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1 Introduction

This investigation resulted from attempts to understand braided surfaces, in particular Bennequin and
strongly quasipositive surfaces. Similar to the case of canonical surfaces [St], we were trying to develop
some structural properties. As it turned out, even in the simplest case of Euler characteristic 0, the
answer is revealingly complicated, in that these surfaces are essentially equivalent to grid diagrams D for
knots. It should be noted from the start that grid diagrams of links can be treated by essentially the same
approach, without very major modifications, but for technical reasons we stick mostly to knots.

However, despite protruding such complexity, this connection leads to some new viewpoints, and
assimilates a number of known and new results. We present some exposition on it here, in the belief that
the topic could be beneficial for further study.

An outline of the paper is as follows.



2 1 Introduction

After compiling preliminaries in §2, we give some simple but useful observations in §3 on crossing
number and writhe of grid diagrams. In particular, we determine the maximal crossing number of a
rectilinear polygon of given size exactly in the multi-component case (Lemma 3.1) and nearly exactly in
the one-component case (Proposition 3.3 and Computation 3.4). As a consequence we observe that for
every link L,

c(L) < (a(L) —1)%/2, (1.1)

where ¢(L) is the crossing number and a(L) is the arc index.

In §4 we will see that Euler charactesitic O braided surfaces are essentially grid diagrams D, with a
framing attached, which we write as A(D). When the surface is strongly quasipositive, then

A(D) = —~TB(D) (1.2)

is identified, up to sign, with the Thurston-Bennequin invariant of D. We will establish this in Theorem
4.9 after introducing a weight model for the Thurston-Bennequin invariant from a grid diagram (Lemma
4.4). We give some simple applications, including the determination of the strong quasipositivity of twisted
annuli A(K,t) in terms of the maximal Thurston-Bennequin invariant TB(K) of K (Corollary 4.13). This
is then extended to twisted positively /negatively clasped Whitehead doubles W (K, t) and Bing doubles
B(K,t) as follows.

Corollary 1.1 Let K be a non-trivial knot. Then
(a) W, (K, t) is strongly quasipositive if and only if ¢t > —TB(K), and
(b) W_(K,t) and B(K,t) are never strongly quasipositive.

As we explain, in conformance with (1.2), we will usually write A\(K) = —TB(K).

In §5 we discuss braid indices b(K), and how the arc index a(K) is fundamentally connected to a
braid index b(A(K,t)) (see Corollary 5.1 and Conjecture 8.1). We give among others a modification of
Ohyama’s [Oh] inequality.

Corollary 1.2 For every knot K, we have b(K) < ¢(K)/2+ 1, and if K is non-alternating, then b(K) <
c(K)/2.

We also introduce the framing diagram ®(K) of a knot K (Definition 4.12) and its cone structure

(Theorem 5.8).

Section §6 deals with the jump function j, of slice-torus invariants v. After we reproduce the
Livingston-Naik [LN] estimate (Proposition 6.3), we extend it with the following application to the
Bennequin-sharpness problem (2.8) for Whitehead doubles.

Corollary 1.3 Assume there is a slice-torus invariant v so that (6.2) is sharp for K:
Then for every t,

W4 (K, t) is Bennequin-sharp <= W (K,t) is strongly quasipositive. (1.4)

We also know (see Lemma 6.4) that positive fibered knots K satisfy (1.3).

Section §7 is the longest and contains a detailed treatment of the HOMFLY-PT polynomial. The
possibibility exists (Conjecture 2.3) that the HOMFLY-PT polynomial determines the braid index, thus
this could be true for the arc index as well. In the simplest form, we extract (in a “culinary” way) an
invariant, we call [(K), which gives a lower bound for the arc index of K,

I(K) < a(K)



(see Proposition 7.7). It (apparently, see Question 7.12) already improves upon the Morton-Beltrami [MB]
bound.

For (even) better etimates, one can use cabling, and to limit complexity problems, we introduce
partial cabling (Lemma 7.23). This can be complemented by some extra arguments, and shows that the
HOMFLY-PT polynomial is efficient to practically determine the arc index (see Lemma 7.11 and Remark
7.26) and maximal Thurston-Bennequin number (Proposition 7.31) in most examples. We further outline
(end of §7.3) how to apply the Kauffman polynomial beyond the Morton-Beltrami inequality, and also
prove the Finite-Cone-Theorem 7.3.

Section §8 mostly deals with a summary of previous considerations, including a more explicit form of
the Finite-Cone-Theorem in Proposition 8.6. A variant of this statement, which uses the [-invariant, is as
follows.

Proposition 1.4 When K is a non-trivial knot, then ®(K) is the union of at most 1+a(K)—1(K) cones.
(I

We also highlight potential pathologies about non-coincidence of various types of braid indices. This
comprises Rudolph’s problem (5.1). We show that the l-invariant (Propositions 8.8 and 8.10) can be also
used to exclude such peculiar behavior.

In §9 we only briefly outline a more general theory, of “grid-embedded graphs” for braided surfaces of
smaller (i.e., negative) Euler characteristic.

The final appendix §A, given by the second author, discusses what previous results on strong quasi-
positivity can be extended to quasipositivity. Compare e.g. Theorem A.17 with Corollary 1.1 above.

When strong quasipositivity is replaced by quasipositivity, then many considerations revolve around
sliceness. For many (companion) knots, we establish that the quasipositivity and strong quasipositivity of
knotted annuli are equivalent (for example, Corollary A.6), but that in general they are not (Proposition
A.8). We also know that some untwisted Whitehead doubles are quasipositive but not strongly quasiposi-
tive (Remark A.10), and that, while Bing doubles are never strongly quasipositive (as stated in Corollary
1.1), some are quasipositive (see Example A.11).

Throughout the treatise, we encounter many suggestive but difficult to resolve questions. We have
deliberately put emphasis on them, since their examination would provide various directions to deepen
the present consideration.

2 Definitions and Preliminaries

2.1 Generalities
We say an inequality ‘a > b’ is sharp if a = b and strict (or unsharp) if a > b. We use #FE for the
cardinality of a finite set E and |z| for ‘greatest integer’ part of z € Q. We also afford a few standard

abbreviations like ‘Lh.s.” (for ‘left hand-side’), ‘w.r.t.” (for ‘with respect to’) and ‘w.l.o.g.” (for ‘without
loss of generality’).

2.2 Links and genera

All link diagrams and links are assumed oriented. Crossings in an oriented diagram D of a knot K are

called as follows.
y y smoothing > <
AN / —

positive negative smoothed out
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The sign of a positive/negative crossing is assigned to be £1 accordingly. Let ¢y (D) be the number
of positive, respectively negative crossings of a link diagram D, so that the crossing number of D is
¢(D) = c4(D)+c_(D) and its writhe is w(D) = c4 (D) — c_ (D). We write s(D) for the number of Seifert
circles of D, which are the circles obtained after smoothing all crossings of D. We write ¢(K) for the
crossing number of a knot K, the minimal crossing number of all diagrams of K. The mirror image of K
will be written ! K, and the mirror image of diagram D (in the form obtained by switching all crossings of
D) will be !D. If K =!K (up to orientation), we call K amphicheiral. We use ‘Q)’ to denote the unknot
(trivial knot) in formulas. The symbol ‘#’ is used for connected sum. The number of components of a
link L is denoted «(L). The bridge number br(L) of L is the minimal number of Morse maxima of L (or
equivalently, of any diagram of L). The (Seifert) genus g(L) resp. Euler characteristic x(L) of a knot or
link L is said to be the minimal genus resp. maximal Euler characteristic of a Seifert surface of L. We
have

29(L) =2 = w(L) = x(L) .

Similarly write x4(L) for the smooth 4-ball (maximal) Euler characteristic and
294(L) = 2 = (L) — xa(L).-
(In the following 4-ball genera and sliceness will always be understood smoothly.) A knot K is slice

if g4(K) = 0, or equivalently, x4(K) = 1. We will refer to the following basic fact: if k(L) = 2 and
X4(L) = 2, then both components of L must be slice (knots), and have linking number 0.

2.3 Braids and braided surfaces

We write B,, for the braid group on n strands or strings. The relations between the Artin generators o,
i=1,...,n—1 are given by

® 0,0;410; = 0410041 for 1 § 7 S n — 2 and

o g0 =0j0;for1 <i<j—1<n-2.

In diagrams we will orient braids left to right and number strings from top to bottom, for example:

/—P
1

_ _ >
_— _
o9 Jfl

The relations can then be drawn as follows:

s e —

— X X ®

0i0i410; = 04100541 oi0; = 0504, |i—j|>1

There is a permutation homomorphism © : B, — S,, sending each o; to the transposition of ¢ and
i+ 1. By a subbraid of 5 € B,, we mean a braid obtained by taking only a subset C' C {1,...,n} of the
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strands in 8, which is invariant under the associated permutation 7(53) of S (i.e., C is a union of cycles of
m(B))-
We define band generators in B,, by

-1 -1
04,5 = O—i...o'jfgo'jflo—j_Q...O—i 5 (22)

For example o3 7 € By looks

Notice that 0; ;11 = 0;. A representation of a braid 8 € B,, in the form

!
+1
g = H i
k=1
is called a band presentation. (See e.g. [BKL].) Usually, it will be more legible to use the symbol

lij] = 04,5
when writing band generators in formulas. Similarly we use —[ij] = g, jl. In certain cases, we even omit
the brackets (see Definition 4.6 and Example 7.25). Also, when j = ¢ 4+ 1, we often simply write ¢ for
o; and —i for o, 1 when no ambiguity arises. The image of § under the abelianization B, — Z is the
writhe (or exponent sum) of 8, and is written w(8). A braid S € B,, whose closure 3 is the link L is a
braid representative of L. Similarly a word for S gives a (braid closure) diagram D = 3 of L. When 8 is

a word, then w(ﬁ) = w(f). A band presentation [ naturally spans a Seifert surface of L = B. Following
Rudolph, we call this a braided surface of L. For example, n =6 and [ = 6,

(4@7

J

for the 6-braid f = 01,403502403601,5026. The diagram shows the closure L = B It is easily seen
that the six ‘elliptic’ disks joined two by two with six twisted bands form a natural Seifert surface of L.
Rudolph [Ru] proves that every Seifert surface is a braided surface. If a braided surface is of minimal
genus for L, it is called a Bennequin surface of L [BM2].

A link is called quasipositive if it is the closure of a braid 8 of the form

o
B =[] wroi,wy,* (2.3)

k=1
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where wy, is any braid word and o;, is a (positive) standard Artin generator of the braid group. (In [Ru4]
there is some overview of this topic.) If the words wgo;, wy ' are of the form o;, j,, so that

“w
5 = H Tig\dk s (24)
k=1

then they can be regarded as embedded bands. Links which arise this way, i.e., such with positive band
presentations, are called strongly quasipositive links.

Bennequin’s inequality [Be, Theorem 3| states
(@) >w—n (2.5)

for a n-strand braid representative of L of writhe w. If there is a braid representative 8 of L making (2.5)
an equality, we call both L and 8 Bennequin-sharp. This inequality was later extended to

—x(L) > —xa(L) >w —n (2.6)

(see e.g. [IS, St2]). In an analogous way we defined that L and 3 are slice Bennequin-sharp.

It implies that a strongly quasipositive surface, i.e., obtained from a positive band presentation, is
minimal genus. Namely, a positive band presentation of w bands on n braid strands gives a braid of
writhe w. Thus the surface S constructed from the band presentation yields, with (2.6),

—X(L) < —x(§) =w —n < —xa(L) < —x(L).

This also shows that a strongly quasipositive link L is always Bennequin-sharp, and

The Bennequin sharpness conjecture (see [FLL, St2]) asserts

L is Bennequin-sharp <= L is strongly quasipositive. (2.8)

The second author’s efforts to determine the quasipositivity of the (prime) 13 crossing knots [St4] also
provides some evidence for a “4-ball” version of the Bennequin sharpness conjecture (2.8):

L is slice Bennequin-sharp <= L is quasipositive. (2.9)

In practical terms, every proof of non-quasipositivity of a knot passes via showing that it is not slice
Bennequin-sharp.

Definition 2.1 e Let b(K) be the braid index of K, the minimal number of strings of a braid repre-
sentative of K.

e Let b,(K) be the Bennequin braid index of K, the minimal number of strings to span a Bennequin
surface of K.

e When K is strongly quasipositive, let bsq,(K) be the minimal number of strings to span a strongly
quasipositive surface of K (only positive bands).

e Further, for a Seifert surface S, let b(S) be the minimal string number on which S is spanned as a
braided surface.

o If S is a strongly quasipositive surface, let bsq,(S) be the minimal string number on which S is
spanned as such (i.e., arises from a positive band presentation).
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We have then (with the right inequality only valid for strongly quasipositive K)
B(K) < by(K) < bugp(K) (2.10)
and by definition, with S being a Seifert surface of K,
by(K) = min{ b(S) : x(S) = x(K)}, bsgp(K) = min{ by, (S) : S strongly quasipositive }. (2.11)

We will further discuss these relations in §5 and §8. We also feature the following result. It confirms an
expectation originally formulated for n = b(L) by Jones [J, end of §8] (later also referred to as the “weak”
form) and subsequently extended by Kawamuro.

Theorem 2.2 (proof of the Jones-Kawamuro conjecture [DP, LaM]) For every link L, there is a number
Wpmin (L), so that every braid representative 5 of L on n strands of writhe w satisfies

W — Wynin (L) < 1 — b(L). (2.12)

Generally speaking, we will use this theorem to advance theoretical applications in our work, but for
practical ones, another tool will be crucial, which we introduce next.

2.4 HOMFLY-PT polynomial

We use the HOMFLY-PT polynomial P [LiM], in the Morton [Mo] convention
P(O) =1, v P, —wP_ =z, (2.13)

where P, P_ and Py refer to the polynomials of three links with diagrams equal except at one spot,
where they contain the fragments of (2.1) from left to right. The right part of (2.13) is also called P’s
skein relation. We will use the suggestive notation min deg, P for minimal v-degree of (any monomial
in) P, and similarly maxdeg, P, and set span,P = maxdeg, P — mindeg, P. We write [P],» for the
coefficient of ¥ in P, being a polynomial in v. Then, [P],. the coefficient of degree d in v (which is itself
treated as a polynomial in z). Also set

min cf UP = [P]Umindegu P (2.14)

to be the trailing (lowest degree) coefficient of P. The notation P|,>« resp. P|,<x resp. P| . will mean (the
polynomial consisting of) all terms in P of z-degree at least k resp. at most k resp. different from k. The z-
variable is left inside. Thus [P],« is a polynomial in v, while P|_>« is a polynomial in z,v. We occasionally
refer to P|,<x as a (z-)truncated polynomial. We emphasize that much of the useful information of P can
be obtained from truncations thereof (like (2.20)), which are much faster (subexponentially) to compute
than the full polynomial. A program that calculates such truncations was introduced in [St3], and we will
extensively apply it below.

A CPU-parallelized upgrade of the truncated polynomial calculation was developed to settle the last
16 crossing prime knot standing to resolve for the below problem (5.1); it has now its own description
page on [St4].

Two further standard properties of P are that for a link L of x(L) components, mindeg, P(L) =
1—k(L), and P(L) contains only monomials zPv? for p, q odd (resp. even) when k(L) is even (resp. odd).
The mirroring behavior of P is (signed) v-conjugation:

P(IL)(v,z) = (-1)*"D=1P(L)(v7 1, 2). (2.15)

We further use the identity (see [LiM, Proposition 21])

P(w,v ! —v)=1. (2.16)
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By the MFW [Mo, FW] inequalities, the writhe w of an n-string band presentation of L satisfies
w+n —1>maxdeg, P(L) > mindeg, P(L) > w—n+1, (2.17)
thus .
MFW(L) := 3 span, P(L)+1 <b(L), (2.18)
where the left hand-side is the MFW bound for the braid index b(L). If MEW(L) = b(L), we call L
MFW-sharp.

When L is not MFW-sharp, there are ways to improve the braid index estimate using cables of L:
when L’ is a degree-c cable of L, then

MFW (L) < b(L') < eb(L),
thus )
b(L) > [— MFW(L’)—‘ . (2.19)
c
The method is well explained in [MS] (certainly when ¢ = 2; some examples for ¢ = 3,4 can be found in

[St3]). We refer to such estimates as the cabled MFW .

To relate this to said at the end of §2.3, we point out that MFW plus cabled versions thereof is efficient
to determine the braid index of most links. In some cases alternative methods apply, but there is no link
L known where (2.19) at least for sufficiently high ¢ fails to give a sharp estimate. It it thus conjecturable
that this is always the case (see [St4]):

Conjecture 2.3 For every link L there is a ¢ > 0 and a degree-c cable link L’ of L making (2.19) sharp.

Obviously, when we can prove that a braid representative 8 of a link L is minimal, then we immediately
also obtain wyn (L) = w(B) in Theorem 2.2. However, it was also nocited in [St5] that once (2.19) (for
some c) gives a sharp estimate of b(L), it proves along the way that wy,:n(L) = w(B) is unique. (And
it is not too hard to derive (2.12) either from that argument.) Thus Theorem 2.2 provides a theoretical
underpinning, but is neither partically helpful nor essential to determine (L) or W, (L) for a given L.

One main drawback of (2.19) is that in general the polynomial of a cable link L’ is notoriously hard
to calculate. But instead of the whole polynomial, we can use a truncation:

MFW4(L') = %SpanyP(Llﬂzgd +1<MFW(L') < b(L'). (2.20)

We refer below to such type of estimate of the braid index as truncated (cabled) MFW .

