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1 Introduction

Positive links are the links with diagrams where all crogsiare positive (right-hand). These links seem
to have drawn relevance not as much from the combinator@geaty describing them, but from their
relation to a series of different subjects, including dyi@ahsystems [BW], algebraic curves [Ru, RuZ2],
and singularity theory [A, BoW, Mi]. The intersection of tbkass of positive and alternating links are the
special alternating links studied extensively by Murassge for example [Mul].

The concept of braiding sequences [Tr] of links was oridjniatroduced with motivation from Vassiliev
(finite degree) invariants [BL, BN, Va]. Braiding sequengesre later related to positive and alternating
knots [St4, STV, SV] by means of the fact that the set of knagthms on which the Seifert algorithm
gives a surface of given genus decomposes into finitely macty sequences.

This paper is a continuation of the previous part of the w@td 1]. Here we give further applications to
properties of positive, in particular special alternatiimiks. We focus this time on concordance [Lv]. (One
can work in the various categories: algebraic, topolodioalsmooth, depending on the circumstances.)
Our main goal will be to use the methods we developed to addinesfollowing conjecture.

Conjecture 1.1 Any (algebraic) concordance class of knots contains onitefinmany positive (or almost
positive) ones.

L Topological’ will for us always mean ‘locally flat’; we wilhot discuss the PL case here.
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We will discuss evidence for this conjecture below in §4.hick somewhat varies with its several possible
versions. (See also question 4.2.) In particular, it is irtgdt to keep distinction between the three levels
of concordance: algebraic, topological, or smooth. (Tiselts that separated these categories have taken
a long time to prove, and have significant impact, also in @uaton.)

First, 82 explains the background and main tools in the apgrdo conjecture 1.1. In 83 we deal with
inequalities relating the signature and number of roothiefAlexander polynomial on the unit circle. We
give a review of the background of this relationship. Withwady of Tristram-Levine signatures, we prove
then in 84 for a large class of positive knots that its intetis@ with any knot concordance class is finite.
We state here our main advance towards conjecture 1.1.

Theorem 1.1 Any topological concordance class of knots (in fact, alseady algebraic concordance
class) contains only finitely many special alternating orlésat is, each special alternating knot is topo-
logically (or algebraically) concordant to only finitely maspecial alternating knots. All these knots have
the same Alexander polynomial.

More precisely, we will establish that a special alterrg#imot can share its Tristram-Levine signature
jump function (30) with only finitely many others (see remdtk). In is worth emphasizing that in the
smooth category, essentially the same proof gives a muchgsr statement.

Corollary 1.1 In any infinite family of smoothly concordant positive kngisere is no special alternating
one. In other words, each special alternating knot is snipatincordant to only finitely many positive
knots. Also, all have the same Alexander polynomial.

We will then make efforts to extend these results with foausor conjecture, proving similar statements
for some class of positive and almost positive knots (848)lmks (84.4). We will give computational ex-
amples in 84.5, discuss further, verifiable and problemetises in §4.6, and conclude with some method-
ological remarks in 84.7.

At a very late stage the prerint [BDL] appeared. See remdikat.its relation to this work.

Acknowledgment. Over the very long period that this work developed, seveealpte offered helpful
remarks, discussions, and references. Most directlya@kat the present part are C. Livingston, J. C. Cha,
A. Ranicki, D. Cimasoni, P. Gilmer, and S. Baader. S. D. Tdudtipointed out numerous places of improv-
able writing in a very early version of this paper. S. Orevkod his program provided some calculational
assistance.

2 Preliminaries, Notations and Conventions

2.1 Generalities

The symbolZ, N, Q, R andC denote the integer, natural, rational, real and complexars) respectively.
Let DeandOmdenote the real and imaginary part of a complex number. Weist writei = /—1 for the
imaginary unit, in situations where no confusion (with tisage as index) arises. Let us fix for C\ {0}
that the argument afg) = Om (log(2)) is taken in[0, 2m).

For a setS, the expressiofiS denotes the cardinality &. In the sequel the symbot" denotes a not
necessarily proper inclusion.

We need next a few notations related to polynomials, whiehuaderstood in the broader sense as Laurent
polynomials (i.e., variables are allowed to occur with nageexponents). Moreover, we will consider also
Laurent polynomials with (only) half-integral powers, thio save notation, let

L[t] = Z[t* U Vi z[ttY. (1)



2.2 Conway-Alexander polynomial 3

Let ‘=" be equality up to unitstt*%/2 in L[t]. For a polynomialX € £[t], anda € Z U (Z +1/2), let
[X]ta = [X]a be the coefficient of? in X. ForX #£ 0, letCx = {a€ZU(Z+1/2) : [X]a# 0} and

mindegX = minCx, maxded = maxCx, and spalX = maxdegX — mindegX
be theminimalandmaximal degre@andspan(or breadth) ofX, respectively. Théeading coefficiendf X
is maxciX := [X]maxdegc- A similar nomenclature is deployed for 2-variable polyriais

Let further forX, X; € £[t] andg € C\ {0}, mult X be themultiplicity of & as a root (or zero), and myjtX
the multiplicity of X; as a divisor (or factor) oK. Set mult= 0 if & resp.X is not a root resp. divisor. If
mult > 1, we call the root or divisomultiple. A polynomial with no multiple roots/divisors square-free
(There is no ambiguity, as we will work only over separabliifie

Of course, for irreducibl&;, we have

multx, X = multg X, (2)
for every zerct, of X3, and conversely, for any < C\ {0}, the property (2) holds for the minimal polyno-
mial X; of €.

We mention also that irreducibility is meant (because polygial factorization can always be done) over
Z, by alemma of Gaul3 (can be found, e.g., in [Se]).

Some further notations will be introduced at an approppédee in the text.

2.2 Conway-Alexander polynomial

The Conway[Co] and (1-variableplexander polynomiglAl] of a link L are regarded here as equivalent:
A(t) = O (Y2 —t1/2), (3)

They are defined to be 1 on the unknot. The skein relationlfcan be written

o(3¢) =0(3) +2()0). z

A skein triple D., D_, Dg is a triple of diagrams, or of their corresponding links, L _, Lo, equal except
near one crossing, where they look like in (4) (from left tght). The replacement. — Lg is called

smoothing (out)he crossing in.. The crossing D is calledpositive the one irD_ negative The sum

of the signs of all crossings & is called thewrithe of D and will be writtenw(D).

Let D be an oriented knot or link diagram. We denotedip) the crossing numbeof D. The crossing
number of a link is the minimal crossing number of all its d&mgs. We us&(D) = n(L) to designate the
number of componentd D or its link L. We writes(D) for the number of Seifert circlesf a diagramD
(the loops obtained by smoothing out all crossingBpf

One can argue that mindeg(z) > n(L) — 1, i.e., the coefficient](L)]; vanishes whenevgr< n(L) — 1.
This in particular means that indegld (z) is a genuine polynomial ig and not a Laurent one, as (3) might
suggest.

Throughoutthis treatiséyis thus normalized so that (3) holds. The word ‘normalizeéirs to comparison
with other definitions of the Alexander polynomial (see (Bd)ow), where one often leaves an ambiguity
up to units inCt].

Thus forknots Kwe will have
k(1) =1, )

and for a general link,
BL(1/1) = ()" A( (6)
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(i.e., the sign is positive/negative for odd/even numbesarhponents). We will call property (3)nimod-
ularity, and (6)symmetry(or reciprocity). It is well-known that for knots conditions (5) and (6) (tvit
n(L) = 1) exactly determine the Laurent polynomials occurring &xander polynomial. Note further-
more that

AL e t=D2z 4+ (7)

The reformulation of symmetry oA in terms ofJ is that . (z) is an even/odd polynomial (i.e., has
coefficients only in even/oddidegree), when(L) is odd/even. The reformulation of unimodularity is that
for knots[(jo = 1. More generallyj(J(L)])—1 can be expressed in terms of component linking numbers;
see [Ht].

It is important to note that for a kndt, because of (5) and (6« (—1) is an odd integer, and hence
Dk (£1) #0. (8)

The value
detL) := A (-1)

is sometimes called théeterminanf L. For a linkL (of more than one component) alwafs(1) = 0,
but there are many links with
detlL) = A (—1) # 0.

These include all (non-split) alternating links, by work@rowell-Murasugi (related to theorem 2.2 given
below).

2.3 Links and diagrams

Here, and in the sequel, for a knot or likk we write K for its obverse or mirror image. Similarly
ID is the mirror image of a link diagram. If K is aknot, write —K for its inverse(knot with opposite
orientation). ByK;#K; we denote theonnected surof K; andKa.

For a few specific (prime) knots, we use the tables of [Ro, Aylpg up to 10 crossings, and for 11 to 16
crossings, the tables of [HT] (see also [HTW]), where we aplpgon-alternating knots after alternating
ones (of the same crossing number).

