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1 Introduction

Positive links are the links with diagrams where all crossings are positive (right-hand). These links seem
to have drawn relevance not as much from the combinatorial property describing them, but from their
relation to a series of different subjects, including dynamical systems [BW], algebraic curves [Ru, Ru2],
and singularity theory [A, BoW, Mi]. The intersection of theclass of positive and alternating links are the
special alternating links studied extensively by Murasugi; see for example [Mu].

The concept of braiding sequences [Tr] of links was originally introduced with motivation from Vassiliev
(finite degree) invariants [BL, BN, Va]. Braiding sequenceswere later related to positive and alternating
knots [St4, STV, SV] by means of the fact that the set of knot diagrams on which the Seifert algorithm
gives a surface of given genus decomposes into finitely many such sequences.

This paper is a continuation of the previous part of the work [St11]. Here we give further applications to
properties of positive, in particular special alternating, links. We focus this time on concordance [Lv]. (One
can work in the various categories: algebraic, topological1 or smooth, depending on the circumstances.)
Our main goal will be to use the methods we developed to address the following conjecture.

Conjecture 1.1 Any (algebraic) concordance class of knots contains only finitely many positive (or almost
positive) ones.

1‘Topological’ will for us always mean ‘locally flat’; we willnot discuss the PL case here.
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We will discuss evidence for this conjecture below in §4.1, which somewhat varies with its several possible
versions. (See also question 4.2.) In particular, it is important to keep distinction between the three levels
of concordance: algebraic, topological, or smooth. (The results that separated these categories have taken
a long time to prove, and have significant impact, also in our situation.)

First, §2 explains the background and main tools in the approach to conjecture 1.1. In §3 we deal with
inequalities relating the signature and number of roots of the Alexander polynomial on the unit circle. We
give a review of the background of this relationship. With a study of Tristram-Levine signatures, we prove
then in §4 for a large class of positive knots that its intersection with any knot concordance class is finite.
We state here our main advance towards conjecture 1.1.

Theorem 1.1 Any topological concordance class of knots (in fact, already any algebraic concordance
class) contains only finitely many special alternating ones. That is, each special alternating knot is topo-
logically (or algebraically) concordant to only finitely many special alternating knots. All these knots have
the same Alexander polynomial.

More precisely, we will establish that a special alternating knot can share its Tristram-Levine signature
jump function (30) with only finitely many others (see remark4.1). In is worth emphasizing that in the
smooth category, essentially the same proof gives a much stronger statement.

Corollary 1.1 In any infinite family of smoothly concordant positive knots, there is no special alternating
one. In other words, each special alternating knot is smoothly concordant to only finitely many positive
knots. Also, all have the same Alexander polynomial.

We will then make efforts to extend these results with focus on our conjecture, proving similar statements
for some class of positive and almost positive knots (§4.3) and links (§4.4). We will give computational ex-
amples in §4.5, discuss further, verifiable and problematic, cases in §4.6, and conclude with some method-
ological remarks in §4.7.

At a very late stage the prerint [BDL] appeared. See remark 4.6 for its relation to this work.

Acknowledgment. Over the very long period that this work developed, several people offered helpful
remarks, discussions, and references. Most directly related to the present part are C. Livingston, J. C. Cha,
A. Ranicki, D. Cimasoni, P. Gilmer, and S. Baader. S. D. Theriault pointed out numerous places of improv-
able writing in a very early version of this paper. S. Orevkovand his program provided some calculational
assistance.

2 Preliminaries, Notations and Conventions

2.1 Generalities

The symbolsZ, N, Q, R andC denote the integer, natural, rational, real and complex numbers, respectively.
Let ℜeandℑmdenote the real and imaginary part of a complex number. We will also writei =

√
−1 for the

imaginary unit, in situations where no confusion (with the usage as index) arises. Let us fix forz∈ C\{0}
that the argument arg(z) = ℑm (log(z)) is taken in[0,2π).

For a setS, the expression|S| denotes the cardinality ofS. In the sequel the symbol ’⊂’ denotes a not
necessarily proper inclusion.

We need next a few notations related to polynomials, which are understood in the broader sense as Laurent
polynomials (i.e., variables are allowed to occur with negative exponents). Moreover, we will consider also
Laurent polynomials with (only) half-integral powers, thus to save notation, let

L[t] := Z[t±1] ∪
√

t Z[t±1] . (1)
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Let ‘
.
=’ be equality up to units±t±1/2 in L[t]. For a polynomialX ∈ L[t], anda ∈ Z ∪ (Z +1/2), let

[X]ta = [X]a be the coefficient ofta in X. ForX 6= 0, letCX = {a∈ Z ∪ (Z +1/2) : [X]a 6= 0} and

mindegX = minCX , maxdegX = maxCX , and spanX = maxdegX−mindegX

be theminimalandmaximal degreeandspan(or breadth) ofX, respectively. Theleading coefficientof X
is maxcfX := [X]maxdegX. A similar nomenclature is deployed for 2-variable polynomials.

Let further forX,X1 ∈L[t] andξ∈C\{0}, multξ X be themultiplicity of ξ as a root (or zero), and multX1 X
the multiplicity of X1 as a divisor (or factor) ofX. Set mult= 0 if ξ resp.X is not a root resp. divisor. If
mult> 1, we call the root or divisormultiple. A polynomial with no multiple roots/divisors issquare-free.
(There is no ambiguity, as we will work only over separable fields.)

Of course, for irreducibleX1, we have

multX1 X = multξ X , (2)

for every zeroξ of X1, and conversely, for anyξ ∈ C\ {0}, the property (2) holds for the minimal polyno-
mial X1 of ξ.

We mention also that irreducibility is meant (because polynomial factorization can always be done) over
Z, by a lemma of Gauß (can be found, e.g., in [Se]).