Returning to surfaces, it follows from the right inequality in (2.17) that a Bennequin-sharp (in partic-
ular strongly quasipositive) link L satisfies

mindeg, P(L) >1—x(L). (2.21)
Morton also proves in [Mo] the canonical genus inequality, for any diagram D of L,
maxdeg, P(L) < ¢(D) —s(D)+1. (2.22)
The Conway polynomial V is given by
V(L)(z) = P(L)(1,z). (2.23)
The determinant of a knot K can be defined by
det(K) = |[V(2V/-1)] . (2.24)
This is always an odd number (when K is a knot).

The Kauffman polynomial F = F(a,z)(K) will be needed at a few places for reference. In Remark
7.20, we use the following well-known properties: for every link L,

e F(L) contains only monomials a?z? for p + ¢ even

o F(v=1,2)(L)=1.
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2.5 Slice-torus invariants

We briefly recall Livingston’s [Lv]| formalism of “slice-torus invariant”. An integer-valued invariant v on
knots is a slice-torus invariant if

e v(K)=—v(lK), and v(—K) = v(K), where —K is K with the reverse orientation
e additivity under connected sum: v(K1#K2) = v(K1) + v(K>2)

e crossing switch rule: v(K ) —v(K_) € {0,1}

e v(K) < g4(K) (or equivalently 2v(K) < 1 — x4(K)), and

e v satisfies Bennequin’s inequality:
0(K)>w—-—n+1

for a braid representative of K on n strings and writhe w.

These properties are not minimal (i.e., some follow from special cases or combinations of others), but
they are what we will use in §6. (We emphasize that it is not assumed v to be defined on multi-component
links k(K) > 1 in any way.)

There are two known instances of such an invariant, the Ozsvath-Szabé 7 invariant, and (half of)
Rasmussen’s invariant s. Thus the concept was introduced mainly to give these two a uniform treatment.
(The halved signature o /2 satisfies the first four of the above five properties, but not the last.)

From the superposition of
29(K)=1—-x(K)>1—-x4(K) >20(K)>w—n+1
with (2.5), it is straightforward that
if v(K) < g(K), then K is not Bennequin-sharp. (2.25)
In relation, it follows that when K is quasipositive, then
v(K) = ga(K), (2.26)

and
when K is strongly so, then v(K) = g4(K) = g(K). (2.27)

We will refer to these standard facts a few times below.
2.6 Grid diagrams and arc index
An arc presentation of a knot or a link L is an ambient isotopic image of L contained in the union of

finitely many half planes, called pages, with a common boundary line in such a way that each half plane
contains a properly embedded single arc.
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A grid diagram (or, for simplicity simply called grid often below) is a knot or link diagram which is
composed of finitely many horizontal edges and the same number of vertical edges such that vertical edges
always cross over horizontal edges. We assume that horizontal/vertical positions of vertical /horizontal
edges are pairwise distinct. In particular, no edge touches another edge, no vertex lies on the interior of
an edge, and vertices are pairwise distinct. Up to the adjustment of heights of horizontal and widths of
vertical edges, a grid diagram is thus what can be composed in the plane by the tiles

onl 52—/

See, for example, [AL], and also compare with §9.

[ SyESRE i

(2.28)

It is not hard to see that every knot admits a grid diagram (compare with the proof of Lemma 4.17).
The figure below explains that every knot admits an arc presentation.

el

We set the size pu(D) of a grid diagram to be the number of vertical or (equivalently) horizontal
segments (but not both together). A grid (diagram) of size p will also be shortly called a p-grid.

In general, we will afford the sloppiness of abolishing the distinction between an ordinary and a grid
diagram, whenever the grid structure is unnecessary. Thus, for instance, ¢(D) can mean the crossing
number of both an ordinary and grid diagram, whereas (D) would imperatively assume that D is given
a grid shape. Let a(L) be the arc index of L, the minimal u(D) over all grid diagrams D of L. It is the
minimal number of pages among all arc presentations of a link L.

We note that the following is known. For two knots K3, Ks,
a(Kl#Kg) = a(Kl) + a(Kg) —2. (229)

It follows from a relationship (7.59), derived by Dynnikov-Prasolov [DP], concerning the Thurston—
Bennequin invariant (see §4 for notation), and the additivity of the invariant [EH, To].

2.7 Knot tables

For notation from knot tables, we follow Rolfsen’s [Ro, Appendix| numbering up to 10 crossings, except
for the removal of the Perko duplication. For 11 and 12 crossing knots, the notation converts from [KI] by
appending non-alternating knots after alternating ones of the same crossing number. Thus, for instance,
1alk] = 11, for 1 < k < 367, and 12n[k] = 12428545 for 1 < & < 888. For higher crossing knots, the
tables of [HT] are used with the same adjustment.

If it is relevant, mirror images will be distinguished on a case-by-case basis. Specifically, for the (2, n)-
torus knots, we will say that the knot is positively/negatively mirrored. The convention for 10;32 is fixed
in Example 4.10. (The knot exhibits certain phenomena that have to be treated for higher crossing knots
as well, but being the only Rolfsen knot with such status, it will merit detailed attention.)
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3 Upper bound of Crossing number

A planar grid polygon can be defined as the planar projection of a link grid diagram. Similarly we specify
its size by the number of horizontal/vertical edges. It is obvious that a grid polygon determines uniquely
(when crossing convention is fixed) a grid diagram, and vice versa. A grid polygon can have multiple
components (i.e., PL-immersed circles). Such objects are of interest in discrete geometry; see for example
[BOS, SG, KLA]. They are named rectilinear polygons, but for us it is (very) relevant that self-crossings
are allowed (i.e., the polygons are not simple).

Lemma 3.1 Every, possibly multiple-component, planar grid polygon of size m has the following upper
bounds on the number of intersections.

{(m2 —2m)/2  mis even (3.1)

(m—1)2/2—-1 misodd

These bounds are sharp.

Proof. What could be a conundrum becomes self-evident after introducing the right way of counting
crossings. We will group crossings w.r.t. their horizontal segment [. We consider the horizontal segments
from the middle high segment upward. Whenever [ is such a segment and [, is a horizontal segment above
[, we define the weight w;(I) € {0,1,2} to be the number of neighboring vertical edges of I, intersecting
l. Then

#{ intersections of [ } = Z wi(lp) - (3.2)

Iy, above [

This counting works because for each vertical edge [, intersecting [, exactly one of its two neighboring
horizontal edges [;, is above [. Thus

#{ intersections of [ } < 2#{l} : I, above l}. (3.3)

Now this sum will account to

(m-1)/2
#{ intersections of upper horizontal edges } < 2 Z k (3.4)
k=0

for the upper (m + 1)/2 edges I when m odd. The lower (m —1)/2 edges [ can be handled by choosing I,
to be below [, giving a similar sum

(m—3)/2
#{ intersections of lower horizontal edges } < 2 Z k. (3.5)
k=0

m/2—1
For m even one has 4 Z k instead of (3.4)+(3.5). Direct calculation gives
k=0

(m? —2m)/2 m is even

(m—1)2/2  mis odd (3.6)

#{ intersections of polygon } < {

It remains to argue why for m odd, (m — 1)?/2 intersections are not possible. This would mean that
the middle horizontal edge e satisfies w.(e’) = 2 for every other horizontal edge e’. But there are at least
two edges €’ for which this is not possible, namely those connected to the two vertical edges adjacent to
e. This completes the proof of (3.1). For the sharpness of the bounds, see Example 3.2 and Proposition
3.3. a
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Example 3.2 If we allow multiple components of the polygon, and consider m even, then the bound in
(3.6) is sharp

When we restrict to 1-component polygons, we know the following.

Proposition 3.3 For every m > 2, there exists a 1-component planar grid polygon II,, of size m with

1 misodd
(m—1)2/2— {545 m=0mod4 (3.7)
T/ m=2mod4

crossings.

Proof. Consider the Lissajous' polygon A(mq,ms2).

A(3,5) A(4,5) A(3,7)

This gives a grid polygon of size m = my + mo. When my — mo = 2, we also need the modified Lissajous
polygon A'(mq,ms).

A(4,6) A'(6,8)

'We chose this name since they appear as rectifications of Lissajous curves, although this correspondence is not precise
for every (m1,m2).
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Then choose

Al mtly m is odd
I, = ¢ A% — ,%—i— 1) m=0mod4 . (3.8)
N —-1,%+1) m=2mod4

The crossing number of these polygons (3.7) follows by explicit calculation. They are 1-component by
direct inspection. (In general, A(m,m2) appears to be 1-component when m; and mso are relatively
prime.) a

These examples leave not much room for improvement. For odd m, (3.1) settles their maximality.
When m is even, by modifying the argument at the end of the proof of Lemma 3.1 to the middle two
horizontal edges, it is also easy to conclude that (3.1) cannot be made sharp by a 1-component polygon.
Thus the examples of Proposition 3.3 can be improved by at most 1 crossing for m = 0 mod 4 and by at
most 2 crossings for m = 2 mod 4.

Computation 3.4 Still, verifying whether the (1-component) polygons II,, have maximal crossings (for
even m) is not entirely trivial. We wrote a computer program to test this, which in fact found the

family A’ in (3.8). For m = 4,6 there are exceptional maximal crossing polygons A’(2,2) = |

(as compared to A(1,3)), and , as compared to A’(2,4) = . We know that

the polygons (3.8) are maximal crossing for even m with 8 < m < 24.

Certainly, we are interested more in grid diagrams of links, with crossing information, and in that case
Lemma 3.1 easily modifies to show the following.

Lemma 3.5 Every grid link diagram D of size u(D) = m has writhe |w(D)| < (m — 1)2/4.

Proof. It is essentially the same proof as for Lemma 3.1, except noting that (3.2) modifies to

Z (signs of intersections of 1) < Z wi(lg), (3.9)

lh above l, wl(lh) =1

because signs of crossings on ! coming from I, with w;(l;,) = 2 cancel out. Then the estimates (3.3) and
(3.6) exactly halve. O

Example 3.6 If we allow multiple components of the link, and consider m even, then again the bound
in Lemma 3.1 (in the form of halving (3.6)) is sharp, as shows the (m/2, m/2)-torus link:

it

At the cost of decreasing the number of crossings by O(m), one may obtain a knot, like the (m/2,m/2+
1)-torus knot, or adjust m to be odd.
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Remark 3.7 Note that Lemma 3.1 immediately gives (1.1) for every link L. While some reductions may
be possible under link isotopy (which is reflected in Cromwell’s moves [Cr]), we have failed to significantly
improve upon this estimate. This problem develops serious enough to merit a separate account if later
progress is made. In contrast to the well-known bounds in [BP, JP] (see the proof of Corollary 1.2), it is
striking that an upper estimate of the crossing number of a link in terms of its arc index has apparently
never been previously considered in the literature. We note, though, that in Example 3.6, the featured
torus links appear in minimal crossing number diagrams, so that the right of (1.1) cannot be reduced by
more than a factor of 2 (asymptotically in a(L)).

4 Thurston-Bennequin invariant

4.1 Weight model for the Thurston-Bennequin invariant

The main topic of this work starts from the observation that a braided surface of Euler characteristic 0,
which is a K-knotted annulus, is essentially a grid diagram of the underlying companion knot K.

Definition 4.1 Let for a knot K and integer ¢,

e A(K,t) be the (link of the) t-framed K-knotted annulus,
o W,(K,t) and W_(K,t) the ¢-framed Whitehead doubles of K with positive and negative clasp, and
e B(K,t) the t-framed Bing double of K.

We will usually abuse the distinction between the annulus and the link which is its boundary. To
disambiguate among different conventions for framing used elsewhere, we specify that for us, for example,
A(O,1) is the positive (right-hand) Hopf link, and A(Q,—1) the negative one. Also, W, ((,1) is the
positive (right-hand) trefoil, and W (O, —1) = W_((, 1) the figure-8-knot. We can understand W (K,t)
resp. W_(K,t) as the result of plumbing a positive resp. negative Hopf band into A(K,t) and taking the
knot which is the boundary of the resulting Seifert surface. In a similar way, we can understand B(K,t)
as the 2-component link which is obtained by plumbing both a positive and a negative Hopf band into
A(K,t) and taking the boundary. Thus for instance B((),0) is the 2-component unlink, and B((O,1) is
the Whitehead link.

Let D be a grid diagram of a knot K. Replacing each vertical segment with a half twisted band as
shown below, we get a braid in band presentation, denoted by Bp. (Compare with [Nu, Theorem 3.1].)

Then the closure BD bounds a twisted annulus. Therefore BD = A(K,t) for some t.

—

Bp

Lﬁ .

(4.1)

Consider the situation that the band presentation is positive. Then obviously A(K,¢) for the resulting
framing t is strongly quasipositive. A question is what is the framing ¢, which we will write as

t=A\D), (4.2)
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in dependence of the diagram D, and how to read A(D) off D. To explain the formula for A(D), given
below as (4.5), we fix some notation.

Let the weight of a grid diagram D be

ZD)=> 3 sen(e), (4.3)
e edge of D
where the signs of the edges are determined as follows:

() 1 e is vertical
sgn(e) =
& +1, 0 e is horizontal and one of the following forms

0 +1 -1 0

Example 4.2

D
1
‘ ZD)=5 |1+ +D+(0+0+140+40)| =3
vertical, L to R horizontal, B to T

Remark 4.3 This weight formula (4.3) can be generalized to non-positive band presentations by letting
each vertical edge have the sign of the corresponding band. But we will treat this more general case only
occasionally here.

We then can identify the framing ¢ in (4.2).

Lemma 4.4 With w(D) being the writhe, we have
AD) =Z(D) —w(D). (4.5)

Proof. One can see that when the Seifert circles of the closed braid diagram Sp of A(K,t) are made
small, one obtains a diagram of A(K,t), where the band obtained by thickening D is twisted. By a
straightforward combinatorial observation, the twisting of the band is given by Z(D). The untwisted
band built from D carries the framing —w(D) itself. This gives (4.5). O

Remark 4.5 One has a certain freedom to vary the direction from which to read the bands of the braid
representative Sp of A(K,t) off the grid diagram D of K. We explain our convention here in an example
to make clear how band presentations are used for specific knots below. While horizontal and vertical
edges are easily interchangeable in grids, disks and bands are far less so in braid band presentations. The
change of direction will give different ¢, but will change K only up to mirroring.

The default direction of reading will be from the left. Reading the grid diagram D in (4.1) from the
left gives the word [14][35][24][36][15][26], with [ij] = o;; of (2.2). Reading D from the right is meant
to give the reverse order of (band) letters. This is the result of reading from the left a grid diagram D’,
which is obtained from the mirror image !D after a flip (7 rotation along the vertical axis). Reading D
from the bottom gives the word [46][25][13][24][36][15] , which arises when reading from the left |D after
a rotation by —m/2. Reading from the top again reverses these letters and results in reading from the
left D after the combination of a flip (along the horizontal axis) and —x/2 rotation. Note that thus we
consider braid strands numbered right to left when reading a grid diagram from the right and from the
top (while left to right otherwise).
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Definition 4.6 Also, we can use the band presentation of Sp to specify the grid diagram D itself (see
Example 7.25). The mirroring of D is fixed by default by saying that 8p should be obtained when reading
D from the left. This means that we can write the grid diagram D in (4.1), even omitting brackets, as

14 35 24 36 15 26.

Since we deal with grids of size 10 or more, let us also already fix here that we use initial capital Latin
letters to denote two-digit integers, so that for example, 4C = [4,12] = 04 12.

Let br(D) be the vertical bridge number of D, which is the number of sign-0 horizontal edges of D of

one of either types in (4.4)
O |—,
o) =# | ] | =# -

Lemma 4.7 We have
br(D) < Z(D) < (D) — br(D), (4.6)

and thus
br(D) — (u(D) = 1)2/4 < (D) < (u(D) +1)2/4 — br(D). (4.7)

Proof. The left inequality in (4.6) holds because each piece of the knot between two vertical extrema
contributes at least 1 to the weight sum, and we have 2br(D) such pieces. The right inequality holds
because there are 2br(D) edges in D with sign 0. By using Lemma 3.5,

—(1(D) = 1)*/4 < w(D) < (u(D) —1)*/4. (4.8)

Then, with (4.6), (4.5) and (4.8), we obtain (4.7). O

Let a(K) be the arc index of K, the minimal p(D) over all grid diagrams D of K. The so far best
idea is, take a minimal grid diagram p(D) = a(K). Then, with (4.6), (4.5) and (4.8), we have

br(D) — (a(K) —1)?/4 < X(D) < (a(K) + 1)?/4 — br(D).
Thus we have:

Theorem 4.8 There exists a number A, (K) with
br(K) — (a(K) = 1)*/4 < Apin(K) < (a(K) +1)/4 = br(K) (4.9)

such that for all ¢ > X\, (K), we have that A(K,t) is strongly quasipositive on bsqp(A(K,t)) < a(K) +
t — Anin (K) strands.

We will use Ay, (K) often in the following. Two caveats are in order regarding this notation. The ‘min’
refers to the minimum with respect to number of strings of the surface A(K,t) (or horizontal segments in
the grid diagram of K), not the framing ¢ itself. And, it is not assumed that A, is unique. At least for
the unknot K,

both b(A(O,0)) = b(A(O, 1)) = 2, thus Apnin(O) =0, 1. (4.10)

This special behavior of unknot will require repeated attention. For a non-trivial knot K, the uniqueness
and minimality of A, (K) was settled, as will be discussed below; see Theorem 5.11. But we do not wish
to exclude K = (O consistently. We prefer to maintain the symbol Ay, (K), stipulating that formulas
involving Apmin (K) are meant to hold whatever of either values (4.10) is chosen for K = (. For K # O,
the reader may assume that

Amin (K) = MK), (4.11)
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though we will not use this before stating Theorem 5.11.