We say that a link diagrarD is I-almost positivef it has exactlyl negative crossings, that ig(D) =
c(D) —2I. Aknotisl-almost positive if it has ah-almost positive diagram, but nd— 1)-almost positive
one. Hereby, for both knots and diagrams, ‘0O-almost pasiiiv called shortepositiveand ‘1-almost
positive’ isalmost positivgSt7].

Note: There seems some division between knot theorists as to vihichare to be called positive. In
[Bu, MZ], the rather non-standard (and confusing) conwants used to call ‘positive knots’ the knots
with positive braid representations (called ‘positiveisa[Cr2], or better ‘positive braid knots’). The
convention here follows the now established standard, imsetany publications, as [Cr, CM, MP, N, O,
Ru, Ta, Yo, Zu], to call positive knots the (larger) class nbfs with a positive diagram.

A link diagramD is calledsplit, or disconnected, if it can be non-trivially separated bynapse closed
curve in the plane. Otherwise we say the diagramois-split or connected A split link is a link with a
split diagram. Other links are said to be non-split. A cregdgh a non-split diagram iseducible if its
smoothing gives a split diagram. A diagram is reduciblelifds a reducible crossing, otherwise it is called
reduced To avoid confusion, unless otherwise stated, in the segjuéiagrams are assumed reduced, that
is, with no nugatory crossings, and links are non-split.

A diagramD is calledcompositeif there is a closed curvgintersecting (transversely) the curvedfin
two points, such that both in- and exterioryafontain crossings dd. OtherwiseD is calledprime (Note
in particular that prime implies reduced.) A litikis prime, if for every composite diagrabof L one of
the in- or exterior ofy contain (only) an unknotted arc; otherwisés composite.
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Theorem 2.1 (Ozawa [O]; see also [Cr2]) If a positive diagram is primeddpicts a prime link. In
particular, prime factors of a positive link are positive.

A region of a link diagramD is a connected component of the complement of the plane airize A
regionR of a diagram is calleeifert circle regionresp. non-Seifert circle, drole region), if any two
neighboring edges in its boundary (i.e., such sharing asorgs are equally (resp. oppositely) oriented
(between clockwise or counterclockwise) as seen from éRid A diagram is calledspecialiff all its
regions are (either) Seifert circle regions or hole regions

It is an easy combinatorial observation that for a connediagram two of the properties alternating,
positive and special imply the third. A diagram with theseethproperties is callespecial alternating
See, e.g., [Mu, Mu2]. A special alternating link is a link hay a special alternating diagram. It can be
described also (like in the introduction) as a link which im@ltaneously positive and alternating. By
definition such a link has a positive diagram, and an altergatiagram. That it has a diagram which
enjoys simultaneously both properties was proved in [N].St6

2.4 Genera

In the sequel we denote lgyD) thegenusof a diagranD, this being the genus of the surface coming from
the Seifert algorithm applied on this diagram. More congatly, if D is a link diagram, we use instead of
g(D) the notatiory (D) for the Euler characteristiof the Seifert surface given by the Seifert algorithm.

By g(L) we will denote the genus angdL) the Euler characteristic of a link, which are the minimal
genus resp. maximal Euler characteristic of an orientgdesing (i.e., Seifert) surface for By gc(L)
we denote theanonical genusf L, which is the minimal genug(D) of some diagrand of L. Similarly,
Xc(L), thecanonical Euler characteristiof L, is the maximak (D) for all diagram<®D of a link L. Further,
for a link L we denote bygs(L) the smooth 4-ball genyswhich is the minimal genus of a (smoothly)
properly embedded surface in the 4-ball with boundaryFinally, xs(L) is set to be thesmooth 4-ball
Euler characteristic

A knotK is sliceif gs(K) = 0. Two knotsK; andKy are(smoothly) concordant —K #!Kj is slice. Let us
say thai; is positively concordanto K, if K; andK» are concordant and positive.

Theorem 2.2 (see [Cr, C, MuZ2]) The Seifert algorithm applied on an al&img or positive diagram gives
a minimal genus surface.

Thus the genug(L) of an alternating/positive link coincides with the genugD) of an alternating/positive
diagramD of L, given by
c¢(D)—s(D)+2—n(D
g(p) = 21 =0)+2-n0) ©
with c(D), s(D) andn(D) = n(L) being the number of crossings, Seifert circles and compsmED, resp.
The preceding theorem implies that for alternating/pesilinksL,

g(L) =ge(L). (10)
For positive links, we have additionally that
g(L) = gs(L) (11)

(see (18) below).

We recall two major ways of estimating genera of arbitrargtkrirom below. One comes from the Alexan-
der/Conway polynomial. It is well-known that for split liskl = 0, and (as partly stated already in §2.2)
for a non-split linkL, the coefficienfd(L)]; is non-zero only if

nL)—1<i<1-x(L), andi—n(L)is odd (12)
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The right inequality is related to the descriptionfofn terms of Seifert matrices (see below (24)). The
parity condition is seen equivalent to the property (7Aof_et us call an satisfying (12)admissibleand
in the same way the coefficiefifl]; admissible for such

The range of in (12) means that (fo] # 0)
n(L) —1 < mindegO(L) < maxdegO(L) < 1-x(L). (13)

For many (non-split) links, including positive and alteting ones, the rightmost inequality is exact, i.e.,
an equality, and with (3) we can write

1—x(L) = 2maxdedy. = —2minde@\, = maxded], . (14)

(In fact, this property is directly related to theorem 2 9Qre specifically, we have the following property.

Theorem 2.3 For positive and almost positive (non-split) links,is a positive polynomiali.e., all its
admissible coefficients are positive.

For the later applications of this theorem, it is enough #éhieadmissible coefficients are nonnegative, and
at least one is positive. This property is essentially pdangCr, Corollary 2.2]. For the clarification why
no admissible coefficient is zero (not needed here) seg[86ty1] (for positive links) and then [St3, §4.1]
(for how to extend it to almost positive links).

Note that forknots K the rightmost inequality in (13) can be restated using (8) 29(K) = 1— x(K) in
the form
maxded\(K) < g(K). (15)

Again, equality holds for positive and alternating knkits

For any knotK the left inequality in (13) is exact (and the constant ternilaé 1). Note also that (13)
implies (L) > spar](L), and equality occurs iff the leftmost and rightmost inedies in (13) are both
exact, in particular for positive links.

The other way of estimating genera comes from Bennequiatpiality [Be, theorem 3], and its subsequent
improvements. We define tlBennequin number(D) of a diagranD of a link L to be

1

r(D) := > (w(D)—s(D)+1). (16)
Then it is known (see [Ru, He]) that
1-X(L) > 1-xs(L) > 2r(D), (17)

which is calledslice Bennequin inequality’e mainly require the following special case. Forl aimost
positive diagranD of a knotK, by comparison of (9) (witim(D) = 1) and (16), we have(D) = g(D) —1,
and (17) yields

g(D) —1 =r(D) < gs(K) < g(K) < ge(K) < g(D). (18)
In particular, for positive diagrams £ 0), all inequalities become equalities (recall (10) and))1This
amplifies, by addition of the slice genus, a special caseeafrdm 2.2.

There is a third estimation of genera, using Tristram-Ledignatures, which we explain next.

2.5 Tristram-Levine signatures

Here we introduce one further main technical tool appearinge sequel. A more extensive discussion
close to our course here can be found in [L, §8]. (We shall gifew additional references for further
details.)
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Set
St:={zeC:|7=1}, and S :={zeS':0Omz>0}. (19)
Let M be a Seifert matrix of sizé€l —x) x (1—X) corresponding to a Seifert surfaSef a link L of Euler

characteristix. Note: 1— x < 0 can occur (only) iSis disconnected; thefs(L) = 0, and such links will
not be studied in this paper. We thus assume throughouSisatonnected. Then for arfyc S' we define

Mg(L) == (1-EM+(1-gMT, (20)

where bar denotes conjugation afdiransposition. This is a Hermitian matrix, and all eigemesl are
real. Bya(Mg) we denote theignature(sum of signs of eigenvalues) and w{Mg ) the nullity (dimension
of the kernel, or number of zero eigenvaluesMyf. They turn out to be independent of the surface and
Seifert matrix, and become thus invariantd of\e obtain then a family, written by, (L), of signatures
og (L) for& c S, called generalized diristram-Levine signaturgd's, Le]. Similarly we have thaullities
Ve(L). Clearly,

og(L) = oz (L), (21)

which is why we will usually work only orst , while paying attention t§ = +1.
All the Tristram-Levine signatures satisfy for a skein lgip.. o the rules
O-E(L+)7O-E(L*> € {07 172}5 (22)
Og(Ls) —0g(Lo) € {-1,0,1}.
(Whether to have0,1,2} or {0,—1,—2} in (22) is a matter of convention.) The behaviour of signesur
under mirroring, inversion (for a kndf), and connected sum is likewise well-known:

oi(L) = og(-L) = —oy(IL),

For the purpose of this paper, we need another approach (odhmalized) Alexander polynomial, differ-
ent from the skein property (3). The polynomial of a linkan be calculated from a Seifert mathikof L

by
AL(t) = tX D2 defM —tMT). (24)

