly quasipositive. Also, W+(K, t) is strongly quasipositive if and only if A(K, t) is. �

Sin
e we will need this repeatedly later, let us already here noti
e that the Hopf plumbing W+(K, t) =
A(K, t) ∗H 
an be realized by doubling a(ny) positive band in a band presentation of A(K, t).
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Example 4.15

✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲

41 A(41, 3) W+(41, 3)

A similar remark applies to W−(K, t) whenever a band presentation of A(K, t) has a negative band.

However, it is important to note that this is not the only way to generate positive band presentations

of Whitehead doubles. (A di�erent example for a trefoil Whitehead double is given in [Be, �g p. 121

bottom℄.) We will dis
uss Whitehead doubles further in �6.

Here, we give a simple appli
ation of the weight model, in estimating the Thurston-Bennequin invariant.

A 
ounterpart will emerge with Lemma 7.4 from the HOMFLY-PT polynomial.

De�nition 4.16 De�ne pbr(D), the plane-bridge number of D as the minimal number of Morse maxima

(or minima, i.e., half of the minimal number of Morse extrema) over all smooth di�eomorphi
 images of

D in S2
. Obviously br(K) ≤ pbr(D).

Lemma 4.17 For any diagram D of K, we have λ(K) ≤ 2c−(D) + pbr(D).

Proof. First, we 
an make D into a grid diagram by straightening out edges, and repla
ing wrong


rossings, i.e., those with the horizontal strand on top, as follows.

=⇒

(4.20)

(Again, as for the stabilization moves that o

urred in the proof of Theorem 4.8, some small PL adjustment

is needed.) This does not 
hange the number of bridges.

Next, the horizontal adjustment te
hnique (4.21) 
an be used to delete a horizontal edge e of label ±1
without 
rossing on it, again by applying a suitable PL-map on the half-planes above and below e. This
is the reverse of the stabilization moves, but we may need in advan
e to displa
e possible verti
al edges

above or below e. (If ne
essary, extend the box A resp. B drawn in the following �gures until above resp.

below the entire grid diagram, to ensure that all edges enter the box horizontally.)
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A

B

=⇒

A

B B

A

=⇒

B

A

(4.21)

The inequality we wish to prove about the diagram resulting after a move (4.21) is equivalent to the

one about the original diagram. We may therefore assume hen
eforth that all ±1 signed horizontal edges

are interse
ted by a 
rossing. Thus

c(D) ≥ µ(D)− 2br(D) . (4.22)

Also, we 
an see

Z(D) ≤ µ(D)− br(D) ,

by using that in (4.3) there are 2br(D) edges of label 0.

Then

λ(K) ≤ Z(D)− w(D)

≤ µ(D)− br(D)− w(D)

≤ c(D) + br(D)− w(D)

= 2c−(D) + br(D) .

The rest follows by minimization. �

5 Braid indi
es

We dis
uss some relation regarding the braid indi
es in De�nition 2.1. (Compare

2

with [Nu, Se
tion 3.3℄.)

As noti
ed, Bennequin's inequality (2.5) implies that a strongly quasipositive surfa
e is a Bennequin

surfa
e, thus for K strongly quasipositive, we have (2.10). We know that bb(K) > b(K) is possible [HS℄,
but the examples K known are not strongly quasipositive. Rudolph 
onje
tures that

bsqp(K) = b(K) (5.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16


rossings (see [St2℄). By the proof of the Jones-Kawamuro 
onje
ture (Theorem 2.2), a Bennequin surfa
e

of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

bb(K) = b(K) (5.2)

implies (5.1) for strongly quasipositive knots K. The problem (5.2) is extensively studied in [St2℄.

Sin
e a band presentation of A(K, t) always 
omes from a grid diagram of K, and with a 
on�rmative

noti
e about the unknot, we have:

Corollary 5.1

min{bb(A(K, t)) : t ∈ Z } = a(K) . (5.3)

Moreover, there are at least a(K) + 1 
onse
utive integers t whi
h realize the minimum.

2

We be
ame aware of Nutt's paper only at a very advan
ed stage of this work, and apologize for some overlap.
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Proof. The 
ase that K is the unknot 
an be handled dire
tly: the minimizing t are t = −1, 0, 1.

When K is not the unknot, every maximal Euler 
hara
teristi
 (equal to 0) band presentation of

A(K, t) 
omes from a grid diagram of K. This shows

min{bb(A(K, t)) : t ∈ Z } ≥ a(K) .

To see the reverse inequality, take a minimal grid diagramD of K. This gives a positive band presentation

βD of A(K, t) for t = λmin(K). Now 
onse
utively turn the a(K) bands negative, whi
h gives band

presentations of Bennequin surfa
es for A(K, t) where t = λmin(K), . . . , λmin(K)− a(K). �

Also, be
ause 
hoosing positive bands will give a band presentation of a strongly quasipositive annulus,

we have with Corollary 4.13:

Corollary 5.2 min{bsqp(A(K, t)) : t ≥ λ(K) } = a(K) . �

Forgetting the surfa
e stru
ture then yields an inequality of (ordinary) braid indi
es:

Corollary 5.3

min{b(A(K, t)) : t ∈ Z } ≤ min{b(A(K, t)) : t ≥ λ(K) } ≤ a(K) (5.4)

Moreover, there are at least a(K)+1 
onse
utive integers t whi
h realize the inequality b(A(K, t)) ≤ a(K).
�

The braid index of a link A(K, t) is obviously not less than the sum of the braid indi
es of 
onstituent


omponents. Thus from Corollary 5.3, we also immediately have an inequality, whi
h was noti
ed by

Cromwell [Cr℄ (with the extension to links K as explained in Remark 4.14):

Corollary 5.4 (Cromwell) For every knot K, we have 2b(K) ≤ a(K). �

We obtain then the (slight) re�nement of Ohyama's inequality [Oh℄ as stated in the introdu
tion.

Proof of Corollary 1.2. It is known that a(K) ≤ c(K) + 2, as proved in [BP℄, and a(K) ≤ c(K) for
K non-alternating [JP℄. �

Sin
e b(K) ≥ br(K), it further follows:

Corollary 5.5 For any knot K, we have 2(br(K) − 1) ≤ c(K). If K is non-alternating, then 2br(K) ≤
c(K). �

In the obvious extension to links, 
onne
ted sums of Hopf links show that the (�rst) inequality is

sharp. But there is a more pre
ise 
onje
ture, apparently due to Fox [Fo℄, and later studied and extended

by Murasugi [Mu℄. For knots K, it states

3(br(K)− 1) ≤ c(K) .

These useful impli
ations are worth noting, but we will see below that it is mu
h more important to

work with (5.4) rather than its simpli�ed variant of Corollary 5.4.

We are next going dis
uss what (say, strongly quasipositive) framings λ are possible for given grid

size µ, and in parti
ular whether λmin, the framing for a minimal (size a(K)) diagram (see Theorem 4.8)

is unique. Sin
e µ bounds the braid index of A(K, t), and all have the same χ, Birman-Menas
o [BM℄

imply that for given λ, only �nitely many µ are possible. We will later prove a more pre
ise statement

(Finite-Cone-Theorem 7.3).
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Question 5.6 (a) Is b(A(K, t)) ≥ a(K) for any t?
(b) At least, is b(A(K, t)) ≥ a(K) for any strongly quasipositive A(K, t)?

If (b) fails, then it would give an example A(K, t) answering negatively Rudolph's question (5.1). This

question will be further treated in Remark 7.22 and Conje
ture 8.1.

To formalize this topi
 better, we introdu
e notation relating to the two grid stabilizations (4.12) and

(4.13).

De�nition 5.7 We de�ne the 
one C(µ, t) ⊂ Z+ × Z by

C(µ, t) = { (s, λ) : s ≥ µ, t ≤ λ ≤ t+ s− µ } .

We say (µ, t) is the tip of the 
one.

✲

µ number of strands

✻

t

twisting

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

· ·
·




· · ·
C(µ, t)

We 
an summarize some properties we have derived regarding the region Φ(K) of De�nition 4.12.

Theorem 5.8 (a) The framing diagram Φ(K) of K (see De�nition 4.12) is a union of 
ones.

(b) It 
ontains at least one 
one of the form C(a(K), λmin(K)) and one of the form C(µ, λ(K)).
(
) It 
ontains no points with t < λ(K) and µ < a(K).
(d) Every point (µ, t) ∈ Φ(K) satis�es

br(K)− (µ− 1)2/4 ≤ t ≤ (µ+ 1)2/4− br(K) . (5.5)

�

This estimate (5.5), that 
omes from (4.7), is rather 
rude, due to our insu�
ient 
ontrol over the

writhe. One problem with (4.8) is that, while it 
an be (at least asymptoti
ally) sharp on either side,

this unlikely happens (simultaneously) for diagrams D of the same link. Methods to address the writhe

variation exist, based on Thistlethwaite's work on the Kau�man polynomial, but they will lead to no

pleasant results here. A far more e�
ient te
hnique will be introdu
ed later, whi
h ultimately leads to

Proposition 8.6. This will yield mu
h sharper bounds than (5.5), espe
ially when K is �xed and µ is

large. However, we emphasize that neither (5.5), nor the inequalities in Lemmas 4.17 and 7.4, follow from

alternative estimates we obtain (or, to the best of our knowledge, other known results).

We announ
ed that we will prove later (Finite-Cone-Theorem 7.3) the 
ones are �nitely many. The

following Jones-Kawamuro type of 
onje
ture (
ompare with Theorem 2.2) is then suggestive.
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Question 5.9 IfK is non-trivial, is Φ(K) a single 
one? (This 
one would have to be then C(a(K), λmin(K))
with λmin(K) = λ(K).)

Example 5.10 A

ording to (4.10), we have

Φ(©) = C(2, 0) ∪ C(2, 1)

being the union of two 
ones.

The spe
ial 
ase for µ = a(K) in Question 5.9 (an analogue of the �weak� form of the Jones-Kawamuro


onje
ture) was already raised in [Ng℄ in the language of grid diagrams D and Thurston-Bennequin

invariants TB(D). It was answered in [DP, Corollary 3℄.

Theorem 5.11 (Dynnikov-Prasolov [DP℄) The Thurston-Bennequin invariant of minimal grid diagrams

of a given knot K is always equal to TB(K).

We will return to this statement in �7.4 and �8.1. Note that the unknot 
reates no ex
eption here,

when using TB instead of λ and avoiding the dis
repan
y (4.19). Despite its importan
e, we do not

use Theorem 5.11 substantially; it brings only minor simpli�
ations, whi
h 
an be worked around. We

indi
ate this at a few pla
es, but skip doing it 
onsistently, be
ause it does not seem a reasonable 
ourse

of a
tion.

6 Jump invariant

Turning to Whitehead doubles, Ozsváth-Szabó de�ned a number jτ (K), the jump invariant of τ , with

τ(W+(K, t)) =

{
1 t ≥ jτ (K)
0 t < jτ (K)

. (6.1)

The existen
e of su
h a number 
an be seen easily from Livingston's properties of sli
e-torus invariants

�2.5. We have g(W+(K, t)) = 1, so for strongly quasipositive T = W+(K, t) we have τ(T ) = 1 (see

(2.27)). Also W+(K, t) → W+(K, t − 1) and W+(K, t) → © by a positive-to-negative 
rossing 
hange,

thus τ(T ) ∈ {0, 1}. It is not immediately 
lear that τ 6≡ 1, i.e., jτ (K) > −∞, but this is known, and we

will also be able to derive it in Proposition 6.3.

It is important, for reasons (6.11) that will transpire below, that τ 
an be repla
ed by (half of)

Rasmussen's invariant s, or any other (possible) sli
e-torus invariant v. In parti
ular, for any su
h v we

have the behavior of (6.1), leading to de�ning the jump number jv(K), as studied in [LN℄. In fa
t, note

that one 
an de�ne jσ for the signature σ as well (after some modi�
ation (σ+1)/2 to �t values 0, 1), but
for obvious reasons jσ(K) = 1 regardless of K. Corollary 1.1 shows then that there are many Whitehead

doubles T whi
h are not strongly quasipositive despite σ(T ) = 2g(T ) = 2. We obtain then the following.

Corollary 6.1 For any sli
e-torus invariant v, we have

jv(K) ≤ λ(K) . (6.2)

Proof. By Corollary 1.1, W+(K, t) is strongly quasipositive for t ≥ λ(K), thus from (2.27), we have

v(W+(K, t)) = 1 for t ≥ λ(K). �

Example 6.2 Equality does not always hold. An example for v = τ is T = W+(31, 3) = 1445575, whi
h is

a Whitehead double of the negative (left-hand) trefoil 31. There τ(T ) = 1, but T = 1445575 is not strongly
quasipositive. We have λ(31) = 6 (see [KI℄).
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Now we 
an also easily re
over the Livingston-Naik result [LN℄.

Proposition 6.3 For any sli
e-torus invariant v, we have

−λ(!K) < jv(K) ≤ λ(K) . (6.3)

Proof. The right inequality in (6.3) was given in Corollary 6.1. To obtain the left inequality, we prove

that

v(W+(K, t)#W+(!K,−t)) ≤ 1 . (6.4)

We remind that both 
onne
ted sum fa
tors have v-invariant 0 or 1.

Assume (6.4) is proved. Then sin
e v(W+(!K,−t)) = 1 for −t ≤ −λ(!K) for the same reasons as

Corollary 6.1, we need from (6.4) that v(W+(K, t)) = 0 for t ≤ −λ(!K), so we have the left inequality in

(6.3).

To prove (6.4), assume by 
ontradi
tion that l.h.s. is 2. Thus χ4(W+(K, t)#W+(!K,−t)) ≤ −3.

By 
onne
ting with a band as indi
ated in Figure 1, we obtain a 2-
omponent link in Figure 2, with

presumably

χ4[(6.7)] ≤ −2 . (6.5)

K!K

✲

✻ ❄

✲ ✲

framing −t framing t

❅❅■

(6.6)

Figure 1: Spli
e at the pla
e indi
ated by the arrow, by adding a band

But the disk region of (6.7) represents an annulus of the sli
e knot K#!K with framing t − t = 0.
However, pay attention that there is an orientation issue here. When K is non-invertible, then K#!K is

sli
e only if !K is oriented in a proper way. To resolve this issue, noti
e that the 
onstru
tion of W+(K, t)
does not depend on the orientation of K, and moreover, W+(K, t) is easily seen to be invertible regardless

of whether K is or not. This means one 
an suitably 
hoose orientations of W+(K, t),W+(!K,−t) when
their 
onne
ted sum in (6.4) is built. The v invariant obviously is not a�e
ted by this 
hoi
e. Then by

smoothing out any one of the four displayed 
rossings in (6.7), we obtain the unframed Whitehead double

(6.8) = W+(K#!K, 0) of a sli
e knot, in Figure 3, whi
h must be sli
e itself and thus have χ4 = 1. But
from (6.5), we would need χ4[(6.8)] ≤ −1, a 
ontradi
tion. �

We have then the following 
ontribution to the Bennequin sharpness 
onje
ture (2.8), stated in Corol-

lary 1.3.