Proof of Theorem 4.8. When p is augmented by 1, we can always augment by 1,

(4.12)

resp. preserve

(4.13)

any given framing A(D) by the above two moves. (Apply an adjusting PL-map on the half-planes above
and below the newly formed horizontal edge.) We call these moves in the following positive and negative
stabilization, resp. Thus, A\(D) augments by 1 under positive stabilization, and negative stabilization
does not change A(D). (Neither stabilization changes w(D). Note that the diagram Dy of A(K,t)
obtained from D always has s(D;) = u(D) Seifert circles and writhe w(D;) = u(D).) The claim follows
for a(K) 4+ t — Apin(K) strands from positive stabilization, and for larger strand number by (further)
negative one. g

The Thurston-Bennequin invariant T B(D) of a grid diagram D can be defined as is being identified
in the following theorem.

Theorem 4.9 For any grid diagram D, the quantity Z(D) counts the NW- or SE-corners of D.

Z(D)=+# ‘ NW-corners | = # SE-corners (4.14)

Proof. The first is a combinatorial observation. The second follows from the characterization of T'B(D)
given in [LN] or [Ng]. O

Thus (1.2) holds.

Example 4.10 The [J+] diagram D’ of 10132,

T

read from the right (see Remark 4.5), gives the 9-strand band presentation
Bp = [25][14][37][26][15][48][79][38][69], (4.15)

where D = flip (1D’). We have u(D) =9, Z(D) = 3, w(D) = 2, br(D) = 3 and A(D) = 1. Thus (4.15)
gives a (positive) band presentation of A(10132,1). The mirroring of 10132, determined by D, is so that
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it has the P polynomial of the positively mirrored 5;. We fix this mirroring in the sequel, since we will
illustratively feature the knot a few more times. Note that it is thus opposite to Rolfsen’s [Ro, Appendix]
mirroring.

We also remark the following straightforward consequence of Theorem 4.9.

Corollary 4.11 When the grid diagram !D is obtained from D by switching all crossings, and a —m/2
rotation, then A\(D) + A(ID) = (D).

Proof. The writhe terms of D and !D in (4.5) cancel out. Thus A(D)+A(1D) = Z(D)+ Z(!D). By taking
the average of the two corner counts in (4.14) for D and its —n /2 rotation, we see that Z(D) + Z(!D) is
half the number of all corners of D, which is u(D). O

4.2 Application to strong quasipositivity

Let TB(K) be the mazimal Thurston-Bennequin invariant of K, an invariant often considered in contact
geometry [FT, LN, Ng, Ma, Ru3]:

TB(K) := max{TB(D) : D is a diagram of K }.
We also specify a region which will play an important role throughout the rest of the paper.

Definition 4.12 We define the framing diagram ®(K) of K as a subset of R? by

®(K) = {(u,t) : A(K,t) has a strongly quasipositive band representation on y strands } .

The following result of Rudolph [Ru3, Proposition 1] then follows directly from Theorem 4.9. (Note
our different sign convention for ¢.)

Corollary 4.13 When K is not the unknot, then
MK) :=min{ t: A(K,t) is strongly quasipositive } = —TB(K), (4.16)

and more precisely,
A(K,t) is strongly quasipositive <= t > —TB(K). (4.17)

Proof. When A(K,t) has a positive band presentation, then every disk is connected by at least two
bands. Disks connected by one band can be removed, and such connected by no band do not exist unless
K = (and t = 0), which was excluded. Since x(A(K,t)) = 0, it follows that every disk is connected by
exactly two bands, which means that the band presentation of A(K,t) gives rise to a grid diagram of K.
It is also well known that every integer ¢ > —TB(K) can be realized as Thurston-Bennequin invariant
of some grid diagram of K. (We mentioned this above; see (4.12).) Note in passing that undoing the
removal of disks connected by one band is, up to conjugacy, positive braid stabilization. This also shows
that

(n,t) € B(K) = (n+1,1) € B(K), (4.18)

which equals the effect of the negative grid stabilization (4.13). |
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The following diagram illustrates the effect of the positive grid stabilization within ®(K):

twist ¢ ° ° °
[} [ J [ J
[ ] [ ] [ ]
[ ] [ ] [ ]
[}
[ ]

number of strands u

For the unknot K, we have

~TB(0O) =1 but A(O) = 0. (4.19)

The problem with (4.16) there is that A(K,0) has the empty positive band presentation (on two strands),
but we do not consider this band presentation corresponding to a grid diagram. For this reason, the
unknot will repeatedly require special attention below. Despite the identification (4.16), A(K) will occur
so often, that it is better to maintain the notation and avoid writing the minus sign most of the time,
even when we exclude K = (O.

Remark 4.14 It is possible to derive similar properties for links K. Then a framing ¢ is needed for
each component, and the relationship in Corollary 4.13 becomes slightly more involved, as become the
framing diagram of Definition 4.12 and its properties. We do not wish to deal extensively with links here.
However, in situation where the surface structure is forgotten, the more self-contained extensions to links
do emerge, as for Corollaries 5.4, 1.2, and 5.5.

In the following application we assume that K # (). For K = (), all the links in Definition 4.1 are
(alternating) 2-bridge links, and such can be handled ad.hoc. for strong quasipositivity (see e.g. [Bal).

Proof of Corollary 1.1. The minimal genus surface of Wy (K, t) is unique. This is proved by Whitten
[Wh], but follows also from a result of Kobayashi [Ko]: the plumbing S; * S3 is a unique minimal genus
surface if and only if one of S; 7 is a unique minimal genus surface and the other one is a fiber surface. The
minimal genus surface of W (K, t) is a Hopf band plumbed into the annulus A(K,t) (which is obviously
the unique minimal genus surface of A(K,t); compare below Definition 4.1). Kobayashi’s version also
shows that plumbing two Hopf bands into A(K,t) gives a unique minimal genus surface for B(K,t). It
follows from Rudolph’s results on Murasugi sum [Ru2] that W_(K,t) and B(K,t) are never strongly
quasipositive: their unique minimal genus surface Murasugi desums into pieces, not all of which are
strongly quasipositive. Also, W, (K,t) is strongly quasipositive if and only if A(K,t) is. a

Since we will need this repeatedly later, let us already here notice that the Hopf plumbing W (K, t) =
A(K,t) « H can be realized by doubling a(ny) positive band in a band presentation of A(K,t).
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Example 4.15

ECTR A
4 A41,3) W (41,3)

A similar remark applies to W_ (K, t) whenever a band presentation of A(K,t) has a negative band.
However, it is important to note that this is not the only way to generate positive band presentations
of Whitehead doubles. (A different example for a trefoil Whitehead double is given in [Be, fig p. 121
bottom].) We will discuss Whitehead doubles further in §6.

Here, we give a simple application of the weight model, in estimating the Thurston-Bennequin invariant.
A counterpart will emerge with Lemma 7.4 from the HOMFLY-PT polynomial.

Definition 4.16 Define pbr(D), the plane-bridge number of D as the minimal number of Morse maxima
(or minima, i.e., half of the minimal number of Morse extrema) over all smooth diffeomorphic images of
D in S?. Obviously br(K) < pbr(D).

Lemma 4.17 For any diagram D of K, we have A\(K) < 2¢_(D) + pbr(D).

Proof. First, we can make D into a grid diagram by straightening out edges, and replacing wrong
crossings, i.e., those with the horizontal strand on top, as follows.

‘ (4.20)

(Again, as for the stabilization moves that occurred in the proof of Theorem 4.8, some small PL adjustment
is needed.) This does not change the number of bridges.

Next, the horizontal adjustment technique (4.21) can be used to delete a horizontal edge e of label +1
without crossing on it, again by applying a suitable PL-map on the half-planes above and below e. This
is the reverse of the stabilization moves, but we may need in advance to displace possible vertical edges
above or below e. (If necessary, extend the box A resp. B drawn in the following figures until above resp.
below the entire grid diagram, to ensure that all edges enter the box horizontally.)
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(4.21)

The inequality we wish to prove about the diagram resulting after a move (4.21) is equivalent to the
one about the original diagram. We may therefore assume henceforth that all +1 signed horizontal edges
are intersected by a crossing. Thus

¢(D) > u(D) — 2br(D) . (4.22)

Also, we can see
Z(D) < u(D) —br(D),

by using that in (4.3) there are 2br(D) edges of label 0.

Then
AK) < Z(D)—-wD)
< (D)= br(D) - w(D)
< ¢(D)+br(D) —w(D)
= 2c_(D)+br(D).
The rest follows by minimization. a

5 Braid indices

We discuss some relation regarding the braid indices in Definition 2.1. (Compare? with [Nu, Section 3.3].)
As noticed, Bennequin’s inequality (2.5) implies that a strongly quasipositive surface is a Bennequin
surface, thus for K strongly quasipositive, we have (2.10). We know that b,(K) > b(K) is possible [HS],
but the examples K known are not strongly quasipositive. Rudolph conjectures that

bsgp(K) = b(K) (5.1)

when K is strongly quasipositive, and this is true, among other families, if K is a prime knot of up to 16
crossings (see [St2]). By the proof of the Jones-Kawamuro conjecture (Theorem 2.2), a Bennequin surface
of a strongly quasipositive link K on b(K) strands is always strongly quasipositive, so that

bp(K) = b(K) (5.2)

implies (5.1) for strongly quasipositive knots K. The problem (5.2) is extensively studied in [St2].

Since a band presentation of A(K,t) always comes from a grid diagram of K, and with a confirmative
notice about the unknot, we have:

Corollary 5.1
min{by(A(K,t)) : t€Z} = a(K). (5.3)

Moreover, there are at least a(K) + 1 consecutive integers ¢ which realize the minimum.

2We became aware of Nutt’s paper only at a very advanced stage of this work, and apologize for some overlap.
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Proof. The case that K is the unknot can be handled directly: the minimizing t are t = —1,0, 1.
When K is not the unknot, every maximal Euler characteristic (equal to 0) band presentation of
A(K,t) comes from a grid diagram of K. This shows
min{b,(A(K,t)) : t € Z} > a(K).

To see the reverse inequality, take a minimal grid diagram D of K. This gives a positive band presentation
Bp of A(K,t) for t = M\pin(K). Now consecutively turn the a(K) bands negative, which gives band
presentations of Bennequin surfaces for A(K,t) where t = Apin(K), ..., Amin(K) — a(K). O

Also, because choosing positive bands will give a band presentation of a strongly quasipositive annulus,
we have with Corollary 4.13:

Corollary 5.2 min{b,q,(A(K,t)) : t > AN(K) } = a(K). a
Forgetting the surface structure then yields an inequality of (ordinary) braid indices:

Corollary 5.3

min{b(A(K,t)) : t € Z} < min{b(A(K, 1)) : t > A(K)} < a(K) (5.4)

Moreover, there are at least a(K)+1 consecutive integers ¢ which realize the inequality b(A(K,t)) < a(K).
(|

The braid index of a link A(K,t) is obviously not less than the sum of the braid indices of constituent
components. Thus from Corollary 5.3, we also immediately have an inequality, which was noticed by
Cromwell [Cr] (with the extension to links K as explained in Remark 4.14):

Corollary 5.4 (Cromwell) For every knot K, we have 2b(K) < a(K). O

We obtain then the (slight) refinement of Ohyama’s inequality [Oh] as stated in the introduction.

Proof of Corollary 1.2. It is known that a(K) < ¢(K) + 2, as proved in [BP], and a(K) < ¢(K) for
K non-alternating [JP]. O

Since b(K) > br(K), it further follows:

Corollary 5.5 For any knot K, we have 2(br(K) — 1) < ¢(K). If K is non-alternating, then 2br(K) <
c(K). O

In the obvious extension to links, connected sums of Hopf links show that the (first) inequality is
sharp. But there is a more precise conjecture, apparently due to Fox [Fo|, and later studied and extended
by Murasugi [Mu]. For knots K, it states

3(br(K) — 1) < ¢(K).

These useful implications are worth noting, but we will see below that it is much more important to
work with (5.4) rather than its simplified variant of Corollary 5.4.

We are next going discuss what (say, strongly quasipositive) framings A are possible for given grid
size p, and in particular whether A, the framing for a minimal (size a(K)) diagram (see Theorem 4.8)
is unique. Since p bounds the braid index of A(K,t), and all have the same y, Birman-Menasco [BM]
imply that for given A, only finitely many p are possible. We will later prove a more precise statement
(Finite-Cone-Theorem 7.3).
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Question 5.6 (a) Is b(A(K,t)) > a(K) for any ¢?
(b) At least, is b(A(K,t)) > a(K) for any strongly quasipositive A(K,t)?

If (b) fails, then it would give an example A(K,t) answering negatively Rudolph’s question (5.1). This
question will be further treated in Remark 7.22 and Conjecture 8.1.

To formalize this topic better, we introduce notation relating to the two grid stabilizations (4.12) and
(4.13).

Definition 5.7 We define the cone C(u,t) C Z4 x Z by
Clp,t) ={(s,A): s>p, t<A<t+s—p}.

We say (i, 1) is the tip of the cone.

A
twisting

[ ]

[ ] [ ]
e o e Clpt)

[ ] [ ] [ ] [ ]

[ ] [ ] [ [ ] [ ]

t — ° ° ° ° ° °
| >

I number of strands

We can summarize some properties we have derived regarding the region ®(K) of Definition 4.12.

Theorem 5.8 (a) The framing diagram ®(K) of K (see Definition 4.12) is a union of cones.
(b) It contains at least one cone of the form C(a(K), Ayin(K)) and one of the form C(u, A(K)).
(c) Tt contains no points with ¢t < A(K) and p < a(K).

(d) Every point (u,t) € ®(K) satisfies

br(K) — (u—1)2/4<t<(p+1)*/4—br(K). (5.5)
0

This estimate (5.5), that comes from (4.7), is rather crude, due to our insufficient control over the
writhe. One problem with (4.8) is that, while it can be (at least asymptotically) sharp on either side,
this unlikely happens (simultaneously) for diagrams D of the same link. Methods to address the writhe
variation exist, based on Thistlethwaite’s work on the Kauffman polynomial, but they will lead to no
pleasant results here. A far more efficient technique will be introduced later, which ultimately leads to
Proposition 8.6. This will yield much sharper bounds than (5.5), especially when K is fixed and p is
large. However, we emphasize that neither (5.5), nor the inequalities in Lemmas 4.17 and 7.4, follow from
alternative estimates we obtain (or, to the best of our knowledge, other known results).

We announced that we will prove later (Finite-Cone-Theorem 7.3) the cones are finitely many. The
following Jones-Kawamuro type of conjecture (compare with Theorem 2.2) is then suggestive.
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Question 5.9 If K is non-trivial, is ®(K) a single cone? (This cone would have to be then C(a(K), Anin (K))
with Apin (K) = A(K).)

Example 5.10 According to (4.10), we have

being the union of two cones.

The special case for = a(K) in Question 5.9 (an analogue of the “weak” form of the Jones-Kawamuro
conjecture) was already raised in [Ng] in the language of grid diagrams D and Thurston-Bennequin
invariants TB(D). It was answered in [DP, Corollary 3].

Theorem 5.11 (Dynnikov-Prasolov [DP]) The Thurston-Bennequin invariant of minimal grid diagrams
of a given knot K is always equal to TB(K).

We will return to this statement in §7.4 and §8.1. Note that the unknot creates no exception here,
when using T'B instead of A and avoiding the discrepancy (4.19). Despite its importance, we do not
use Theorem 5.11 substantially; it brings only minor simplifications, which can be worked around. We
indicate this at a few places, but skip doing it consistently, because it does not seem a reasonable course
of action.

6 Jump invariant

Turning to Whitehead doubles, Ozsvath-Szabé defined a number j,(K), the jump invariant of 7, with

(W (K1) :{ : iiﬂ% . (6.1)

The existence of such a number can be seen easily from Livingston’s properties of slice-torus invariants
§2.5. We have g(W,(K,t)) = 1, so for strongly quasipositive T = W, (K,t) we have 7(T) = 1 (see
(2.27)). Also W4 (K,t) » W (K,t —1) and W, (K,t) — O by a positive-to-negative crossing change,
thus 7(T") € {0,1}. It is not immediately clear that 7 # 1, i.e., j-(K) > —oo, but this is known, and we
will also be able to derive it in Proposition 6.3.

It is important, for reasons (6.11) that will transpire below, that 7 can be replaced by (half of)
Rasmussen’s invariant s, or any other (possible) slice-torus invariant v. In particular, for any such v we
have the behavior of (6.1), leading to defining the jump number j,(K), as studied in [LN]. In fact, note
that one can define j, for the signature o as well (after some modification (o +1)/2 to fit values 0, 1), but
for obvious reasons j,(K) = 1 regardless of K. Corollary 1.1 shows then that there are many Whitehead
doubles T which are not strongly quasipositive despite o(T') = 2¢g(T) = 2. We obtain then the following.

Corollary 6.1 For any slice-torus invariant v, we have
Ju(K) < MEK). (6.2)

Proof. By Corollary 1.1, W, (K, t) is strongly quasipositive for ¢ > A(K), thus from (2.27), we have
v(Wi(K,t)) =1 for t > \(K). O

Example 6.2 Equality does not always hold. An example for v = 7 is T = W, (31, 3) = 1445575, which is
a Whitehead double of the negative (left-hand) trefoil 3;. There 7(T') = 1, but T' = 1445575 is not strongly
quasipositive. We have A(31) = 6 (see [KI]).
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Now we can also easily recover the Livingston-Naik result [LN].