(In this definition the unitX~1)/2 js often omitted, but it is added here to conform to the noizasibn
of §2.2.) In recalling the consequence (13), let us notetthat a link satisfies equality (14) exactly if it
possesses a regular (non-zero determinant) Seifert matrix

Tristram-Levine signatures are related to the 4-geni$@.4) via the Tristram—Murasugi inequality [Ts,
Mu]: if & is a prime power root of unity,

|0 (L) | +ve(L) < 2gs(L)+n(L) - 1. (25)

This inequality holds also in the topological category. {@owith ‘gs’ replaced by &', for connected
Seifert surfaces, the r.h.s. becomes %(L), and (25) follows for all§ by definition ofc, andv,..) A
consequence is that for a kit

105 (K)| < 2g5(K) whena (g) # 0. (26)
A further feature ofog (L) for a link L is that
whenA (&) # 0, then og(L) —n(L) is odd. (27)

Moreover, in this case, for a kn#t, the sign ofAx (§) (which is a real number wheld| = 1 andAk is
symmetric) determines; mod 4 (see [St10]):

Dk(E) >0 <= 0g(K)=0mod 4

Ac(E) <0 = og(K)=2mod 4 (28)



8 2 Preliminaries, Notations and Conventions

From the relationship (26) and properties (23) one easitiudes that.(K) is a concordance invariant
outsidethe zeros of the Alexander polynomial. NamehKifandK; are concordant, thenKi#!K5 is slice,
i.e., gs(—Ki1#!Kz) = 0. We have from (23) and (26) that (—Ki1#!Kz) = 0z (K1) — 0(K2) = 0 whenever
Ay mk, (§) = Dk, () - Dk, (§) # 0. That s, ifKy > are concordant, and

AKl (E) #0+#£ AKz (E) ) (29)

thenaog (K1) = 0z (K2).

To remove the restriction (29), one considersjtimpof o, at¢,
j=(L):=1i ie(L) — i je (L
je(L) iM Oge (L) IIm Oz L), (30)

which becomes a full concordance invariant for kndtsThis property will be a key in our arguments. It
is obvious that

je(L) #0 onlyif AL (§)=0. (31)
Further, it follows from (21) that
je(L) = —jg(L), (32)

in particular the jump$+1(L) = 0, and are useless.

Here may be appropriate to emphasize that calculadingnd j. using (large) Seifert matrices is not
efficient in practice, regardless of being polynomial tiraad requires a substantial algorithmical effort
to be performed safely. We used a package for MATHEMATIEAvritten by S. Orevkov. This method,
though, is suitable only for limited scale computationg] #ms we sought alternative means to evaluate
these invariants. See, e.g., proposition 3.1.

The(usual) sighatures = 0_1 of Murasugi [Mu] has a very distinguished role among thetiain-Levine
signatures. An important special case of (27) for a Kot wheng = —1. Because of (8), we have that
o(K) = 0_1(K) is always even for a knot. Moreover, (26) applies to give

|o(K)| < 2g5(K) < 2g(K). (33)

Murasugi first proved that these inequalities are exact @aualities) for special alternating knots.

More generally, for alternating knots there are nice coratuirial formulas available to calculatefrom

an alternating diagram (see, e.g., [Mu, Kf, GL]). These folas, together with the skein rule (22) (‘1’
does not occur on the right) and the property (28) §etr —1) provide a tool for calculating, at least
for knots, only using integer arithmetic. This is one of thethods with a huge practical advantage over
diagonalizingM_1, and was used far calculations throughout this paper.

We will need the following information on the signature ofive knots.

Theorem 2.4 (see [CGo, PT, St7, St9]) L&t be a positive knot of genugand signature. Then

1.0>0, 4. if g=3, theno € {4,6},

5. if g=4, theno € {6,8}, exceptifK = 1445657

2. o=2ifand onlyifg=1, (whereo = 4), and

3. ifg=2,thenc =4, 6. ifg>5,then®y > 0> 6.

More recently Tristram-Levine signatures have been of sioteeest because of their relation to the clas-
sification of zero sets of algebraic functions on projectipaces [Or, F] and (a quantum version of) the
Jones polynomial [G].
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2.6 Braiding sequences and genus generators

Now let us recall, from [St4, St5], some basic facts concrykinot generators of given genus. We will set
up some notations and conventions used below. This is disduis much more detail in [St9]. Cromwell
offers in his recent book [Cr3] (section 5.3) an introdugtexposition on the subject.

We start by defining--equivalence of crossings. #everse clasfs, up to crossing changes, a tangle like
\/\\/\. If exactly one strand has opposite orientation, we calcthspparallel. We call a clasyrivial
if both its crossings have opposite sign. Such a clasp cafirbmated by a Reidemeister I move.

Definition 2.1 Let D be a link diagram, ang andq be crossings. We cafl andqg ~-equivalentand write
p ~ g, if smoothing out one renders nugatory the other.

Another (and more commonly used elsewhere) way of sayirggishthatp andq can be made to form a
reverse clasp after flypes. A minor argument will convince tirat this is indeed an equivalence relation.

Definition 2.2 A ~-equivalence class consisting of one crossing is caliethl, a class of more than
one crossingnon-trivial. A ~-equivalence class ieducedif it has at most two crossings; otherwise it is
non-reducedA diagram is calledjenerating or agenerator if all its ~-equivalence classes are reduced.

LetD be an oriented link diagram with crossings. .., c,. We explain now, following [St2], how to define
a family of diagram#D = B(D) calledbraiding sequencéor serieg. Consider the family of diagrams

D = {D(plv'-'apn): pla"'vaEZOdd}'

Herein the diagrar®(pa,.. ., pn) is obtained fronD by replacing the crossing by a tangle consisting of
|pi| reverse half-twists of sign sdi;):

/\//\/ﬂ ‘/\/I ‘X W . (34)

pi=—-3 i =—-1 pi = pi=3

Following [St2], we will callD thebraiding sequencé (D) associated t®. Note thatB(D) does not in
fact depend on how crossingsihare switched. In particular, we can, and will, assume withoss of
generality thaD is alternating.

We will use below the following simple technical argumermtrfr [St11].

Lemma 2.1 ([St11]) If

Di = D(p1,,---, Pni) (35)
are infinitely many diagrams in one braiding sequence, themay without loss of generality assume that
there is a < d < nsuch thaipg,1, ..., pn, are constant, and

Pri+1 > Pk,i
foralli >0andk=1,...,d.
We call apositive(resp.negativé t; twist the replacement of the tangle fpr= 1 (resp.pi = —1) in (34)

by the one fop; = 3 (resp.pi = —3).

This move does not change the canonical genus: ViHés obtained fronD by at} twist, theng(D’) =
g(D). Thusg(D’) =g(D) is constant for alD’ € B(D). As it turns out, some kind of converse of this
property is true for fixed)(D), up to finite indeterminacy.
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Theorem 2.5 (see [St4, St9]) The set of knot diagrams on which the Sedfigidrithm gives a surface
of given genus, regarded up to crossing changes and flypesmgi®ses into a finite number of reverse
braiding sequenceB; = B(D;) for generator®;. The same is true for link diagrams of fixed number of
components.

Usually one considers alternating diagramsand their underlying knotk; (which we also call genera-
tors). There are systematical ways to determine the gemesats{K;} for smallg. The caseg=1 was
done by hand in [St4] (and observed independently in [Ru),ge= 2,3 in [St5], already using substantial
computation. Fog = 4, the limit of the feasible, an account is given separat8t@]. The generator sets
quickly become highly difficult, and each new set requirethareasingly efficient algorithm to determine.
Theorem 2.4 is to a large extent an application of this work.

3 Signature-zeros estimates

One further major tool used for our main result requires ayéortreatise, and we devote this separate
section to it. It should be noted that results in this sectiomot assume positivity (or almost positivity),
except a few places where explicitly noted, and apply (fdtd) withouta priori restricting to knots.

This section is organized thus. In §3.1 we discuss a rel@@ween signature and number of zeros of the
Alexander polynomial, which plays a central role in the grafdheorem 1.1 (and its later generalizations).
The case of simple zeros in [St8] is recalled with some aaldlitin §3.2. The subsection §3.3 is devoted
to extensions of the signature-root number inequality,so1de special cases and easy consequences, still
without assumption of positivity.

3.1 The inequality of Alexander polynomial zeros and signatre

In [St8] we studied, in a special case, a close relationsbiwéen the signature and the number of zeros of
the Alexander polynomial on the (complex) unit circle. Wenfimlate this relationship after an important
clarification.