Proof of Corollary 1.3. If K is the unknot, then W±(K, t) are twist knots, so alternating, and for

them (2.8) is resolved; see [FLL, St2℄. (Or one 
an make an expli
it 
he
k.) Thus we assume below that

K 6= ©.
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K# !K

✲

✲ ✲✲

Sli
e, framing 0, and χ4 ≥ 0

✁
✁✁☛

(6.7)

Figure 2: One of the four 
rossings should be smoothed out, and then one nugatory 
rossing removed

K# !K

✲

✲ ✲

(6.8)

Figure 3: Sli
e knot, χ4 = 1

We �rst deal with W+. If (1.3) holds, then be
ause of Corollary 1.1,

W+(K, t) is not strongly quasipositive ⇐⇒ v(W+(K, t)) = 0 . (6.9)

Furthermore, g(W+(K, t)) = 1, thus by (2.27),

v(W+(K, t)) = 0 =⇒ W+(K, t) is not Bennequin-sharp . (6.10)

Combining (6.9) and (6.10) gives the `=⇒' dire
tion in (1.4). The reverse dire
tion,

not Bennequin-sharp =⇒ not strongly quasipositive,

is among the standard 
ausalities following from Bennequin's inequality (2.5).

For W− noti
e that it unknots by a negative-to-positive 
rossing 
hange, so that v(W−) ≤ 0, while
g(W−) = 1. Thus W−(K, t) 
annot be Bennequin-sharp by (2.25). (The 
ase that K is the unknot, and

t = 0, 
an be handled extra.) �
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Of 
ourse, when v is e�e
tively 
omputable, so is jv(K). But at least for v = τ , there is a more 
losed

expression. Hedden [He℄ has found that

jτ (K) = 1− 2τ(K) , (6.11)

whi
h further elu
idates Example 6.2. But the pi
ture for Rasmussen's invariant remains less 
lear.

We 
an �t (6.11) into the general relationship

λ(K) = −TB(K) ≥ 1− 2τ(K) = jτ (K) ≥ χ4(K) . (6.12)

For the leftmost inequality, whi
h is due to Plamenevskaya, see the proof of Theorem 1.5 in [He2℄. One


an use (6.12) to easily obtain the property (6.3) for v = τ , whi
h motivated treating there a general v
rather than only fo
ussing on this spe
ial instan
e. The relationship (6.11) also identi�es when (1.3) holds

for v = τ , namely whi
h o

urs when

λ(K) = 1− 2τ(K) . (6.13)

This raises the question what knots satisfy (6.13). The 
ondition 
learly must relate to positivity

somehow , but the absen
e of the rotation term rot(D) in TB (
ompare with [Fe, FT℄) should hint to


aution.

Lemma 6.4 Every positive �bered knot K satis�es (6.13).

Proof. A positive �bered knot has a positive diagram D where the redu
ed Seifert graph is a tree, i.e.,

D is a diagrammati
 Murasugi sum of (2, n)-torus link diagrams (see [Cr2℄).

This diagram D 
an be Morsi�ed as done for a braid diagram in [He2, Fig. 3℄, without the addition of

extra 
usps for negative (braid) 
rossings. Like for a 
losed positive braid diagram, in the slightly more

general situation that the redu
ed Seifert graph is a tree, one 
an arrange the Seifert 
ir
les of D so that

ea
h Seifert 
ir
le of D 
ontributes exa
tly one left and exa
tly one right 
usp. Thus w(D) = c(D) and
in (4.5) (after a −π/4 rotation) Z(D) = s(D). Then

−λ(K) ≥ −λ(D) = c(D)− s(D) = 2g(K)− 1 ,

where the last equality 
omes from Seifert's algorithm.

Next, it is known by Yokota [Yo℄ that for K positive, min dega F (K) = 2g(K), so that with the known

bound (see [FT, Fe, Ta℄)

λ(K) ≥ −min dega F (K) + 1 , (6.14)

we have

−λ(K) ≥ 2g(K)− 1 = min dega F (K)− 1 ≥ −λ(K) .

This gives that λ(K) = 1−2g(K), and �nally τ(K) = g(K) when K is positive (or more generally strongly

quasipositive). �

We do not know if for (6.13) it su�
es K to be positive. This is related to the problem whether in a

positive diagram D we have |rot(D)| = 0. In the above proof, for ea
h pair of 
usps of the same Seifert


ir
le of D, either the left is up and the right is down or vi
e versa. This means by the formula [He2,

p. 625, l. -9℄ that |rot(D)| = 0. For a general positive diagram D, the pro
ess of [He2, Fig. 3℄ is not

straightforward, though. We 
ertainly also know that strong quasipositivity is not su�
ient for (6.13).

Example 6.5 Consider K = 161379216, the 
losure of the 3-braid

1 1 [13℄ 2 1 [13℄ 2 1 [13℄ 2,
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161379216

It has min dega F (K) = 7 (and g4(K) = 4), thus by (6.14) we 
an 
on
lude that (6.13) fails even for

strongly quasipositive K. (This is the only strongly quasipositive example K up to 16 
rossings with

min dega F (K) < 2g4(K), so it unders
ores the value of the tabulation reported in [St2, Appendix℄.)

A further series of instan
es satisfying (6.13), whi
h will play a spe
ial role in the appendix, are

sli
e knots K with (A.5). They 
an be suspe
ted to be quasipositive (see Remark A.4). But for (6.13)

quasipositivity not ne
essary, as shows the below example.

Example 6.6 The knot K = 121628 has λ = 1 and τ = 0 (see [KI℄), thus were it to be quasipositive, it

would have τ = g4 = 0, so it would be sli
e. But this is easily ruled out from the Milnor-Fox 
ondition;

the determinant det(121628) = 17 (see (2.24)) is not a square.

7 HOMFLY-PT polynomial

7.1 Some degree inequalities

We now turn our attention to the HOMFLY-PT polynomial P in (2.13). Our goal is to use the polynomial

to prove that when t is su�
iently small, then A(K, t) is not strongly quasipositive with a good lower

bound on t. The w(D) term in (4.5), as we have seen, makes bounds somewhat inelegant and ine�
ient.

We use some notation from �2.4.

Lemma 7.1 For every knot K, there exists a strongly quasipositive framing t = λmin(K) ≥ λ(K) of

A(K, t), so that

min degv P (A(K, t)) ≥ 1 , maxdegv P (A(K, t)) ≤ 2a(K)− 1 . (7.1)

Proof. When K = ©, then t = 1 su�
es. Thus assume again below that K is non-trivial. When L is

strongly quasipositive, then (2.7) and L being Bennequin-sharp mean that the right inequality in (2.6)

be
omes an equality. By using the right inequality in (2.17), we have

min degv P (L) ≥ 1− χ(L) = 1− χ4(L) . (7.2)

In parti
ular for L = A(K, t), we have χ(L) ≤ 0, so

min degv P (A(K, t)) > 0 . (7.3)

We have from the skein relation (2.13)

P (A(K, t)) = v2P (A(K, t− 1)) + vz . (7.4)

Noti
e, by further remarks from �2.4, that for the 2-
omponent link A(K, t)) the only monomials in

P (A(K, t)) that o

ur are zpvr with odd p, r. Also min degz P (A(K, t)) = −1, and by [LiM℄ it is known

that

[P (A(K, t))]z−1 = v2t(v−1 − v)([P (K)]z0 )2 6= 0 . (7.5)
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We now know that there is a (at least one) framing (we denoted) t = λmin, so that b(A(K, t)) ≤ a(K).

Also by MFW inequality (2.18) we have

span vP (A(K, t)) ≤ 2(a(K)− 1)

for t = λmin. Now, the diagram D1 of A(K,λmin) obtained from a minimal grid diagram D of K by

repla
ing verti
al segments by positive bands has w(D1) = µ(D) = a(K) and s(D1) = µ(D) = a(K).

Thus by MFW inequalities, we have

min degv P (D1) ≥ 1 , maxdegv P (D1) ≤ 2a(K)− 1 . (7.6)

�

Lemma 7.2 If K 6= ©,

λ(K) > max{λ(D)− µ(D) : D is a grid diagram of K} , (7.7)

with non-stri
t inequality if K = ©.

Proof. By using the right inequality (7.1) and the re
ursion (7.4) reversely a(K) times, we see

min degv P (A(K,λmin − a(K))) ≤ maxdegv P (A(K,λmin − a(K))) ≤ −1 ,

so from (7.3), we have that

A(K,λmin − a(K)) is not strongly quasipositive,

if K 6= ©. For K = ©, we 
an 
on
lude that

A(K,λmin − a(K)− 1) is not strongly quasipositive .

In a similar way, for every grid diagram D of size µ(D), the annulus A(K,λ(D)) will appear in a

diagram D1 with w(D1) = s(D1) = µ(D), so

A(K,λ(D) − µ(D)) is not strongly quasipositive (7.8)

when K 6= ©, and same for A(K,λ(D) − µ(D)− 1) when K = ©. �

Sin
e this maximum is �nite, we have:

Theorem 7.3 (Finite-Cone-Theorem) The framing diagram Φ(K) is a union of �nitely many 
ones.

Proof. Note that a 
one C′ = C(µ′, t′) 
ontains a 
one C = C(µ, t) if and only if (µ, t) ∈ C′
. Thus if

C ⊂ ⋃
i

Ci, then C ⊂ Ci0 for some Ci0 .

Call a 
one C ⊂ Φ(K) essential if there is no 
one C′ ⊂ Φ(K) with C ( C′
. Now 
onsider the essential


ones Ci = C(µi, ti) in Φ(K) one by one. Order them as a (�rst potentially in�nite) sequen
e C1, C2, . . .
by in
reasing ti, i.e., so that ti > ti−1. Note that there 
annot be two essential 
ones Ci, Cj with ti = tj ,
sin
e otherwise µi < µj would lead to Ci ⊃ Cj . Also there is a smallest t1 be
ause ti ≥ λ(K) for all i.
De�ne then

νi = max{t− µ : (µ, t) ∈ Ci} .
And now argue that νi > νi−1. Be
ause of (7.7), there 
an be only �nitely many in
reases of νi. (See

Proposition 8.6 for a more pre
ise statement and argument.) �

Another appli
ation of (7.7) gives an inequality we promised in stark symmetry to Lemma 4.17. (Unlike

its 
ounterpart, it thus does rely on the HOMFLY-PT polynomial in an essential way, though.)
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Lemma 7.4 For any diagram D of K, we have λ(K) > −2c+(D)− pbr(D).

Proof. If K = ©, then λ(K) = 0, pbr(D) > 0 and c+(D) ≥ 0, so the inequality is trivial. Thus assume

K 6= ©. We use the 
onversion (4.20) and the horizontal adjustment (4.21) of the proof of Lemma 4.17.

We may then assume w.l.o.g. that D is a grid diagram and all ±1 signed horizontal edges are interse
ted

by a 
rossing. Then using (7.7), we have

λ(K) > λ(D) − µ(D)

= Z(D)− w(D) − µ(D)

≥ 1

2

(
2µ(D)− 2c(D)− 2br(D)

)
− µ(D)− w(D)

= −c(D)− br(D) − w(D)

= −2c+(D)− br(D) .

In the third line we used that ea
h −1 edge has a 
rossing, and there are 2br(D) sign 0 edges. �

Remark 7.5 The number l(K), introdu
ed later, allows for improvements of (7.8), (7.7) and Lemma

7.4. However, the present versions maintain the advantage of involving only simple geometri
 data of the

diagram itself, without protruding algebrai
 
onstru
tions derived from it. Sin
e we will �nd a number of

(other) appli
ations of l(K), we do not like to return here to resume this spe
i�
 line of argument. One

pla
e where this reasoning is in
orporated is (A.13). The quantity l(K) will serve as a lower estimate for

the ar
 index, of whi
h we put ahead a simpli�ed variant.

Let P = P (A(K, t)) for some t. Keep in mind by �2.4 that P |z 6=1 is the polynomial P with all terms

of z-degree 1 removed. Be
ause of (7.5), talking about its degrees makes sense.

Lemma 7.6 The integer

l′(K) :=
1

2
span vP (A(K, t))|z 6=1 + 1 (7.9)

does not depend on t and satis�es

a(K) ≥ l′(K) . (7.10)

Proof. By 
onstru
tion, b(A(K,λmin)) ≤ a(K), so by MFW inequality (2.18), we see that (7.10) is true

for t = λmin. And for other t, note that the relation (7.4) does not add any terms of z-degree di�erent
from 1. That l′(K) does not depend on t follows for this same reason. �

But in fa
t, the z1-term of P is also interesting, and its study relates to the �
ooking� alluded to in

the abstra
t of the paper.

7.2 Estimating a(K): the pan

Like for the 
rossing number, there are only �nitely many knots of given ar
 index. However, on
e some


lassi
al tool like (7.27) fails to give a sharp lower estimate, the method used so far, like in [J+℄, is to

exhaustively enumerate all grids of smaller size, a feat whi
h qui
ky be
omes laborious and unreliable

when the size in
reases. To 
hange this situation here, we explain next how not to dis
ard the z1-term in

(7.10), and use it to determine a(K), and later λ(K), from the P polynomial with 
onsiderable pre
ision.

Write in the rest of this se
tion for simpli
ity

Kt = A(K, t)

for (the boundary of) the t-framed annulus around K. We have then from (7.4),

P (Kt) = zv + v2P (Kt−1) . (7.11)
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To visualize the polynomial P (Kt), it will be helpful to plot its 
oe�
ients in the plane, with (odd) v
degrees going from left to right and z degrees going top-down. Thus negative v-degree terms, left on the

y-axis, o

ur, and will be 
onsidered. But negative z-degree terms, above the x-axis, o

ur only for z−1
,

and we stipulate to hide them. We emphasize again that the z−1
-term in P (Kt) is known (see (7.5))

[P (Kt)]z−1 = (v−1 − v) · v2t([P (K)]z0)2 . (7.12)

By iterating (7.11), we 
an see that for su�
iently high t, the polynomial P (Kt), displayed as we just

explained, starts exhibiting the pan-like shape

✲

❄

v v3 · · · v powers

z powers

z

z3

.

.

.

1 1 1 1 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · · · · ·

· · ·

︸ ︷︷ ︸
W

(7.13)

Now remove all 1's in the panhandle of (7.13). To formalize this, we 
onsider the leftmost and rightmost


olumn [P ]vd in (7.13), for the smallest d = dmin > 0 whi
h is not of the shape

[P ]vd = z , (7.14)

and

dmax = maxdegv P . (7.15)

We 
an easily treat arbitrary t, and will do below. In that 
ase, we 
an modify the 
ondition (7.14)

for dmax < 0 (keep in mind that for a 2-
omponent link, d is always odd) to

[P ]vd = −z (7.16)

and dmin < 0 is set as min degv P . But, keeping the pan shape (7.13) in mind, assume here for simpli
ity

t ≫ 0.

Write then

l(K) =
dmax − dmin

2
+ 1 (7.17)

for the (pan) width of W in (7.13). (For the formalization of this pro
edure, see the expressions given at

the end of �7.4. Compare also with [Nu, Theorem 3.3℄.) In result, we have a way to �normalize out� the

t-dependen
e of the degrees of P (Kt) in the z1-term, giving an improved version of the lower bound l′(K)
in (7.10) for a(K). Due to the attention in
ited by the unknot, let us remark here that

a(©) = l(©) = l′(©) = 2 . (7.18)

Proposition 7.7 With (7.9) and (7.17), for every knot K, we have l′(K) ≤ l(K) ≤ a(K).
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30 1 0 14

-2 4 9 -33 41 -16

-12 4 1 1 1 1 1 25 -164 221 -80

-2 4 22 -342 468 -148

-2 4 8 -376 496 -128

-2 4 1 -231 286 -56

0 4 -79 91 -12

0 4 -14 15 -1

0 2 -1 1

38 1 0 18

-2 4 16 -56 66 -25

-16 4 1 1 1 1 1 1 1 81 -420 541 -200

-2 4 148 -1316 1778 -610

-2 4 128 -2248 3040 -920

-2 4 56 -2298 3013 -771

-2 4 12 -1457 1821 -376

-2 4 1 -575 680 -106

0 4 -137 153 -16

0 4 -18 19 -1

0 2 -1 1

Table 1: Polynomials of the Whitehead doubles W+(71, 7) and W+(91, 9) of the negatively mirrored 71
and 91. The framing t 
an be read o�, be
ause of (7.34), from the sum of the 
oe�
ients in the se
ond

row.