Some further notations will be introduced at an appropriateplace in the text.

2.2 Conway-Alexander polynomial

TheConway[Co] and (1-variable)Alexander polynomial[Al] of a link L are regarded here as equivalent:

∆L(t) = ∇L(t
1/2− t−1/2) . (3)

They are defined to be 1 on the unknot. The skein relation for∇ can be written

∇
( )

= ∇
( )

+ z∇
( )

. (4)

A skein triple D+, D−, D0 is a triple of diagrams, or of their corresponding linksL+, L−, L0, equal except
near one crossing, where they look like in (4) (from left to right). The replacementL± → L0 is called
smoothing (out)the crossing inL±. The crossing inD+ is calledpositive, the one inD− negative. The sum
of the signs of all crossings ofD is called thewrithe of D and will be writtenw(D).

Let D be an oriented knot or link diagram. We denote byc(D) thecrossing numberof D. The crossing
number of a link is the minimal crossing number of all its diagrams. We usen(D) = n(L) to designate the
number of componentsof D or its link L. We writes(D) for thenumber of Seifert circlesof a diagramD
(the loops obtained by smoothing out all crossings ofD).

One can argue that mindeg∇L(z)≥ n(L)−1, i.e., the coefficient[∇(L)] j vanishes wheneverj < n(L)−1.
This in particular means that indeed∇L(z) is a genuine polynomial inz, and not a Laurent one, as (3) might
suggest.

Throughout this treatise,∆ is thus normalized so that (3) holds. The word ‘normalized’ refers to comparison
with other definitions of the Alexander polynomial (see (24)below), where one often leaves an ambiguity
up to units inL[t].

Thus forknots Kwe will have
∆K(1) = 1, (5)

and for a general linkL,
∆L(1/t) = (−1)n(L)−1∆(t) (6)
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(i.e., the sign is positive/negative for odd/even number ofcomponents). We will call property (5)unimod-
ularity, and (6)symmetry(or reciprocity). It is well-known that for knots conditions (5) and (6) (with
n(L) = 1) exactly determine the Laurent polynomials occurring as Alexander polynomial. Note further-
more that

∆L ∈ t(n(L)−1)/2Z[t±1] . (7)

The reformulation of symmetry of∆ in terms of∇ is that ∇L(z) is an even/odd polynomial (i.e., has
coefficients only in even/oddz-degree), whenn(L) is odd/even. The reformulation of unimodularity is that
for knots[∇]0 ≡ 1. More generally,[∇(L)]n(L)−1 can be expressed in terms of component linking numbers;
see [Ht].

It is important to note that for a knotK, because of (5) and (6),∆K(−1) is an odd integer, and hence

∆K(±1) 6= 0. (8)

The value
det(L) := ∆L(−1)

is sometimes called thedeterminantof L. For a linkL (of more than one component) always∆L(1) = 0,
but there are many linksL with

det(L) = ∆L(−1) 6= 0.

These include all (non-split) alternating links, by work ofCrowell-Murasugi (related to theorem 2.2 given
below).

2.3 Links and diagrams

Here, and in the sequel, for a knot or linkK, we write !K for its obverse, or mirror image. Similarly
!D is the mirror image of a link diagramD. If K is a knot, write −K for its inverse(knot with opposite
orientation). ByK1#K2 we denote theconnected sumof K1 andK2.

For a few specific (prime) knots, we use the tables of [Ro, Appendix] up to 10 crossings, and for 11 to 16
crossings, the tables of [HT] (see also [HTW]), where we append non-alternating knots after alternating
ones (of the same crossing number).

We say that a link diagramD is l-almost positiveif it has exactlyl negative crossings, that is,w(D) =
c(D)−2l . A knot is l -almost positive if it has anl -almost positive diagram, but no(l −1)-almost positive
one. Hereby, for both knots and diagrams, ‘0-almost positive’ is called shorterpositiveand ‘1-almost
positive’ isalmost positive[St7].

Note: There seems some division between knot theorists as to whichlinks are to be called positive. In
[Bu, MZ], the rather non-standard (and confusing) convention is used to call ‘positive knots’ the knots
with positive braid representations (called ‘positive braids’ [Cr2], or better ‘positive braid knots’). The
convention here follows the now established standard, usedin many publications, as [Cr, CM, MP, N, O,
Ru, Ta, Yo, Zu], to call positive knots the (larger) class of knots with a positive diagram.

A link diagramD is calledsplit, or disconnected, if it can be non-trivially separated by a simple closed
curve in the plane. Otherwise we say the diagram isnon-split, or connected. A split link is a link with a
split diagram. Other links are said to be non-split. A crossing in a non-split diagram isreducible, if its
smoothing gives a split diagram. A diagram is reducible if ithas a reducible crossing, otherwise it is called
reduced. To avoid confusion, unless otherwise stated, in the sequelall diagrams are assumed reduced, that
is, with no nugatory crossings, and links are non-split.

A diagramD is calledcomposite, if there is a closed curveγ intersecting (transversely) the curve ofD in
two points, such that both in- and exterior ofγ contain crossings ofD. OtherwiseD is calledprime. (Note
in particular that prime implies reduced.) A linkL is prime, if for every composite diagramD of L one of
the in- or exterior ofγ contain (only) an unknotted arc; otherwiseL is composite.
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Theorem 2.1 (Ozawa [O]; see also [Cr2]) If a positive diagram is prime, itdepicts a prime link. In
particular, prime factors of a positive link are positive.

A region of a link diagramD is a connected component of the complement of the plane curveof D. A
regionR of a diagram is calledSeifert circle region(resp. non-Seifert circle, orhole region), if any two
neighboring edges in its boundary (i.e., such sharing a crossing) are equally (resp. oppositely) oriented
(between clockwise or counterclockwise) as seen from inside R. A diagram is calledspecial iff all its
regions are (either) Seifert circle regions or hole regions.