Proposition 6.3 For any slice-torus invariant v, we have

—AMK) < ju(K) < AK). (6.3)

Proof. The right inequality in (6.3) was given in Corollary 6.1. To obtain the left inequality, we prove
that
U(WJr (Kv t)#W+('K, 7t)) < 1. (64)

We remind that both connected sum factors have v-invariant 0 or 1.

Assume (6.4) is proved. Then since v(Wy (1K, —t)) = 1 for —t < —A(IK) for the same reasons as
Corollary 6.1, we need from (6.4) that v(W,(K,t)) = 0 for t < —A(!K), so we have the left inequality in
(6.3).

To prove (6.4), assume by contradiction that Lh.s. is 2. Thus x4 (W, (K, t)#W, (1K, —t)) < —3.

By connecting with a band as indicated in Figure 1, we obtain a 2-component link in Figure 2, with
presumably

xal(6.7)] < -2. (6.5)

framing —t framing ¢

R

AN

-

(6.6)

Figure 1: Splice at the place indicated by the arrow, by adding a band

But the disk region of (6.7) represents an annulus of the slice knot K#!K with framing ¢ — ¢ = 0.
However, pay attention that there is an orientation issue here. When K is non-invertible, then K#!K is
slice only if K is oriented in a proper way. To resolve this issue, notice that the construction of W, (K, t)
does not depend on the orientation of K, and moreover, W, (K, t) is easily seen to be invertible regardless
of whether K is or not. This means one can suitably choose orientations of W, (K, t), W4 (1K, —t) when
their connected sum in (6.4) is built. The v invariant obviously is not affected by this choice. Then by
smoothing out any one of the four displayed crossings in (6.7), we obtain the unframed Whitehead double
(6.8) = W (K#!K,0) of a slice knot, in Figure 3, which must be slice itself and thus have y4 = 1. But
from (6.5), we would need x4[(6.8)] < —1, a contradiction. O

We have then the following contribution to the Bennequin sharpness conjecture (2.8), stated in Corol-
lary 1.3.

Proof of Corollary 1.3. If K is the unknot, then Wi (K,t) are twist knots, so alternating, and for
them (2.8) is resolved; see [FLL, St2]. (Or one can make an explicit check.) Thus we assume below that

K#0.
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—_—
o

Slice, framing 0, and x4 > 0
——/
-

(6.7)
Figure 2: One of the four crossings should be smoothed out, and then one nugatory crossing removed
(6.8)
Figure 3: Slice knot, x4 =1
We first deal with W.. If (1.3) holds, then because of Corollary 1.1,
W, (K,t) is not strongly quasipositive <= v(Wy(K,t)) =0. (6.9)
Furthermore, (W, (K,t)) = 1, thus by (2.27),

v(Wi(K,t)) = 0= W,(K,t) is not Bennequin-sharp. (6.10)

Combining (6.9) and (6.10) gives the ‘=" direction in (1.4). The reverse direction,
not Bennequin-sharp = not strongly quasipositive,

is among the standard causalities following from Bennequin’s inequality (2.5).

For W_ notice that it unknots by a negative-to-positive crossing change, so that v(W_) < 0, while
g(W_) =1. Thus W_(K,t) cannot be Bennequin-sharp by (2.25). (The case that K is the unknot, and
t =0, can be handled extra.) O
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Of course, when v is effectively computable, so is j,(K). But at least for v = 7, there is a more closed
expression. Hedden [He] has found that

Jr(K) =1-27(K), (6.11)

which further elucidates Example 6.2. But the picture for Rasmussen’s invariant remains less clear.

We can fit (6.11) into the general relationship

MK) =-TB(K) > 1-27(K) = j-(K) = x4(K). (6.12)
For the leftmost inequality, which is due to Plamenevskaya, see the proof of Theorem 1.5 in [He2]. One
can use (6.12) to easily obtain the property (6.3) for v = 7, which motivated treating there a general v
rather than only focussing on this special instance. The relationship (6.11) also identifies when (1.3) holds
for v = 7, namely which occurs when

AK) =1 - 27(K). (6.13)

This raises the question what knots satisfy (6.13). The condition clearly must relate to positivity
somehow, but the absence of the rotation term rot(D) in T B (compare with [Fe, FT]) should hint to
caution.

Lemma 6.4 Every positive fibered knot K satisfies (6.13).

Proof. A positive fibered knot has a positive diagram D where the reduced Seifert graph is a tree, i.e.,
D is a diagrammatic Murasugi sum of (2, n)-torus link diagrams (see [Cr2]).

This diagram D can be Morsified as done for a braid diagram in [He2, Fig. 3], without the addition of
extra cusps for negative (braid) crossings. Like for a closed positive braid diagram, in the slightly more
general situation that the reduced Seifert graph is a tree, one can arrange the Seifert circles of D so that
each Seifert circle of D contributes exactly one left and exactly one right cusp. Thus w(D) = ¢(D) and
in (4.5) (after a —m/4 rotation) Z(D) = s(D). Then

“ME) 2 ~A(D) = (D) — s(D) = 2g(K) - 1,

where the last equality comes from Seifert’s algorithm.
Next, it is known by Yokota [Yo] that for K positive, min deg, F'(K) = 2g(K), so that with the known
bound (see [FT, Fe, Ta|)
AMK) > —mindeg, F(K) + 1, (6.14)

we have
—MK) > 2¢g(K)—1=mindeg, F(K)—1> —-\K).
This gives that A\(K) = 1—2¢(K), and finally 7(K) = g(K) when K is positive (or more generally strongly
quasipositive). ]
We do not know if for (6.13) it suffices K to be positive. This is related to the problem whether in a
positive diagram D we have |rot(D)| = 0. In the above proof, for each pair of cusps of the same Seifert
circle of D, either the left is up and the right is down or vice versa. This means by the formula [He2,

p. 625, 1. -9] that |rot(D)| = 0. For a general positive diagram D, the process of [He2, Fig. 3] is not
straightforward, though. We certainly also know that strong quasipositivity is not sufficient for (6.13).

Example 6.5 Consider K = 161379216, the closure of the 3-braid

11 [13] 2 1 [13] 2 1 [13] 2,
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161379216

It has mindeg, F'(K) = 7 (and g4(K) = 4), thus by (6.14) we can conclude that (6.13) fails even for
strongly quasipositive K. (This is the only strongly quasipositive example K up to 16 crossings with
mindeg, F(K) < 294(K), so it underscores the value of the tabulation reported in [St2, Appendix].)

A further series of instances satisfying (6.13), which will play a special role in the appendix, are
slice knots K with (A.5). They can be suspected to be quasipositive (see Remark A.4). But for (6.13)
quasipositivity not necessary, as shows the below example.

Example 6.6 The knot K = 121525 has A = 1 and 7 = 0 (see [KI]), thus were it to be quasipositive, it
would have 7 = g4 = 0, so it would be slice. But this is easily ruled out from the Milnor-Fox condition;
the determinant det(121625) = 17 (see (2.24)) is not a square.

7 HOMFLY-PT polynomial

7.1 Some degree inequalities

We now turn our attention to the HOMFLY-PT polynomial P in (2.13). Our goal is to use the polynomial
to prove that when ¢ is sufficiently small, then A(K,t) is not strongly quasipositive with a good lower
bound on ¢. The w(D) term in (4.5), as we have seen, makes bounds somewhat inelegant and inefficient.
We use some notation from §2.4.

Lemma 7.1 For every knot K, there exists a strongly quasipositive framing t = Apin(K) > A(K) of
A(K,t), so that
mindeg, P(A(K,t)) > 1, maxdeg, P(A(K,t)) <2a(K)—1. (7.1)

Proof. When K = (), then ¢ = 1 suffices. Thus assume again below that K is non-trivial. When L is
strongly quasipositive, then (2.7) and L being Bennequin-sharp mean that the right inequality in (2.6)
becomes an equality. By using the right inequality in (2.17), we have

mindeg, P(L) >1—x(L) =1— xa(L). (7.2)
In particular for L = A(K,t), we have x(L) <0, so
min deg, P(A(K,t)) > 0. (7.3)

We have from the skein relation (2.13)
P(A(K,t)) = v*P(A(K,t — 1)) +vz. (7.4)

Notice, by further remarks from §2.4, that for the 2-component link A(K,t)) the only monomials in
P(A(K,t)) that occur are zPv" with odd p,r. Also mindeg, P(A(K,t)) = —1, and by [LiM] it is known
that

[PAK, )]s-1 = v (0™ = 0)([P(K)].0)* # 0. (7.5)
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We now know that there is a (at least one) framing (we denoted) t = A\, so that b(A(K,t)) < a(K).
Also by MFW inequality (2.18) we have
span , P(A(K,t)) < 2(a(K) — 1)

for t = Amin. Now, the diagram D; of A(K, Amin) obtained from a minimal grid diagram D of K by
replacing vertical segments by positive bands has w(D1) = u(D) = a(K) and s(D1) = u(D) = a(K).

Thus by MFW inequalities, we have

mindeg, P(D1) > 1, maxdeg, P(D1)<2a(K)—1. (7.6)
g

Lemma 7.2 If K # (O,
MK) > max{\(D) — u(D) : D is a grid diagram of K}, (7.7)

with non-strict inequality if K = O.

Proof. By using the right inequality (7.1) and the recursion (7.4) reversely a(K) times, we see
min deg, P(A(K, Amin — a(K))) < maxdeg, P(A(K, Apnin — a(K))) < —1,
so from (7.3), we have that
A(K, Apin — a(K)) is not strongly quasipositive,
if K # (). For K = (), we can conclude that

A(K, Amin — a(K) — 1) is not strongly quasipositive .

In a similar way, for every grid diagram D of size p(D), the annulus A(K, A(D)) will appear in a
diagram D; with w(D1) = s(D1) = u(D), so

A(K,A(D) — u(D)) is not strongly quasipositive (7.8)

when K # (), and same for A(K, A\(D) — u(D) — 1) when K = Q. O

Since this maximum is finite, we have:
Theorem 7.3 (Finite-Cone-Theorem) The framing diagram ®(K) is a union of finitely many cones.

Proof. Note that a cone C' = C(¢/,t’) contains a cone C = C(u,t) if and only if (u,t) € C’. Thus if
C c UG, then C C C;, for some Cj,.

Call a cone C' C ®(K) essential if there is no cone C’ C ®(K) with C C C’. Now consider the essential
cones C; = C(ui,t;) in ®(K) one by one. Order them as a (first potentially infinite) sequence C1,Cs, . ..
by increasing t;, i.e., so that ¢; > t;_;. Note that there cannot be two essential cones C;, C; with t; = ¢,
since otherwise p; < p; would lead to C; D Cj. Also there is a smallest ¢; because ¢; > A(K) for all i.
Define then

v =max{t —p : (u,t) € C;}.

And now argue that v; > v;_1. Because of (7.7), there can be only finitely many increases of v;. (See
Proposition 8.6 for a more precise statement and argument.) O

Another application of (7.7) gives an inequality we promised in stark symmetry to Lemma 4.17. (Unlike
its counterpart, it thus does rely on the HOMFLY-PT polynomial in an essential way, though.)
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Lemma 7.4 For any diagram D of K, we have \(K) > —2cy4 (D) — pbr(D).

Proof. If K = (O, then A(K) =0, pbr(D) > 0 and ¢4 (D) > 0, so the inequality is trivial. Thus assume
K # (. We use the conversion (4.20) and the horizontal adjustment (4.21) of the proof of Lemma 4.17.
We may then assume w.l.o.g. that D is a grid diagram and all 1 signed horizontal edges are intersected
by a crossing. Then using (7.7), we have

AK) > D) u(D)
— Z(D) - w(D) - u(D)
> 2 (20(D)  26(D) ~ 26r(D)) — (D) ~ w(D)
= —¢(D)—br(D) —w(D)
= —2¢4(D)—-br(D).

In the third line we used that each —1 edge has a crossing, and there are 2br(D) sign 0 edges. ]

Remark 7.5 The number [(K), introduced later, allows for improvements of (7.8), (7.7) and Lemma
7.4. However, the present versions maintain the advantage of involving only simple geometric data of the
diagram itself, without protruding algebraic constructions derived from it. Since we will find a number of
(other) applications of I[(K), we do not like to return here to resume this specific line of argument. One
place where this reasoning is incorporated is (A.13). The quantity I(K) will serve as a lower estimate for
the arc index, of which we put ahead a simplified variant.

Let P = P(A(K,t)) for some t. Keep in mind by §2.4 that P|,»: is the polynomial P with all terms
of z-degree 1 removed. Because of (7.5), talking about its degrees makes sense.

Lemma 7.6 The integer
1
I'(K):= 3 span , P(A(K,t))|,» + 1 (7.9)

does not depend on t and satisfies
a(K) > U'(K). (7.10)

Proof. By construction, b(A(K, Amin)) < a(K), so by MFW inequality (2.18), we see that (7.10) is true
for t = A\nin. And for other ¢, note that the relation (7.4) does not add any terms of z-degree different
from 1. That I’(K) does not depend on ¢ follows for this same reason. O

But in fact, the z!-term of P is also interesting, and its study relates to the “cooking” alluded to in
the abstract of the paper.

7.2 Estimating a(K): the pan

Like for the crossing number, there are only finitely many knots of given arc index. However, once some
classical tool like (7.27) fails to give a sharp lower estimate, the method used so far, like in [J+], is to
exhaustively enumerate all grids of smaller size, a feat which quicky becomes laborious and unreliable
when the size increases. To change this situation here, we explain next how not to discard the z'-term in
(7.10), and use it to determine a(K), and later A(K), from the P polynomial with considerable precision.

Write in the rest of this section for simplicity
K, = A(K,t)
for (the boundary of) the ¢-framed annulus around K. We have then from (7.4),

P(K;) = zv +v*P(K;_1). (7.11)
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To visualize the polynomial P(K}), it will be helpful to plot its coefficients in the plane, with (odd) v
degrees going from left to right and z degrees going top-down. Thus negative v-degree terms, left on the
y-axis, occur, and will be considered. But negative z-degree terms, above the x-axis, occur only for 271,

and we stipulate to hide them. We emphasize again that the z~!-term in P(K;) is known (see (7.5))

[P = (071 —v) - v* ([P(K)].0)?. (7.12)

By iterating (7.11), we can see that for sufficiently high ¢, the polynomial P(K}), displayed as we just
explained, starts exhibiting the pan-like shape

v v powers
z + 1 1 1 1 1
21
w
z powers
Y

(7.13)

Now remove all 1’s in the panhandle of (7.13). To formalize this, we consider the leftmost and rightmost
column [P],q in (7.13), for the smallest d = dyn, > 0 which is not of the shape

[Plya =z, (7.14)

and
dmay = maxdeg, P. (7.15)

We can easily treat arbitrary ¢, and will do below. In that case, we can modify the condition (7.14)
for dpnar < 0 (keep in mind that for a 2-component link, d is always odd) to

[Plya = —2 (7.16)
and dyi, < 0 is set as mindeg,, P. But, keeping the pan shape (7.13) in mind, assume here for simplicity
t> 0.

Write then

Z(K) _ dmaw ;dmzn +1 (717)

for the (pan) width of W in (7.13). (For the formalization of this procedure, see the expressions given at
the end of §7.4. Compare also with [Nu, Theorem 3.3].) In result, we have a way to “normalize out” the
t-dependence of the degrees of P(K}) in the z!-term, giving an improved version of the lower bound I'(K)
in (7.10) for a(K). Due to the attention incited by the unknot, let us remark here that

a(O) =1(0) =1"(O) =2. (7.18)

Proposition 7.7 With (7.9) and (7.17), for every knot K, we have I'(K) < [(K) < a(K).
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30 1 14
-2 4 9 -33 41 -16
-12 4 1 1 1 1 1 25 -164 221 -80
-2 4 22 -342 468 -148
-2 4 8 -376 496 -128
-2 4 1 -231 286 -56
0 4 -79 91 -12
0 4 -14 15 -1
0 2 -1 1
38 1 18
-2 4 16 -56 66 -25
-16 4 1 1 1 81 -420 541 -200
-2 4 148 -1316 1778 -610
-2 4 128 -2248 3040 -920
-2 4 56 -2298 3013 =771
-2 4 12 -1457 1821 -376
-2 4 1 -575 680 -106
0 4 -137 153 -16
0 4 -18 19 -1
0 2 -1 1

Table 1: Polynomials of the Whitehead doubles W, (71,7) and W(91,9) of the negatively mirrored 7;
and 91. The framing ¢ can be read off, because of (7.34), from the sum of the coefficients in the second
row.

It should be emphasized that what appears as a panhandle is not what is illustrated in (7.13). It is at
the “wrong” end and will remain part of the pan when ¢ is large.

Had the coefficients in these “false” panhandles been signed in the opposite way, i.e., to be —1, the
polynomials of A(!171,t) and A(!91,¢) would have instantiated the possibility (7.19). (Being signed +1,
these coefficients will become 2 for large t.)

Proof. Obviously I'(K) < I(K), so we prove the right inequality. Because of (7.18), we also assume
K+ 0.

When we set (7.15), it is possible that some P(K;) for small ¢ has MFW bound < [(K). This can
happen if

[P]ya = z for d = dipas and possibly dpar — 2, dmaz — 4, etc. (7.19)

In particular, we would need
dmaz > maxdeg, P|, (7.20)

for such terms to occur. These terms (7.19) can be cancelled by the inverse process of (7.11) when their
v degree shifts down to 1 and then goes from 1 to —1.