It should be emphasized that what appears as a panhandle is not what is illustrated in (7.13). It is at

the �wrong� end and will remain part of the pan when t is large.

Had the 
oe�
ients in these �false� panhandles been signed in the opposite way, i.e., to be −1, the

polynomials of A(!71, t) and A(!91, t) would have instantiated the possibility (7.19). (Being signed +1,

these 
oe�
ients will be
ome 2 for large t.)

Proof. Obviously l′(K) ≤ l(K), so we prove the right inequality. Be
ause of (7.18), we also assume

K 6= ©.

When we set (7.15), it is possible that some P (Kt) for small t has MFW bound < l(K). This 
an

happen if

[P ]vd = z for d = dmax and possibly dmax − 2, dmax − 4, et
. (7.19)

In parti
ular, we would need

dmax > maxdegv P |z 6=1 (7.20)

for su
h terms to o

ur. These terms (7.19) 
an be 
an
elled by the inverse pro
ess of (7.11) when their

v degree shifts down to 1 and then goes from 1 to −1.

We pause here for some 
autionary illustrations. We do not know if (7.19) 
an o

ur. But examples

warn that it �almost� does. It 
an be seen from Table 2 that when K =!10132, su
h a 
an
ellation (when

t = 1) o

urs in degree dmax − 2. But it does not in degree dmax, whi
h prevents a 
ollapse in degree.

Consider also the polynomials from Table 1. By smoothing out a 
rossing in the Whitehead double


lasp and taking the mirror image, one 
an see that when K are positive (2, n)-torus knots, then terms

[P ]vd = −z do o

ur in large amounts. They di�er from (7.19) only by one wrong sign. In parti
ular

these terms also make a signi�
ant di�eren
e to l′(K) = 4 in (7.10), eviden
ing the pri
e tag of ignoring

the z1-term all out. This is 
emented by further knots like K = 820, 943, with l′(K) < l(K). At least, we
refer here to the inequality (7.33) whi
h, under mirroring (2.15), provides some limit on how many terms


an 
an
el in (7.19).

Sin
e we 
annot ex
lude the situation (7.19), using

a(K) ≥ min
t∈Z

MFW(Kt) (7.21)
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(for (2.18)) will not be enough, at least in theory (see, though, Remark 7.8). However, noti
e that the ar


index, as bound for b(Kt), has a 
ertain stability: there is a number t = λmin with

b(Kt′) ≤ a(K) + |t′ − λmin| (7.22)

for every t′. (We know by Theorem 5.11 that λmin is unique for K 6= ©.) Using (7.22), we 
an repla
e

(7.21) by

a(K) ≥ min
t∈Z

max
t′∈Z

MFW(Kt′)− |t′ − t| . (7.23)

This will prevent the sporadi
 
ollapsing of the MFW bound from deteriorating the ar
 index bound. It


an be seen, with a bit of te
hni
al argument based on (7.11), that the right of (7.23) is pre
isely what

was de�ned as l(K).

For instan
e, there 
an be at most two hypotheti
al values of t for whi
h MFW(Kt) < l(K), and for

them 
hoosing |t′ − t| = 1 should su�
e to see

MFW(Kt′)− |t′ − t| ≥ l(K) .

An instru
tive example of the argument, allowing for two su
h t to o

ur, is the following sequen
e.

We show a transformation of the [P (Kt)]z1
terms with in
reasing t, where only the 
oe�
ients are written,

and verti
al bar stands for the separation between v-degrees −1 and 1 (making 
lear the degrees of all

other 
oe�
ients; even degrees are obviously omitted). The pan edge 
oe�
ients are boxed at some pla
es

(similarly to (7.49); see also (7.57)).

−1 − 1 2 0 0 − 1
∣∣∣ → −1 − 1 2 0 0

∣∣∣ → −1 − 1 2 0
∣∣∣1 → . . . (7.24)

. . . → −1
∣∣∣ 0 3 1 1 →

∣∣∣ 0 0 3 1 1 →
∣∣∣ 1 0 0 3 1 1

In that 
ase l(K) = 5, while for two t, MFW(Kt) = 3 is possible. But for either t and one of the two

|t′ − t| = 1, we have MFW(Kt′) = 6 = l(K) + 1.

This argument based on (7.23) justi�es that using (7.15) is appropriate to a
hieve l(K) in (7.17) to

estimate a(K) as 
laimed. �

Remark 7.8 There is a way to modify the 
al
ulation of l(K) to determine the r.h.s. of (7.21). Remove

all highest v-degree terms (7.14) for d > 0 and [P ]vd = 0 for d < 0, until you rea
h a degree d′max

(with 
oe�
ient [P ]vd) not of that form. Similarly, remove all lowest v-degree terms (7.16) for d < 0 and

[P ]vd = 0 for d > 0, �nding d′min. Then

l(K) ≥ min
t∈Z

MFW(Kt) ≥
d′max − d′min

2
+ 1 .

Note that on the right there is still no equality, be
ause when t is �xed, the just des
ribed 
an
ellation

of terms in P (Kt) 
an only o

ur on one side (either for low, or for high powers of v, but not for both).
Still, in the present form the estimate is good enough to allow us to 
on�rm that in fa
t

l(K) = min
t∈Z

MFW(Kt) (7.25)

for all prime knots K up to 10 
rossings. We do not know whether this equality holds in general.

Sin
e P (A(K, t)) are inter
onvertible for all t, one 
an determine l(K) from P (A(K, t)) for any t, and
then hope to determine a(K) if a(K) = l(K).

De�nition 7.9 We say that K is l-sharp if a(K) = l(K).
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[25℄[14℄[37℄[26℄[15℄[48℄[79℄[38℄-[69℄

55 132 -1 17

7 13 9 -21 16 -4

5 15 -15 109 -186 86 31 -25

1 15 -2 0 -80 452 -724 285 169 -100

5 15 -148 870 -1493 659 272 -160

5 15 -128 895 -1771 932 202 -130

5 15 -56 520 -1256 772 76 -56

5 15 -12 170 -536 376 14 -12

5 15 -1 29 -134 106 1 -1

7 11 2 -18 16

9 11 -1 1

[25℄[14℄[37℄[26℄-[15℄-[48℄-[79℄-[38℄-[69℄^2

56 1 0 18

-2 4 -8 21 -16 4

-8 6 1 1 16 -108 186 -86 -31 25

-8 6 2 0 80 -452 724 -285 -169 100

-4 6 148 -870 1493 -659 -272 160

-4 6 128 -895 1771 -932 -202 130

-4 6 56 -520 1256 -772 -76 56

-4 6 12 -170 536 -376 -14 12

-4 6 1 -29 134 -106 -1 1

-2 2 -2 18 -16

0 2 1 -1

Table 2: Polynomial of the annulus link A(10132, 0) and the Whitehead double W−(10132,−4) of 10132
and negative 
lasp, framing t = −4, together with the band presentation used, as obtained from (4.15)

(where ±[ij℄ stands for σ±1

i,j in (2.2)).

The mirroring of 10132 
an be easily 
on�rmed from the z−1
-term of P (A(10132, 0)) and (7.5) to be

the one spe
i�ed in Example 4.10.

For A(10132, 0) we see the disappearan
e of the (short) �false� panhandle. It 
omprises two monomials

in z-degree 1. We 
all the panhandle �false� be
ause in the same v-degrees, a term with z3 o

urs, so

that this �panhandle� is not removed when redu
ing the framing t. Note that A(10132, 0) is not strongly

quasipositive despite min degv P > 0.
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Example 7.10 Among the Rolfsen [Ro, Appendix℄ knots, K = 10132 is the only one whi
h is not l-sharp.
Then l(K) = 8 (as shown in Table 2) but [J+℄ (see Example 4.10) and KnotInfo [KI℄ report a(K) = 9.

There are four non-l-sharp 11 
rossing knots K (up to mirror images), i.e., su
h with

a(K) > l(K) , (7.26)

namely 11379, 11424, 11455, 11459 (for whi
h l(K) = 9 and a(K) = 10), and 21 further examples of 12 
ross-

ings.

In 
ase of 10132 (and a series of other examples), there is a linking number argument that 
an help out

determining the ar
 index. We formulate it as a lemma. (It 
an also be easily modi�ed to other knots,

but for simpli
ity we just present the prototype and leave it to the reader to adapt it.)

Lemma 7.11 We have a(10132) = 9.

Proof. Assume a(10132) ≤ 8. From the polynomial of the annulus link A(10132, 0) in Table 2, and (7.4),

we 
an see that MFW(A(10132, t)) ≤ 8 o

urs for t = −8, . . . , 0, and then MFW(A(10132, t)) = 8. Be
ause
of the bottom statement of Corollary 5.3, it is enough to prove that b(A(10132, 0)) 6= 8. We 
laim that

the polynomial of A(10132, 0) in Table 2 is su�
ient to see that b(A(10132, 0)) > 8, as follows.

Assume b(A(10132, 0)) = 8, and β is an 8-braid whose 
losure is A(10132, 0). Now, the exponent sum
w(β) is made up of the exponent sums w(βi) of the two subbraids βi of β, whi
h give the individual


omponents β̂1 = C1 and β̂2 = C2 of A(10132, 0), and the linking number lk(C1, C2) = t = 0 of these


omponents. Sin
e both C1 and C2 have the knot type of 10132, and b(10132) = 4, both 
omponents C1

and C2 of A(10132, 0) must be 
losures of 4-string subbraids βi of β. Then their individual exponent sums

must be w(βi) = wmin(10132), whi
h is determined to be 3 (see the tables [St4℄ and the remarks below

(2.19)). Thus

w(β) = w(β1) + w(β2) + lk(C1, C2) = 3 + 3 + 0 = 6 .

But the polynomial P = P (A(10132, 0)) in Table 2 exhibits

min degv P = 1 ≤ 15 = maxdegv P ,

and looking at the re�ned inequality (2.17), we see that a braid β with n = 8 strands must have writhe

w = w(β) = 8. This is a 
ontradi
tion. �

The �
lassi
al� lower bound for a(K) 
omes from Kau�man's polynomial F [MB℄:

a(K) ≥ span aF (K) + 2 . (7.27)

This 
an also be obtained from the bound (6.14) and Matsuda's inequality (7.58). For all of the 26 non-

l-sharp knots of Example 7.10 we have span aF (K) + 2 = l(K). But span aF (K) + 2 < l(K) obviously
o

urs for some �F -sparse� knots like K = 942. (However, 
ompare also`with Example 7.30.) Likewise,

l′(K) < span aF (K) + 2 o

urs in Table 1 (due to (7.28)), thus the z-term retains its 
redentials.

Question 7.12 Is span aF (K) + 2 ≤ l(K) for all non-trivial knots K?

Example 7.13 In general the approximation l(K) ≤ a(K) is rather good. There are 2049 ar
 index 11

prime knots up to 16 
rossings. The inequality (7.27) is sharp for 1666 of them, while 1977 (in
uding all

those 1666) are l-sharp.

Computation 7.14 At least up to 12 
rossings no prime alternating non-l-sharpness example was found

(i.e., l(K) = a(K) = c(K) + 2 holds for ea
h su
h knot K). Also no anomalies o

urred with the

Murasugi-Przyty
ki 18 
rossing alternating knot (and thus in
l. its mutant) with unsharp (2.18).

Question 7.15 Is a(K) = l(K) for all (non-trivial) alternating K?
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Sin
e Thistlethwaite [Th℄ proved that for K alternating

span aF (K) = c(K) , (7.28)

this would also be a part of Question 7.12 (as 
an be seen from the proof of Corollary 1.2 in �5).

Remark 7.16 In general F (K) is easier to obtain than P (A(K, t)). However, for small values of k, the
trun
ation P |z≤k(A(K, t)) may 
ome out faster than F (K). When F (K) is too slow, this raises the issue

of 
omputing z-trun
ations thereof (sin
e there are trun
ated versions of (7.27) as well). While the te
h-

nology is implemented [St3℄ and ready to use, we 
hoose not to delve into this here at all. As long as K is

not ex
essively 
ompli
ated, F (K) is 
omparatively e�
ient to obtain, and thus, in pra
ti
al terms, there

seems little wrong to always try (7.27) �rst as a lower bound for a(K). For suggestive reasons, (7.27) will
a

ompany us 
onstantly (see e.g. end of �7.3), but we like to fo
us on the HOMFLY-PT polynomial, and

thus will not make the 
omparison to (7.27) everywhere.

A further 
ondition we temporarily 
onsider is that

maxdegz P (A(K, t)) > 1 . (7.29)

Keep in mind that maxdegz P (A(K, t)) does not depend on t if for some t it is greater than 1.

The inequality (7.29) seems in pra
ti
e to always hold when K is not the unknot. Indeed, it is


onje
tured more pre
isely (see [KS℄) that, for K 6= ©,

maxdegz P (A(K, t)) = 2maxdegz F (K) + 1 (7.30)

for the Kau�man polynomial F . (Often W±(K, t) is used instead of A(K, t), but the 
onversions are

straightforward.) In parti
ular (7.30) subsumes the expe
tation that

maxdegz P (A(K, t)) = 2c(K)− 1 (7.31)

for K prime and alternating. The 
onje
ture (7.31) is still open. The most general results are due to

Brittenham-Jensen [BJ℄. We do not know about work on the extension (7.30).

Computation 7.17 We have veri�ed using Whitehead doubles that (7.30) is true for prime knots up to

12 
rossings. Thus in parti
ular, all su
h knots satisfy (7.29).

By taking the reverse parallel with the bla
kboard framing of a minimal 
rossing diagram of K,


ounting the Seifert 
ir
les, and using Morton's inequality (2.22), one always has

maxdegz P (A(K, t)) ≤ 2c(K)− 1 (7.32)

for an arbitrary non-trivial K and any t (see [BJ℄). This inequality (7.32) is not always sharp. But

the 
onje
tured equality is that the 
anoni
al genus of the Whitehead double of a knot K (regardless of

framing and sign of 
lasp) 
oin
ides with the 
rossing number of K. And this 
onje
ture follows for K
prime and alternating if (7.31) is 
on�rmed. From the identity (2.16), we remark then for every non-trivial

K and every t,
min degv P (A(K, t)) ≤ maxdegz P (A(K, t)) ≤ 2c(K)− 1 . (7.33)

This was mentioned in the proof of Proposition 7.7, and implies that the number of (potentially existing)

terms in (7.19) that lead to 
an
ellations 
an be at most c(K)− 1.

In general, l(K) is not easy to 
al
ulate on in�nite families of knots. Noti
e that, unlike (2.29) and

a 
orresponding property of the r.h.s. of (7.27), it is not even evidently (2 sub-)additive under 
onne
ted

sum.
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Question 7.18 Is l(K1#K2) = l(K1) + l(K2)− 2?

This turns out to be the 
ase in a few examples, like 10132#(!)31 and 10132#(!)10132, but as long as it
is not 
on�rmed, the possibility exists to extra
t further information from l as a lower ar
 index bound,

using the relationship (2.29).