It is an easy combinatorial observation that for a connecteddiagram two of the properties alternating,
positive and special imply the third. A diagram with these three properties is calledspecial alternating.
See, e.g., [Mu, Mu2]. A special alternating link is a link having a special alternating diagram. It can be
described also (like in the introduction) as a link which is simultaneously positive and alternating. By
definition such a link has a positive diagram, and an alternating diagram. That it has a diagram which
enjoys simultaneously both properties was proved in [N, St6].

2.4 Genera

In the sequel we denote byg(D) thegenusof a diagramD, this being the genus of the surface coming from
the Seifert algorithm applied on this diagram. More conveniently, if D is a link diagram, we use instead of
g(D) the notationχ(D) for theEuler characteristicof the Seifert surface given by the Seifert algorithm.

By g(L) we will denote the genus andχ(L) the Euler characteristic of a linkL, which are the minimal
genus resp. maximal Euler characteristic of an orientable spanning (i.e., Seifert) surface forL. By gc(L)
we denote thecanonical genusof L, which is the minimal genusg(D) of some diagramD of L. Similarly,
χc(L), thecanonical Euler characteristicof L, is the maximalχ(D) for all diagramsD of a link L. Further,
for a link L we denote bygs(L) the smooth 4-ball genus, which is the minimal genus of a (smoothly)
properly embedded surface in the 4-ball with boundaryL. Finally, χs(L) is set to be thesmooth 4-ball
Euler characteristic.

A knot K is slice if gs(K) = 0. Two knotsK1 andK2 are(smoothly) concordantif −K1#!K2 is slice. Let us
say thatK2 is positively concordantto K1, if K1 andK2 are concordant and positive.

Theorem 2.2 (see [Cr, C, Mu2]) The Seifert algorithm applied on an alternating or positive diagram gives
a minimal genus surface.

Thus the genusg(L) of an alternating/positive linkL coincides with the genusg(D) of an alternating/positive
diagramD of L, given by

g(D) =
c(D)− s(D)+2−n(D)

2
, (9)

with c(D), s(D) andn(D) = n(L) being the number of crossings, Seifert circles and components ofD, resp.
The preceding theorem implies that for alternating/positive linksL,

g(L) = gc(L) . (10)

For positive links, we have additionally that

g(L) = gs(L) (11)

(see (18) below).

We recall two major ways of estimating genera of arbitrary knots from below. One comes from the Alexan-
der/Conway polynomial. It is well-known that for split links ∇ = 0, and (as partly stated already in §2.2)
for a non-split linkL, the coefficient[∇(L)]i is non-zero only if

n(L)−1≤ i ≤ 1−χ(L) , and i −n(L) is odd. (12)
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The right inequality is related to the description of∆ in terms of Seifert matrices (see below (24)). The
parity condition is seen equivalent to the property (7) of∆. Let us call ani satisfying (12)admissible, and
in the same way the coefficient[∇]i admissible for suchi.

The range ofi in (12) means that (for∇ 6= 0)

n(L)−1 ≤ mindegz∇(L) ≤ maxdegz∇(L) ≤ 1−χ(L) . (13)

For many (non-split) links, including positive and alternating ones, the rightmost inequality is exact, i.e.,
an equality, and with (3) we can write

1−χ(L) = 2maxdeg∆L = −2mindeg∆L = maxdeg∇L . (14)

(In fact, this property is directly related to theorem 2.2.)More specifically, we have the following property.

Theorem 2.3 For positive and almost positive (non-split) links,∇ is a positive polynomial, i.e., all its
admissible coefficients are positive.

For the later applications of this theorem, it is enough thatall admissible coefficients are nonnegative, and
at least one is positive. This property is essentially proved in [Cr, Corollary 2.2]. For the clarification why
no admissible coefficient is zero (not needed here) see, e.g., [St11] (for positive links) and then [St3, §4.1]
(for how to extend it to almost positive links).

Note that forknots K, the rightmost inequality in (13) can be restated using (3) and 2g(K) = 1−χ(K) in
the form

maxdeg∆(K) ≤ g(K) . (15)

Again, equality holds for positive and alternating knotsK.

For any knotK the left inequality in (13) is exact (and the constant term of∇ is 1). Note also that (13)
implies 2g(L)≥ span∇(L), and equality occurs iff the leftmost and rightmost inequalities in (13) are both
exact, in particular for positive links.

The other way of estimating genera comes from Bennequin’s inequality [Be, theorem 3], and its subsequent
improvements. We define theBennequin number r(D) of a diagramD of a link L to be

r(D) :=
1
2

(
w(D)− s(D)+1

)
. (16)

Then it is known (see [Ru, He]) that

1−χ(L) ≥ 1−χs(L) ≥ 2r(D) , (17)

which is calledslice Bennequin inequality. We mainly require the following special case. For anl -almost
positive diagramD of a knotK, by comparison of (9) (withn(D) = 1) and (16), we haver(D) = g(D)− l ,
and (17) yields

g(D)− l = r(D) ≤ gs(K) ≤ g(K) ≤ gc(K) ≤ g(D) . (18)

In particular, for positive diagrams (l = 0), all inequalities become equalities (recall (10) and (11)). This
amplifies, by addition of the slice genus, a special case of theorem 2.2.

There is a third estimation of genera, using Tristram-Levine signatures, which we explain next.