We pause here for some cautionary illustrations. We do not know if (7.19) can occur. But examples
warn that it “almost” does. It can be seen from Table 2 that when K =!10;32, such a cancellation (when
t = 1) occurs in degree dyqa: — 2. But it does not in degree dy,q., which prevents a collapse in degree.
Consider also the polynomials from Table 1. By smoothing out a crossing in the Whitehead double
clasp and taking the mirror image, one can see that when K are positive (2, n)-torus knots, then terms
[P],¢ = —z do occur in large amounts. They differ from (7.19) only by one wrong sign. In particular
these terms also make a significant difference to I’(K) = 4 in (7.10), evidencing the price tag of ignoring
the z!-term all out. This is cemented by further knots like K = 89,943, with I'(K) < I[(K). At least, we
refer here to the inequality (7.33) which, under mirroring (2.15), provides some limit on how many terms
can cancel in (7.19).

Since we cannot exclude the situation (7.19), using

a(K) > min MEW (K) (7.21)
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(for (2.18)) will not be enough, at least in theory (see, though, Remark 7.8). However, notice that the arc
index, as bound for b(K3}), has a certain stability: there is a number ¢ = A4, with

b(Ky) < a(K) + |t — Ain (7.22)

for every t'. (We know by Theorem 5.11 that A, is unique for K # ().) Using (7.22), we can replace
(7.21) by
> mi A=t —tl. .
a(K) > min Ig}g%(MFW(Kt ) — |t =t (7.23)
This will prevent the sporadic collapsing of the MFW bound from deteriorating the arc index bound. It
can be seen, with a bit of technical argument based on (7.11), that the right of (7.23) is precisely what
was defined as [(K).

For instance, there can be at most two hypothetical values of ¢ for which MFW (K;) < I(K), and for
them choosing |t — t| = 1 should suffice to see

MFW(Ky) — |t —t] > I(K).

An instructive example of the argument, allowing for two such ¢ to occur, is the following sequence.
We show a transformation of the [P(K})],: terms with increasing ¢, where only the coefficients are written,
and vertical bar stands for the separation between v-degrees —1 and 1 (making clear the degrees of all
other coefficients; even degrees are obviously omitted). The pan edge coefficients are boxed at some places
(similarly to (7.49); see also (7.57)).

1 -1200 —1‘ = [-1 1200 ‘ &1 —120‘1 oo (7.24)
- 4‘0311 - ‘ 00311] — ‘100311

In that case [(K) = 5, while for two ¢, MFW(K};) = 3 is possible. But for either ¢ and one of the two
[t —t| =1, we have MFW (Ky) =6 = [(K) + 1.

This argument based on (7.23) justifies that using (7.15) is appropriate to achieve {(K) in (7.17) to
estimate a(K) as claimed. O

Remark 7.8 There is a way to modify the calculation of I(K) to determine the r.h.s. of (7.21). Remove
all highest v-degree terms (7.14) for d > 0 and [P],e = 0 for d < 0, until you reach a degree d, ..
(with coefficient [P],q) not of that form. Similarly, remove all lowest v-degree terms (7.16) for d < 0 and
[P],¢ = 0 for d > 0, finding d, Then

min*

’ o
[(K) = min MEW (K;) > w 11,
S

Note that on the right there is still no equality, because when t is fixed, the just described cancellation
of terms in P(K}) can only occur on one side (either for low, or for high powers of v, but not for both).
Still, in the present form the estimate is good enough to allow us to confirm that in fact

U(K) = min MEW(K,) (7.25)

for all prime knots K up to 10 crossings. We do not know whether this equality holds in general.

Since P(A(K,t)) are interconvertible for all ¢, one can determine I(K) from P(A(K,t)) for any ¢, and
then hope to determine a(K) if a(K) = I(K).

Definition 7.9 We say that K is [-sharp if a(K) = [(K).
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[251[141[37][26]1[15][48][79] [38]-[691]

55 132 -1 17
7 13 9 -21 16 -4
5 15 -15 109 -186 86 31 -25
1 15 -2 0 -80 452 -724 285 169 -100
5 15 -148 870  -1493 659 272 -160
5 15 -128 895  -1771 932 202 -130
5 15 -56 520  -1256 772 76 -56
5 15 -12 170 -536 376 14 -12
5 15 -1 29 -134 106 1 -1
7 11 2 -18 16
9 11 -1 1
[25] [14] [37] [26]-[15]-[48]-[79]1-[38]-[69]"2
56 1 0 18
-2 4 -8 21 -16 4
-8 6 1 1 16 -108 186 -86 -31 25
-8 6 0 80 -452 724 -285 -169 100
-4 6 148 -870 1493 -659 -272 160
-4 6 128 -895 1771 -932 -202 130
-4 6 56 -520 1256 =772 -76 56
-4 6 12 -170 536 -376 -14 12
-4 6 1 -29 134 -106 -1 1
-2 2 -2 18 -16
0 2 1 -1

Table 2: Polynomial of the annulus link A(10132,0) and the Whitehead double W_ (10132, —4) of 10132
and negative clasp, framing ¢ = —4, together with the band presentation used, as obtained from (4.15)
(where £[1j] stands for ai{[jl in (2.2)).

The mirroring of 10132 can be easily confirmed from the z~*-term of P(A(10132,0)) and (7.5) to be
the one specified in Example 4.10.

For A(10132,0) we see the disappearance of the (short) “false” panhandle. It comprises two monomials
in z-degree 1. We call the panhandle “false” because in the same v-degrees, a term with 2* occurs, so
that this “panhandle” is not removed when reducing the framing ¢. Note that A(10132,0) is not strongly
quasipositive despite mindeg, P > 0.
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Example 7.10 Among the Rolfsen [Ro, Appendix| knots, K = 10132 is the only one which is not {-sharp.
Then [(K) = 8 (as shown in Table 2) but [J+] (see Example 4.10) and KnotInfo [KI] report a(K) = 9.

There are four non-l-sharp 11 crossing knots K (up to mirror images), i.e., such with
a(K) > I(K), (7.26)

namely 11379, 11404, 11455, 11459 (for which I(K) =9 and a(K) = 10), and 21 further examples of 12 cross-
ings.

In case of 10135 (and a series of other examples), there is a linking number argument that can help out
determining the arc index. We formulate it as a lemma. (It can also be easily modified to other knots,
but for simplicity we just present the prototype and leave it to the reader to adapt it.)

Lemma 7.11 We have a(10132) = 9.

Proof. Assume a(10132) < 8. From the polynomial of the annulus link A(10;32,0) in Table 2, and (7.4),
we can see that MEW (A(10132,¢)) < 8 occurs for t = —8,...,0, and then MFW(A(10132,t)) = 8. Because
of the bottom statement of Corollary 5.3, it is enough to prove that b(A(10132,0)) # 8. We claim that
the polynomial of A(10132,0) in Table 2 is sufficient to see that b(A(10132,0)) > 8, as follows.

Assume b(A(10132,0)) = 8, and S is an 8-braid whose closure is A(10132,0). Now, the exponent sum
w(B) is made up of the exponent sums w(f;) of the two subbraids §; of 3, which give the individual
components Bl = (4 and Bg = (3 of A(10132,0), and the linking number (k(C1,C2) = t = 0 of these
components. Since both C; and Cy have the knot type of 10132, and b(10132) = 4, both components C;
and C3 of A(10;32,0) must be closures of 4-string subbraids j3; of 5. Then their individual exponent sums
must be w(5;) = Wmin(10132), which is determined to be 3 (see the tables [St4] and the remarks below
(2.19)). Thus

w(B) = w(f1) + w(B2) +k(C1,C2) =3+34+0=6.

But the polynomial P = P(A(10132,0)) in Table 2 exhibits
mindeg, P =1 < 15 = maxdeg, P,

and looking at the refined inequality (2.17), we see that a braid 8 with n = 8 strands must have writhe
w = w(P) = 8. This is a contradiction. O

The “classical” lower bound for a(K) comes from Kauffman’s polynomial F' [MB]:
a(K) > span ,F(K) +2. (7.27)

This can also be obtained from the bound (6.14) and Matsuda’s inequality (7.58). For all of the 26 non-
I-sharp knots of Example 7.10 we have span ,F(K) + 2 = [(K). But span,F(K) + 2 < [(K) obviously
occurs for some “F-sparse”’ knots like K = 945. (However, compare also‘with Example 7.30.) Likewise,
I'(K) < span o F(K) + 2 occurs in Table 1 (due to (7.28)), thus the z-term retains its credentials.

Question 7.12 Is span ,F(K) + 2 < [(K) for all non-trivial knots K7

Example 7.13 In general the approximation [(K) < a(K) is rather good. There are 2049 arc index 11
prime knots up to 16 crossings. The inequality (7.27) is sharp for 1666 of them, while 1977 (incuding all
those 1666) are I-sharp.

Computation 7.14 At least up to 12 crossings no prime alternating non-I-sharpness example was found
(i.e., (K) = a(K) = ¢(K) + 2 holds for each such knot K). Also no anomalies occurred with the
Murasugi-Przytycki 18 crossing alternating knot (and thus incl. its mutant) with unsharp (2.18).

Question 7.15 Is a(K) = I(K) for all (non-trivial) alternating K?
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Since Thistlethwaite [Th] proved that for K alternating
span F(K) = ¢(K), (7.28)

this would also be a part of Question 7.12 (as can be seen from the proof of Corollary 1.2 in §5).

Remark 7.16 In general F'(K) is easier to obtain than P(A(K,t)). However, for small values of k, the
truncation P|,<x(A(K,t)) may come out faster than F(K). When F(K) is too slow, this raises the issue
of computing z-truncations thereof (since there are truncated versions of (7.27) as well). While the tech-
nology is implemented [St3] and ready to use, we choose not to delve into this here at all. Aslong as K is
not excessively complicated, F'(K) is comparatively efficient to obtain, and thus, in practical terms, there
seems little wrong to always try (7.27) first as a lower bound for a(K). For suggestive reasons, (7.27) will
accompany us constantly (see e.g. end of §7.3), but we like to focus on the HOMFLY-PT polynomial, and
thus will not make the comparison to (7.27) everywhere.

A further condition we temporarily consider is that
maxdeg, P(A(K,t)) > 1. (7.29)

Keep in mind that maxdeg, P(A(K,t)) does not depend on ¢ if for some ¢ it is greater than 1.

The inequality (7.29) seems in practice to always hold when K is not the unknot. Indeed, it is
conjectured more precisely (see [KS]) that, for K # O,

maxdeg, P(A(K,t)) = 2maxdeg, F(K) +1 (7.30)

for the Kauffman polynomial F. (Often W, (K, t) is used instead of A(K,t), but the conversions are
straightforward.) In particular (7.30) subsumes the expectation that

maxdeg, P(A(K,t)) = 2¢(K) -1 (7.31)

for K prime and alternating. The conjecture (7.31) is still open. The most general results are due to
Brittenham-Jensen [BJ]. We do not know about work on the extension (7.30).

Computation 7.17 We have verified using Whitehead doubles that (7.30) is true for prime knots up to
12 crossings. Thus in particular, all such knots satisfy (7.29).

By taking the reverse parallel with the blackboard framing of a minimal crossing diagram of K,
counting the Seifert circles, and using Morton’s inequality (2.22), one always has

max deg, P(A(K,t)) <2¢(K) -1 (7.32)

for an arbitrary non-trivial K and any ¢ (see [BJ]). This inequality (7.32) is not always sharp. But
the conjectured equality is that the canonical genus of the Whitehead double of a knot K (regardless of
framing and sign of clasp) coincides with the crossing number of K. And this conjecture follows for K
prime and alternating if (7.31) is confirmed. From the identity (2.16), we remark then for every non-trivial
K and every t,

mindeg, P(A(K,t)) < maxdeg, P(A(K,t)) <2¢(K)—1. (7.33)

This was mentioned in the proof of Proposition 7.7, and implies that the number of (potentially existing)
terms in (7.19) that lead to cancellations can be at most ¢(K) — 1.

In general, [(K) is not easy to calculate on infinite families of knots. Notice that, unlike (2.29) and
a corresponding property of the r.h.s. of (7.27), it is not even evidently (2 sub-)additive under connected
sum.
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Question 7.18 Is [(K 1 #K3) = (K1) + I(K3) — 27

This turns out to be the case in a few examples, like 10132#(!)31 and 10132#(!)10132, but as long as it
is not confirmed, the possibility exists to extract further information from [ as a lower arc index bound,
using the relationship (2.29).

We use (7.29) for at least one partial result regarding {(K).
Lemma 7.19 We have [(K) > 3 for every knot K with (7.29).

Proof. Note the special form of the Conway polynomial (2.23) in our examples:
V(Ky) = P(Ky)(1,2) = tz. (7.34)

Thus in particular setting v = 1 will collapse P(K}) in z-degrees > 1.

By (7.29) and the collapsing in (7.34), if the bound [(K) is at most 2, it is 2, and all P,s terms for

d > 1 are of the form

d

(cyvdmin — ¢, pdmint2) 0 (7.35)

By choosing ¢ properly, let w.l.o.g. dpin = 1 and dimaz = dmin + 2 = 3. Note that the reverse application
of (7.11) will gradually annihilate all terms [P],a for d < dynin. Thus with dym = 1 and dipee = 3, we
have in fact

mindeg, P|,>1 = 1, mindeg, P|,>1 = 3.
But because of the form (7.35) and ¢, # 0 for u = maxdeg, P > 3, the substitution in (2.16) will give
mindeg, P|,>1(v,v ' —v) =1—u (7.36)
and
maxdeg, P|,>1(v,v" ! —v) =34 u. (7.37)

With (7.12),
P =Pl + 0¥ (0™ —0)([P(K)).0)?/2

for some ¢, and we have then
1=PK)(v,v ' —v) =P + Py,

where
Py =Plsi(v,v7 ' —v) and P, = v*([P(K)].0)?.
Now we know (7.36) and (7.37) about P;. Also 1 —u < 0 < 3 + u. Thus, adding v?* times a square for
any t cannot cancel all terms in v-degree # 0, unless span ,([P(K)].0)? = 2 + 2u. Thus from (7.12),
span ,[P(K})],-1 >4+ 2u.

Since by definition, dy,;, < mindeg,[P(K})],-1 and dya, > maxdeg, [P(K¢)],-1, we have [(K) > 3+u >

6. This contradiction shows that [(K) cannot be (at most) 2.

O

Remark 7.20 By the properties of F listed in §2.4, it follows straightforwardly when F(K) # 1, then
span . F(K) + 2 > 4. Thus, through Question 7.12, Lemma 7.19 illustrates the difficulty to control I(K).
This unpredictable behavior may, though, contribute to its efficiency as arc index bound.
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7.3 Applications of Cabling
Conjecture 2.3 underscores the importance of cabling in settling braid, and thus also arc index issues.

This is a perhaps less pleasant, but still more universal means than Lemma 7.11, to treat some /-unsharp
knots K.

Computation 7.21 For K = 10135 the links L we consider with MEFW (L) = 8 < a(10132) = 9 are

e L=A(K,t)=K, fort=0,...,—8,
o L=W,(K,t)fort=0,...,—7, and
o L=W_(K,t)fort=—1,..., 8.

(Of course, for the rest values of ¢t we can conclude MEW(L) > 9 using the relation (7.11), or a similar
relation for Whitehead double polynomials.)

All the links listed above have b(L) = 9. We easily observe b(L) < 9. One can obtain a 9-string band
presentation from that for A(10132,1) with positive bands, given in (4.15), by making some bands negative
and doubling a positive band for W, and a negative one for W_. (Table 2 gives some examples.) At
the opposite end, we tested b(L) > 9 with parallelized truncated 2-cable (MFW) P, as discussed in §2.4.
The procedure took on a 4-CPU 10-year-old 2013 laptop between 2 and 15 h depending on individual
examples: an agreeable performance, when taking into account that the diagrams resulting from 2-cabling
the modifications of (4.15) have more than 200 crossings. (They depict 1] oriented degree-4 satellites
of 10132.)

This comparative efficiency offers the opportunity for more extensive checks (for other K). However,
this option was waived on, since it still is not readily amenable to larger quantities, and it leaves unclear
what insight to expect. (We will use the above compiled examples for later reference, though.)

Remark 7.22 Using Computation 7.21 for K = 10132, and the verification of (7.25) and I(K) = a(K)
(see Example 7.10) for all other prime knots K up to 10 crossings, we can conclude that the answer to
(both parts of) Question 5.6 is affirmative for all these 249 knots.

When (7.26) occurs, i.e., K is not l-sharp, the following simplification of cabling may potentially be
useful. Since k(A(K,t)) = 2, one can cable an individual component of A(K,t), obtaining a 171] oriented
parallel A*(K,t,t') of K, where ¢’ is the framing of the doubled component. (Here thus t' can be a
half-integer when the two copies of the doubled component get connected, i.e., K(A*(K,t,t')) = 2 when
2t € Z but ¢ ¢ Z.) Cabling an individual component only roughly doubles (and does not quadruple) the
crossings in the braid word Sp for A(K,t) = B/E).

Lemma 7.23 For every t with b(A(K,t)) = a(K) and every 2¢' € Z, we have

b(A*(K,t,1')) < 3a(K)/2. (7.38)

Proof. When b(A(K,t)) = a(K), then one of the components of A(K,t) in an a(K)-braid representative
B is a subbraid on at most a(K)/2 strands. Thus doubling this component C, regardless of what framing
t’ is used, can be done by adding at most a(K')/2 braid strands. (The framing can be corrected by adding
half-twists which do not add more strands.) This gives a braid representative of A*(K,¢,t') of at most
3a(K)/2 strands, resulting in (7.38).