We use (7.29) for at least one partial result regarding l(K).

Lemma 7.19 We have l(K) ≥ 3 for every knot K with (7.29).

Proof. Note the spe
ial form of the Conway polynomial (2.23) in our examples:

∇(Kt) = P (Kt)(1, z) = tz . (7.34)

Thus in parti
ular setting v = 1 will 
ollapse P (Kt) in z-degrees > 1.

By (7.29) and the 
ollapsing in (7.34), if the bound l(K) is at most 2, it is 2, and all Pzd terms for

d > 1 are of the form

(cuv
dmin − cuv

dmin+2)zu . (7.35)

By 
hoosing t properly, let w.l.o.g. dmin = 1 and dmax = dmin + 2 = 3. Note that the reverse appli
ation
of (7.11) will gradually annihilate all terms [P ]vd for d < dmin. Thus with dmin = 1 and dmax = 3, we
have in fa
t

min degv P |z≥1 = 1 ,mindegv P |z≥1 = 3 .

But be
ause of the form (7.35) and cu 6= 0 for u = maxdegz P ≥ 3, the substitution in (2.16) will give

min degv P |z≥1(v, v−1 − v) = 1− u (7.36)

and

maxdegv P |z≥1(v, v−1 − v) = 3 + u . (7.37)

With (7.12),

P = P |z≥1 + v2t(v−1 − v)([P (K)]z0 )2/z

for some t, and we have then

1 = P (Kt)(v, v
−1 − v) = P1 + P2 ,

where

P1 = P |z≥1(v, v−1 − v) and P2 = v2t([P (K)]z0)2 .

Now we know (7.36) and (7.37) about P1. Also 1 − u < 0 < 3 + u. Thus, adding v2t times a square for

any t 
annot 
an
el all terms in v-degree 6= 0, unless span v([P (K)]z0)2 = 2 + 2u. Thus from (7.12),

span v[P (Kt)]z−1 ≥ 4 + 2u .

Sin
e by de�nition, dmin ≤ min degv[P (Kt)]z−1
and dmax ≥ maxdegv[P (Kt)]z−1

, we have l(K) ≥ 3+u ≥
6. This 
ontradi
tion shows that l(K) 
annot be (at most) 2. �

Remark 7.20 By the properties of F listed in �2.4, it follows straightforwardly when F (K) 6= 1, then
span aF (K) + 2 ≥ 4. Thus, through Question 7.12, Lemma 7.19 illustrates the di�
ulty to 
ontrol l(K).
This unpredi
table behavior may, though, 
ontribute to its e�
ien
y as ar
 index bound.
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7.3 Appli
ations of Cabling

Conje
ture 2.3 unders
ores the importan
e of 
abling in settling braid, and thus also ar
 index issues.

This is a perhaps less pleasant, but still more universal means than Lemma 7.11, to treat some l-unsharp
knots K.

Computation 7.21 For K = 10132 the links L we 
onsider with MFW(L) = 8 < a(10132) = 9 are

• L = A(K, t) = Kt for t = 0, . . . ,−8,

• L = W+(K, t) for t = 0, . . . ,−7, and

• L = W−(K, t) for t = −1, . . . ,−8.

(Of 
ourse, for the rest values of t we 
an 
on
lude MFW(L) ≥ 9 using the relation (7.11), or a similar

relation for Whitehead double polynomials.)

All the links listed above have b(L) = 9. We easily observe b(L) ≤ 9. One 
an obtain a 9-string band

presentation from that for A(10132, 1) with positive bands, given in (4.15), by making some bands negative

and doubling a positive band for W+ and a negative one for W−. (Table 2 gives some examples.) At

the opposite end, we tested b(L) ≥ 9 with parallelized trun
ated 2-
able (MFW) P , as dis
ussed in �2.4.

The pro
edure took on a 4-CPU 10-year-old 2013 laptop between 2 and 15 h depending on individual

examples: an agreeable performan
e, when taking into a

ount that the diagrams resulting from 2-
abling

the modi�
ations of (4.15) have more than 200 
rossings. (They depi
t ↑↑↓↓ oriented degree-4 satellites

of 10132.)

This 
omparative e�
ien
y o�ers the opportunity for more extensive 
he
ks (for other K). However,

this option was waived on, sin
e it still is not readily amenable to larger quantities, and it leaves un
lear

what insight to expe
t. (We will use the above 
ompiled examples for later referen
e, though.)

Remark 7.22 Using Computation 7.21 for K = 10132, and the veri�
ation of (7.25) and l(K) = a(K)
(see Example 7.10) for all other prime knots K up to 10 
rossings, we 
an 
on
lude that the answer to

(both parts of) Question 5.6 is a�rmative for all these 249 knots.

When (7.26) o

urs, i.e., K is not l-sharp, the following simpli�
ation of 
abling may potentially be

useful. Sin
e κ(A(K, t)) = 2, one 
an 
able an individual 
omponent of A(K, t), obtaining a ↑↑↓ oriented

parallel A∗(K, t, t′) of K, where t′ is the framing of the doubled 
omponent. (Here thus t′ 
an be a

half-integer when the two 
opies of the doubled 
omponent get 
onne
ted, i.e., κ(A∗(K, t, t′)) = 2 when

2t ∈ Z but t 6∈ Z.) Cabling an individual 
omponent only roughly doubles (and does not quadruple) the


rossings in the braid word βD for A(K, t) = β̂D.

Lemma 7.23 For every t with b(A(K, t)) = a(K) and every 2t′ ∈ Z, we have

b(A∗(K, t, t′)) ≤ 3a(K)/2 . (7.38)

Proof. When b(A(K, t)) = a(K), then one of the 
omponents of A(K, t) in an a(K)-braid representative

β is a subbraid on at most a(K)/2 strands. Thus doubling this 
omponent C, regardless of what framing

t′ is used, 
an be done by adding at most a(K)/2 braid strands. (The framing 
an be 
orre
ted by adding

half-twists whi
h do not add more strands.) This gives a braid representative of A∗(K, t, t′) of at most

3a(K)/2 strands, resulting in (7.38).

Note that A(K, t) is ex
hangeable up to simultaneous reversal of orientation of both 
omponents, whi
h

does not a�e
t braid index arguments. Thus whether C is the 
omponent we 2-
able to obtain A∗(K, t, t′)
from A(K, t), or we 
able the other 
omponent, is not relevant. (Note, though, that the framing t′ of the


abled 
omponent may be di�erent w.r.t. the bla
kboard framing of the diagram β̂.) �
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Algorithm 7.24 The following explains how one 
an try to use this lemma. Sin
e the 
ontrapositive of

its statement is really used, some 
are is needed how to pro
eed, and we formulate it in several steps as

an algorithm.

1. Use a band presentation βD (as in (4.1)) for a grid diagram D of K of size µ. This gives a band

presentation of A(K, t) for some t.

2. Make some bands negative to as
ertain that P (A(K, t)) has no panhandle. For example, when

K = 10132 and µ = 9, then we know that there are nine values of t ∈ Z for whi
h MFW(A(K, t)) =
l(K) = 8, namely t = −8, . . . , 0. The statement below (5.4) says that it is enough to treat one of

these t. Thus we 
an 
onsider t = 0 (whi
h requires one negative band), and use the polynomial in

Figure 2. In general, one 
an remove the panhandle (i.e., adjust t by making bands negative) only

by looking at P (A(K, t))|z≤1 .

3. Then double, with bla
kboard framing w.r.t. the diagram β̂D, one of the 
omponents of the link

β̂D = A(K, t). One obtains a link A∗(K, t, t′). There are in general two possibly (but not always)

distin
t integers t′, depending on whi
h 
omponent of β̂D one 
hooses to double. (It 
an be argued

that these two t′ will add up modulo 2 to the same parity as the �band width� sum

µ∑
k=1

(jk − ik − 1)

in (2.4); whi
h in turn has the same parity as µ; thus two distin
t t′ will in parti
ular always o

ur

when µ is odd.)

4. Try to prove that su
h a link A∗(K, t, t′) has braid index stri
tly greater than ⌊3(µ− 1)/2⌋. This

will prove a(K) = µ.

Example 7.25 For instan
e, when we do this 
onstru
tion for K = 10132 with (4.15) (one band needs

to be made negative here), this gives A∗(10132, 0, t
′) for t′ = 3, 4. We found (see (2.20)), though, that

MFW10(A
∗(10132, 0, t

′)) = 12

for both t′. Thus unfortunately, for K = 10132, the observation (7.38) does not seem useful to show

a(10132) = 9, at least as far as (2.20) is applied (within reasonable 
omputability).

However, there is a number of su

essful 
ases. For example, when we 
arry out this pro
ess for

K = 1427072, with the size-12 grid

13 24 58 7C 3B 1A 6C 59 8B 7A 49 26

(where A,B,C stand for 10,11,12; see De�nition 4.6), we �nd l(1427072) = 11, but making 3 bands negative,

we obtain

MFW2(A
∗(1427072, 2, 1)) = 17

(here t′ = 1 is the same for both 
hoi
es of doubled 
omponent), whi
h rules out a(1427072) = 11.

Other examples, again with µ = 12 (and a single t′), are

16 466746: 13 46 25 7A 8B 9C 3A 4B 16 7C 28 59

15 123702: 13 24 57 9C 6A 38 17 5B 49 8C 2A 6B

and

14 19935: 13 25 48 7B 3A 16 59 8B 7A 49 26

16 459158: 14 25 38 6A 7B 49 18 5A 29 6B 37

for µ = 11 (using 5 negative bands, with two di�erent t′, both having MFW2(A
∗(K, t, t′)) = 16).
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These examples do require some sear
h, but keep in mind that even for trun
ated polynomials, the

in
rease in 
rossing number has severe (
omplexity) 
onsequen
es. (Here we tried only trun
ation degree

d = 2, whi
h does not 
ost mu
h time and allows for testing a larger number of examples.) Thus Lemma

7.23 provides a viable option to try out.

Remark 7.26 We add the following pra
ti
al hints about the determination of the ar
 index.

1) For more 
ompli
ated knots K, it is better to approximate l(K) from below by using z-trun
ations
of the HOMFLY-PT polynomial, as explained in �2.4. This was used to assist the �rst and third

authors' ongoing e�ort to tabulate the ar
 indi
es of the (non-alternating prime) 14 
rossing knots.

But it also emphasizes that it is useful to have a good upper estimate of a(K) in advan
e. On
e


oin
iden
e with the lower bound is rea
hed, one 
an then save 
al
ulation of further trun
ations

(and the full polynomial).

We 
larify that how an upper estimate of a(K) was obtained relates to the (knot-spoke) method of

[JP℄, �nding 
ertain proper non-alternating ar
s in diagrams of K. It is not ne
essary (and takes

extra e�ort) to obtain a minimal grid diagram expli
itly.

2) As noti
ed while proving Lemma 7.11, the statement below (5.4) provides another signi�
ant short-


ut to help determining a(K) when l(K) fails. For instan
e, to see (in an alternative way to Lemma

7.11) that a(10132) 6= 8, it su�
es to 
al
ulate a (trun
ated) 2-
able polynomial of A(10132, t) for
only (any) one of the nine values of t that o

ur in the enumeration of Computation 7.21.

3) Observe that the linking number argument of Lemma 7.11 
an be adapted to A∗(K, t, t′) as well. One
has to 
onsider instead of lk(C1, C2) = t the total linking number of the 
omponents of A∗(K, t, t′),
whi
h is 2t+ t′ for t′ ∈ Z (and κ(A∗(K, t, t′)) = 3) and 2t otherwise (when κ(A∗(K, t, t′)) = 2). We

will give relevant examples at a separate pla
e, where we dis
uss the ar
 indi
es of the 14 
rossing

knots.

4) Noti
e also Question 7.18 and the remarks below it.

To give a lookout at where we stand thus far, regarding the said at the beginning of �7.2, we have now

gained a toolkit to rule out 
ertain values of the ar
 index. We related it to a braid index (see Conje
ture

8.1 below, although Part 2 of Remark 7.26 explains that we need a weaker statement), and then in turn

to the HOMFLY-PT polynomial (
ompare Conje
ture 2.3). These 
onne
tions work out at least in a

pra
ti
al sense, whi
h gives an approa
h to determine a(K) for most K.

We �nish the subse
tion on 
abling with some remarks on the relation to ar
 indi
es of 
ables of K,

and a prospe
tive (new) use of the Kau�man polynomial.

Proposition 7.27

a(Kt0) = 2a(K) when w(D) = −t0 is a writhe of a minimal grid diagram D of K. (7.39)

Moreover, ea
h su
h w(D) satis�es

maxdega F (K) + 1 + br(K)− a(K) ≤ w(D) ≤ min dega F (K)− 1− br(K) + a(K) . (7.40)

Also

min { a(Kt) : w(D) = −t statis�es (7.40) } = min { a(Kt) : t ∈ Z } = 2a(K) . (7.41)

Proof. For `≥' in the �rst statement, noti
e that the ar
 index of a link is not less than the sum of ar


indi
es of its 
omponents. To see equality, take a minimal size a(K) grid diagram D of K and build the

(dis
onne
ted) bla
kboard-framed 2-parallel of D with reverse orientation of both 
omponents. This gives
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a grid diagram of size 2a(K) of Kt0 for t0 = −w(D). (Compare with the proof of Lemma 4.4.) With the

same reasoning, we have (7.41).

An issue with using (7.39) as an ar
 index obstru
tion is that one does not really know a priori well

what t0 would have to be. One way to restri
t t0 is from Lemma 3.5. A generally better alternative arises

using a known value or estimates of λ(K). The form (7.40) we o�er uses Corollary 4.11 with µ(D) = a(K).
Note further that Z(D) ≥ br(K), sin
e rotating D by −π/4 would turn NW-
orners into lo
al maxima

(and SE into lo
al minima) of a Morse presentation of K. This obviously holds for NE (or SW) 
orners

as well (when rotating by π/4), and shows

br(K) ≤ Z(D) ≤ a(K)− br(K) . (7.42)

Then we have from (4.5), and (6.14), when K 6= ©, that

w(D) − Z(D) = −λ(D) ≤ −λ(K) ≤ min dega F (K)− 1 ,

whi
h yields

w(D) ≤ min dega F (K)− 1 + Z(D) . (7.43)

Applying the argument on the mirror image !D gives

w(D) ≥ maxdega F (K) + 1− Z(!D) = max dega F (K) + 1− a(K) + Z(D) . (7.44)

Use now (7.42) in (7.43) and (7.44), whi
h shows (7.40). (When K = ©, the 
laim is trivially 
he
ked.)

�

Further noti
e that altering individual 
omponent orientation of a link does not 
hange the ar
 index,

and thus, for an unrestri
ted t ∈ Z, we may regard hereKt as a dis
onne
ted 2-
able ofK. This would also

lend a meaning to Kt for a half-integer t ∈ 1
2Z \ Z, as a 
onne
ted 2-
able. This situation was 
onsidered

by the �rst author and Takioka [LT℄, where they write q = 2t. Still, one must be 
areful with the sign

swit
h of t that o

urs. To avoid 
onfusion, let us write K̂t for the 2-
able of K with framing t ∈ 1
2Z, so

that when t ∈ Z, then K̂t arises by reversing one 
omponent in K−t.

From here we see that we 
an also �2-
able� (7.27).