2.5 Tristram-Levine signatures

Here we introduce one further main technical tool appearingin the sequel. A more extensive discussion
close to our course here can be found in [L, §8]. (We shall givea few additional references for further
details.)
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Set
S1 := {z∈ C : |z|= 1} , and S1

+ := {z∈ S1 : ℑm z> 0} . (19)

Let M be a Seifert matrix of size(1−χ)× (1−χ) corresponding to a Seifert surfaceSof a link L of Euler
characteristicχ. Note: 1−χ < 0 can occur (only) ifS is disconnected; then∆(L) = 0, and such links will
not be studied in this paper. We thus assume throughout thatS is connected. Then for anyξ ∈ S1 we define

Mξ(L) := (1− ξ)M+(1− ξ̄)MT , (20)

where bar denotes conjugation and·T transposition. This is a Hermitian matrix, and all eigenvalues are
real. Byσ(Mξ) we denote thesignature(sum of signs of eigenvalues) and byν(Mξ) thenullity (dimension
of the kernel, or number of zero eigenvalues) ofMξ. They turn out to be independent of the surface and
Seifert matrix, and become thus invariants ofL. We obtain then a family, written byσ•(L), of signatures
σξ(L) for ξ ∈ S1, called generalized orTristram-Levine signatures[Ts, Le]. Similarly we have thenullities
ν•(L). Clearly,

σξ(L) = σξ̄(L) , (21)

which is why we will usually work only onS1
+, while paying attention toξ =±1.

All the Tristram-Levine signatures satisfy for a skein triple L±,0 the rules

σξ(L+)−σξ(L−) ∈ {0,1,2} , (22)

σξ(L±)−σξ(L0) ∈ {−1,0,1} .

(Whether to have{0,1,2} or {0,−1,−2} in (22) is a matter of convention.) The behaviour of signatures
under mirroring, inversion (for a knotL), and connected sum is likewise well-known:

σξ(L) = σξ(−L) = −σξ(!L) ,

σξ(L#K) = σξ(L)+σξ(K) .
(23)

For the purpose of this paper, we need another approach to the(normalized) Alexander polynomial, differ-
ent from the skein property (3). The polynomial of a linkL can be calculated from a Seifert matrixM of L
by

∆L(t) = t(χ−1)/2 det(M− tMT) . (24)

(In this definition the unitt(χ−1)/2 is often omitted, but it is added here to conform to the normalization
of §2.2.) In recalling the consequence (13), let us note thatthus a link satisfies equality (14) exactly if it
possesses a regular (non-zero determinant) Seifert matrix.

Tristram-Levine signatures are related to the 4-genus (cf. §2.4) via the Tristram–Murasugi inequality [Ts,
Mu]: if ξ is a prime power root of unity,

∣∣σξ(L)
∣∣+νξ(L) ≤ 2gs(L)+n(L)−1. (25)

This inequality holds also in the topological category. (Note: with ‘gs’ replaced by ‘g’, for connected
Seifert surfaces, the r.h.s. becomes 1− χ(L), and (25) follows for allξ by definition ofσ• andν•.) A
consequence is that for a knotK,

|σξ(K)| ≤ 2gs(K) when∆K(ξ) 6= 0. (26)

A further feature ofσξ(L) for a link L is that

when∆L(ξ) 6= 0, then σξ(L)−n(L) is odd. (27)

Moreover, in this case, for a knotK, the sign of∆K(ξ) (which is a real number when|ξ| = 1 and∆K is
symmetric) determinesσξ mod 4 (see [St10]):

∆K(ξ) > 0 ⇐⇒ σξ(K)≡ 0 mod 4,

∆K(ξ) < 0 ⇐⇒ σξ(K)≡ 2 mod 4.
(28)
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From the relationship (26) and properties (23) one easily deduces thatσ•(K) is a concordance invariant
outsidethe zeros of the Alexander polynomial. Namely, ifK1 andK2 are concordant, then−K1#!K2 is slice,
i.e., gs(−K1#!K2) = 0. We have from (23) and (26) thatσξ(−K1#!K2) = σξ(K1)−σ(K2) = 0 whenever
∆−K1#!K2(ξ) = ∆K1(ξ) ·∆K2(ξ) 6= 0. That is, ifK1,2 are concordant, and

∆K1(ξ) 6= 0 6= ∆K2(ξ) , (29)

thenσξ(K1) = σξ(K2).

To remove the restriction (29), one considers thejumpof σ• atξ,

jξ(L) := lim
εց0

σξeiε(L) − lim
εր0

σξeiε(L) , (30)

which becomes a full concordance invariant for knotsK. This property will be a key in our arguments. It
is obvious that

jξ(L) 6= 0 only if ∆L(ξ) = 0. (31)

Further, it follows from (21) that
jξ(L) = − jξ(L) , (32)

in particular the jumpsj±1(L) = 0, and are useless.

Here may be appropriate to emphasize that calculatingσ• and j• using (large) Seifert matrices is not
efficient in practice, regardless of being polynomial time,and requires a substantial algorithmical effort
to be performed safely. We used a package for MATHEMATICATM written by S. Orevkov. This method,
though, is suitable only for limited scale computations, and thus we sought alternative means to evaluate
these invariants. See, e.g., proposition 3.1.

The(usual) signatureσ = σ−1 of Murasugi [Mu] has a very distinguished role among the Tristram-Levine
signatures. An important special case of (27) for a knotK is whenξ = −1. Because of (8), we have that
σ(K) = σ−1(K) is always even for a knot. Moreover, (26) applies to give

|σ(K)| ≤ 2gs(K)≤ 2g(K) . (33)

Murasugi first proved that these inequalities are exact (i.e., equalities) for special alternating knots.

More generally, for alternating knots there are nice combinatorial formulas available to calculateσ from
an alternating diagram (see, e.g., [Mu, Kf, GL]). These formulas, together with the skein rule (22) (‘1’
does not occur on the right) and the property (28) (forξ = −1) provide a tool for calculatingσ, at least
for knots, only using integer arithmetic. This is one of the methods with a huge practical advantage over
diagonalizingM−1, and was used forσ calculations throughout this paper.

We will need the following information on the signature of positive knots.