Note that A(K,t) is exchangeable up to simultaneous reversal of orientation of both components, which
does not affect braid index arguments. Thus whether C' is the component we 2-cable to obtain A*(K,¢,t’)
from A(K,t), or we cable the other component, is not relevant. (Note, though, that the framing ¢’ of the
cabled component may be different w.r.t. the blackboard framing of the diagram B) O
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Algorithm 7.24 The following explains how one can try to use this lemma. Since the contrapositive of
its statement is really used, some care is needed how to proceed, and we formulate it in several steps as
an algorithm.

1. Use a band presentation 8p (as in (4.1)) for a grid diagram D of K of size u. This gives a band
presentation of A(K,t) for some t.

2. Make some bands negative to ascertain that P(A(K,t)) has no panhandle. For example, when
K = 10132 and p =9, then we know that there are nine values of ¢ € Z for which MEW (A(K,t)) =
I(K) = 8, namely t = —8,...,0. The statement below (5.4) says that it is enough to treat one of
these t. Thus we can consider ¢ = 0 (which requires one negative band), and use the polynomial in
Figure 2. In general, one can remove the panhandle (i.e., adjust ¢ by making bands negative) only
by looking at P(A(K,t))|,<:

3. Then double, with blackboard framing w.r.t. the diagram EI\), one of the components of the link
Bp = A(K,t). One obtains a link A*(K,t,¢"). There are in general two possibly (but not always)
distinct integers t’, depending on which component of 3p one chooses to double. (It can be argued

that these two t’ will add up modulo 2 to the same parity as the “band width” sum Z (r —ix — 1)
n (2.4); which in turn has the same parity as u; thus two distinct ¢’ will in partlcular always occur

when w is odd.)

4. Try to prove that such a link A*(K,¢,t') has braid index strictly greater than |3(x —1)/2]. This
will prove a(K) = p.

Example 7.25 For instance, when we do this construction for K = 10132 with (4.15) (one band needs
to be made negative here), this gives A*(10132,0,t") for ¢’ = 3,4. We found (see (2.20)), though, that
MFW (A" (10132,0,¢")) = 12

for both ¢'. Thus unfortunately, for K = 1032, the observation (7.38) does not seem useful to show
a(10132) = 9, at least as far as (2.20) is applied (within reasonable computability).

However, there is a number of successful cases. For example, when we carry out this process for
K= 1427072, with the size-12 gI‘ld

13 24 58 7C 3B 1A 6C 59 8B T7A 49 26

(where A,B,C stand for 10,11,12; see Definition 4.6), we find I(1427972) = 11, but making 3 bands negative,
we obtain
MFWs(A*(1497072,2,1)) = 17

(here t' =1 is the same for both choices of doubled component), which rules out a(1427072) = 11.

Other examples, again with 4 = 12 (and a single t’), are

16 466746: 13 46 25 T7A 8B 9C 3A 4B 16 7C 28 59
15 123702: 13 24 57 9C 6A 38 17 5B 49 8C 2A 6B

and

14 19935: 13 25 48 7B 3A 16 59 8B T7A 49 26
16 459158: 14 25 38 6A 7B 49 18 bA 29 6B 37

for ;1 = 11 (using 5 negative bands, with two different ¢/, both having MFWy(A*(K,t,t')) = 16).
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These examples do require some search, but keep in mind that even for truncated polynomials, the
increase in crossing number has severe (complexity) consequences. (Here we tried only truncation degree
d = 2, which does not cost much time and allows for testing a larger number of examples.) Thus Lemma
7.23 provides a viable option to try out.

Remark 7.26 We add the following practical hints about the determination of the arc index.

1) For more complicated knots K, it is better to approximate [(K) from below by using z-truncations
of the HOMFLY-PT polynomial, as explained in §2.4. This was used to assist the first and third
authors’ ongoing effort to tabulate the arc indices of the (non-alternating prime) 14 crossing knots.
But it also emphasizes that it is useful to have a good upper estimate of a(K) in advance. Once
coincidence with the lower bound is reached, one can then save calculation of further truncations
(and the full polynomial).

We clarify that how an upper estimate of a(K) was obtained relates to the (knot-spoke) method of
[JP], finding certain proper non-alternating arcs in diagrams of K. It is not necessary (and takes
extra effort) to obtain a minimal grid diagram explicitly.

2) As noticed while proving Lemma 7.11, the statement below (5.4) provides another significant short-
cut to help determining a(K) when [(K) fails. For instance, to see (in an alternative way to Lemma
7.11) that a(10132) # 8, it suffices to calculate a (truncated) 2-cable polynomial of A(10;32,t) for
only (any) one of the nine values of ¢ that occur in the enumeration of Computation 7.21.

3) Observe that the linking number argument of Lemma 7.11 can be adapted to A*(K,¢,t') as well. One
has to consider instead of [k(C1, C2) =t the total linking number of the components of A*(K,t,t'),
which is 2¢ 4+ ¢ for ¢’ € Z (and x(A*(K,t,t')) = 3) and 2¢ otherwise (when x(A*(K,¢,t')) = 2). We
will give relevant examples at a separate place, where we discuss the arc indices of the 14 crossing
knots.

4) Notice also Question 7.18 and the remarks below it.

To give a lookout at where we stand thus far, regarding the said at the beginning of §7.2, we have now
gained a toolkit to rule out certain values of the arc index. We related it to a braid index (see Conjecture
8.1 below, although Part 2 of Remark 7.26 explains that we need a weaker statement), and then in turn
to the HOMFLY-PT polynomial (compare Conjecture 2.3). These connections work out at least in a
practical sense, which gives an approach to determine a(K) for most K.

We finish the subsection on cabling with some remarks on the relation to arc indices of cables of K,
and a prospective (new) use of the Kauffman polynomial.

Proposition 7.27

a(Ky,) = 2a(K) when w(D) = —t is a writhe of a minimal grid diagram D of K. (7.39)
Moreover, each such w(D) satisfies

maxdeg, F(K)+ 1+ br(K) —a(K) < w(D) < mindeg, F(K) —1—br(K) + a(K). (7.40)

Also
min { a(K¢) @ w(D) = —t statisfies (7.40) } = min{a(Ky) : t €Z} = 2a(K). (7.41)

Proof. For ‘>’ in the first statement, notice that the arc index of a link is not less than the sum of arc
indices of its components. To see equality, take a minimal size a(K) grid diagram D of K and build the
(disconnected) blackboard-framed 2-parallel of D with reverse orientation of both components. This gives
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a grid diagram of size 2a(K) of Ky, for tg = —w(D). (Compare with the proof of Lemma 4.4.) With the
same reasoning, we have (7.41).

An issue with using (7.39) as an arc index obstruction is that one does not really know a priori well
what to would have to be. One way to restrict ¢y is from Lemma 3.5. A generally better alternative arises
using a known value or estimates of A(K'). The form (7.40) we offer uses Corollary 4.11 with u(D) = a(K).
Note further that Z(D) > br(K), since rotating D by —m/4 would turn NW-corners into local maxima
(and SE into local minima) of a Morse presentation of K. This obviously holds for NE (or SW) corners
as well (when rotating by m/4), and shows

br(K) < Z(D) <a(K)—br(K). (7.42)
Then we have from (4.5), and (6.14), when K # (), that
w(D) — Z(D) = -\(D) < =A\(K) < mindeg, F(K) -1,

which yields
w(D) < mindeg, F(K) — 1+ Z(D). (7.43)

Applying the argument on the mirror image !D gives
w(D) > maxdeg, F(K)+1— Z(1D) = maxdeg, F(K)+1—a(K)+ Z(D). (7.44)

Use now (7.42) in (7.43) and (7.44), which shows (7.40). (When K = (O, the claim is trivially checked.)
]

Further notice that altering individual component orientation of a link does not change the arc index,
and thus, for an unrestricted ¢ € Z, we may regard here K; as a disconnected 2-cable of K. This would also
lend a meaning to K for a half-integer ¢ € %Z \ Z, as a connected 2-cable. This situation was considered
by the first author and Takioka [LT], where they write ¢ = 2¢. Still, one must be careful with the sign
switch of ¢ that occurs. To avoid confusion, let us write K; for the 2-cable of K with framing t € %Z, SO

that when ¢ € Z, then K, arises by reversing one component in K_;.

From here we see that we can also “2-cable” (7.27).

Corollary 7.28
2 + min{span, F(K;) : t€Z} < 2a(K). (7.45)

Proof. For span, F' as well, it is immaterial how individual link components are oriented, and thus
span, F(K;) = span, F/(K_;). This is the reason why when miminizing over ¢t € Z, one can replace K;
by K. |

It is not necessary to explicitly calculate F(K;) for more than two values ¢ € 17, since there are

recurrence relations (analogous to (7.11)), which determine all other F(K;) therefrom. Thus in practice,
a constraint like (7.40) is not very helpful, and it seems a bit easier to use ¢t € Z in (7.41).

Example 7.29 The first author and Takioka have employed this idea to determine span , F (Kt) for prime
knots K of up to 8 crossings (and any t € $7Z), and show that (7.27) can be used to find (inter alia) a(Ky)
(and thus also a(K;) when ¢ € Z) in all these cases. They did not consider a(K), but their calculations
[LT, Appendix A] establish that the practical variant of (7.45),

a(K)>1+ [% min {span, F(K;) : t € Z}—‘ ) (7.46)

is sharp in their range. This was of course of little interest there, since a(K) had long been determined
previously. But it does motivate now a closer look at (7.46).
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Example 7.30 Since (7.27) is not sharp for K = 89, there is some improvement from (7.46) over (7.27).
In comparison to Proposition 7.7, the obvious instance to try out is again K = 10;32. It can be checked
with some technicalities (of the same style as those handled by Lee and Takioka) that (7.46) is sharp for
K =10y35. (Still (7.45) is off by 1. Thus (7.27) does not yield enough information to determine a(K;) for
K = 10132, at least when ¢ € %Z\Z and the sublink argument at the beginning of the proof of Proposition
7.27 fails.)

This suggests the possiblility that (7.46) is in fact quite powerful as an arc index bound. Inhowfar
(7.4§) is useful in general remains to be seen. Certainly, when K has more crossings, the calculation of
F(K3) is very strenuous. But the truncation technique (Remark 7.16) could again come into effect.

Truncations could also become even more useful for higher cables. For instance, we can modify (7.46)
to

a(K) > E(umm{spanaF(A*(K, —w(D),w(D))) : w(D) satisfies (7.40) }ﬂ , (7.47)

and here (7.40) becomes rather relevant again, since the recursions between F'(A*(K,t,—t)) (exist but)
are much more cumbersome. Pay attention that (7.40) also involves a(K), but this poses no problem in
using (7.47) as an obstruction, in trying to falsify it when a particular value of a(K) is fixed.

This approach does merit further study, but it definitely has to find its place in a separate paper,
where we try it out on some 14 crossing knots.

7.4 Estimating \(K): a cooking recipe

Returning to (7.13), we use the substitution (7.34) to extract further information from the pan.

Let aq,...,a;, for | = [(K), be the z-degree 1 coefficients in W in (7.13):
l .
W =) apfmnt2i-2, (7.48)
i=1

Obviously a; form the edge of the pan (drawn below without its handle) — whose general use is to break
your eggs when frying them.

(7.49)

Note, though, that the possibility a; = 0 (or a; = 0) does exist (although we did not investigate whether
or how often it materializes). Furthermore, ag = 1 can occur also for dp,in > 0 if [P],4,,;, has terms in
z-degree # 1. Here is the way we put the pan edge to our own use.

Proposition 7.31

l
ZaiSA(K)Szaﬂr(a(K)*l(K» (7.50)

Proof. Now remember that mindeg, P(K;) > 0 (property (7.3)) for K; strongly quasipositive (i.e.,
t > MK)), as well as that there is a ¢ > A(K), namely ¢t = A\pip, so that maxdeg, P(K:) < 2a(K) — 1
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(property (7.1)). Thus, for the polynomial P(K)) we have a(K) —I(K) + 1 possibilities

1 2a(K) — 1 3 2a(K) — 1 2a(K) — 1
1 11---1
——
a(K)—1

!
Zai+]— ZaiJra(K)—l

Y i=1 Y i=1

(7.51)
distinguished by the panhandle length 0, ..., a(K) — I(K).

The pan edge coefficients a; are not changed for different panhandle length, and by looking at (7.34),
we see (7.50). 0

Thus, rather precise, information about the Thurston-Bennequin invariant manifests itself in the co-
efficients of the polynomial, not in its degrees®. It provides an additional bonus of computing P(K;) (for
some t), beyond determining [(K). Namely, if [(K) = a(K), then one obtains A(K) practically for free.
This “frying eggs in the pan” procedure can be useful, for instance, in comparison to Theorem 5.11, when
a(K) is found without constructing a minimal grid diagram explicitly (see Part 1 of Remark 7.26), or as
additional information in obstructing to the existence of certain grid diagrams of a given knot. Remark
7.38 gives a hint how to proceed when [(K) < a(K).

To illustrate the use of (7.50), consider the following examples.

Example 7.32 The polynomial*

—TTTTTTTTTA

has panhandle length 4 and pan-width [(K) = 3. If a(K) = 5, then (7.50) has on the right (5—3) + (1 +
2+ 3) =8, 50 (7.50) reads 6 < A(K) < 8.

30f course, if one is allowed to use [P(K)],0, then ¢ can be retrieved from [P(K})],—1 using (7.12) as well.

4We emphasize that the polynomials in this and the next example are not HOMFLY-PT polynomials of real knotted
annuli, i.e., the reader should not try to guess what K they were obtained from; we just hand-invented the polynomials for
illustrative purposes.
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Example 7.33

Y

—_
[ ——

has panhandle length 2 and pan-width [(K) = 5. If a(K) = 6, then (7.50) has on the right (6 — 5) + (2 +
1+1+2+3)=10,so (7.50) reads 9 < \(K) < 10.

We have then the following “Matsuda-Dynnikov-Prasolov” (see Remark 7.36) type of relationship.

Proposition 7.34 With the notation of §2.2 for mirror image,

I(K) < MEK) + MIK) < 2a(K) — [(K). (7.52)

Proof. We prove the right inequality. The argument can easily be modified to show the left one. We also
assume, after inspection, that K is non-trivial. We have (1K)_; =!(K}). Note that (2.15) (with x = 2 as
for K; = A(K,t)) gives
P(\K;)(v,2) = —P(K) (v, 2). (7.53)
Now by mirroring property (7.1) using (7.53), we see that there is a t = A (K) > M(K) with
maxdeg, P((!K)_¢) < —1, mindeg, P((!K)_;) >1—2a(K).

By how [(K') was defined, and again using the mirroring (7.53), there is an odd

0>d>—-1-2a(K)+2(K) (7.54)
so that
[P((UK) )] £ —2 (7.55)
holds. (The condition (7.14) mirrors through (7.53) to (7.16).)
P((\K)_
1 —2a(K) ((K)—) powers of v
r=="1
a1 as bag )l -1 -1 -1
T
...... | 1
1 1
1 1
...... 1 1 r—-
L -1
..... b 1
Lo 0 pan F-T""Tm---n
o # edge M1 11 91,
! 0

U |

powers of z
Y
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The repeated application of (7.11) then shows
mindeg, P((UK)a()—o) > 1
and by (7.54)

max deg, P((\K)q(xy—¢) > 20(K) —1. (7.56)
2l -1 P(('K)G(K)ft)
— powers of v
a dy - fap 2001
g
[ [ ! 1 pan @ STTTTTTTA
...... bl ton edge LIl 9l
..... E i # i 0 i a)=a; +1
a b
1 I 1
1 I 1
I 1
I 1
I 1
I 1
| S |
powers of z
Y

To see this last inequality (7.56), note that the terms annihilated by (7.11) when ¢ increases are exactly
those for d < 0 where (7.55) does not hold. Since a(K) = a(!K), the inequality (7.56) means that the
largest ¢’ with maxdeg, P((!K)y) < 2a(!K) — 1 satisfies

t' <2a(K)—I(K)—t.

P(("K)2a(k)—1—t)

2a(K) -1
——=51 powers of v
11 1 | a) d L ap
1 1 r=="1
...... : : :O :
1 1 1 I
...... : : # :0 :
1 1 1 I
..... : : :0 :
___________ 1 I I
pan 77 T -1 I I
a a 1 1 I I
edge 21 _____° Lo : | |
I I
al=a; +1 : |
| — |
powers of z
Y

Now we can apply Lemma 7.1 on !K. We have
MIK) <t/ <2a(K)—I(K)—t=2a(K) = l(K) — Amin(K) <2a(K) - (K) — \(K),
as we claimed. O

Example 7.35 We show a (fictitious) exemplary transformation of the [P(K})],1 terms with increasing
t, with the symbolics used in (7.24).

7171‘ = 5414‘ - 541 | = (7.57)
— 54]2 = 5[52 = [[652] - [1652 - [11652
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It consists of 7 steps: a(K) =5, [(K) = 3, thus 2a(K) — I(K) =T.

Remark 7.36 Matsuda [Ma] (see also [Ng]) proved
a(K) > MK) + (1K), (7.58)

which improves the right inequality in (7.52). But in fact, Theorem 5.11 with Corollary 4.11 shows that
equality holds, answering [Ng, Question 1]:

a(K) = A(K) + MIK) . (7.59)

Then Proposition 7.34 can be interpreted by saying how much the HOMFLY-PT polynomial “sees” from
that geometric reasoning. But we approach (7.52) from the viewpoint of strong quasipositivity, which can
later be adapted to quasipositivity (see Proposition A.2). Thus even with Theorem 5.11, our argument is
not redundant.