Corollary 7.28

2 + min { span a F (Kt) : t ∈ Z } ≤ 2a(K) . (7.45)

Proof. For span a F as well, it is immaterial how individual link 
omponents are oriented, and thus

span a F (Kt) = span a F (K̂−t). This is the reason why when miminizing over t ∈ Z, one 
an repla
e Kt

by K̂t. �

It is not ne
essary to expli
itly 
al
ulate F (K̂t) for more than two values t ∈ 1
2Z, sin
e there are

re
urren
e relations (analogous to (7.11)), whi
h determine all other F (K̂t) therefrom. Thus in pra
ti
e,

a 
onstraint like (7.40) is not very helpful, and it seems a bit easier to use t ∈ Z in (7.41).

Example 7.29 The �rst author and Takioka have employed this idea to determine span a F (K̂t) for prime

knots K of up to 8 
rossings (and any t ∈ 1
2Z), and show that (7.27) 
an be used to �nd (inter alia) a(K̂t)

(and thus also a(Kt) when t ∈ Z) in all these 
ases. They did not 
onsider a(K), but their 
al
ulations
[LT, Appendix A℄ establish that the pra
ti
al variant of (7.45),

a(K) ≥ 1 +

⌈
1

2
min { span a F (Kt) : t ∈ Z }

⌉
, (7.46)

is sharp in their range. This was of 
ourse of little interest there, sin
e a(K) had long been determined

previously. But it does motivate now a 
loser look at (7.46).
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Example 7.30 Sin
e (7.27) is not sharp for K = 819, there is some improvement from (7.46) over (7.27).

In 
omparison to Proposition 7.7, the obvious instan
e to try out is again K = 10132. It 
an be 
he
ked

with some te
hni
alities (of the same style as those handled by Lee and Takioka) that (7.46) is sharp for

K = 10132. (Still (7.45) is o� by 1. Thus (7.27) does not yield enough information to determine a(K̂t) for
K = 10132, at least when t ∈ 1

2Z\Z and the sublink argument at the beginning of the proof of Proposition

7.27 fails.)

This suggests the possiblility that (7.46) is in fa
t quite powerful as an ar
 index bound. Inhowfar

(7.46) is useful in general remains to be seen. Certainly, when K has more 
rossings, the 
al
ulation of

F (K̂t) is very strenuous. But the trun
ation te
hnique (Remark 7.16) 
ould again 
ome into e�e
t.

Trun
ations 
ould also be
ome even more useful for higher 
ables. For instan
e, we 
an modify (7.46)

to

a(K) ≥
⌈
1

3

(
2 + min { span a F (A∗(K,−w(D), w(D))) : w(D) satis�es (7.40) }

)⌉
, (7.47)

and here (7.40) be
omes rather relevant again, sin
e the re
ursions between F (A∗(K, t,−t)) (exist but)
are mu
h more 
umbersome. Pay attention that (7.40) also involves a(K), but this poses no problem in

using (7.47) as an obstru
tion, in trying to falsify it when a parti
ular value of a(K) is �xed.

This approa
h does merit further study, but it de�nitely has to �nd its pla
e in a separate paper,

where we try it out on some 14 
rossing knots.

7.4 Estimating λ(K): a 
ooking re
ipe

Returning to (7.13), we use the substitution (7.34) to extra
t further information from the pan.

Let a1, . . . , al, for l = l(K), be the z-degree 1 
oe�
ients in W in (7.13):

[W ]z1 =

l∑

i=1

aiv
dmin+2i−2 . (7.48)

Obviously ai form the edge of the pan (drawn below without its handle) � whose general use is to break

your eggs when frying them.

a1 a2 · · · al

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

(7.49)

Note, though, that the possibility a1 = 0 (or al = 0) does exist (although we did not investigate whether

or how often it materializes). Furthermore, a0 = 1 
an o

ur also for dmin > 0 if [P ]vdmin has terms in

z-degree 6= 1. Here is the way we put the pan edge to our own use.

Proposition 7.31

l∑

i=1

ai ≤ λ(K) ≤
l∑

i=1

ai + (a(K)− l(K)) . (7.50)

Proof. Now remember that min degv P (Kt) > 0 (property (7.3)) for Kt strongly quasipositive (i.e.,

t ≥ λ(K)), as well as that there is a t ≥ λ(K), namely t = λmin, so that maxdegv P (Kt) ≤ 2a(K) − 1
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(property (7.1)). Thus, for the polynomial P (Kλ(K)) we have a(K)− l(K) + 1 possibilities

✲

❄

1 2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai

✲

❄

3

1

2a(K)− 1

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + 1

· · ·

✲

❄

2a(K)− 1

1 1 · · · 1︸ ︷︷ ︸
a(K)−l

❅❅❍❍❍❍��

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·
· · ·l∑

i=1

ai + a(K)− l

(7.51)

distinguished by the panhandle length 0, . . . , a(K)− l(K).

The pan edge 
oe�
ients ai are not 
hanged for di�erent panhandle length, and by looking at (7.34),

we see (7.50). �

Thus, rather pre
ise, information about the Thurston-Bennequin invariant manifests itself in the 
o-

e�
ients of the polynomial, not in its degrees

3

. It provides an additional bonus of 
omputing P (Kt) (for
some t), beyond determining l(K). Namely, if l(K) = a(K), then one obtains λ(K) pra
ti
ally for free.

This �frying eggs in the pan� pro
edure 
an be useful, for instan
e, in 
omparison to Theorem 5.11, when

a(K) is found without 
onstru
ting a minimal grid diagram expli
itly (see Part 1 of Remark 7.26), or as

additional information in obstru
ting to the existen
e of 
ertain grid diagrams of a given knot. Remark

7.38 gives a hint how to pro
eed when l(K) < a(K).

To illustrate the use of (7.50), 
onsider the following examples.

Example 7.32 The polynomial

4

✲

❄

1 1 1 1

❵❵❵❵❵❵❵

1 2 3

7 5 6

6=1

has panhandle length 4 and pan-width l(K) = 3. If a(K) = 5, then (7.50) has on the right (5− 3) + (1 +
2 + 3) = 8, so (7.50) reads 6 ≤ λ(K) ≤ 8.

3

Of 
ourse, if one is allowed to use [P (K)]z0 , then t 
an be retrieved from [P (Kt)]z−1 using (7.12) as well.

4

We emphasize that the polynomials in this and the next example are not HOMFLY-PT polynomials of real knotted

annuli, i.e., the reader should not try to guess what K they were obtained from; we just hand-invented the polynomials for

illustrative purposes.
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Example 7.33

✲

❄

1 1 2

❳❳❳❳❳❳❳❳❳❳❳❳

1 1 2 3

7 5 6

W

6=1

has panhandle length 2 and pan-width l(K) = 5. If a(K) = 6, then (7.50) has on the right (6− 5) + (2 +
1 + 1 + 2 + 3) = 10, so (7.50) reads 9 ≤ λ(K) ≤ 10.

We have then the following �Matsuda-Dynnikov-Prasolov� (see Remark 7.36) type of relationship.

Proposition 7.34 With the notation of �2.2 for mirror image,

l(K) ≤ λ(K) + λ(!K) ≤ 2a(K)− l(K) . (7.52)

Proof. We prove the right inequality. The argument 
an easily be modi�ed to show the left one. We also

assume, after inspe
tion, that K is non-trivial. We have (!K)−t =!(Kt) . Note that (2.15) (with κ = 2 as

for Kt = A(K, t)) gives
P (!Kt)(v, z) = −P (Kt)(v

−1, z) . (7.53)

Now by mirroring property (7.1) using (7.53), we see that there is a t = λmin(K) ≥ λ(K) with

maxdegv P ((!K)−t) ≤ −1 , min degv P ((!K)−t) ≥ 1− 2a(K) .

By how l(K) was de�ned, and again using the mirroring (7.53), there is an odd

0 > d ≥ −1− 2a(K) + 2l(K) (7.54)

so that

[P ((!K)−t)]vd 6= −z (7.55)

holds. (The 
ondition (7.14) mirrors through (7.53) to (7.16).)

✲

❄

1− 2a(K)
P ((!K)−t)

powers of v

pan

edge

a1 · · · al

powers of z

a1 a2 · · · al −1 −1 · · · −1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

−1

0

0
.

.

.

0

6=
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The repeated appli
ation of (7.11) then shows

min degv P ((!K)a(K)−t) ≥ 1

and by (7.54)

maxdegv P ((!K)a(K)−t) ≥ 2l(K)− 1 . (7.56)

✲

❄

2l− 1

2a(K)− 1

P ((!K)a(K)−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

To see this last inequality (7.56), note that the terms annihilated by (7.11) when t in
reases are exa
tly
those for d < 0 where (7.55) does not hold. Sin
e a(K) = a(!K), the inequality (7.56) means that the

largest t′ with maxdegv P ((!K)t′) ≤ 2a(!K)− 1 satis�es

t′ ≤ 2a(K)− l(K)− t .

✲

❄

2a(K)− 1
P ((!K)2a(K)−l−t)

powers of v

pan

edge

a′1 · · · a′l

a′i = ai + 1

powers of z

a′1 a′2 · · · a′l1 1 · · · 1

❅
❅❅❍❍❍❍❍�

��

· · · · · ·
· · · · · ·

· · · · · ·
· · ·

0

0

0

.

.

.

0

6=

Now we 
an apply Lemma 7.1 on !K. We have

λ(!K) ≤ t′ ≤ 2a(K)− l(K)− t = 2a(K)− l(K)− λmin(K) ≤ 2a(K)− l(K)− λ(K) ,

as we 
laimed. �

Example 7.35 We show a (�
titious) exemplary transformation of the [P (Kt)]z1
terms with in
reasing

t, with the symboli
s used in (7.24).

5 4 1 − 1 − 1
∣∣∣ → 5 4 1 − 1

∣∣∣ → 5 4 1
∣∣∣ → (7.57)

→ 5 4
∣∣∣ 2 → 5

∣∣∣ 5 2 →
∣∣∣ 6 5 2 →

∣∣∣ 1 6 5 2 →
∣∣∣ 1 1 6 5 2
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It 
onsists of 7 steps: a(K) = 5, l(K) = 3, thus 2a(K)− l(K) = 7.

Remark 7.36 Matsuda [Ma℄ (see also [Ng℄) proved

a(K) ≥ λ(K) + λ(!K), (7.58)

whi
h improves the right inequality in (7.52). But in fa
t, Theorem 5.11 with Corollary 4.11 shows that

equality holds, answering [Ng, Question 1℄:

a(K) = λ(K) + λ(!K) . (7.59)

Then Proposition 7.34 
an be interpreted by saying how mu
h the HOMFLY-PT polynomial �sees� from

that geometri
 reasoning. But we approa
h (7.52) from the viewpoint of strong quasipositivity, whi
h 
an

later be adapted to quasipositivity (see Proposition A.2). Thus even with Theorem 5.11, our argument is

not redundant.

Remark 7.37 When K is an amphi
heiral knot, K =!K, then A(K, 0) is an (orientedly) amphi
heiral

link. One 
an use this and (2.15) to 
on
lude that in that 
ase both l′(K) and l(K) are even. This is


ompatible with the fa
t that a(K) is even through (7.59). Furthermore, the ai in (7.48) exhibit a shifted

antisymmetry: in the normalization dmin > 0, they satisfy ai + al+1−i = 1.

For 
omputational purposes, we repeat here the formal self-
ontained (but not very pleasant) expression

for l(K) and the estimate (7.50) that is valid for arbitrary t. Take P = P (Kt) for some t ∈ Z. The

quantities dmin and dmax 
an be determined as follows. Set

m̃in degvP =

{
min degv P min degv P < 0

min{ d > 0 : [P ]vd 6= z } min degv P > 0

and

m̃ax degvP =

{
maxdegv P maxdegv P > 0

max{ d < 0 : [P ]vd 6= −z } maxdegv P < 0
.

Then

l(K) =
1

2

(
m̃ax degvP − m̃in degvP

)
+ 1 ,

and (7.50) 
an be stated as

λ(K)−
(
[P ]z1(v = 1) +

{
⌊−1/2min degv P ⌋ min degv P < 0

−
⌊
1/2m̃in degvP

⌋
min degv P > 0

})
∈ [0, a(K)− l(K)] .

Remark 7.38 Again, if (7.26) o

urs, then one 
an adapt the arguments in Remark 7.26 to disambiguate

the value for λ(K). This gives a pra
ti
al way to 
al
ulate this number for any given K.

8 Braid indi
es revisited (and problematized)

8.1 Framing 
ones and the ar
 index

Here we summarize some remarks provided on various braid indi
es, and add dis
ussion of related natural

questions. They are meant to point out a series of subtleties, whi
h may be signi�
ant or not, but whi
h

are easy to overlook while less straightforward to resolve. One having some parti
ular importan
e in

this 
ontext is Question 5.6. We reformulate part (a) here as a 
onje
ture, with the insight gained from

Corollary 5.3 and Remark 7.22.
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Conje
ture 8.1

a(K) = min
t∈Z

b(A(K, t)) (8.1)

The following reasoning will appear in several modi�ed versions below, thus we re
ord it as a lemma.

Compare with Theorem 5.11.

Lemma 8.2 Assume (8.1) is true. Then (4.11) holds, in parti
ular λmin is unique.

Proof. Take an a(K)-band positive band presentation of A(K, t) for t = λmin ≥ λ(K), and make one

band negative. By Remark 4.3, one has then an a(K)-band presentation of A(K, t−1). Now sin
e A(K, t)
is strongly quasipositive, it is Bennequin-sharp. But

χ(A(K, t)) = χ(A(K, t− 1)) , (8.2)

and thus the a(K)-band presentation of A(K, t − 1) is not Bennequin-sharp, i.e., it does not make (2.5)

an equality. But still b(A(K, t − 1)) = a(K) by (8.1). Now, if A(K, t − 1) is strongly quasipositive,

then be
ause of Theorem 2.2, every minimal braid representative of b(A(K, t − 1)) would make (2.5) an

equality. Thus we have that A(K, t− 1) is not strongly quasipositive. This means that t− 1 < λ(K), and
so t ≤ λ(K), with the reverse inequality already observed. �

Remark 8.3 Note that Conje
ture 8.1, when K is alternating, is related to an a�rmative answer to

Question 7.15. But it is not entirely implied by su
h answer, be
ause of the sporadi
 
ollapsing s
enario

elu
idated in the proof of Proposition 7.7. The way l(K) was de�ned, MFW(Kt) < l(K) for some t 
an
o

ur. Of 
ourse, repla
ing l(K) with the bound l′(K) in (7.10) avoids the 
ollapsing problem. But we

remind from the proof of Proposition 7.7 that we veri�ed (7.10) to be (even very) unsharp in same 
ases.

More generally than (4.11), we have:

Lemma 8.4 Conje
ture 8.1 implies a positive answer to Question 5.9, that Φ(K) is a single 
one

Φ(K) = C(a(K), λ(K)) .

Proof. Conje
ture 8.1 implies that in any band presentation on s = a(K) + k strings with > k negative

bands will give an non-strongly quasipositive A(K, t). The framing t 
hanges with the sign of bands in an

obvious way (
ompare with Remark 4.3). Thus if (s, t) ∈ Φ(K), then t− (s− a(K)) < λ(K), in parti
ular

(s, t− (s− a(K))) 6∈ Φ(K). Therefore,

(s, t) ∈ Φ(K) =⇒ t ≤ λ(K) + s− a(K) .

That is there are no points in Φ(K) like the en
ir
led:

✲
µ

✻t

�
�
�
��

�
�
�
��

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s
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This shows the 
one shape of Φ(K). �

Lemma 8.4 pertains to the situation one may expe
t. But one 
an also use Theorem 2.2 for a version

when Conje
ture 8.1 is unresolved (or false).