Theorem 2.4 (see [CGo, PT, St7, St9]) LetK be a positive knot of genusg and signatureσ. Then

1. σ > 0,

2. σ = 2 if and only ifg= 1,

3. if g= 2, thenσ = 4,

4. if g= 3, thenσ ∈ {4,6},

5. if g= 4, thenσ∈ {6,8}, except ifK = 1445657

(whereσ = 4), and

6. if g≥ 5, then 2g≥ σ ≥ 6.

More recently Tristram-Levine signatures have been of someinterest because of their relation to the clas-
sification of zero sets of algebraic functions on projectivespaces [Or, F] and (a quantum version of) the
Jones polynomial [G].
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2.6 Braiding sequences and genus generators

Now let us recall, from [St4, St5], some basic facts concerning knot generators of given genus. We will set
up some notations and conventions used below. This is discussed in much more detail in [St9]. Cromwell
offers in his recent book [Cr3] (section 5.3) an introductory exposition on the subject.

We start by defining∼-equivalence of crossings. Areverse claspis, up to crossing changes, a tangle like

. If exactly one strand has opposite orientation, we call theclaspparallel. We call a clasptrivial

if both its crossings have opposite sign. Such a clasp can be eliminated by a Reidemeister II move.

Definition 2.1 Let D be a link diagram, andp andq be crossings. We callp andq∼-equivalentand write
p∼ q, if smoothing out one renders nugatory the other.

Another (and more commonly used elsewhere) way of saying this is thatp andq can be made to form a
reverse clasp after flypes. A minor argument will convince one that this is indeed an equivalence relation.

Definition 2.2 A ∼-equivalence class consisting of one crossing is calledtrivial , a class of more than
one crossingnon-trivial. A ∼-equivalence class isreducedif it has at most two crossings; otherwise it is
non-reduced. A diagram is calledgenerating, or agenerator, if all its ∼-equivalence classes are reduced.

Let D be an oriented link diagram with crossingsc1, . . . ,cn. We explain now, following [St2], how to define
a family of diagramsD=B(D) calledbraiding sequence(or series). Consider the family of diagrams

D = { D(p1, . . . , pn) : p1, . . . , pn ∈ Z odd } .

Herein the diagramD(p1, . . . , pn) is obtained fromD by replacing the crossingci by a tangle consisting of
|pi | reverse half-twists of sign sgn(pi):

pi = −3 pi = −1 pi = 1 pi = 3

. (34)

Following [St2], we will callD thebraiding sequenceB(D) associated toD. Note thatB(D) does not in
fact depend on how crossings inD are switched. In particular, we can, and will, assume without loss of
generality thatD is alternating.

We will use below the following simple technical argument from [St11].

Lemma 2.1 ([St11]) If
Di = D(p1,i , . . . , pn,i) (35)

are infinitely many diagrams in one braiding sequence, then we may without loss of generality assume that
there is a 1≤ d ≤ n such thatpd+1,i , . . . , pn,i are constant, and

pk,i+1 > pk,i

for all i > 0 andk= 1, . . . ,d.

We call apositive(resp.negative) t̄ ′2 twist the replacement of the tangle forpi = 1 (resp.pi = −1) in (34)
by the one forpi = 3 (resp.pi =−3).

This move does not change the canonical genus: whenD′ is obtained fromD by a t̄ ′2 twist, theng(D′) =
g(D). Thusg(D′) = g(D) is constant for allD′ ∈ B(D). As it turns out, some kind of converse of this
property is true for fixedg(D), up to finite indeterminacy.
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Theorem 2.5 (see [St4, St9]) The set of knot diagrams on which the Seifertalgorithm gives a surface
of given genus, regarded up to crossing changes and flypes, decomposes into a finite number of reverse
braiding sequencesBi = B(Di) for generatorsDi . The same is true for link diagrams of fixed number of
components.

Usually one considers alternating diagramsDi and their underlying knotsKi (which we also call genera-
tors). There are systematical ways to determine the generator sets{Ki} for smallg. The caseg= 1 was
done by hand in [St4] (and observed independently in [Ru]), andg= 2,3 in [St5], already using substantial
computation. Forg= 4, the limit of the feasible, an account is given separately [St9]. The generator sets
quickly become highly difficult, and each new set required anincreasingly efficient algorithm to determine.
Theorem 2.4 is to a large extent an application of this work.

3 Signature-zeros estimates

One further major tool used for our main result requires a longer treatise, and we devote this separate
section to it. It should be noted that results in this sectiondo not assume positivity (or almost positivity),
except a few places where explicitly noted, and apply (for links) withouta priori restricting to knots.

This section is organized thus. In §3.1 we discuss a relationbetween signature and number of zeros of the
Alexander polynomial, which plays a central role in the proof of theorem 1.1 (and its later generalizations).
The case of simple zeros in [St8] is recalled with some additions in §3.2. The subsection §3.3 is devoted
to extensions of the signature-root number inequality, andsome special cases and easy consequences, still
without assumption of positivity.

3.1 The inequality of Alexander polynomial zeros and signature

In [St8] we studied, in a special case, a close relationship between the signature and the number of zeros of
the Alexander polynomial on the (complex) unit circle. We formulate this relationship after an important
clarification.

Definition 3.1 Let us in the following fix that zeros of a Laurent polynomialX ∈ L[t] over some complex
domainSare always counted with multiplicity. In that sense, define for S⊂ C,

ζ(X,S) := ∑
ξ ∈ S\ {0}
X(ξ) = 0

multξ(X) .

Observe that
ζ(X,C) = spanX . (36)

Moreover, there is the complex-analytic integral formula

2πi ·ζ(X,S) =
∮

∂S

X′(z)
X(z)

dz, (37)

valid whenSdoes not contain 0 and has at least piecewise smooth boundary∂S(oriented counterclockwise)
with no roots ofX on it.