Definition 3.1 Let us in the following fix that zeros of a Laurent polynom¥aE £[t] over some complex
domainSare always counted with multiplicity. In that sense, defieSC C,

(X, = Z multg (X).
g€ S\ {0}
X() =0

Observe that
{(X,C) = sparX. (36)
Moreover, there is the complex-analytic integral formula
z

o -2(X,S) = j{ %dz, 37)
0S

valid whenSdoes not contain 0 and has at least piecewise smooth boudtsigrgiented counterclockwise)
with no roots ofX on it.

With (19), the mentioned relationship is stated as follofwsa link L with A # 0,

lo(L)| < (AL, Sh. (38)
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Clearly with any zera € S of A, the conjugate is also one. Moreover, for knot K, there is no overlap
because of (8). Thus

1
Bk SH) = 52k S, (39)
and (38) can be paraphrased as
1
(k.S > 5o(K)|. (40)

We will first discuss several arguments for this special chsfore turning to the subtleties of extending it
to links.

Lemma 3.1 If K is a knot, then (40) holds.

Proof. This result follows from the more detailed property that§ar S,
je(K) | < 2multg A(K), (41)

which can be also seen as a non-trivial extension of (31). &ppeoach toward (41) goes back to the
definition of Milnor’s signature [Mi2], and its identificath with the jump by Levine and Matumoto [Le,
Ma]. Another approach, discussed in [G, St8], establishas the branches of eigenvaluesiMf are
smooth in&. It uses spectral theory and requires a result of Trottel ffidt a Seifert matrix can be
regularized unde®-equivalence. O

More background, albeit important, is too verbous to disdusre, in particular because the lemma is
insufficient for us. It should be made clear that both Trégtand Milnor’s work make substantial use of
unimodularity (5) (and Milnor further of the homologicabgbra of knot complements), and thus heavily
restrict to knots. In Matumoto’s proof, regularity of theiféet matrix remains a basic assumption, and (8)
is also used (albeit more tacitly), again leaving the cadimks in limbo. This will be remedied with the
more general arguments in §3.3, to which we prefer (and rteeafjsign more attention.

On a related matter, there is Shinohara’s inequality [SlkeoFém 3], valid for links whei £ 0:

|o| < 2maxded\ = spam\. (42)
For knots, it is easily seen (from (36)) as a consequence®f biit is proved in a purely algebraic (and
thus more natural) way.

All consequences and special cases of (40) we need are taar{$t8] or reproduced below from our
own tools (see, e.g., the remark below (42)). One such isctatre, to be used for theorem 1.1; we defer
a proofto §3.3.

Corollary 3.1 If o(K) = 2g(K) for a knotK, then all zeros of\« lie onS'.

Murasugi's work (as quoted below (33)) shows that spectatahting knotK satisfy the assumption of
the corollary. Our main result of [St8] generalizes to liritssconclusion, which reformulates foin the
stated way from the relation (3).

Let in the following

OL(2) := OL(V2). (43)

Theorem 3.1 ([St8]) If L is a special alternating link, then any zeroﬁm‘ (is real and) lies in the interval
[—4,0], or equivalently, all zeros df_ lie on the complex unit circle.



12 3 Signature-zeros estimates

3.2 Signature jumps at simple roots

We will need some of the argument in [St8] for jumps at simplats ofA.
Lemma 3.2 ([St8]) LetK be a knot, such thatkx has no multiple zero. Then inequality (40) holds.

Proof. For a simple zer@g of Ak on St the signature; always changes b¥2 in &g, i.e.,
|ig,(K)| =2 when mulf, Ak = 1. (44)

This is essentially a consequence of the Implicit Functibedfem applied offi(§,a) = detMg —a - 1d).
It allows one to bijectively (and smoothly) express the eigduea close to 0 in terms of close togp; in
particular this (locally unique) eigenvalue must change sinequality (40) is immediate. O

It will be useful to introduce the one-sided signature Igvas follows (compare (30)):

+ T ) N )
O-E (L) = ll{]})ozés(l_) and O'E (L) = l%czew(l_) . (45)

For knots, there is a way to bypass the Seifert matrix (asvaietil below (32)) in testing the sign in (44)
for some simple jumps, which will be helpful mostly for priaet calculations (see §4.5).

Proposition 3.1 Assumetg is a simple zero of\k for a knotK such that on th&'—arc
Z(%0) = {e' : 0<t<arg&o)} (46)

between 1 andp, all n zeros onA¢ are also simple. LeK’ be a knot obtained frork by changing a
positive crossing to become negative. Then the following$io

a) If jg, (K) = 2, then(—1)"Ax/(§o) > O for all K'.
b) If jg,(K) = —2, then(—1)"Ax/(&o) < O for all K",

Proof. Because (44) applies for tmezeros oM on=(&p), we have in (45)
Ogo(K) =2nmod 4.

If &,(K) = +2 (similarly for —2), thenog (K) = 2n+1 mod 4. Because of the skein property (22), we
haveag, (K') # 2n+2 mod 4. Ifog, (K’) is odd, them/ (§o) = 0. Otherwisepg (K') = 2n mod 4, and
then use (28). O

Lemma 3.2 yields the part of theorem 3.1 for knots with sgdisge (i.e., without multiple zeros) Alexander
polynomials.

Corollary 3.2 ([St8]) LetK be a special alternating knot, such thathas no multiple zero. Then all zeros
of Ok are real and lie in the intervél-4,0].

Proof. We haveo(K) = 2g(K) by Murasugi (see §2.5), and can reinstate the chain of ilitigga
29(K) > C(&k,C) > Ak,S) > oK) = 29(K), (47)

which, complemented here by the property on the right, albbee equalities. O

The proof of theorem 3.1 in [St8] proceeded by using someagimiation result (of roots of link polyno-
mials by roots of square-free knot polynomials), to dedheeftill extent of the theorem from this special
case.
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3.3 Generalized signature-zeros estimate

Definition 3.2 Define (using the notation in §2.4) a knot or lihko beregular if equality (14) holds,
1—x(L) = 2maxded\(L),

andirregular otherwise.

Remember, that it follows from the the comment below (24) tha regular if and only ifL has a regular
Seifert matrix.

Next, let us introduce the one-sided jumps (using (45), amdparing with (30)):

jg (L) =05 (L)—og(L), and jg(L):=0g (L) —og(L).
Thenjg(L) = j;(L) — Jg (L). Clearly onlyg with A_(€) = 0 are interesting, but these singular signatures
oz (L) have not been thoroughly studied. Matumoto’s work (meribim the proof of lemma 3.1) gives
some, but very partial, information. (Apart from the coasits discussed in 83.1, he needs that the Seifert
matrix M is diagonalizable.)

Lemma 3.3 We have
lig (L) ] < ve(L).

Proof. We look at the form#/; in (20) for a Seifert matriM of L. Let us note that branches of eigenvalues
of Mg beingcontinuousn & (cf. proof of lemma 3.1) easily follows for example by using (37)the
characteristic polynomials dfl¢, regarded as functions in the varialeThis implies the assertion of the
lemma. O

It seems reasonable to believe that
Vg(L) < mults A(L), (48)

which would lead to a refinement of (41),

lig (L)| < multgAL). (49)
Here is another useful observation (I am grateful to A. Riarfir pointing this out):
Lemma 3.4 If L is regular, then (48), and therefore also (41), holds.

Proof. We have that (somé)l in (20) is invertible, and then the Alexander polynomial ntaibecomes
the characteristic polynomial ¢MT)~1M:

Xoury-1m (&) = detM) 1 E0/2.7, (8).

Then (48) is just the formula relating eigenvalue multiyi@and eigenspace dimension. O

In particular, by lemma 3.4, If is regular, we have (38) directly from (49). Using Trottexvsrk (see proof
of lemma 3.1), one can obtain then (48) for all knots, and dégive (49) and (41) from it and lemma 3.3.

For irregular links this elegant short argument does notkworhe previously discussed failure of all
alternative proofs, though, strongly motivates an apprdaq38) which applies to links and lifts all as-
sumptions binding other methods (except, of coulsg,0). Our partial effort was superseded by a proof,
given very recently by P. Gilmer and C. Livingston, of (48h@ahence (38)) in the general case, which
will be discussed elsewhere [GLv]. For another proof, tHferee pointed to the Appendix of [Lc] (with
the caveat there to use, in our notatig, instead ofj_1).
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Corollary 3.3 AssumeL is regular. Then

(DL, C\SH <1—x(L) —|o(L)]. (50)

Proof. Use (38) and (A, C) = spamy. < 1—x(L). O

Proof of corollary 3.1. Combining Shinohara’s inequality (42) with (15) and ounamsption, we see that
both (42) (for|o(K)| = a(K) > 0) and (15) become equalities. Thkids regular, along with (8) (for any
knot), i.e.,

1—x(K)—spaldx = mult.1Ax = 0. (51)

Then (38) with (51), (15), (39), and our assumption, leagsratp (47). O

Remark 3.1 For a positive or almost positive knot (as needed in the pobdheorem 1.1 and its later
extensions), inequality (42) is not required. We have (5dnftheorem 4.3, yielding again (47) (and (42)
along with it), etc.