De�nition 8.5 De�ne the defe
t of K by

δ(K) = a(K)−min
t∈Z

b(A(K, t))

Then the argument for Lemma 8.4 modi�es to show that an a(K)-band positive band presentation of

A(K, t) gives

λ(K) ≤ t ≤ λ(K) + δ(K) , (8.3)

and any positive band presentation of A(K, t) on s = a(K) + k strings will have

λ(K) ≤ t ≤ λ(K) + δ(K) + k = λ(K) + δ(K) + s− a(K) . (8.4)

From this, we 
an 
on
lude the following.

Proposition 8.6 For a non-trivial knot K, we have that Φ(K) is the union of at most 1 + δ(K) 
ones.

Note that for K = ©, we have δ(K) = 0, so that the 
laim is false due to the 
ir
umstan
e (4.10).

(But, again, this 
ase 
an be worked out separately: see Example 5.10.) In Remark 7.22 we have veri�ed

that δ(K) = 0 for all prime knots K up to 10 
rossings.

Proof. The 
ondition (8.4) pla
es (s, t) into a trapezoid whi
h is the union of the 
ones (a(K), t) for t in
(8.3). Now, Φ(K) in obviously only 
ontained in this union. Call a 
one C(µ, t) in Φ(K) essential , if it is
not properly 
ontained in any other 
one in Φ(K). Among 
ones C(µ, t) of �xed t − µ in Φ(K), there is
always a maximal one, namely the one of the smallest µ. The same is true among 
ones C(µ, t) of �xed t
in Φ(K). Note also that there are no values t with λ(K) ≤ t < λmin, sin
e for K 6= ©, we have

λmin = λ(K)

by Theorem 5.11.

Also, for ea
h value x = λ(K) + 1 − a(K), . . . , λ(K) + δ(K) − a(K) there is at most one essential


one C(µ, t) in Φ(K) with t− µ = x. We 
all this essential 
one type X . Obviously C(a(K), λ(K)) is also
essential, and every other essential 
one is of type X, by the above maximality remark. Now we have at

most δ(K) type X essential 
ones. With C(a(K), λ(K)), this 
ompletes a set of δ(K) + 1 essential 
ones,

as 
laimed. �

Obviously, from the de�nition,

δ(K) ≤ a(K)− 2b(K) .

Thus in parti
ular from (8.4), we have

λ(K) ≤ t ≤ λ(K) + s− 2b(K)

for any positive band presentation of A(K, t) on s ≥ a(K) strings. Note also that, for 
omputational

purposes, one may repla
e `1 + δ(K)' in Proposition 8.6 by `1 + a(K) − l(K)', with an analogous proof

argument. (An analogous 
aveat regarding K = © is needed, where a(K) = l(K) = 2; see (7.18).) We

thus obtain Proposition 1.4, whi
h was stated in the introdu
tion.
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8.2 Indi
es from braided surfa
es

We return to De�nition 2.1, and the inequality

bsqp(S) ≥ b(S)

for a strongly quasipositive surfa
e S.

Question 8.7 While it is more than suggestive, we do not know if always equality holds. I.e., is ev-

ery strongly quasipositive surfa
e always realizable on its minimal number of strings in a positive band

presentation?

Be
ause of Theorem 2.2, this is true if b(S) = b(K) (where of 
ourse K = ∂S). This is also related to

the Baker-Motegi question if all minimal genus surfa
es of a strongly quasipositive knot K are strongly

quasipositive (see [St2℄). From [HS℄, we know that b(S) > b(K) for some minimal genus surfa
e S of K.

But S (and K) is not strongly quasipositive in these examples. Rudolph's question (5.1) is then equivalent

to asking whether

bsqp(S) = b(K) (8.5)

is satis�ed for some strongly quasipositive surfa
e S of K. It is tempting to ask if (8.5) holds in fa
t for

every strongly quasipositive surfa
e S of K.

In 
ase of the links L = A(K, t) and W±(K, t), the minimal genus surfa
es SL of L are unique (and

plumbing equivalent), so there is no need to distinguish between bb(SL) and bb(L), and between bsqp(SL)
and bsqp(L).

Proposition 8.8 We obviously have

min
t≥λ(K)

bsqp(A(K, t)) = a(K) , (8.6)

and for t ≥ λ(K), we 
an in
orporate Whitehead doubles into the diagram as

bsqp(A(K, t)) ≥ b(A(K, t))

(*)

≥

bsqp(W+(K, t)) ≥ b(W+(K, t))

(8.7)

Also, if K is l-sharp, then all inequalities are equalities.

Proof. The verti
al inequality (*) holds be
ause one 
an double any (positive) band in a strongly quasi-

positive band presentation of a t-twisted annulus for K (Example 4.15).

Now, 
onsider the 
ase that l(K) = a(K). Sin
e for K = © the equality questions in (8.7) 
an be

settled by dire
t inspe
tion, assume that K 6= ©, to avoid 
ompli
ations.

Consider L = A(K,λ(K)). We have

maxdegv P (L) = 2a(K)− 1 , (8.8)

and this means by (2.17) that an a(K)-braid (band) presentation of L 
annot be of writhe less than a(K).
Sin
e we did not assume l′(K) = a(K), there may be a 
an
ellation of terms in z-degree 1 (similarly to

the �rst polynomial in Table 2). Thus min degv P (L) > 1 is, in prin
iple, possible. But the writhe of an

a(K)-braid (band) presentation of L 
annot be more than a(K) due to Bennequin's inequality (2.5). This
means that the writhe of an a(K)-braid (band) presentation of L is unique, and hen
e b(L) = a(K).

Then one 
an start with t = λ(K) and propagate the bound in (2.17) through the re
ursion (7.4),

while applying positive stabilizations (see (4.12)). �
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Remark 8.9 By noting that we needed in the above proof only (8.8), for whi
h l(K) = a(K) is su�
ient

but not ne
essary, one also obtains equalities in (8.7) for K = 10132. Pi
torially speaking, this extra

argument su

eeds be
ause the �missing terms� in P (A(K, t)), a

ounting for the di�eren
e (7.26), are

missing �at the bottom� (in low v-degrees; see the �rst polynomial in Table 2). Obviously, this immediately


hanges when v-
onjugating the polynomial (by (2.15)), whi
h explains why the tri
k de�nitely fails for

the mirror image !10132.

It follows from Computation 7.21 that all inequalities in (8.7) are equalities at least when minimum

over t ≥ λ(K) is taken. This then holds for all Rolfsen knots, with mirror images (see also Example 8.11).

We 
an expe
t in (8.7) the horizontal `≥' to be `=' in general, in a

ordan
e with Rudolph's Question

(5.1). However, we do not know about (*). Obviously SW+(K,t) = SA(K,t) ∗ H is a plumbing with a

positive Hopf band H . But we know that

bsqp(S ∗H) < bsqp(S)

is possible, even for a strongly quasipositive �ber (in parti
ular unique minimal genus) surfa
e S; examples

were given in [St2℄. These examples, unsurprisingly, have higher genus, but they should still 
aution about

seeing (*) as suggestive in some way.

Also, regarding (8.6), we 
an add

min
t≥λ(K)

bsqp(A(K, t)) = a(K) = min
t∈Z

bb(A(K, t)) , (8.9)

be
ause every band presentation of Bennequin surfa
e of A(K, t) gives a grid diagram of K, and gives a

strongly quasipositive surfa
e of A(K, t′) for some t′ ≥ λ(K) by making all bands positive.

Proposition 8.10 Then for instan
e for t < λ(K), we have a similar diagram of inequalities to (8.7)

bb(A(K, t)) ≥ b(A(K, t))

(**)

≥

bb(W−(K, t)) ≥ b(W−(K, t))

(8.10)

And if K is l-sharp, then all inequalities are equalities.

Proof. The inequality (**) results from doubling a negative band in a minimal band presentation (a

negative band always exists when t < λ(K); see the remarks following Example 4.15. And if l(K) = a(K),
we 
an infer with a similar thought to Proposition 8.8 that all inequalities are in fa
t equalities. (Again,

ex
lude K = © after a dire
t 
he
k.) The only framing t for whi
h 
an
ellation may 
ollapse the bound

MFW(A(K, t)) is when all bands in an a(K)-strand band presentation of A(K, t) are negative. Then the

argument with Bennequin's inequality applies to !A(K, t). �

Again (while it is tempting to suspe
t) we do not know if equalities hold in general.

Example 8.11 From Computation 7.21, we know that for all t ∈ Z,

b(W±(10132, t)) ≥ 9 = a(10132) . (8.11)

Obviously, as in Table 2, is it possible to write down expli
it band presentations of A(10132, t) and

W−(10132, t) for some t < λ(10132) on 9 strings, so that we have

bb(A(10132, t)), bb(W−(10132, t)) ≤ 9 .

With Computation 7.21 we again know that thus for K = 10132, the inequalities (8.10) are equalities at
least when their hand sides are minimized over t < λ(K). Under mirroring (using the 
omputations and

band presentations for W+(10132, t)), we 
an 
on
lude the same for K =!10132, and thus for all Rolfsen

knots.
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When (7.26) o

urs, though, this reasoning always relies on an expli
it 
he
k for spe
i�
 t using a

2-
able polynomial. And while we expe
t non-l-sharp knots to be relatively rare, su
h instan
es K 
learly

in
rease with 
rossing number (see Example 7.10). The method in Computation 7.21 soon be
omes

problemati
 
omplexity-wise, despite algorithmi
 optimizations. This puts a limit to the 
apa
ity of our

algebrai
 approa
h to ta
kle a geometri
 issue like the sharpness of the inequalities (8.10). (But of 
ourse

it is the only information we have available so far.)

9 Con
lusion

The work des
ribed here started with the simple question: how does a braided surfa
e of Euler 
hara
-

teristi
 0 look like? While there seems little hope to give a 
lassi�
ation result, the attempt unfolded a


onne
tion into a variety of issues. We en
ountered many suggestive but di�
ult to resolve questions,

whose examination would require deepening this 
onsideration.

For smaller Euler 
hara
teristi
, one obtains instead of a grid diagram a �grid-embedded (trivalent)

graph�. It 
an be des
ribed as a PL spatial embedding of a trivalent graph whose diagram 
an be built

up with the tiles in (2.28), and the two extra tiles

but not

Developing a similar theory of grid-embedded graphs will thus also be a long � but nevertheless perhaps

very interesting � undertaking.

A Remarks on quasipositivity

We have de
ided to stri
tly fo
us on strong quasipositivity of W±(K, t) and A(K, t), essentially be
ause

of the dire
t relationship in Corollary 4.13 and its extensive 
onsequen
es.

The problem of the quasipositivity of these links is far more obs
ure, but perhaps also very interesting.

A.1 Knotted annuli

Let us de�ne

λq(K) := min{ t : A(K, t) is quasipositive } . (A.1)

Then we know that

λq(K) ≤ λ(K) = −TB(K) ,

so the obvious question is: is λq(K) = λ(K) for all K? Or, given (4.17), in other words: for every t, if
is A(K, t) quasipositive, is it strongly quasipositive? The answer is �no�. We identify one major reason,

whi
h we 
all λ-sli
eness (De�nition A.3), but it is possible what further, more pe
uliar, phenomena o

ur.

Question A.1 For what knots is λq(K) = λ(K)?
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Going further, we do not know if always

A(K, t) is quasipositive =⇒ A(K, t+ 1) is quasipositive . (A.2)

That is, between the pans in (7.51), the quasipositivity of the links 
an swit
h on and o� a few times

before, for long enough panhandle length, eventually strong quasipositivity settles in. This looks like an

adventurous s
enario, but see Corollary A.9.

Sin
e the (exa
t) 
onne
tion of λq to the Thurston-Bennequin invariant remains elusive, so be
ome


ertain methods fo
ussing on the latter (like Theorem 5.11). But there are properties of λq that follow

from our work above.

Many of the arguments based on the HOMFLY-PT polynomial do go through. In general, though, the

pre
eding problems with the unknot extend here to K being sli
e. This 
hanges (weakens) the inequalities

a little, but to be pre
ise, we either have to ex
lude sli
eness, or work in 
ases.

Proposition 7.34 
an be 
hanged into the following form.

Proposition A.2 We have

{
l(K) ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) if K is not sli
e

l(K)− 1 ≤ λq(K) + λq(!K) ≤ 2a(K)− l(K) + 1 if K is sli
e

(A.3)

Proof. Lemma 7.1 holds regardless of K being sli
e or not. But (7.3) still holds for quasipositive A(K, t)
only if K is not sli
e, or t 6= 0. Thus, when K is sli
e, and t = 0, then we must allow, instead of (7.3), for

min degv P (A(K, 0)) = −1 , (A.4)

sin
e χ4(A(K, 0)) = −2 
an o

ur (see end of �2.2). Then the argument goes through, but the numeri
s


hanges slightly. �

The right inequalities in (A.3) are, as explained, not very interesting now (they follow from Matsuda's

result (7.58)), but the left ones have some useful impli
ations. To better formulate them, here we de�ne

a 
ondition whi
h will repeatedly play some role.

De�nition A.3 Call a knot K to be λ-sli
e if K is sli
e and

λ(K) = 1 . (A.5)

We say K to be λ-sli
e up to mirroring if one of K and !K is λ-sli
e.

Remark A.4 The 
ondition (A.5) and Rudolph's version of (2.6) (see the proof of Theorem 1.5 in [He2℄)

then also imply that a λ-sli
e knot K is sli
e Bennequin-sharp. The presumption (2.9) then possibly

suggests that a λ-sli
e knot is quasipositive. (Example 6.6 shows that the τ invariant is insu�
ient to see

this, though.)

Example A.5 Among the Rolfsen knots, λ-sli
e (up to mirroring) are K = 946 and 10140. As Remark

A.4 suggests, they are indeed quasipositive, and we �x here their quasipositive mirroring, whi
h also

satis�es

min degv P (K) = 0 .

Corollary A.6 Assume K is l-sharp. Then either λq(K) = λ(K), or K is λ-sli
e and

0 = λq(K) < λ(K) = 1 . (A.6)
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Proof. Assume K is not sli
e. Then, (A.3) gives

l(K) ≤ λq(K) + λq(!K) ≤ λ(K) + λ(!K) ≤ 2a(K)− l(K) ,

and l(K) = a(K) implies that all inequalities are exa
t.

If K is sli
e, noti
e that K being l-sharp makes (A.4) relevant only if t = 0 = λ(K)− 1, as 
an be seen

thus.

Deal with K = © by a dire
t 
he
k. Then take a minimal grid diagram D of K. Be
ause of l-
sharpness (or Theorem 5.11), we know that λ(D) = λmin(K) = λ(K) is unique. Obviously t ≥ λmin(K)
give strongly quasipositive A(K, t), and are not interesting. So assume t < λmin(K). Then, l(K) = a(K)
also shows iteratively that

min degv P (A(K,λ(K) − k)) = 1− 2k

for k > 0. Then A(K,λ(K) − k) 
an be quasipositive (and (A.4) is relevant) only if k = 1. And then we

need χ4(A(K,λ(K) − 1)) = −2, whi
h requires t = 0 = λ(K)− 1, and means the 
ondition (A.5). �

Corollary A.6 lends further impetus to the study of l(K), and a question like Question 7.15. Among

others, it leaves some prospe
t that at least for some 
lasses of alternating links, Question A.1 
an be

resolved using the present approa
h.