With (19), the mentioned relationship is stated as follows:for a link L with ∆L 6= 0,

∣∣σ(L)
∣∣ ≤ ζ(∆L,S

1) . (38)
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Clearly with any zeroz∈ S1 of ∆, the conjugate ¯z is also one. Moreover, for aknot K, there is no overlap
because of (8). Thus

ζ(∆K ,S
1
+) =

1
2

ζ(∆K ,S
1) , (39)

and (38) can be paraphrased as

ζ(∆K ,S
1
+) ≥ 1

2

∣∣σ(K)
∣∣ . (40)

We will first discuss several arguments for this special case, before turning to the subtleties of extending it
to links.

Lemma 3.1 If K is a knot, then (40) holds.

Proof. This result follows from the more detailed property that forξ ∈ S1,

∣∣ jξ(K)
∣∣ ≤ 2 multξ ∆(K) , (41)

which can be also seen as a non-trivial extension of (31). Oneapproach toward (41) goes back to the
definition of Milnor’s signature [Mi2], and its identification with the jump by Levine and Matumoto [Le,
Ma]. Another approach, discussed in [G, St8], establishes that the branches of eigenvalues ofMξ are
smooth inξ. It uses spectral theory and requires a result of Trotter [Tt] that a Seifert matrix can be
regularized underS-equivalence. �

More background, albeit important, is too verbous to discuss here, in particular because the lemma is
insufficient for us. It should be made clear that both Trotter’s and Milnor’s work make substantial use of
unimodularity (5) (and Milnor further of the homological algebra of knot complements), and thus heavily
restrict to knots. In Matumoto’s proof, regularity of the Seifert matrix remains a basic assumption, and (8)
is also used (albeit more tacitly), again leaving the case oflinks in limbo. This will be remedied with the
more general arguments in §3.3, to which we prefer (and need)to assign more attention.

On a related matter, there is Shinohara’s inequality [Sh, Theorem 3], valid for links when∆ 6= 0:

|σ| ≤ 2maxdeg∆ = span∆ . (42)

For knots, it is easily seen (from (36)) as a consequence of (40), but is proved in a purely algebraic (and
thus more natural) way.

All consequences and special cases of (40) we need are taken from [St8] or reproduced below from our
own tools (see, e.g., the remark below (42)). One such is stated here, to be used for theorem 1.1; we defer
a proof to §3.3.

Corollary 3.1 If σ(K) = 2g(K) for a knotK, then all zeros of∆K lie onS1.

Murasugi’s work (as quoted below (33)) shows that special alternating knotsK satisfy the assumption of
the corollary. Our main result of [St8] generalizes to linksits conclusion, which reformulates to∇ in the
stated way from the relation (3).

Let in the following

∇̃L(z) := ∇L(
√

z) . (43)

Theorem 3.1 ([St8]) If L is a special alternating link, then any zero of∇̃L (is real and) lies in the interval
[−4,0], or equivalently, all zeros of∆L lie on the complex unit circle.
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3.2 Signature jumps at simple roots

We will need some of the argument in [St8] for jumps at simple roots of∆.

Lemma 3.2 ([St8]) LetK be a knot, such that∆K has no multiple zero. Then inequality (40) holds.

Proof. For a simple zeroξ0 of ∆K onS1 the signatureσξ always changes by±2 in ξ0, i.e.,

∣∣ jξ0
(K)

∣∣ = 2 when multξ0
∆K = 1. (44)

This is essentially a consequence of the Implicit Function Theorem applied onf (ξ,α) = det(Mξ −α · Id).
It allows one to bijectively (and smoothly) express the eigenvalueα close to 0 in terms ofξ close toξ0; in
particular this (locally unique) eigenvalue must change sign. Inequality (40) is immediate. �

It will be useful to introduce the one-sided signature limits as follows (compare (30)):

σ+
ξ (L) := lim

εց0
σξeiε(L) and σ−

ξ (L) := lim
εր0

σξeiε(L) . (45)

For knots, there is a way to bypass the Seifert matrix (as motivated below (32)) in testing the sign in (44)
for some simple jumps, which will be helpful mostly for practical calculations (see §4.5).

Proposition 3.1 Assumeξ0 is a simple zero of∆K for a knotK such that on theS1–arc

Ξ(ξ0) = {eit : 0< t < arg(ξ0)} (46)

between 1 andξ0, all n zeros on∆K are also simple. LetK′ be a knot obtained fromK by changing a
positive crossing to become negative. Then the following holds.

a) If jξ0
(K) = 2, then(−1)n∆K′(ξ0)≥ 0 for all K′.

b) If jξ0
(K) =−2, then(−1)n∆K′(ξ0)≤ 0 for all K′.

Proof. Because (44) applies for then zeros on∆K on Ξ(ξ0), we have in (45)

σ−
ξ0
(K)≡ 2n mod 4.

If ξξ0
(K) = +2 (similarly for−2), thenσξ0

(K) ≡ 2n+1 mod 4 . Because of the skein property (22), we
haveσξ0

(K′) 6≡ 2n+2 mod 4 . Ifσξ0
(K′) is odd, then∆K′(ξ0) = 0. Otherwise,σξ0

(K′) ≡ 2n mod 4, and
then use (28). �

Lemma 3.2 yields the part of theorem 3.1 for knots with square-free (i.e., without multiple zeros) Alexander
polynomials.

Corollary 3.2 ([St8]) LetK be a special alternating knot, such that∆K has no multiple zero. Then all zeros
of ∇̃K are real and lie in the interval[−4,0].