Remark 7.37 When K is an amphicheiral knot, K =!K, then A(K,0) is an (orientedly) amphicheiral
link. One can use this and (2.15) to conclude that in that case both I’(K) and [(K) are even. This is
compatible with the fact that a(K) is even through (7.59). Furthermore, the a; in (7.48) exhibit a shifted
antisymmetry: in the normalization d,,;, > 0, they satisfy a; + a;41-; = 1.

For computational purposes, we repeat here the formal self-contained (but not very pleasant) expression
for I(K) and the estimate (7.50) that is valid for arbitrary ¢t. Take P = P(K;) for some ¢ € Z. The
quantities d,,;n and d,q. can be determined as follows. Set

T mindeg, P mindeg, P < 0
min deg, P = { min{d >0 : [E]@d #z} mindegZP >0
and
N P Wy ot
Then

e~ e~

1
I(K) = 3 (maxdeg@P - mindegUP) +1,

and (7.50) can be stated as
| —1/p mindeg, P| mindeg, P <0
A~ (1Pl =05 Ypindo, | i, 0 ] ) € 000 15

Remark 7.38 Again, if (7.26) occurs, then one can adapt the arguments in Remark 7.26 to disambiguate
the value for A(K'). This gives a practical way to calculate this number for any given K.

8 Braid indices revisited (and problematized)

8.1 Framing cones and the arc index

Here we summarize some remarks provided on various braid indices, and add discussion of related natural
questions. They are meant to point out a series of subtleties, which may be significant or not, but which
are easy to overlook while less straightforward to resolve. One having some particular importance in
this context is Question 5.6. We reformulate part (a) here as a conjecture, with the insight gained from
Corollary 5.3 and Remark 7.22.
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Conjecture 8.1

a(K) = min b(A(K. 1)) (8.1)

The following reasoning will appear in several modified versions below, thus we record it as a lemma.
Compare with Theorem 5.11.

Lemma 8.2 Assume (8.1) is true. Then (4.11) holds, in particular A, is unique.

Proof. Take an a(K)-band positive band presentation of A(K,t) for t = A\pin >
band negative. By Remark 4.3, one has then an a(K)-band presentation of A(K,t—
is strongly quasipositive, it is Bennequin-sharp. But

X(A(K, 1)) = x(A(K,t - 1)), (8.2)

AK), and make one
1). Now since A(K,t)

and thus the a(K)-band presentation of A(K,¢ — 1) is not Bennequin-sharp, i.e., it does not make (2.5)
an equality. But still b(A(K,t — 1)) = a(K) by (8.1). Now, if A(K,¢— 1) is strongly quasipositive,
then because of Theorem 2.2, every minimal braid representative of b(A(K,t — 1)) would make (2.5) an
equality. Thus we have that A(K,t— 1) is not strongly quasipositive. This means that ¢ — 1 < A(K), and
so t < A(K), with the reverse inequality already observed. a

Remark 8.3 Note that Conjecture 8.1, when K is alternating, is related to an affirmative answer to
Question 7.15. But it is not entirely implied by such answer, because of the sporadic collapsing scenario
elucidated in the proof of Proposition 7.7. The way [(K) was defined, MFW (K;) < [(K) for some ¢ can
occur. Of course, replacing I(K) with the bound I'(K) in (7.10) avoids the collapsing problem. But we
remind from the proof of Proposition 7.7 that we verified (7.10) to be (even very) unsharp in same cases.

More generally than (4.11), we have:

Lemma 8.4 Conjecture 8.1 implies a positive answer to Question 5.9, that ®(K) is a single cone
P(K) = C(a(K), \(K)).

Proof. Conjecture 8.1 implies that in any band presentation on s = a(K) + k strings with > k negative
bands will give an non-strongly quasipositive A(K,t). The framing ¢ changes with the sign of bands in an
obvious way (compare with Remark 4.3). Thus if (s,t) € ®(K), then t — (s —a(K)) < A(K), in particular
(s,t — (s —a(K))) € ®(K). Therefore,

(5,t) e D(K) =t < ANK)+s—a(K).
That is there are no points in ®(K) like the encircled:

4
[ ]
[ [
[ ] [ [
[ ] [ ] [ ] [ ]
[ [ [ ] [ [

Y
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This shows the cone shape of ®(K). O

Lemma 8.4 pertains to the situation one may expect. But one can also use Theorem 2.2 for a version
when Conjecture 8.1 is unresolved (or false).

Definition 8.5 Define the defect of K by

6(K) = a(K) — min b(A(K. 1))

Then the argument for Lemma 8.4 modifies to show that an a(K)-band positive band presentation of
A(K,t) gives

MK) <t < AMK)+§(K), (8.3)
and any positive band presentation of A(K,t) on s = a(K) + k strings will have
ME) <t < ME)+0(K)+k=MNK)+§K)+s—a(K). (8.4)

From this, we can conclude the following.

Proposition 8.6 For a non-trivial knot K, we have that ®(K) is the union of at most 1+ §(K) cones.

Note that for K = (O, we have §(K) = 0, so that the claim is false due to the circumstance (4.10).
(But, again, this case can be worked out separately: see Example 5.10.) In Remark 7.22 we have verified
that §(K) = 0 for all prime knots K up to 10 crossings.

Proof. The condition (8.4) places (s,t) into a trapezoid which is the union of the cones (a(K),t) for ¢ in
(8.3). Now, ®(K) in obviously only contained in this union. Call a cone C(u,t) in ®(K) essential, if it is
not properly contained in any other cone in ®(K). Among cones C(u,t) of fixed t — p in ®(K), there is
always a maximal one, namely the one of the smallest . The same is true among cones C(u, t) of fixed ¢
in ®(K). Note also that there are no values t with A(K) <t < Amin, since for K # O, we have

Amin = A(K)

by Theorem 5.11.

Also, for each value x = A(K) + 1 — a(K),...,\(K) + 6(K) — a(K) there is at most one essential
cone C(u,t) in ®(K) with t — = x. We call this essential cone type X. Obviously C(a(K), A(K)) is also
essential, and every other essential cone is of type X, by the above maximality remark. Now we have at
most §(K) type X essential cones. With C'(a(K), A\(K)), this completes a set of 6(K) + 1 essential cones,
as claimed. ]

Obviously, from the definition,
0(K) <a(K) —2b(K).
Thus in particular from (8.4), we have

AK) <t < AK)+ s — 2b(K)

for any positive band presentation of A(K,t) on s > a(K) strings. Note also that, for computational
purposes, one may replace ‘1 + 6(K)’ in Proposition 8.6 by ‘1 + a(K) — {(K)’, with an analogous proof
argument. (An analogous caveat regarding K = () is needed, where a(K) = [(K) = 2; see (7.18).) We
thus obtain Proposition 1.4, which was stated in the introduction.
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8.2 Indices from braided surfaces

We return to Definition 2.1, and the inequality
bsqp(S) = b(5S)

for a strongly quasipositive surface S.

Question 8.7 While it is more than suggestive, we do not know if always equality holds. I.e., is ev-
ery strongly quasipositive surface always realizable on its minimal number of strings in a positive band
presentation?

Because of Theorem 2.2, this is true if b(.5) = b(K) (where of course K = 05). This is also related to
the Baker-Motegi question if all minimal genus surfaces of a strongly quasipositive knot K are strongly
quasipositive (see [St2]). From [HS], we know that b(S) > b(K) for some minimal genus surface S of K.
But S (and K) is not strongly quasipositive in these examples. Rudolph’s question (5.1) is then equivalent

to asking whether
bsgp(S) = b(K) (8.5)

is satisfied for some strongly quasipositive surface S of K. It is tempting to ask if (8.5) holds in fact for
every strongly quasipositive surface S of K.

In case of the links L = A(K,t) and Wy (K,t), the minimal genus surfaces Sy, of L are unique (and
plumbing equivalent), so there is no need to distinguish between b;,(Sz) and by(L), and between by, (S1)
and bsgp(L).

Proposition 8.8 We obviously have

min by (A(K1) = a(K). (8.6)

and for ¢ > M\(K'), we can incorporate Whitehead doubles into the diagram as

bup(A(K, 1) > BAK, 1))
(%) IV 8.7)
by Wi (K 1)) = (W, (K, 1))

Also, if K is I-sharp, then all inequalities are equalities.

Proof. The vertical inequality (*) holds because one can double any (positive) band in a strongly quasi-
positive band presentation of a t-twisted annulus for K (Example 4.15).

Now, consider the case that I(K) = a(K). Since for K = () the equality questions in (8.7) can be
settled by direct inspection, assume that K # (), to avoid complications.

Consider L = A(K, A\(K)). We have
maxdeg, P(L) =2a(K) -1, (8.8)

and this means by (2.17) that an a(K)-braid (band) presentation of L cannot be of writhe less than a(K).
Since we did not assume I'(K) = a(K), there may be a cancellation of terms in z-degree 1 (similarly to
the first polynomial in Table 2). Thus mindeg, P(L) > 1 is, in principle, possible. But the writhe of an
a(K)-braid (band) presentation of L cannot be more than a(K) due to Bennequin’s inequality (2.5). This
means that the writhe of an a(K)-braid (band) presentation of L is unique, and hence b(L) = a(K).

Then one can start with ¢ = A(K) and propagate the bound in (2.17) through the recursion (7.4),
while applying positive stabilizations (see (4.12)). O
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Remark 8.9 By noting that we needed in the above proof only (8.8), for which I(K) = a(K) is sufficient
but not necessary, one also obtains equalities in (8.7) for K = 10;32. Pictorially speaking, this extra
argument succeeds because the “missing terms” in P(A(K,t)), accounting for the difference (7.26), are
missing “at the bottom” (in low v-degrees; see the first polynomial in Table 2). Obviously, this immediately
changes when v-conjugating the polynomial (by (2.15)), which explains why the trick definitely fails for
the mirror image !10132.

It follows from Computation 7.21 that all inequalities in (8.7) are equalities at least when minimum
over t > A(K) is taken. This then holds for all Rolfsen knots, with mirror images (see also Example 8.11).

We can expect in (8.7) the horizontal ‘>’ to be ‘=" in general, in accordance with Rudolph’s Question
(5.1). However, we do not know about (*). Obviously Sy, (k¢ = Sack,) * H is a plumbing with a
positive Hopf band H. But we know that

bsqp(S * H) < bsgp(5)

is possible, even for a strongly quasipositive fiber (in particular unique minimal genus) surface S; examples
were given in [St2]. These examples, unsurprisingly, have higher genus, but they should still caution about
seeing (*) as suggestive in some way.

Also, regarding (8.6), we can add

in by (A(K. 1) = a(K) = minby(A(K.1) (8.9)

because every band presentation of Bennequin surface of A(K,t) gives a grid diagram of K, and gives a

strongly quasipositive surface of A(K,t") for some ¢’ > A(K) by making all bands positive.

Proposition 8.10 Then for instance for t < A\(K), we have a similar diagram of inequalities to (8.7)
bh(A(K,t) = bAK,T))
(*%) IV (8.10)
by(W_(K,t)) > b(W_(K,t))

And if K is [-sharp, then all inequalities are equalities.

Proof. The inequality (**) results from doubling a negative band in a minimal band presentation (a
negative band always exists when ¢ < A\(K); see the remarks following Example 4.15. And if {(K) = a(K),
we can infer with a similar thought to Proposition 8.8 that all inequalities are in fact equalities. (Again,
exclude K = () after a direct check.) The only framing ¢ for which cancellation may collapse the bound
MFW (A(K,t)) is when all bands in an a(K)-strand band presentation of A(K,t) are negative. Then the
argument with Bennequin’s inequality applies to !A(K,t). O

Again (while it is tempting to suspect) we do not know if equalities hold in general.
Example 8.11 From Computation 7.21, we know that for all t € Z,

b(Wi(lolgg,t)) Z 9= a(10132) . (8.11)

Obviously, as in Table 2, is it possible to write down explicit band presentations of A(10;32,t) and
W_(10132,t) for some ¢ < A(10132) on 9 strings, so that we have

by (A(10132,1)), by (W_(10132,t)) < 9.

With Computation 7.21 we again know that thus for K = 10132, the inequalities (8.10) are equalities at
least when their hand sides are minimized over ¢ < A(K). Under mirroring (using the computations and
band presentations for W, (10132,t)), we can conclude the same for K =!10;32, and thus for all Rolfsen
knots.
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When (7.26) occurs, though, this reasoning always relies on an explicit check for specific ¢ using a
2-cable polynomial. And while we expect non-I-sharp knots to be relatively rare, such instances K clearly
increase with crossing number (see Example 7.10). The method in Computation 7.21 soon becomes
problematic complexity-wise, despite algorithmic optimizations. This puts a limit to the capacity of our
algebraic approach to tackle a geometric issue like the sharpness of the inequalities (8.10). (But of course
it is the only information we have available so far.)

9 Conclusion

The work described here started with the simple question: how does a braided surface of Euler charac-
teristic 0 look like? While there seems little hope to give a classification result, the attempt unfolded a
connection into a variety of issues. We encountered many suggestive but difficult to resolve questions,
whose examination would require deepening this consideration.

For smaller Euler characteristic, one obtains instead of a grid diagram a “grid-embedded (trivalent)
graph”. It can be described as a PL spatial embedding of a trivalent graph whose diagram can be built
up with the tiles in (2.28), and the two extra tiles

1

—

F A

Developing a similar theory of grid-embedded graphs will thus also be a long — but nevertheless perhaps
very interesting — undertaking.

but not

A Remarks on quasipositivity

We have decided to strictly focus on strong quasipositivity of Wi (K,t) and A(K,t), essentially because
of the direct relationship in Corollary 4.13 and its extensive consequences.

The problem of the quasipositivity of these links is far more obscure, but perhaps also very interesting.

A.1 Knotted annuli

Let us define
Ag(K) :==min{ t: A(K,t) is quasipositive }. (A1)

Then we know that
N(K) € A(K) = ~TB(K),

so the obvious question is: is A¢(K) = A(K) for all K? Or, given (4.17), in other words: for every t, if
is A(K,t) quasipositive, is it strongly quasipositive? The answer is “no”. We identify one major reason,
which we call A-sliceness (Definition A.3), but it is possible what further, more peculiar, phenomena occur.

Question A.1 For what knots is Ag(K) = A(K)?
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Going further, we do not know if always
A(K,t) is quasipositive = A(K,t + 1) is quasipositive . (A.2)

That is, between the pans in (7.51), the quasipositivity of the links can switch on and off a few times
before, for long enough panhandle length, eventually strong quasipositivity settles in. This looks like an
adventurous scenario, but see Corollary A.9.

Since the (exact) connection of A, to the Thurston-Bennequin invariant remains elusive, so become
certain methods focussing on the latter (like Theorem 5.11). But there are properties of A, that follow
from our work above.

Many of the arguments based on the HOMFLY-PT polynomial do go through. In general, though, the
preceding problems with the unknot extend here to K being slice. This changes (weakens) the inequalities
a little, but to be precise, we either have to exclude sliceness, or work in cases.

Proposition 7.34 can be changed into the following form.

Proposition A.2 We have

)= 1< M\(K) + A\(K) < 2a(K) — I(K)+1  if K is slice

{ UK) < M\(K) + M\ (1K) < 2a(K) — I(K) if K is not slice (A3
I(K A

Proof. Lemma 7.1 holds regardless of K being slice or not. But (7.3) still holds for quasipositive A(K,t)
only if K is not slice, or ¢ # 0. Thus, when K is slice, and ¢ = 0, then we must allow, instead of (7.3), for

mindeg, P(A(K,0)) = -1, (A4)

since x4(A(K,0)) = —2 can occur (see end of §2.2). Then the argument goes through, but the numerics
changes slightly. g

The right inequalities in (A.3) are, as explained, not very interesting now (they follow from Matsuda’s
result (7.58)), but the left ones have some useful implications. To better formulate them, here we define
a condition which will repeatedly play some role.

Definition A.3 Call a knot K to be \-slice if K is slice and
MK)=1. (A.5)

We say K to be A-slice up to mirroring if one of K and !K is A-slice.

Remark A.4 The condition (A.5) and Rudolph’s version of (2.6) (see the proof of Theorem 1.5 in [He2])
then also imply that a A-slice knot K is slice Bennequin-sharp. The presumption (2.9) then possibly
suggests that a A-slice knot is quasipositive. (Example 6.6 shows that the 7 invariant is insufficient to see
this, though.)

Example A.5 Among the Rolfsen knots, A-slice (up to mirroring) are K = 946 and 10149. As Remark
A.4 suggests, they are indeed quasipositive, and we fix here their quasipositive mirroring, which also
satisfies

mindeg, P(K)=0.

Corollary A.6 Assume K is [-sharp. Then either A\,(K) = A(K), or K is A-slice and

0= A(K) < M(K)=1. (A.6)
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Proof. Assume K is not slice. Then, (A.3) gives
HEK) < A(K) + A (1K) < AK) + A(IK) < 2a(K) - I(K),

and [(K) = a(K) implies that all inequalities are exact.

If K is slice, notice that K being I-sharp makes (A.4) relevant only if ¢ = 0 = A(K) — 1, as can be seen
thus.

Deal with K = (O by a direct check. Then take a minimal grid diagram D of K. Because of I-
sharpness (or Theorem 5.11), we know that A(D) = Apin(K) = A(K) is unique. Obviously ¢ > A\pin (K)
give strongly quasipositive A(K,t), and are not interesting. So assume t < Apin (K). Then, I(K) = a(K)
also shows iteratively that

mindeg, P(A(K,\K) —k)) =1-2k
for k > 0. Then A(K,\(K) — k) can be quasipositive (and (A.4) is relevant) only if £ = 1. And then we
need x4(A(K,\(K) — 1)) = —2, which requires ¢ = 0 = A(K) — 1, and means the condition (A.5). O

Corollary A.6 lends further impetus to the study of I(K), and a question like Question 7.15. Among
others, it leaves some prospect that at least for some classes of alternating links, Question A.1 can be
resolved using the present approach.