4 Concordance of positive knots

4.1 Finiteness conjecture

One can regard conjecture 1.1 (though it came up differpcitlyemark 4.5) as a follow-up to the fact that
positive (or almost positive) knots have positive signatand hence are not (algebraically) slice. This fact
was first proved (for positive knots) by Cochran and Gompf §CErollary 3.4]. Przytycki observed the
result (also for almost positive knots) to be a consequehtardyama’s work [Tn], but their account [PT]
remained unpublished for a very long time. A proof of the peity result of the signature, using similar
methods to Przytycki-Taniyama, was written down in [St7].

The only previous results similar to conjecture 1.1 (thoogtained with a different approach) appear to be
about doubled knots, starting with Casson and Gordon [C@]ater extended in [Ki]. One can find very
subtle particular examples where the detection of non-@alance is difficult [Ki2]. But efficient (non-
abelian) concordance invariants seem hard to calculaterergl. These invariants have so far become
useful only in certain suitably constructed particularnité families of knots. On the opposite hand, for
any moderately large and natural class of knots, meanirmgirhs about concordance properties seem
scarce. Among others, there are rather easy to identifyitefiamilies of slice (even ribbon) knots, which
are quasipositive, dralmost positive at least fdr> 3 (see example 4.2), or alternating (even rational).
Thus the property in conjecture 1.1 must be in some way sit@ly linked with positivity.

Our main aim will be to settle a part of conjecture 1.1, firstdpecial alternating knots (theorem 1.1), and
later for a larger class of positive and almost positive krsattisfying a certain inequality on their signature
and genus (theorem 4.5). In our approach concordance caakée to be algebraic, except where we
explicitly state otherwise (see also remark 4.1). See tldatgin remark 4.6.

A brief overview of this main section of the paper is as foldowrhe proof of theorem 1.1 is carried out
in 84.2. In 84.3 we give versions of our main theorem for mazaegal classes of positive and almost
positive knots, and in 84.4 we discuss the case of links. LB & present some computations, discuss
in 84.6 some related examples, and conclude in 84.7 withéudomments about possible extensions and
relations of our results.

4.2 Application to concordance

We first prove the statement given in the introduction. Theopwill show how one can obtain some more
general versions, which we will discuss later.

The following lemma is well-known, but we recapture an arguatsuitable for subsequent extensions.
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Lemma 4.1 There are only finitely many positive knots with given Alexan polynomial.

Proof. Let D; be infinitely many positive diagrams with givén We needy(D;) = maxde@\. Thus by
theorem 2.5 and by lemma 2.1 we may assume (35). But it is ea®etfrom the skein relation 6funder
t} twists that

maxcfA(D(pa,...,pPn)) > maxcfA(D(py,...,ph)),

wheneverp > p; for all 1 <i < n, and for at least oniestrict inequality holds. This contradiction finishes
the proof. 0]

Theorem 1.1 follows immediately from this lemma and thedwihg statement.

Theorem 4.1 Let K, K; be algebraicly concordant special alternating knots. Then

A(Ky) = A(K). (52)

Proof. Let K1 be positive and concordant £6. Let A = A(K) andA; = A(K3). For special alternating
knots
spald =2g=o0, (53)

and hence we have
maxded\ = maxded\; . (54)

From (53) forK and (41) it follows that all zero& of A(K) lie on S* and satisfy equality in (41):

| je(K)| = 2 mult A(K). (55)

Now letX be an irreducible factor @&(K). Thus there is a zefof X on S' with |j¢ (K)| = 2multk A(K).

Now look atA(Ky). Since by concordandg (K1) = jg(K), we have from (41) foK; that muli A(Ky) >
multx A(K). Arguing over allX, we see thah | A;. Then, comparing degrees in (54), and using unimodu-
larity (5), we haveA = A;. This finishes the proof. O

Remark 4.1 We did not use more than the jump (Milnor’s signature) funcii, as a concordance invari-
ant, and thus it should be noted that in factdentifies a special alternating knot up to finite ambiguity.
the same way, in most of our following statements (for knatggbraic concordance can be weakened to
equality of the jump function.

For corollary 1.1 we use lemma 4.1 and the following modifacabf theorem 4.1. We will establish the
conclusion in several more situations, thus let us say irfdl@wing that forK positive smooth concor-
dance determinanes the Alexander polynomial

Theorem 4.2 Let K, K; be smoothly concordant positive knots alde special alternating. Then (52)
holds.

Proof. The fundamental reason for this extension is the avaitsihiti the smooth setting, of the Bennequin-
Rudolph machinery (17). (Regarding its failure in the tagital category, see remark 4.3.) This leads to
(11). Thus ifK; smoothly concordant positive knots, (11) combines with (d@ive thatg(Ki) = g(K) is
constant. Similarly by concordanc€K;) = a(K) is constant. 1K is special alternating, then we obtain
(53) forK; as well, and the proof of theorem 4.1 can be repeated. O

Summarizing the proof, we see that what we need is that the jumction j,(K) detects inA(K1) each
irreducible factor ofA(K) (with full multiplicity), and maxded\(K) = maxded\(K3). Several later exten-
sions of theorem 1.1 base on this observation. The followhogosition is mainly its formalization (with
the obvious, and omitted, proof).
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Proposition 4.1 Let K be a positive knot, such that for each irreducible faXdrA(K) there is at least
one zerc of X which lies onS! and satisfies (55). I is positive and algebraicly concordantiowith
9(K1) = g(K) (i.p., if K1 is smoothly concordant ti§), then (52) holds, in particular only finitely mai
occur. g

This shows that it is necessary to look at just one zed,@nd in general releases us from keepirgose
to 2g. Here is a small application.

Corollary 4.1 LetK be a connected sum of positive torus knots, Enthe positive and smoothly concor-
dant toK. Then (52) holds, in particular only finitely mahy occur.

Proof. Let in the followingX, be the (irreducible) polynomial of the primitiveth roots of unity. The
formula for the Alexander polynomial of the torus kndgy is

tPI—1)(t—1)

—t—(p-Dl-p2y — V=)
A(Tpq) =t P-D—1)" (56)
It shows that | |
_ [ 1 itX=Xyforn|pgbutntp,q,
mMultx (A(Tpa)) = { 0 otherwise (57)
It can be easily checked from the formula of the jump, due touveto-Kearton (see [Ke2, §13]), that for
each suctp, g, the jump at the first rooeyp 2ri /) (Tp.q) = 2. O

For practical verification, we notice (taking into accoud)) two simple criteria that make the conditions
in proposition 4.1 satisfied. Again, we should demand smootitordance (or equality of the genera; see
also remark 4.3 below).

Proposition 4.2 Let K be a positive knot. Assume that each irreducible faktof A(K) has at least one
zero onSt and

(a) X is simple, or

(b) (40) is an equality foK.

Then only finitely many positive knots; are smoothly concordant . They satisfy (52). O

Let us here make a helpful remark: the practical use of trepgsition, as well as proposition 3.1, can
be simplified by working withdJ (in (43)). Surely, if0] factors, so doeA. ButA may factor even if]

is irreducible: e.g., stevedore’s knot BasO=1-2z (obviously irreducible), whilé\(6;) = —t~1(2t —
1)(t — 2). Still, we observe why we will not mind below factorizinﬁginstead ofA.

Lemma 4.2 If an irreducible factoX (z) of E(K) has at least one zero ¢n4,0], then the corresponding
factor 3
X(t)=X({t—2+t7Y

of the Alexander polynomial _
AK) = D(K)(t—2+t7Y

is irreducible (and has at least one zeradS

Proof. Assume two mutually inverse roofsand& ! of X have the same minimal polynomiél Then
Y(t) = ctk-Y(t~1) for somec € R, ¢ # 0. By unimodularity (5), we hav¥(1) = +1# 0, and thug = 1,
i.e.,Y must be reciprocal. Thevi= Y (t —2+t~1) would yield a factoi of X. Thus if X is irreducible,
but X is not, thenX must factor agY(t)Y (t~1) for some (integer, not purportedly irreducible) polynomia
Y. However, ifX(z) has a zera on[—4,0], thenX has a zerd on S. But the minimal polynomial of is
real, thus such has the same minimal polynomial &s= £ 1, which we excluded. O
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4.3 Modifications and Extensions
4.3.1 Signature-root estimates for positive and almost pdtsse links

Recall that for any (non-split) alternating link we have (14). In combination with theorem 2.2, we obtain
thus in definition 3.2 thalt is regular. More relevantly, we will need these propertieetor positive [Cr]
(as already mentioned) and almost positive links [St3].