Proof. We haveσ(K) = 2g(K) by Murasugi (see §2.5), and can reinstate the chain of inequalities:

2g(K) ≥ ζ(∆K ,C) ≥ ζ(∆K ,S
1) ≥ σ(K) = 2g(K) , (47)

which, complemented here by the property on the right, all become equalities. �

The proof of theorem 3.1 in [St8] proceeded by using some approximation result (of roots of link polyno-
mials by roots of square-free knot polynomials), to deduce the full extent of the theorem from this special
case.
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3.3 Generalized signature-zeros estimate

Definition 3.2 Define (using the notation in §2.4) a knot or linkL to beregular if equality (14) holds,

1−χ(L) = 2maxdeg∆(L) ,

andirregular otherwise.

Remember, that it follows from the the comment below (24) that L is regular if and only ifL has a regular
Seifert matrix.

Next, let us introduce the one-sided jumps (using (45), and comparing with (30)):

j+ξ (L) := σ+
ξ (L)−σξ(L) , and j−ξ (L) := σ−

ξ (L) −σξ(L) .

Then jξ(L) = j+ξ (L)− j−ξ (L). Clearly onlyξ with ∆L(ξ) = 0 are interesting, but these singular signatures
σξ(L) have not been thoroughly studied. Matumoto’s work (mentioned in the proof of lemma 3.1) gives
some, but very partial, information. (Apart from the constraints discussed in §3.1, he needs that the Seifert
matrixM is diagonalizable.)

Lemma 3.3 We have ∣∣ j±ξ (L)
∣∣ ≤ νξ(L) .

Proof. We look at the formsMξ in (20) for a Seifert matrixM of L. Let us note that branches of eigenvalues
of Mξ beingcontinuousin ξ (cf. proof of lemma 3.1) easily follows for example by using (37) on the
characteristic polynomials ofMξ, regarded as functions in the variableξ. This implies the assertion of the
lemma. �

It seems reasonable to believe that
νξ(L) ≤ multξ ∆(L) , (48)

which would lead to a refinement of (41),
∣∣ j±ξ (L)

∣∣ ≤ multξ ∆(L) . (49)

Here is another useful observation (I am grateful to A. Ranicki for pointing this out):

Lemma 3.4 If L is regular, then (48), and therefore also (41), holds.

Proof. We have that (some)M in (20) is invertible, and then the Alexander polynomial mainly becomes
the characteristic polynomial of(MT)−1M:

χ(MT )−1M(ξ) = det(M)−1 ·ξ(1−χ)/2 ·∆L(ξ) .

Then (48) is just the formula relating eigenvalue multiplicity and eigenspace dimension. �

In particular, by lemma 3.4, ifL is regular, we have (38) directly from (49). Using Trotter’swork (see proof
of lemma 3.1), one can obtain then (48) for all knots, and alsoderive (49) and (41) from it and lemma 3.3.

For irregular links this elegant short argument does not work. The previously discussed failure of all
alternative proofs, though, strongly motivates an approach to (38) which applies to links and lifts all as-
sumptions binding other methods (except, of course,∆ 6= 0). Our partial effort was superseded by a proof,
given very recently by P. Gilmer and C. Livingston, of (48) (and hence (38)) in the general case, which
will be discussed elsewhere [GLv]. For another proof, the referee pointed to the Appendix of [Lc] (with
the caveat there to use, in our notation,j±−1 instead ofj−1).
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Corollary 3.3 AssumeL is regular. Then

ζ(∆L,C\S1)≤ 1−χ(L)−|σ(L)| . (50)

Proof. Use (38) andζ(∆L,C) = span∆L ≤ 1−χ(L). �

Proof of corollary 3.1. Combining Shinohara’s inequality (42) with (15) and our assumption, we see that
both (42) (for|σ(K)| = σ(K) > 0) and (15) become equalities. ThusK is regular, along with (8) (for any
knot), i.e.,

1−χ(K)− span∆K = mult±1 ∆K = 0. (51)

Then (38) with (51), (15), (39), and our assumption, leads again to (47). �

Remark 3.1 For a positive or almost positive knot (as needed in the proofof theorem 1.1 and its later
extensions), inequality (42) is not required. We have (51) from theorem 4.3, yielding again (47) (and (42)
along with it), etc.

4 Concordance of positive knots

4.1 Finiteness conjecture

One can regard conjecture 1.1 (though it came up differently; cf. remark 4.5) as a follow-up to the fact that
positive (or almost positive) knots have positive signature, and hence are not (algebraically) slice. This fact
was first proved (for positive knots) by Cochran and Gompf [CGo, corollary 3.4]. Przytycki observed the
result (also for almost positive knots) to be a consequence of Taniyama’s work [Tn], but their account [PT]
remained unpublished for a very long time. A proof of the positivity result of the signature, using similar
methods to Przytycki-Taniyama, was written down in [St7].

The only previous results similar to conjecture 1.1 (thoughobtained with a different approach) appear to be
about doubled knots, starting with Casson and Gordon [CG] and later extended in [Ki]. One can find very
subtle particular examples where the detection of non-concordance is difficult [Ki2]. But efficient (non-
abelian) concordance invariants seem hard to calculate in general. These invariants have so far become
useful only in certain suitably constructed particular infinite families of knots. On the opposite hand, for
any moderately large and natural class of knots, meaningfulclaims about concordance properties seem
scarce. Among others, there are rather easy to identify infinite families of slice (even ribbon) knots, which
are quasipositive, orl -almost positive at least forl ≥ 3 (see example 4.2), or alternating (even rational).
Thus the property in conjecture 1.1 must be in some way intrinsically linked with positivity.

Our main aim will be to settle a part of conjecture 1.1, first for special alternating knots (theorem 1.1), and
later for a larger class of positive and almost positive knots satisfying a certain inequality on their signature
and genus (theorem 4.5). In our approach concordance can be taken to be algebraic, except where we
explicitly state otherwise (see also remark 4.1). See the update in remark 4.6.