Remark A.7 Notice that a A-slice amphicheiral knot is trivial by (7.59). Thus in particular Corollary
A.6 holds for [-sharp amphicheiral knots K. But for them (7.59) is not needed: Assume K is amphicheiral.
Then we have from (A.3)

I(K) —1 < 20 (K) < 2\(K) < 2a(K) — I(K) +1 = [(K) + 1,

but [(K) is even by Remark 7.37. This is enough to see that the middle inequality is an equality.

The slice case continues to require special attention, as witnessed by the following explanation, which
shows in more detail how to handle individual examples.

Proposition A.8 If K is a prime knot of up to 10 crossings, then \,(K) = A(K), except (A.6) for
K= 946 and K = 10140.

The condition (A.5) also determines the mirroring of the knots, as fixed in Example A.5.
Proof. First consider the case {(K) < a(K). This applies only to K = 10132 and K =!10135.

Let K = 10132. Then x4(A(K,t)) = 0 for all ¢, and we computed that mindeg, P(A(K,t)) > 0 for
t > 0. When t > A\(K) = 1, then A(K,t) is already strongly quasipositive, so consider only ¢t = 0. But
we computed that b(A(K,0)) = 8, and the minimal writhe of a braid representative of A(K,0) is 6. If
A(K,0) were to be quasipositive, then x4(A(K,0)) = —2, which is not the case (as K is not slice). This
finishes off K = 1013».

Next let K =!10132. Then again x4(A(K,t)) = 0 for all ¢, and we computed that min deg, P(A(K,t)) >
0 for t > 8 = A(K). But then again A(K,t) is strongly quasipositive, so this case is done either.

Now let a(K) = I(K). We need to consider only K being A-slice (and K is non-trivial), so that only
K =946 and K = 10149 remain (with the mirroring in Example A.5). Their treatment continues in the
argument below. O

This leads then to the following cautionary tale.

Corollary A.9 For K = 946 and K = 10149, we have (A.6).
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Proof. We checked that, if K = 946 and 10149, then
mindeg, P(A(K,0)) = -1,

which indeed leaves the opportunity that L = A(K,0) is quasipositive. And it is easy to write down
(minimal) braid representatives of L: use the grid diagrams given [J+], and make exactly one band
negative (compare with Example 4.10 and Table 2).

Testing the quasipositivity of these braids is very difficult. But they satisfy, in (2.6), w —n = —2 =
X4(L). Thus L are slice Bennequin-sharp.

In attempting a solution, I consulted Stepan Orevkov. He indeed found the following (everything but
self-evident) quasipositive form (2.3) for one of the braids for 946 given below®, where ¥ stands for y~'zy.

[36] [68] [27]1 [16] [48] -[37]1 [25] [14] =
[345-4-3 567-6-5 23456 -5-4-3 -2
12345 -4-3-2-1 4567-6-5-4 345 -6-5-4 -3
234 -3 -2 123-2-1] =
4~[3-432-343-432-343-4321-3432-3-4
-543-436547676586T]*
3"[2-343-432-343-432-343-4321-343
2-3-4-543-43654767©656 7]
4~[335546567]x 27[3]% 1~[2 3 -4]* 6

3
7
4
5

m

(He also argued that the other 7 braids obtained by making some of the other bands negative are quasi-
positive as well.) This proves that A(946,0) is quasipositive, and Ay(946) = 0. Orevkov also found
quasipositive presentations for some of the similarly constructed 9-braids for A(10140,0). g

Remark A.10 By doubling a positive band (this preserves quasipositivity), we can also obtain a knot
L = W, (946,0) which is quasipositive, but not strongly so. A similar argument applies for W, (1014, 0).

Example A.11 By doubling both one positive band and the negative band, one has a band presentation
of B(K,0) (in Definition 4.1). Orevkov also found a quasipositive form for some of the thus obtained
braids for B(946,0), for instance

[36] [681~2 [27] (-[16])~2 [48] [37] [25] [14]=
3"[24432-4-5434643754765T 6]
3"[244321-4-5431654765765TT]*

4~[33 5465 6]x4°[33456 -71x 2~[1 3] 2°[3 -4]

He also proved that the below braid for B(10140,0) is quasipositive,
[47)7[69][28] (—[17])*[59] [48][36][25] [13] .

(It can then be argued that all other braids obtained in a similar fashion from the brand presentations of
A(K,0) are quasipositive as well.) Thus B(94¢,0) and B(10140,0) are quasipositive (while not strongly
so; see Corollary 1.1).

The treatment of 10132 for Proposition A.8 exemplifies why non-slice K are far easier to deal with.
The special role of slice K is also underscored by the following fact, which can be proved similarly to
Lemma 8.2. (We do not like to repeat the proof here; one mainly has to replace x by x4 in (8.2).) It is a
more theoretical (and less practical) version of Corollary A.6.

5Here the proper mirroring of 946 is needed, and we chose to read the grid diagram in [J+] from the bottom, which gives
this mirroring; c¢f. Remark 4.5.
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Proposition A.12 If Conjecture 8.1 is true for K, then A\,(K) = A(K), except if K is A-slice. O

Note also that A(K,t) for K = 946 (and other knots for which the condition (A.5) was relevant) were
considered in the paper [Tt].

A.2 Whitehead doubles

The quasipositivity problem of Whitehead doubles seems not to have been treated much in the literature.
The only source I know is the following,.

Example A.13 ([He, Examples, (5)]) The positive clasped Whitehead double W, (K, t) is not quasipos-
itive when
t<-MIK), (A7)

and t is not of the form
t=-p(p—1), peN. (A.8)

The first condition (A.7) ascertains in Proposition 6.3 that v(W, (K, t)) = 0. Then excluding the values
(A.8) ensures that the determinant
det(Wy(K,t)) = |1 — 4¢]

is not a square, hence W, (K,t) is not slice by the Milnor-Fox property (compare with Example 6.6).
Then W, (K,t) is neither quasipositive by (2.26).

The complication that W4 (K,t) (while always having genus 1) can turn slice (i.e., 4-ball genus 0)
becomes more subtle for Whitehead doubles. It is clear when x4(A(K,t)) = —2, namely when ¢ = 0 and
K is slice, and then always y4(Wx(K,t)) = —1, but these are not all: W, (0, —2) = 64, the stevedore
knot, is slice as well. In fact, the sliceness problem for Whitehead doubles has an illustrious history,
which we only briefly mention. For K = () see [CG], and K being slice is the proposed (and admittably
optimistic) answer [Ki, Problem 1.38] when ¢ = 0, but the problem remains unsettled even under that
constraint.

Not all these doubles are relevant here, but this hinges on the next decision problem, when such knots
are quasipositive. Unlike for sliceness, mirroring is very relevant for quasipositivity, and the sign of the
clasp plays a crucial role. Most negative clasped Whitehead doubles are still provably not quasipositive
(see for example Computation A.21). But the situation for positive clasped Whitehead doubles seems
far less uniform. Even just considering the untwisted case t = 0, Remark A.10 hints to extreme caution.
More of the same is warranted by the following illustration.

Example A.14 The knot 85 is quasipositive and slice, and thus W, (839,0) is slice. But it is not
quasipositive — essentially this is the reason why 85 falls out of the consideration in the proof of Proposition
A 8. However, if one takes the +1/ twisted (connected) 2-cable of 839, i.e., the zero-framed cable with the
pattern oy € By (as lying in a solid torus), then it is both slice (since 829 is s0) and quasipositive (since
890 is 80, by a result of [St2]).

Remark A.15 The provenance of 946 and 10149 in Proposition A.8 was from being A-slice. Remark
A4 then possibly suggests that W, (K,0) being quasipositive but not strongly so occurs only if K is
quasipositive. But Example A.14 shows that quasipositivity is not sufficient.

Since Murasugi sum makes no sense in the 4-ball, there is no analogous relation for quasipositivity
between A(K,t) and W, (K,t), and Corollary 1.1 cannot be proved in this way for quasipositivity. A
similar problem to (A.2),

W, (K,t) is quasipositive =— W, (K,t + 1) is quasipositive,
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remains (generally) inaccessible, and we cannot extend Proposition 6.3 and Corollary 1.3 to A,;. Obviously,
one can modify (A.1) to define a number A\, (K) etc., but instead of reiterating here a treatment analogous
to Ag(K), it seems better to directly restrict the values of ¢ for which W4 (K, t) is quasipositive.

For W_(K,t), we collect the following easy remarks, that originate from previous results.

Lemma A.16 If W_(K,t) is quasipositive, then it is slice. Also, for every slice-torus invariant v,

t>—j,(IK),
and in particular
t>—27(K),
and also
t=p(p-1), peN. (A.9)

Proof. Let v be a slice-torus invariant. Because W_ (K, t) unknots by a negative crossing change, we have
v(W_(K,t)) < 0. Were W_(K,t) quasipositive, (2.26) implies that v(W_(K,t)) = g4(W_(K,t)) > 0.

This implies g4(W_(K,t)) = 0, i.e., that W_(K,t) is slice. The property (A.9) follows from the
Milnor-Fox condition (A.8) under mirroring (the sign in (A.8) changes, since we changed the sign of the
clasp).

But it also implies the equivalent conditions

v(W_(K,t)) = 0
(Wi (1K, —t)) = 0
-t < ]v('K)
t > —j(K),
and in particular with (6.11) also that
t>—4,(IK)=-(1-27(K)) = -1+ 27(!K) = -1 — 27(K).. O

The HOMFLY-PT polynomial does recover (albeit by entirely different means from the Murasugi sum)
some parts of the complete result of Corollary 1.1 for quasipositivity. Obviously when W (K, t) is strongly
quasipositive, then it is also quasipositive, so here is what we obtain on the obstruction part. (Keep track
of the case that K = (0), which is not excluded here, and which at least gives some hints to the limitations
emerging.)

Theorem A.17 1. For every knot K, there is at most one value ty so that W_ (K, ty) is quasipositive.
If this value ¢y occurs, then the following hold.

(a) We have (with (2.14))

mincf [P(K)],0 = £1, (A.10)
(b)
mindeg,[P(K)],o = —p(p—1), peN, (A.11)
and
(c)
to = —mindeg, [P(K)].o0 . (A.12)

(d) Moreover, to < A\;(K), and equality can hold only if K is slice and A\,;(K) = 0.
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2. W4 (K,t) is not quasipositive for

t < Amin(K) —a(K) +1(K) — 2. (A.13)

Proof. Part 1. If W_(K,t) is quasipositive, then L = W_(K,t) satisfies the variant of (7.2)
mindeg, P(L) > 1 — y4(L). (A.14)
So in particular
mindeg, P(L) > 0. (A.15)
It follows from applying the skein relation (2.13) that

PW_(K,t)) =v 2 —v '2P(A(K,1)). (A.16)

Looking at the 2%-term in this formula (for the others, ¢f. Computation A.21), and using (7.5), we see
that
min deg, [P(W_ (K, )]0 < —2

disabling (A.15), unless
min deg, (v* (v™! — v)([P(K)].0)?) = —1. (A.17)

This occurs for exactly one ¢ = ¢y, namely the one in (A.12), and this ¢, must be of the form (A.9), giving
(A.11). But beyond (A.17), we also need

min cf , (v (v = v)([P(K)]0)?) =1

for a cancellation to occur, and this means that (A.10) must hold.

For Part 1d notice that since when A(K,t) is quasipositive, then because of (A.14) we need
mindeg, P(A(K,t)) > —1. (A.18)
By the skein relation (2.13), we have then
mindeg, P(A(K,t")) > 1
for t/ > t, i.e., for each ¢’ > A\j(K) + 1. Thus in (A.16), the second summand on the right will not cancel

the first, and min deg, P(W_(K,t')) < 0 for each such t'. This shows ¢y < Aq(K) + 1.

Also, note that (A.18) being sharp requires x4(A(K,t)) = —2, i.e., A(K,t) bounds in the 4-ball two
disjoint disks. This can occur only if K is slice and ¢ = 0. This shows the equality property in Part 1d.

For Part 2, this is essentially the reasoning behind (7.8), with the improvement coming from [(K), as
outlined in Remark 7.5.

Namely, start with a grid diagram D of K with pu(D) = a(K) and A(D) = Apmin (K). Then apply the
skein relation (7.4) backward, decreasing ¢, (at least) a(K) — I(K) + 2 times, and see that for ¢ in (A.13),
we have

mindeg, P(A(K,t)) < —3.
The skein relation (2.13) (as in the mirrored variant of (A.16)) then shows that

mindeg, P(W4(K,t)) < -2,
so that W, (K, t) is not quasipositive. O
Remark A.18 The inequality (A.14) and the mirroring property (2.15) also easily yield [He, Examples,
(2)]: if both a knot K and its mirror image !K are quasipositive, then K is slice. Together with (2.16),

even more follows: we can see P(K) = 1. This tempts to suspect that the only possible K so that K and
IK are quasipositive is the unknot.
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Remark A.19 Even disregarding (A.8), the restriction (A.13) is generally weaker than (A.7). For in-
stance, using the left inequality of (7.52), and A\, (K) > A(K), we have that

MK < Ain(K) — a(K) + U(K) — 2

definitely holds if
2(K) > a(K)+2,

which is practically always satisfied. (It certainly is for the unknot and all prime knots through 12
crossings.)

Corollary A.20 If K is quasipositive and not slice (in particular non-trivial and strongly quasipositive),
then no W_(K,t) is quasipositive.

Proof. Because of (A.14), we have that
min deg, [P(K)],0 > mindeg, P(K) > 2g4(K) > 0,

so that (A.11) cannot hold. O
Computation A.21 We now know that for no prime knot K up to 10 crossings is any W_(K,t) quasi-
positive. The value tg in Theorem A.17 exists up to mirror images for about half of the 249 knots K. For
them one can explicitly compute a Whitehead double polynomial. (Note that from (A.16) we ignored in

the proof all terms of positive z-degree, which of course can be retrieved from such a calculation.) This
restricts

mindeg, P(W_(K,t5)) >0
only to L = W_(10140,0) — the knot 10149 reappears. Here, though, it can be “tamed”. We have
mindeg, P(L) =0, maxdeg, P(L)=14.
If quasipositive, L would have a slice Bennequin-sharp braid representative, and by the argument based on
Theorem 2.2 we repeated multiple times (see the proof of Lemma 8.2), L would have braid index b(L) = 8

(less than a(10140) = 9). But this can be ruled out by a truncated 2-cable HOMFLY-PT polynomial
calculation (with the tool used in Computation 7.21).

This strongly suggests that maybe no (non-trivial) negatively clasped Whitehead double is quasipos-
itive. But in fact, there is a more general question, which at least passed initial verification (crossing
changes in minimal diagrams of prime knots up to 16 crossings).

Question A.22 If a knot is quasipositive (and slice), can it unknot by switching a negative crossing to
positive?
A.3 Framing diagrams
The structure of the analogue of Definition 4.12,
O (K) = {(u,t) : A(K,t) has a quasipositive braid representative on  strands },
remains less clear. Positive braid stabilization still implies, as in (4.18), that

(1,1) € Pg(K) = (n+ 1,t) € &y(K),



A.3 Framing diagrams 59

which gives a, much poorer, ray structure on ®,(K). But the cone structure argument obviously fails so
far: in a quasipositive braid representation, the grid is not evident, and grid stabilization makes no sense.
That is, we cannot exclude the type of shape:

Nonetheless, some partial information on ®,(K’) can be recovered.

Proposition A.23 When K is any knot, then ®,(K) is contained in the union of at most 2+ J(K') cones,
and in at most 1 4 §(K) cones if K is not slice.

Proof. This is obtained by the same reasoning as for Proposition 8.6. But when K is slice (and ¢ = 0),
then we must allow for (A.4) instead of (7.3). Since ®,(K) has no cone structure, we can only claim that
®,(K) is contained in a union of cones. a

Finally, we obtain the following way to reestablish the expected shape of ®,(K).
Corollary A.24 If K is not A-slice and §(K) = 0, then ®,(K) = ®(K) is a single cone.

Proof. Assume K is not slice. Obviously ®,(K) D ®(K), and from Proposition 8.6 we have
Dy (K) 2 ®(K) = C(a(K), Amin (K)),

so that ®,(K) contains a cone of the form C'= C(a(K),t). On the opposite end, from Proposition A.23
we know that ®,(K) is contained in a single cone C(, Amin (K)), and we must have p > a(K) because
d(K) = 0. This is only possible if ®,(K) = ®(K) =C.

Now if K is slice, but not A-slice, then the condition §(K) = 0 enables us to use, instead of HOMFLY-
PT as in Corollary A.6, the proved Jones-Kawamuro conjecture (Theorem 2.2), as for Lemma 8.4. Tt is
the type of argument that allows us to state A-slice in Proposition A.12 (and was outlined above it). O

In conclusion, we note that it was explained in [Ha] from the work in [LaM] that every quasipositive
link has at least one quasipositive minimal braid representative. Thus at least a problem like (5.1) is
off the table, and an analogue of much of the discussion in §8.2, for instance, is not very interesting for
quasipositivity. But Orevkov’s question still stands whether in fact all minimal braid representatives of a
quasipositive link are quasipositive — an assertion which is obviously false for strong quasipositivity.
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