Remark A.7 Noti
e that a λ-sli
e amphi
heiral knot is trivial by (7.59). Thus in parti
ular Corollary

A.6 holds for l-sharp amphi
heiral knotsK. But for them (7.59) is not needed: Assume K is amphi
heiral.

Then we have from (A.3)

l(K)− 1 ≤ 2λq(K) ≤ 2λ(K) ≤ 2a(K)− l(K) + 1 = l(K) + 1 ,

but l(K) is even by Remark 7.37. This is enough to see that the middle inequality is an equality.

The sli
e 
ase 
ontinues to require spe
ial attention, as witnessed by the following explanation, whi
h

shows in more detail how to handle individual examples.

Proposition A.8 If K is a prime knot of up to 10 
rossings, then λq(K) = λ(K), ex
ept (A.6) for

K = 946 and K = 10140.

The 
ondition (A.5) also determines the mirroring of the knots, as �xed in Example A.5.

Proof. First 
onsider the 
ase l(K) < a(K). This applies only to K = 10132 and K =!10132.

Let K = 10132. Then χ4(A(K, t)) = 0 for all t, and we 
omputed that min degv P (A(K, t)) > 0 for

t ≥ 0. When t ≥ λ(K) = 1, then A(K, t) is already strongly quasipositive, so 
onsider only t = 0. But

we 
omputed that b(A(K, 0)) = 8, and the minimal writhe of a braid representative of A(K, 0) is 6. If

A(K, 0) were to be quasipositive, then χ4(A(K, 0)) = −2, whi
h is not the 
ase (as K is not sli
e). This

�nishes o� K = 10132.

Next letK =!10132. Then again χ4(A(K, t)) = 0 for all t, and we 
omputed thatmin degv P (A(K, t)) >
0 for t ≥ 8 = λ(K). But then again A(K, t) is strongly quasipositive, so this 
ase is done either.

Now let a(K) = l(K). We need to 
onsider only K being λ-sli
e (and K is non-trivial), so that only

K = 946 and K = 10140 remain (with the mirroring in Example A.5). Their treatment 
ontinues in the

argument below. �

This leads then to the following 
autionary tale.

Corollary A.9 For K = 946 and K = 10140, we have (A.6).
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Proof. We 
he
ked that, if K = 946 and 10140, then

min degv P (A(K, 0)) = −1 ,

whi
h indeed leaves the opportunity that L = A(K, 0) is quasipositive. And it is easy to write down

(minimal) braid representatives of L: use the grid diagrams given [J+℄, and make exa
tly one band

negative (
ompare with Example 4.10 and Table 2).

Testing the quasipositivity of these braids is very di�
ult. But they satisfy, in (2.6), w − n = −2 =
χ4(L). Thus L are sli
e Bennequin-sharp.

In attempting a solution, I 
onsulted Stepan Orevkov. He indeed found the following (everything but

self-evident) quasipositive form (2.3) for one of the braids for 946 given below

5

, where xy
stands for y−1xy.

[36℄ [58℄ [27℄ [16℄ [48℄ -[37℄ [25℄ [14℄ =

[3 4 5 -4 -3 5 6 7 -6 -5 2 3 4 5 6 -5 -4 -3 -2

1 2 3 4 5 -4 -3 -2 -1 4 5 6 7 -6 -5 -4 3 4 5 -6 -5 -4 -3

2 3 4 -3 -2 1 2 3 -2 -1℄ =

4^[3 -4 3 2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 1 -3 4 3 2 -3 -4

-5 4 3 -4 3 6 5 4 7 6 7 6 5 6 7℄*

3^[2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 -3 4 3 -4 3 2 1 -3 4 3

2 -3 -4 -5 4 3 -4 3 6 5 4 7 6 7 6 5 6 7℄*

4^[3 3 5 5 4 6 5 6 7℄* 2^[3℄* 1^[2 3 -4℄* 6

(He also argued that the other 7 braids obtained by making some of the other bands negative are quasi-

positive as well.) This proves that A(946, 0) is quasipositive, and λq(946) = 0. Orevkov also found

quasipositive presentations for some of the similarly 
onstru
ted 9-braids for A(10140, 0). �

Remark A.10 By doubling a positive band (this preserves quasipositivity), we 
an also obtain a knot

L = W+(946, 0) whi
h is quasipositive, but not strongly so. A similar argument applies for W+(10140, 0).

Example A.11 By doubling both one positive band and the negative band, one has a band presentation

of B(K, 0) (in De�nition 4.1). Orevkov also found a quasipositive form for some of the thus obtained

braids for B(946, 0), for instan
e

[36℄ [58℄^2 [27℄ (-[16℄)^2 [48℄ [37℄ [25℄ [14℄=

3^[2 4 4 3 2 -4 -5 4 3 4 6 4 3 7 5 4 7 6 5 7 6℄*

3^[2 4 4 3 2 1 -4 -5 4 3 1 6 5 4 7 6 5 7 6 5 7 7℄*

4^[3 3 5 4 6 5 6℄* 4^[3 3 4 5 6 -7℄* 2^[1 3℄* 2^[3 -4℄

He also proved that the below braid for B(10140, 0) is quasipositive,

[47]2[69][28](−[17])2[59][48][36][25][13] .

(It 
an then be argued that all other braids obtained in a similar fashion from the brand presentations of

A(K, 0) are quasipositive as well.) Thus B(946, 0) and B(10140, 0) are quasipositive (while not strongly

so; see Corollary 1.1).

The treatment of 10132 for Proposition A.8 exempli�es why non-sli
e K are far easier to deal with.

The spe
ial role of sli
e K is also unders
ored by the following fa
t, whi
h 
an be proved similarly to

Lemma 8.2. (We do not like to repeat the proof here; one mainly has to repla
e χ by χ4 in (8.2).) It is a

more theoreti
al (and less pra
ti
al) version of Corollary A.6.

5

Here the proper mirroring of 946 is needed, and we 
hose to read the grid diagram in [J+℄ from the bottom, whi
h gives

this mirroring; 
f. Remark 4.5.
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Proposition A.12 If Conje
ture 8.1 is true for K, then λq(K) = λ(K), ex
ept if K is λ-sli
e. �

Note also that A(K, t) for K = 946 (and other knots for whi
h the 
ondition (A.5) was relevant) were


onsidered in the paper [Tr℄.

A.2 Whitehead doubles

The quasipositivity problem of Whitehead doubles seems not to have been treated mu
h in the literature.

The only sour
e I know is the following.

Example A.13 ([He, Examples, (5)℄) The positive 
lasped Whitehead double W+(K, t) is not quasipos-
itive when

t ≤ −λ(!K) , (A.7)

and t is not of the form
t = −p(p− 1) , p ∈ N . (A.8)

The �rst 
ondition (A.7) as
ertains in Proposition 6.3 that v(W+(K, t)) = 0. Then ex
luding the values

(A.8) ensures that the determinant

det(W+(K, t)) = |1− 4t|
is not a square, hen
e W+(K, t) is not sli
e by the Milnor-Fox property (
ompare with Example 6.6).

Then W+(K, t) is neither quasipositive by (2.26).

The 
ompli
ation that W±(K, t) (while always having genus 1) 
an turn sli
e (i.e., 4-ball genus 0)
be
omes more subtle for Whitehead doubles. It is 
lear when χ4(A(K, t)) = −2, namely when t = 0 and

K is sli
e, and then always χ4(W±(K, t)) = −1, but these are not all: W+(©,−2) = 61, the stevedore

knot, is sli
e as well. In fa
t, the sli
eness problem for Whitehead doubles has an illustrious history,

whi
h we only brie�y mention. For K = © see [CG℄, and K being sli
e is the proposed (and admittably

optimisti
) answer [Ki, Problem 1.38℄ when t = 0, but the problem remains unsettled even under that


onstraint.

Not all these doubles are relevant here, but this hinges on the next de
ision problem, when su
h knots

are quasipositive. Unlike for sli
eness, mirroring is very relevant for quasipositivity, and the sign of the


lasp plays a 
ru
ial role. Most negative 
lasped Whitehead doubles are still provably not quasipositive

(see for example Computation A.21). But the situation for positive 
lasped Whitehead doubles seems

far less uniform. Even just 
onsidering the untwisted 
ase t = 0, Remark A.10 hints to extreme 
aution.

More of the same is warranted by the following illustration.

Example A.14 The knot 820 is quasipositive and sli
e, and thus W+(820, 0) is sli
e. But it is not

quasipositive � essentially this is the reason why 820 falls out of the 
onsideration in the proof of Proposition
A.8. However, if one takes the +1/2 twisted (
onne
ted) 2-
able of 820, i.e., the zero-framed 
able with the

pattern σ1 ∈ B2 (as lying in a solid torus), then it is both sli
e (sin
e 820 is so) and quasipositive (sin
e

820 is so, by a result of [St2℄).

Remark A.15 The provenan
e of 946 and 10140 in Proposition A.8 was from being λ-sli
e. Remark

A.4 then possibly suggests that W+(K, 0) being quasipositive but not strongly so o

urs only if K is

quasipositive. But Example A.14 shows that quasipositivity is not su�
ient.

Sin
e Murasugi sum makes no sense in the 4-ball, there is no analogous relation for quasipositivity

between A(K, t) and W+(K, t), and Corollary 1.1 
annot be proved in this way for quasipositivity. A

similar problem to (A.2),

W+(K, t) is quasipositive =⇒ W+(K, t+ 1) is quasipositive ,
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remains (generally) ina

essible, and we 
annot extend Proposition 6.3 and Corollary 1.3 to λq. Obviously,

one 
an modify (A.1) to de�ne a number λq+(K) et
., but instead of reiterating here a treatment analogous

to λq(K), it seems better to dire
tly restri
t the values of t for whi
h W±(K, t) is quasipositive.

For W−(K, t), we 
olle
t the following easy remarks, that originate from previous results.

Lemma A.16 If W−(K, t) is quasipositive, then it is sli
e. Also, for every sli
e-torus invariant v,

t > −jv(!K) ,

and in parti
ular

t ≥ −2τ(K) ,

and also

t = p(p− 1) , p ∈ N . (A.9)

Proof. Let v be a sli
e-torus invariant. Be
auseW−(K, t) unknots by a negative 
rossing 
hange, we have
v(W−(K, t)) ≤ 0. Were W−(K, t) quasipositive, (2.26) implies that v(W−(K, t)) = g4(W−(K, t)) ≥ 0.

This implies g4(W−(K, t)) = 0, i.e., that W−(K, t) is sli
e. The property (A.9) follows from the

Milnor-Fox 
ondition (A.8) under mirroring (the sign in (A.8) 
hanges, sin
e we 
hanged the sign of the


lasp).

But it also implies the equivalent 
onditions

v(W−(K, t)) = 0

v(W+(!K,−t)) = 0

−t < jv(!K)

t > −jv(!K) ,

and in parti
ular with (6.11) also that

t > −jτ (!K) = −(1− 2τ(!K)) = −1 + 2τ(!K) = −1− 2τ(K) . �

The HOMFLY-PT polynomial does re
over (albeit by entirely di�erent means from the Murasugi sum)

some parts of the 
omplete result of Corollary 1.1 for quasipositivity. Obviously when W±(K, t) is strongly
quasipositive, then it is also quasipositive, so here is what we obtain on the obstru
tion part. (Keep tra
k

of the 
ase that K = ©, whi
h is not ex
luded here, and whi
h at least gives some hints to the limitations

emerging.)

Theorem A.17 1. For every knot K, there is at most one value t0 so that W−(K, t0) is quasipositive.
If this value t0 o

urs, then the following hold.

(a) We have (with (2.14))

min cf [P (K)]z0 = ±1 , (A.10)

(b)

min degv[P (K)]z0 = −p(p− 1) , p ∈ N , (A.11)

and

(
)

t0 = −min degv[P (K)]z0 . (A.12)

(d) Moreover, t0 ≤ λq(K), and equality 
an hold only if K is sli
e and λq(K) = 0.
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2. W+(K, t) is not quasipositive for

t ≤ λmin(K)− a(K) + l(K)− 2 . (A.13)

Proof. Part 1. If W−(K, t) is quasipositive, then L = W−(K, t) satis�es the variant of (7.2)

min degv P (L) ≥ 1− χ4(L) . (A.14)

So in parti
ular

min degv P (L) ≥ 0 . (A.15)

It follows from applying the skein relation (2.13) that

P (W−(K, t)) = v−2 − v−1zP (A(K, t)) . (A.16)

Looking at the z0-term in this formula (for the others, 
f. Computation A.21), and using (7.5), we see

that

min degv[P (W−(K, t))]z0 ≤ −2 ,

disabling (A.15), unless

min degv(v
2t(v−1 − v)([P (K)]z0)2) = −1 . (A.17)

This o

urs for exa
tly one t = t0, namely the one in (A.12), and this t0 must be of the form (A.9), giving

(A.11). But beyond (A.17), we also need

min cf v(v
2t(v−1 − v)([P (K)]z0)2) = 1

for a 
an
ellation to o

ur, and this means that (A.10) must hold.

For Part 1d noti
e that sin
e when A(K, t) is quasipositive, then be
ause of (A.14) we need

min degv P (A(K, t)) ≥ −1 . (A.18)

By the skein relation (2.13), we have then

min degv P (A(K, t′)) ≥ 1

for t′ > t, i.e., for ea
h t′ ≥ λq(K) + 1. Thus in (A.16), the se
ond summand on the right will not 
an
el

the �rst, and min degv P (W−(K, t′)) < 0 for ea
h su
h t′. This shows t0 < λq(K) + 1.

Also, note that (A.18) being sharp requires χ4(A(K, t)) = −2, i.e., A(K, t) bounds in the 4-ball two

disjoint disks. This 
an o

ur only if K is sli
e and t = 0. This shows the equality property in Part 1d.

For Part 2, this is essentially the reasoning behind (7.8), with the improvement 
oming from l(K), as
outlined in Remark 7.5.

Namely, start with a grid diagram D of K with µ(D) = a(K) and λ(D) = λmin(K). Then apply the

skein relation (7.4) ba
kward, de
reasing t, (at least) a(K)− l(K) + 2 times, and see that for t in (A.13),

we have

min degv P (A(K, t)) ≤ −3 .

The skein relation (2.13) (as in the mirrored variant of (A.16)) then shows that

min degv P (W+(K, t)) ≤ −2 ,

so that W+(K, t) is not quasipositive. �

Remark A.18 The inequality (A.14) and the mirroring property (2.15) also easily yield [He, Examples,

(2)℄: if both a knot K and its mirror image !K are quasipositive, then K is sli
e. Together with (2.16),

even more follows: we 
an see P (K) = 1. This tempts to suspe
t that the only possible K so that K and

!K are quasipositive is the unknot.
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Remark A.19 Even disregarding (A.8), the restri
tion (A.13) is generally weaker than (A.7). For in-

stan
e, using the left inequality of (7.52), and λmin(K) ≥ λ(K), we have that

−λ(!K) ≤ λmin(K)− a(K) + l(K)− 2

de�nitely holds if

2l(K) ≥ a(K) + 2 ,

whi
h is pra
ti
ally always satis�ed. (It 
ertainly is for the unknot and all prime knots through 12


rossings.)

Corollary A.20 If K is quasipositive and not sli
e (in parti
ular non-trivial and strongly quasipositive),

then no W−(K, t) is quasipositive.