Theorem 4.3 ([Cr, St3]) Positive links and almost positive links are ukg.
Corollary 4.2 If K is a positive or almost positive knot, then inequality (46)ds.
Proof. Use again lemma 3.4 and theorem 4.3. O

Proposition 4.3 If L is a positive or almost positive link, then

{(8L.C\ S < 1-x(L)—olL).

Proof. With theorem 4.3, use (50). We notice thgL) > 0, asL can be unlinked by switching positive
crossings only. O

4.3.2 Positive large signature knots

Theorem 4.4 Let K be a positive or almost positive knot with> 2g— 2. Thenj.(K) determines\(K)
up to finite ambiguity.

Proof. Let X be an irreducible polynomial i#Z[t]. Let us assum& as a genuine polynomial (unliks),
and normalize it so that mindég= 0 and maxcK > 0 (we will useX as a factor of some Alexander
polynomial of a knot). Let foX £t +1,

jmuita = 2 max{[j(<)] : X(€) =0, Jg| =1},

whenX has a zerg on S!, and jmulty A = 0 otherwise. The following is the part afdetected byj,:

A= [ XA, (58)
XA

(Note that because of (8%, =t + 1 does not occur in this product.) Then clezﬂsl'ys determined by, (K),
and along the proof of theorem 4.1 we have

E|A, spam > sparﬁ > 0.

Fromag > 2g — 2 we have then folA* := A/E that spaiy* < 2.

We remark that withx € C alsox,1/x and 1/x are zeros of\*. Up to units inZ[t*?], thus agaim\* is
symmetric and unimodular, hence it admits a conversion toan@y polynomiall via (3), which is of
the form

0*(2) = 1+ bZ. (59)

If A* = 1, thenj, determines = A. Thus assumA* s 1. We claim then its both zeros are h

If |x] # 1is azero ofA*, in order the four numbers X, 1/xand 1/x not to be all distinct (bar is conjugation
in C), we need thak is real. Since by reciprocity dk the product of norms of all zeros is 1, we cannot
have exactly one zero of'. Thus we have a pair of zerasl/x for x € R.
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We assumed that 1/x have no algebraic conjugates 8h This means that
A*(t) = a(x—t)(1/x—1) € Z[t], (60)

for somea € Z must be a divisor oA(K). As suchA*(t) = A*(t)/t is unimodular (up to signgf. below
(6)), and from the form (60) it is seen to be symmetric. It isglan Alexander polynomial of a knot (as an
example, it occurs for a non-positive twist knot). Th&nallows for a conversion via (3) to a polynomial
0%, which becomes of the form (59). It is easy to see that forzesds ofA*, we need < 0.

Whenb < 0 in (59), the polynomiall* in (59) has a zero on the positive real line. Contrarily, tlea@ay
polynomial of a positive knot or almost positive knot is giva (cf. theorem 2.3). Hencé)(K) cannot
have such zero. Therefo®’ 1 A(K)

It remains the possibility thaf* is one of the polynomials (59) with> 0. Because of (44), its Alexander
polynomialA* must have zeros already presenmrthus we must havA* | A. SinceA has only finitely
many factors, this shows that only finitely mafiy= A* - A occur. O

Theorem 4.5 Let K be (topologically or algebraically) concordant positiveatmost positive knots with
o(Kj) > 2g(Kj) — 2. ThenA(K;) are constant, in particular only finitely maKy occur.

Proof. To see that in fach is unique, note that all possiblg’ have simple zeros. However, Alexander
polynomials of concordant knoks; » have the Fox-Milnor property [FM]

f1(t) f1(1/1) A(Ke) = Fa(t) f2(1/1) A(K2) (61)
(with f12 € Z[t]). It implies that the multiplicities of the same zero&fK;) andA(Kz) on St have the
same parity.

For the finiteness property in the almost positive case, veel @@ extension of lemma 4.1. For this see
the argument in the proof of lemma 5.3 of [St7]. It shows {h## increases under posititgtwists in an
almost positive diagram unless the twists are trivial ipts. Alternatively, use lemma 4.4 below. O

Definition 4.1 We call a knotalmost special alternating it has a diagram that differs by one crossing
change from a special alternating one.

Corollary 4.3 Among almost special alternating knots only finitely mang éopologically or algebrai-
cally) concordant. O

In the spirit of corollary 1.1 (but with some more argumergaded), we have the following.

Theorem 4.6 No infinite smooth concordance class of positive or almositjye knots contains a positive
or almost positive kndK with (K) > 2g(K) —

Proof. Let {K;} be smooth concordance class containing such aknroK;.

Let againA(K) andA(K;) be as in (58). Sinca is determined byj,, we haveA(K;) = A(K) =: A, and it
dividesA(K) andA(K;). LetA*(K) = A(K)/A andA* (K;) = A(Ki)/A.

We know from the proof of theorem 4.4 that
spamy*(K) < 2, (62)

all zeros ofA* (K) are onSt andA*(K) | A(K) = A. (Forknots K we cannot have spari(K) = 1 because
of (8).) By the same argumerit,
spamy*(Ki) < 2, (63)
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then all zeros of\* (K;) are onS! andA*(K;) | A. This means that we are done (showing that only finitely
manyA(K;), and henc&;, occur) if we establish (63).

Keep in mind that spah(K;) = 2g(K;) (theorem 4.3).
Case 1If g(Ki) < g(K), thenA = A(K;), and we are done.

Case 2.If g(Ki) > g(K) +1, then by (18) and almost positivitgs(K;) > g(K;) — 1 > g(K) > gs(K), a
contradiction. (Only at this place is smoothness of the oatence, but crucially, needed.)

Case 3If g(K;) = g(K), then (63) follows from (62).

Case 4Thus consideg(K;) = g(K) +1. If A(K) = A(K), we have (63). Thus we assume that s ) =
2.

Take a zerd, of A*(K) on S'; since& # +1 from (8), and because of (62), it is a simple zero. Thus
multg A(K) — multg(A) = 1 is odd. Because of (61) and the remark after it, piMK;) — mults A(K) is
even. Thus muftA(K;) > multg A (keep in mindA | A(K)).

Now let X be the minimal polynomial of. Then forg # +1, we haveX = A*(K). Thus

(A(K) =A"(K)-B) | A(K;), (64)

with span(A(Ki) /A(K)) = 29(Ki) — 29(K) = 2, and then modifying the argument referred to directly befo
(63) by replacingd by A(K), we obtain agaitA(Ki)/A(K)) | A(K), and finitely manyA(K; ). O

4.4 Concordance of links

Here we will discuss ways of extending to links the proof @fdlem 1.1 and its subsequent modifications
in section 4.3. The stronger smooth concordance versidios\/fthe reasoning for knots, and we highlight
only additionally needed arguments.

We first address our main result. The below proof manifegtinerstones of its extension.

Theorem 4.7 Only finitely many special alternating links are concorddgMore precisely, linking num-
bers and the signature jump function identify the Alexargidynomial of a special alternating link.)

Proof. First, concordance is a homology invariance, and presdinéag numbers. Thus it must map
between split components, and we may just consider noh{spkcial alternating) linkk. We use then
the link case of theorem 3.1 to ascertain all rootApfo be onS'.

Now we will need the fact thaj, is a link concordance invariant. This is less obvious thandase of
knots, but is knowndf., e.g., [CK, CF] or [F, Theorem 4.2]). Thus we can again empigpatures, and
most of the proof of theorem 4.1 can be followed. The proofenfilna 4.1 remains valid for (positive)
links.

The principal departure occurs in noticing that unimodtjdails for links. Evidently, each polynomial is
the scalar multiple of a primitive polynomial (and sharesrd@ots), but the option th&i(K;) are multiples
of each other does exist for links. (It occurs for exampletfar reverseé?2, p) torus links.) One can get
disposed of this problem thus.

Fix the numben of components of. Hoste’s formula¢f. remark below (7)) expresses

AL) =002 =3 T[] i

r (i,j)er

as a sum over spanning tresf the linking grapi\(L) of L. This is the graph given by each vertex for
a component; of L and an edge labelleg = Ik(Ljj,L(;;) between verticekj; andLy if lij # 0. For
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a positive link, aIIIk(Lm,Lm) > 0, and ifL is non-split,A(L) is connected. Each summand in Hoste’s
formulais positive, and at least one is there. This shows

A(lL) >0 (65)
(cf. below (14)). But since concordance preserves linking nuslvee need to haveg(L) = A(L’) whenL
and and.’ are concordant.
This removes the scaling ambiguity and determifiemiquely. O

For the extension to positive and almost positive links, viltuse the work in 83.3, in particular corollary
3.3.

Theorem 4.8 If L; are positive links witho(L;) > —1— x(L;), then only finitely many; are concordant.

Proof. We adapt the proof of theorem 4.4. First we need to providafpossible zer§ = +1 of A by
setting

jmult g A(L) = [ (L)]

for the definition (58) ofE(L). Then, using (50) and (41), we have agaifL;) = EA*(Li), with A
determined byj, (and so equal for all;), and spafr*(L;) < 2. Further note that, because of (68)(L;)
are fixed under scaling with integers. We rewrite and norredli (L;) as

Ai(t) = O (Li)(t) - tMxdeRb) = a. (t— (x+ L) + 1) € Z[t*Y],

wherex € R,x#0,+1andac Z,a# 0. (For linksL;, the additional possibilitieA™ =t+1, (t+1)- (t+1)
come in, but they do not affect any finiteness considerafjiasizder (3) A gives the polynomial

O(z) = aZ —a(x+1x—2) € Z[7). (66)

A polynomialﬁi(z) of this type for(a,x) = (a&,x) is to divide each](L;) (with integer polynomial quo-
tient):
0i(2) | O(Li).- (67)

This situation is managed by showing that only finitely manysiblelfli (z) occur, as follows.

If x; > 0, then the absolute term ﬁfi/ai in (66) is negative. Thuéi(\/i) has a real positive root, and
hence cannot divide the positive polynomiald.;)(,/2) (as argued in the proof of theorem 4.4).

Let thereforeg < 0. Comparing the lowest coefficients in (67) gives
a(x+Y—2) A

for A = A(Li) with (65), and it is crucial here that does not depend on A priori, for x; € R the
parenthesis may represent rational numbers with arbijttarge denominators. But we avoid this problem
here by noticing that fox; < 0, we have

X + Y, — 2| > 4.
This boundsa;| < A/4, and sincey € Z, we have only finitely many possible values &r Then the same
is true forx; + 1/xi — 2, and hence faorl; andA.

This finiteness argument puts though the proof of theorem 4.4 O

To deal with almost positive links, we first record the foliogy observations.

Lemma 4.3 If L is almost positive (and non-split), then (65) holds.
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Proof. Let D be an almost positive connected diagram represeitinighe only way in which\(L) =0,
is if under the crossing switch from a positive diagram, odgesin/A(L) disappears and disconnects the
graph. Then one easily sees tBamust look like

®®®® ©®

(with all crossings in the tanglés positive), in which case is a split positive link. O

Lemma 4.4 Let D be an almost positive connected diagranmebmponents and a positive crossing of
D. Set

N(D) = [O(D)lns1.
Let D}, be obtained fron by applyingp times at) twist atc. If
(A(D),N(D)) = (A(D}),A'(Dp)) (69)

thenc is nugatory after isotopy (i.e., the twists do not changditiietype), or all links ofD’p are split.

Proof. We apply lemma 4.3 on the diagrad’ obtained after smoothing oet From (69) we have that
A(D') = 0 (we need\ in (69) for the case that is a crossing of the same componentD)f. Then,
reinstallingc, we see that eitharis nugatory (if it connects two differef in (68)), or all links are split
(if c occurs within soméd;). O

Theorem 4.9 Let L; are almost positive links witth > —1— x. Then only finitely many; are concordant.

Proof. The preceding lemmas provide the ingredients needed tofynthi proof of theorem 4.5 (without
claiming uniqueness ak). Lemma 4.4 shows that only finitely many almost positivékdiroccur with
given Alexander polynomiah # 0. (Note again that we many consider only non-split links)rima 4.3
eliminates the possiblily of\(L;) being infinitely many multiples of the same polynomial (agaed to
argue for theorem 4.7). O

Corollary 4.4 If L; are almost special alternating links, then only finitely mmapare concordant. [
Turning to smooth concordance, we need an extra caveatd@rthlogue of theorem 4.6.

Theorem 4.10 1. No infinite smooth concordance class of positive linksams a positive link. with
o(L) > —1-x(L).
2. Noinfinite smooth concordance class of positive or alrpositive links contains a positive or almost
positive linkL with (L) > —x(L), oro(L) > —1—x(L) and detL) # 0.

Proof. Mostly we repeat the proof of theorem 4.6 (and use its natatigor links, we need to extend case
4 of that proof. This case occurs only for almost positivédifbecause of (11) for positive ones), whence
the first statement in the theorem.

For the second statement, the goal is to show again (as ih (64)
A(L) [A(Li). (70)

Then again foA(L;) = A(L;)/A(L) we have spaf(L;) <2, and all zeros oh(L;) must be ors and be+1
or zeros ofA(L). This leaves finitely many choices fAfL;) (with scaling by integers fixed), an(L;).
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The argument in the proof of theorem 4.6 applies agdip4f+1. Notice the extension of (61) to links, due
to Kawauchi [Kw, Theorem B]. Thus consid&e +1. ThenX =t 1. If X = A*(L), its zero is simple,
and we argue as for theorem 4.6 that (70) holds. Otherwisspim\*(L) < 2, we haveA*(L) = (t 4 1)2

or A*(L) =t?— 1 (keep in mind thaf* is reciprocal up to units i& [t*1]).

If A*(L) =t2— 1, the zeros are simple, and we have as before (7@).(If) = (t — 1), then (70) changes
to A(L) | A(L;) - (t — 1)2. Now for n component links, because of (65), we have

multi A = mindegd=n—1,

which is the same fok andL;. ThusA(L) | A(Lj) - (t — 1) implies (70). The situatiod*(L) = (t + 1)?
cannot be dealt with any more, and the assumptions are madeltale it. O

Links can be covered also in some version of proposition du2 we confined ourselves to knots only,
intending the criterion as a technical tool for practicahgutations (see proposition 4.4).

4.5 Computational results

Our results allow computational verification on a large nemif instances, thus drawing evidence for
conjecture 1.1. For example, we have the following.

Corollary 4.5 If K; are positive knots of genus at most 4, then only finitely migngrre (topologically or
algebraically) concordant. Moreover, only finitely mansjtive knots are smoothly concordant to dfly

Proof. The first part is an application of theorem 4.5. The compulatf generators (see theorem 2.4)
allows one to verify that for genus< 4 all positive knots have > 2g— 2, with one exception, the knot
1445657 (Whereo = g = 4). For the smooth concordance, use theorem 4.6. O

For low crossing knots, we focussed only on smooth concaelaas statements for topological concor-
dance are trivial over a finite domain, and far more difficiiéiothe same domain as the smooth version
(see remark 4.3).

Proposition 4.4 If K is a positive knot of at most 16 crossings, then positive gtooncordance deter-
mines the Alexander polynomial (as in (52)). O

We skip the proof, which is a lengthy computational checkia tables of KnotScape [HT] (for a proof
of similar flavour, see theorem 4.11). Essentially, we daged using theorems 2.4 and 2.1 that we can
invoke proposition 4.2 (resorting ourselvediavith lemma 4.2), or if not, the slightly more general (but
slightly more awkward to test) proposition 4.1.

Looking at the limits of our method, we see two major casesitiiife of the proof of theorem 1.1:

a) WhenA(K) has an irreducible factot with all zeros offS!. A simple such factor could
beA(63). (Alexander polynomials of non-positive twist knots can aocur; see the end
of the proof of theorem 4.4.) (71)

b) WhenX is a (necessarily multiple) factor withy = O for all rootsg of X on st

The practical effectiveness of proposition 4.1, observethé proof of proposition 4.4, motivated us to
exhibit a concrete instance on which the criterion failspiplg. These efforts, together with diverse other
arguments, point to a noteworthy circumstance. Herebyptbef of corollary 4.1 drew our attention to a
particular choice of root. Let us below say that fiiet root & of X on St is the one of smallest afgyp),
i.e., havingdm o > 0 and closest to 1 (so th&thas no roots o0& (§o); see (46)).

Question 4.1 Let K be a positive knot. Is it true then that
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i) all irreducible factorsX of Ax have a root or$*, and
ii) for the first rootép of X, we havejg, (K) = 2multx Ax ?

This lends considerable further potential to propositidn 4

Note some pieces of observable evidence.

1) Thisis certainly true wheA = X is irreducible. Them > O settles the first property i) (and together
with lemma 4.2 shows that it is enough to test irreducibitify(l). The second property ii) holds
sinceog (K) > 0 for all § (K has a positive unknotting sequence), and in (44) the alesbhs can
be dropped.

2) Similarly one sees that part ii) follows from part i) in thase when (40) is an equality, and in that
case also part (b) of proposition 4.2 applies.

3) Itis enough to look at prime knots and prime (positiveydéans by theorem 2.1.

We then also collected some amount of experimental support.

Theorem 4.11 The answer to question 4.1 is affirmative for

e positive knots with up to 16 crossings,
e knots with positive diagrams of up to 18 crossings, and

e positive braid representations on at most 5 strands witltotbtcrossings, and 6 strands up to 23
crossings.

In particular, for such knots any smoothly concordant pasknot has the same Alexander polynomial (as
in (52)).