Proof. Be
ause of (A.14), we have that

min degv[P (K)]z0 ≥ min degv P (K) ≥ 2g4(K) > 0 ,

so that (A.11) 
annot hold. �

Computation A.21 We now know that for no prime knot K up to 10 
rossings is any W−(K, t) quasi-
positive. The value t0 in Theorem A.17 exists up to mirror images for about half of the 249 knots K. For

them one 
an expli
itly 
ompute a Whitehead double polynomial. (Note that from (A.16) we ignored in

the proof all terms of positive z-degree, whi
h of 
ourse 
an be retrieved from su
h a 
al
ulation.) This

restri
ts

min degv P (W−(K, t0)) ≥ 0

only to L = W−(10140, 0) � the knot 10140 reappears. Here, though, it 
an be �tamed�. We have

min degv P (L) = 0 , maxdegv P (L) = 14 .

If quasipositive, L would have a sli
e Bennequin-sharp braid representative, and by the argument based on

Theorem 2.2 we repeated multiple times (see the proof of Lemma 8.2), L would have braid index b(L) = 8
(less than a(10140) = 9). But this 
an be ruled out by a trun
ated 2-
able HOMFLY-PT polynomial


al
ulation (with the tool used in Computation 7.21).

This strongly suggests that maybe no (non-trivial) negatively 
lasped Whitehead double is quasipos-

itive. But in fa
t, there is a more general question, whi
h at least passed initial veri�
ation (
rossing


hanges in minimal diagrams of prime knots up to 16 
rossings).

Question A.22 If a knot is quasipositive (and sli
e), 
an it unknot by swit
hing a negative 
rossing to

positive?

A.3 Framing diagrams

The stru
ture of the analogue of De�nition 4.12,

Φq(K) := { (µ, t) : A(K, t) has a quasipositive braid representative on µ strands } ,

remains less 
lear. Positive braid stabilization still implies, as in (4.18), that

(µ, t) ∈ Φq(K) =⇒ (µ+ 1, t) ∈ Φq(K) ,
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whi
h gives a, mu
h poorer, ray stru
ture on Φq(K). But the 
one stru
ture argument obviously fails so

far: in a quasipositive braid representation, the grid is not evident, and grid stabilization makes no sense.

That is, we 
annot ex
lude the type of shape:
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Φq(K)

Nonetheless, some partial information on Φq(K) 
an be re
overed.

Proposition A.23 When K is any knot, then Φq(K) is 
ontained in the union of at most 2+δ(K) 
ones,
and in at most 1 + δ(K) 
ones if K is not sli
e.

Proof. This is obtained by the same reasoning as for Proposition 8.6. But when K is sli
e (and t = 0),
then we must allow for (A.4) instead of (7.3) . Sin
e Φq(K) has no 
one stru
ture, we 
an only 
laim that

Φq(K) is 
ontained in a union of 
ones. �

Finally, we obtain the following way to reestablish the expe
ted shape of Φq(K).

Corollary A.24 If K is not λ-sli
e and δ(K) = 0, then Φq(K) = Φ(K) is a single 
one.

Proof. Assume K is not sli
e. Obviously Φq(K) ⊃ Φ(K), and from Proposition 8.6 we have

Φq(K) ⊃ Φ(K) = C(a(K), λmin(K)) ,

so that Φq(K) 
ontains a 
one of the form C = C(a(K), t). On the opposite end, from Proposition A.23

we know that Φq(K) is 
ontained in a single 
one C(µ, λmin(K)), and we must have µ ≥ a(K) be
ause
δ(K) = 0. This is only possible if Φq(K) = Φ(K) = C.

Now if K is sli
e, but not λ-sli
e, then the 
ondition δ(K) = 0 enables us to use, instead of HOMFLY-

PT as in Corollary A.6, the proved Jones-Kawamuro 
onje
ture (Theorem 2.2), as for Lemma 8.4. It is

the type of argument that allows us to state λ-sli
e in Proposition A.12 (and was outlined above it). �

In 
on
lusion, we note that it was explained in [Ha℄ from the work in [LaM℄ that every quasipositive

link has at least one quasipositive minimal braid representative. Thus at least a problem like (5.1) is

o� the table, and an analogue of mu
h of the dis
ussion in �8.2, for instan
e, is not very interesting for

quasipositivity. But Orevkov's question still stands whether in fa
t all minimal braid representatives of a

quasipositive link are quasipositive � an assertion whi
h is obviously false for strong quasipositivity.

A
knowledgement. The se
ond author (A.S.) had some helpful related dis
ussions with and refer-

en
es from B. Ahn and S-G. Kim, and espe
ially Stepan Orevkov, who provided the 
omputation in the

proof of Corollary A.9 and Example A.11.

This work was supported by the National Resear
h Foundation of Korea (NRF) grant funded by the

Korea government (MSIT) (2023R1A2C1003749).



60 Referen
es

Referen
es

[AL℄ B. H. An and H. J. Lee, Grid diagram for singular links, J. Knot Theory Rami�
ations 27(4) (2018),

1850023, 43 pp

[Ba℄ S. Baader, Quasipositivity and homogeneity , Math. Pro
. Camb. Phil. So
. 139(2) (2005), 287�290.

[BOS℄ S. W. Bae, Y. Okamoto, and C.-S. Shin, Area bounds of re
tilinear polygons realized by angle sequen
es,

Computational Geometry: Theory and Appli
ations 83 (2019), 9�29.

[BP℄ Y. Bae and C.-Y. Park, An upper bound of ar
 index of links, Math. Pro
. Cambridge Philos. So
. 129

(2000), 491-500.

[Be℄ D. Bennequin, Entrela
ements et équations de Pfa� , So
. Math. de Fran
e, Astérisque 107-108 (1983),

87�161.

[BKL℄ J. S. Birman, K. Ko and S. J. Lee, A new approa
h to the word and 
onjuga
y problems in the braid

groups, Adv. Math. 139(2) (1998), 322�353.

[BM℄ J. S. Birman and W. W. Menas
o, Studying knots via braids VI: A non-�niteness theorem, Pa
i�
 J. Math.

156 (1992), 265�285.

[BM2℄ J. S. Birman andW. W. Menas
o, Studying links via 
losed braids II: On a theorem of Bennequin, Topology

Appl. 40(1) (1991), 71�82.

[BJ℄ M. Brittenham and J. Jensen, Canoni
al genus and the Whitehead doubles of pretzel knots, preprint

math.GT/0608765.

[CG℄ A. Casson and C. M
A. Gordon, On sli
e knots in dimension 3 , �Geometri
 Topology� (R. J. Milgram,

ed.), Pro
. Symp. Pure Math. XXXII, AMS, Providen
e 1978, 39�53.

[Cr℄ P. R. Cromwell, Embedding knots and links in an open book. I. Basi
 properties, Topology Appl. 64 (1995),

37�58.

[Cr2℄ P. R. Cromwell, Homogeneous links, J. London Math. So
. (series 2) 39 (1989), 535�552.

[DP℄ I. A. Dynnikov and M. V. Prasolov, Bypasses for re
tangular diagrams. A proof of the Jones 
onje
ture and

related questions, Trans. Mos
ow Math. So
. 2013, 97�144, doi.org/10.1090/S0077-1554-2014-00210-7.

[EH℄ J. Etnyre and K. Honda, On 
onne
ted sums and Legendrian knots, Advan
es in Mathemati
s 179(1)

(2003), 59�74.

[FLL℄ P. Feller, L. Lewark and A. Lobb, Almost positive links are strongly quasipositive, Math. Ann. 385(1-2)

(2023), 481�510.

[Fe℄ E. Ferrand, On Legendrian knots and polynomial invariants, Pro
. Amer. Math. So
. 130(4) (2001),

1169�1176.

[FT℄ D. Fu
hs and S. Taba
hnikov, Invariants of Legendrian and transverse knots in the standard 
onta
t spa
e,

Topology 36(5) (1997), 1025�1053.

[Fo℄ R. H. Fox, On the total 
urvature of some tame knots, Ann. of Math. 52(2) (1950), 258�260.

[FW℄ J. Franks and R. Williams, Braids and the Jones polynomial. Trans. Amer. Math. So
. 303(1) (1987),

97�108.

[Ha℄ K. Hayden, Minimal braid representatives of quasipositive links, Pa
i�
 J. Math. 295 (2018), 421�427.

[He℄ M. Hedden, Knot Floer homology of Whitehead doubles, Geom. Topol. 11 (2007), 2277�2338.

[He2℄ M. Hedden, Notions of positivity and the Ozsváth-Szabó 
on
ordan
e invariant , J. Knot Theory Rami�-


ations 19(5) (2010), 617�629.

[HS℄ M. Hirasawa and A. Stoimenov, Examples of knots without minimal string Bennequin surfa
es, Asian

Journal Math. 7(3) (2003), 435�446.

[HT℄ J. Hoste and M. Thistlethwaite, KnotS
ape, a knot polynomial 
al
ulation and table a

ess program,

available at http://www.math.utk.edu/~morwen.

[IS℄ T. Ito and A. Stoimenow, Invariants of weakly su

essively almost positive links, preprint

arXiv.2208.10728.

[J+℄ G. T. Jin, H. Kim, G.-S. Lee, J. H. Gong, H. Kim, H. Kim and S. A. Oh, Prime knots with ar
 index up

to 10 , in �Intelligen
e of Low Dimensional Topology 2006�, Series Knots and Everything, Vol. 40 (World

S
ienti�
, Ha
kensa
k, NJ, 2007), 65�74.



Referen
es 61

[JP℄ G. T. Jin and W. K. Park, Prime knots with ar
 index up to 11 and an upper bound of ar
 index for

non-alternating knots, J. Knot Theory Rami�
ations 19 (2010), 1655�1672.

[J℄ V. F. R. Jones, He
ke algebra representations of braid groups and link polynomials, Ann. of Math. 126

(1987), 335�388.

[KS℄ M. Kidwell and A. Stoimenow, Examples Relating to the Crossing Number, Writhe, and Maximal Bridge

Length of Knot Diagrams, Mi
h. Math. J. 51(1) (2003), 3�12.

[KLA℄ H. Kim, J. Lee and H.-K. Ahn, Re
tangular partitions of a re
tilinear polygon, Computational Geometry:

Theory and Appli
ations 110 (2023), 101965.

[Ki℄ R. Kirby (ed.), Problems in low-dimensional topology , book available on http://math.berkeley.edu/

~kirby

[Ko℄ T. Kobayashi, Uniqueness of minimal genus Seifert surfa
es for links, Topology Appl. 33(3) (1989),

265�279.

[KI℄ C. Livingston and A. Moore, KnotInfo, online knot invariant database, https://knotinfo.math.india

na.edu/

[LaM℄ D. J. LaFountain and W. W. Menas
o, Embedded annuli and Jones' 
onje
ture, Algebr. Geom. Topol.

14(6) (2014), 3589�3601.

[LT℄ H. J. Lee and H. Takioka, On the ar
 index of 
able links and Whitehead doubles, Journal of Knot Theory

and Its Rami�
ations 25(7) (2016), 1650041.

[LiM℄ W. B. R. Li
korish and K. C. Millett, A polynomial invariant for oriented links, Topology 26(1) (1987),

107�141.

[Lv℄ C. Livingston, Computations of the Ozsvath-Szabo knot 
on
ordan
e invariant , math.GT/0311036, Geom.

Topol. 8 (2004), 735�742.

[LN℄ C. Livingston and S. Naik, Ozsváth-Szabó and Rasmussen invariants of doubled knots, Algebr. Geom.

Topol. 6 (2006), 651�657.

[Ma℄ H. Matsuda, Links in an open book de
omposition and in the standard 
onta
t stru
ture, Pro
. Amer.

Math. So
. 134(12) (2006), 3697�3702.

[Mo℄ H. R. Morton, Seifert 
ir
les and knot polynomials, Pro
. Camb. Phil. So
. 99 (1986), 107�109.

[MS℄ H. R. Morton and H. B. Short, The 2-variable polynomial of 
able knots, Math. Pro
. Camb. Philos. So
.

101 (1987), 267�278.

[MB℄ H. R. Morton and E. Beltrami, Ar
 index and the Kau�man polynomial , Math. Pro
. Cambridge Philos.

So
. 123 (1998), 41�48.

[Mu℄ K. Murasugi, An estimate of the bridge index of links, Kobe J. Math. 5(1) (1988), 75�86.

[Ng℄ L. Ng, On ar
 index and maximal Thurston-Bennequin number , J. Knot Theory Rami�
ations 21(4)

(2012), 1250031, 11 pp.

[Nu℄ Ian J. Nutt, Embedding knots and links in an open book III. On the braid index of satellite links, Math.

Pro
. Camb. Phil. So
. 126 (1999), 77�98.

[Oh℄ Y. Ohyama, On the minimal 
rossing number and the braid index of links, Canad. J. Math. 45(1) (1993),

117�131.

[Ro℄ D. Rolfsen, Knots and links, Publish or Perish, 1976.

[Ru℄ L. Rudolph, Braided surfa
es and Seifert ribbons for 
losed braids, Comment. Math. Helv. 58(1) (1983),

1�37.

[Ru2℄ L. Rudolph, Quasipositive plumbing (
onstru
tions of quasipositive knots and links. V) Pro
. Amer. Math.

So
. 126(1) (1998), 257�267.

[Ru3℄ L. Rudolph, An obstru
tion to sli
eness via 
onta
t geometry and �
lassi
al� gauge theory, Invent. Math.

119(1) (1995), 155�163.

[Ru4℄ L. Rudolph, Knot theory of 
omplex plane 
urves, in Handbook of Knot Theory, W. Menas
o and

M. Thistlethwaite (eds.), Elsevier S
ien
e, 2005, 329�428.

[SG℄ V. Soltan and A. Gorpinevi
h, Minimum Disse
tion of a Re
tilinear Polygon with Arbitrary Holes into

Re
tangles, Dis
rete Comput. Geom. 9 (1993), 57�79.

[St℄ A. Stoimenow, Knots of (
anoni
al) genus two, math.GT/0303012, Fund. Math. 200(1) (2008), 1�67.



62 Referen
es

[St2℄ A. Stoimenow, Realizing strongly quasipositive links and Bennequin surfa
es, preprint, http://

www.stoimenov.net/stoimeno/homepage/papers.html

[St3℄ A. Stoimenow, Tabulating and distinguishing mutants, Internat. Jour. Algebra Comput. 20(4) (2010),

525�559, DOI: 10.1142/S0218196710005789

[St4℄ A. Stoimenow, Knot data tables, http://www.stoimenov.net/stoimeno/homepage/ptab/

[St5℄ A. Stoimenow, On the 
rossing number of positive knots and braids and braid index 
riteria of Jones and

Morton-Williams-Franks, Trans. Amer. Math. So
. 354(10) (2002), 3927�3954.

[Ta℄ T. Tanaka, Maximal Thurston�Bennequin numbers of alternating links, Topology and its Appli
ations

153(14) (2006), 2476�2483.

[Th℄ M. B. Thistlethwaite, Kau�man's polynomial and alternating links, Topology 27(3) (1988), 311�318.

[To℄ I
hiro Torisu, The additivity of the Thurston�Bennequin invariant of Legendrian knots, Pa
i�
 J. Math.

210(2) (2003), 359�365, arxiv.org/abs/math/0103023.

[Tr℄ P. Truöl, Strongly quasipositive links are 
on
ordant to in�nitely many strongly quasipositive links,

https://arxiv.org/abs/2210.06612

[Yo℄ Y. Yokota, Polynomial invariants of positive links, Topology 31(4) (1992), 805�811.

[Wh℄ W. Whitten, Isotopy types of knot spanning surfa
es, Topology 12 (1973), 373�380.