Proof. The first family was discussed in proposition 4.4 (which ratriggered question 4.1). For the
other two families, we started by extensively testing paofiquestion 4.1 — again, using lemma 4.2 and
working with (1. (For braids, we obtainefl from the Burau matrix.) By the above remark 3, we consider
only prime diagrams. This test deals with (also part ii) foxdpts whemA = X is irreducible (by remark 1),

or if (40) is an equality (by remark 2).

For the remaining knots, proposition 3.1 enabled us to tsisigwalues oﬁ(K’) part ii) at least in the
situation (which turned out to be rather generic) fator X) is simple, and so are all ‘preceding’ roots of
Aon=(gp).

The instances of failure of this test were collected, andidations (of the underlying knots) partly re-

moved using a functionality of KnotScape, leaving a list bbat 280 entries. We found, for example,
that (at least one of the two parts of) proposition 4.2 aggiieall positive 17 crossing diagrams, and 18
crossing diagrams except fokBots

To save some notation, let in the following for the trefail 3

M(t) = AB) () =t* -1+t and N=n;. (72)

All these remaining cases have the double faites 1, except for two, wher&X = INM,. (No knots have
more than one double factor, or one of multiplicity 3 or high&#e checked (now much more slowly) using
Orevkov's MATHEMATICA™ program (mentioned after (32), and partly assisted by ibeatesult (73)
below for cables) that the jump at the first multiple root isvhjch finished the work.

Note that answering positively question 4.1 imleTe& A, thus along the way we can computationally
extend the scope of proposition 4.4. In particular, afteyoting part i), whenﬁ(K) (and hencé\(K)) has
no repeated roots, we can use part (a) of proposition 4.2daddce the claim of proposition 4.4 without
needing to apply the value test. O
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4.6 Some examples
However, we also became aware of the following examples.
Proposition 4.5 Case b) of (71) can occur. The answer to part ii) of questidnsinegative in general.

We do not know about a) of (71) (and part i) of question 4.1, $eough, also example 4.1 below.
Proof. If K=T %P is a satellite knot with companiohand (zero-framed) pattefof degreen > 0, then

je(K) = jen(T) + je(P). (73)

This is a direct consequence of Kearton’s satellite sigiedfarmula [Ke, Theorem], and suggests satellite
constructions as a method in seeking (negative) examples.

Consider now the satellite knét = T * P around the(p, g)-torus knotT = T, q, with the(r,s)-torus knot
patternP = T; s, positioned as a closedbraid in the solid torus. Applying (56) and Seifert’s fortadior
the Alexander polynomial of a satellite knot, we have up tidsin £|[t],

A(Tpq* Trs) = Dpgr-A(Trs)

(cf. (1) and below), with o
D' -1
Dpgr = A(Tpg)(t") = W-

This polynomial decomposes, using (57), with

1 ifn| pgrbutn{ pr,qr,
mU|txn(Apyq7r){ 0 oth<|arwise T

Takep=2,q= 3 (thusT =T, 3 = 3; is the trefoil) and = 5. ThenX = Xg =1 (from (72)) divides\, 3 5.
If X61A(Trs), then (73) gives

Jais(Tpq* Trs) = Jesrisa(Tpa) = =2,

and hence
Jesrisa(Tpg* Trs) = 2

(keep in mind (32)).
Take then somse not divisible by 6 (and 5), and let> 3.-r = 15 to ascertain thak 3 x Ty s has a positive
diagram (using the blackboard framing of the positive 3ssiog trefoil diagram). For exampde= 16 will
do. This gives a kndk = T 3 * Ts 16 With & positive braid representation on 10 strands and 78so1gs,
in particularg(K) = 35. It provides the negative answer to part ii) of questidnid.general.

To show that case b) of (71) can occur, considéB;. This 82 crossing knot is thus the simplest known
potential element in a smooth counterexample family toecjre 1.1. O

Example 4.1 For K = 15,5323 Which occurred in the test for proposition 4.4, the Alexanpolynomial
factors (with (72)) as
A(15p53089 =t -T2 (1+2t— 53+ 2t°+1°).

The right factorX has 4 zeros off', thus now two orSt. Thus it cannot be the Alexander polynomial
of a positive knot, since there is no positive knot of genusithw = 2. Thus we see that factors of

polynomials of positive knots are not necessarily agairypaials of this type. This should serve as a
warning regarding the limits of use of factorization.

Remark 4.2 A yet unsettled question is: X | O with [X]o = +1, isX positive? Recall that by theorem 2.3
and the remark below iﬁ(K) is a positive polynomial (more generally for positive lipk&urthermore,
we conjectured in [St8] (also for links) thal(K) is strictly log-concavei.e., [O]k:1[0Jk_1 < [0]2 when
0<k< maxdegﬁ. We verified this property for all knot€ in theorem 4.11. In fact, we also found that
all irreducible factorsX of O(K) (with [X]o = +1) are positive and strictly log-concave.
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4.7 Further extensions and concluding remarks

We finish the treatment of concordance with several remaidsconcern possible (and impossible) exten-
sions of our results, and their relation to other work.

The difference between smooth and topological concords@ems extremely hard to understand. So far
almost all of our knowledge centers around Freedman’s desytrthat all knots with trivial Alexander
polynomialA = 1 are topologically slice. Some are known to be not smootlitg sthe first example,
the (—3,5,7)-pretzel knot, apparently due to Casson, using Donaldseork. (Rudolph constructed later
more examples; see remark 4.4.) Until recently, no othedidares for topologically but not smoothly
slice knots have been confirmed.

Remark 4.3 If we consider the topological 4-gengsinstead of the smooth orgg, then Rudolph’s slice
Bennequin inequality (17) (along with its more recent iaat manifestations due to Ozsvath-Szabo and
Rasmussen) fails. One can construct examples of positivartmst positive) knots violating= g; (resp.

g< g+ 1), forinstance, by using that tie-3,5, 7)-pretzel knot, which is topologically slice, is strongly
guasipositive. The inequality (26) still holds far (as mentioned above it), but leads the problem to show
that we can estimaigfrom above byo (or someos). For this see remark 4.6.

Remark 4.4 Many knots with trivial polynomial (i.e = 1) are strongly quasipositive (see [Ru]). There-
fore, for strongly quasipositive knots conjecture 1.15f#ilthe topological category. This already provides
some odds against a smooth category version (for stronglgigasitive knots). Our approach does lend
some tangibility to the present formulation. In contraet, d strongly quasipositive knot there seems no
easy way to contralc from g (although stillg = gs). Certainly,g; — g can be arbitrarily large. (One can
construct such examples by taking iterated connected stithe oounterexamples to Morton’s conjecture
given in [St].) Thus, at the least, our approach would do Vigthg towards a (smooth) strongly quasi-
positive knot version, an impasse which further discousagésing even conjecturally this more general
case.

Example 4.2 For 2-almost positive knots, the family of twist knots selby Casson and Gordon [CG]
provides a counterexample to conjecture 1.1 at least inlfebeaic category. (We do not know of further
examples and about topological concordance.) For 3-alpusitive one obtains many infinite families of
(smoothly) concordant knots using the tangle surgery in][KL

In a recent paper [Ba], K. Baker discusses a relevant refatdsiem. He hinted (in private exchange) to a
much stronger version of conjecture 1.1 (considered in pyeecial case by Rudolph, according to [Bal).
The reason | did not originally raise this quite strikingpicare the difficulties in dealing with concordance
of (positive) mutants. (Certainly paiks#K, K#— K for non-invertibleK are algebraically concordant.)

Question 4.2 Is there a (topological or smooth) concordance class auingaimore than one positive knot?

Remark 4.5 In [HU], Hirasawa and Uchida constructed infinite sets ofteneuch that any two elements
of a set have Gordian distance one, i.e., differ by a singlesing change. S. Baader (private communi-
cation) informed me that some of these families contain itefiyn many quasipositive knots, and asked if
one can find a family containing infinitely many positive ksiofThe work in this paper grew out of the
attempt to prohibit (the existence of) such a family. TastrLevine signatures again give constraints, and
one is left to rule out Gordian distance one between two kwdtsa positive diagram in the same braid-
ing sequence (i.e., differing under iterated twistingbwger, no easy tool seems to handle this situation.
Note, contrarily, that such a family does exist for some Gordlistance bigger than one. (For distance 2,
consider positive twist knots.)

Remark 4.6 The preprint [BDL] addresses a solution of conjecture 1ldsed on a solution of the sig-
nature bound problem (see remark 4.3). | have tried to irmatp some according changes here, but
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unfortunately, that preprint came out too late for anothajamrevision. Just a brief remark is made. It
appears that their proof in the smooth category does nofreetheir signature bound, rather the latter
upgrades the proof to the algebraic category. The proof eagalsily extended to almost positive knots.
The case of links leaves some argument to be discussed. appach does not address (52), so that at
least this aspect of the results on knots here remains umtoluc
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