A brief overview of this main section of the paper is as follows. The proof of theorem 1.1 is carried out
in §4.2. In §4.3 we give versions of our main theorem for more general classes of positive and almost
positive knots, and in §4.4 we discuss the case of links. In §4.5 we present some computations, discuss
in §4.6 some related examples, and conclude in §4.7 with further comments about possible extensions and
relations of our results.

4.2 Application to concordance

We first prove the statement given in the introduction. The proof will show how one can obtain some more
general versions, which we will discuss later.

The following lemma is well-known, but we recapture an argument suitable for subsequent extensions.
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Lemma 4.1 There are only finitely many positive knots with given Alexander polynomial.

Proof. Let Di be infinitely many positive diagrams with given∆. We needg(Di) = maxdeg∆. Thus by
theorem 2.5 and by lemma 2.1 we may assume (35). But it is easy to see from the skein relation of∆ under
t̄ ′2 twists that

maxcf∆(D(p1, . . . , pn)) > maxcf∆(D(p′1, . . . , p
′
n)) ,

wheneverp′i ≥ pi for all 1≤ i ≤ n, and for at least onei strict inequality holds. This contradiction finishes
the proof. �

Theorem 1.1 follows immediately from this lemma and the following statement.

Theorem 4.1 Let K, K1 be algebraicly concordant special alternating knots. Then

∆(K1) = ∆(K) . (52)

Proof. Let K1 be positive and concordant toK. Let ∆ = ∆(K) and∆1 = ∆(K1). For special alternating
knots

span∆ = 2g= σ , (53)

and hence we have
maxdeg∆ = maxdeg∆1 . (54)

From (53) forK and (41) it follows that all zerosξ of ∆(K) lie onS1 and satisfy equality in (41):
∣∣ jξ(K)

∣∣ = 2 multξ ∆(K) . (55)

Now letX be an irreducible factor of∆(K). Thus there is a zeroξ of X onS1 with | jξ(K)|= 2multX ∆(K).

Now look at∆(K1). Since by concordancejξ(K1) = jξ(K), we have from (41) forK1 that multX ∆(K1)≥
multX ∆(K). Arguing over allX, we see that∆ | ∆1. Then, comparing degrees in (54), and using unimodu-
larity (5), we have∆ = ∆1. This finishes the proof. �

Remark 4.1 We did not use more than the jump (Milnor’s signature) function j• as a concordance invari-
ant, and thus it should be noted that in factj• identifies a special alternating knot up to finite ambiguity.In
the same way, in most of our following statements (for knots)algebraic concordance can be weakened to
equality of the jump function.

For corollary 1.1 we use lemma 4.1 and the following modification of theorem 4.1. We will establish the
conclusion in several more situations, thus let us say in thefollowing that forK positive smooth concor-
dance determinanes the Alexander polynomial.

Theorem 4.2 Let K, K1 be smoothly concordant positive knots andK be special alternating. Then (52)
holds.

Proof. The fundamental reason for this extension is the availability, in the smooth setting, of the Bennequin-
Rudolph machinery (17). (Regarding its failure in the topological category, see remark 4.3.) This leads to
(11). Thus ifK1 smoothly concordant positive knots, (11) combines with (10) to give thatg(K1) = g(K) is
constant. Similarly by concordanceσ(K1) = σ(K) is constant. IfK is special alternating, then we obtain
(53) forK1 as well, and the proof of theorem 4.1 can be repeated. �

Summarizing the proof, we see that what we need is that the jump function j•(K) detects in∆(K1) each
irreducible factor of∆(K) (with full multiplicity), and maxdeg∆(K) = maxdeg∆(K1). Several later exten-
sions of theorem 1.1 base on this observation. The followingproposition is mainly its formalization (with
the obvious, and omitted, proof).
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Proposition 4.1 Let K be a positive knot, such that for each irreducible factorX | ∆(K) there is at least
one zeroξ of X which lies onS1 and satisfies (55). IfK1 is positive and algebraicly concordant toK with
g(K1) = g(K) (i.p., if K1 is smoothly concordant toK), then (52) holds, in particular only finitely manyK1

occur. �

This shows that it is necessary to look at just one zero ofX, and in general releases us from keepingσ close
to 2g. Here is a small application.

Corollary 4.1 Let K be a connected sum of positive torus knots, andK1 be positive and smoothly concor-
dant toK. Then (52) holds, in particular only finitely manyK1 occur.

Proof. Let in the followingXn be the (irreducible) polynomial of the primitiven-th roots of unity . The
formula for the Alexander polynomial of the torus knotsTp,q is

∆(Tp,q) = t−(p−1)(q−1)/2 (t
pq−1)(t−1)

(t p−1)(tq−1)
. (56)

It shows that

multX(∆(Tp,q)) =

{
1 if X = Xn for n | pqbut n ∤ p,q,
0 otherwise.

(57)

It can be easily checked from the formula of the jump, due to Matumoto-Kearton (see [Ke2, §13]), that for
each suchp,q, the jump at the first root,jexp(2πi/n)(Tp,q) = 2. �

For practical verification, we notice (taking into account (44)) two simple criteria that make the conditions
in proposition 4.1 satisfied. Again, we should demand smoothconcordance (or equality of the genera; see
also remark 4.3 below).

Proposition 4.2 Let K be a positive knot. Assume that each irreducible factorX of ∆(K) has at least one
zero onS1 and
(a)X is simple, or
(b) (40) is an equality forK.
Then only finitely many positive knotsK1 are smoothly concordant toK. They satisfy (52). �

Let us here make a helpful remark: the practical use of this proposition, as well as proposition 3.1, can
be simplified by working with̃∇ (in (43)). Surely, if∇̃ factors, so does∆. But ∆ may factor even if̃∇
is irreducible: e.g., stevedore’s knot 61 has∇̃ = 1−2z (obviously irreducible), while∆(61) = −t−1(2t −
1)(t −2). Still, we observe why we will not mind below factorizing̃∇ instead of∆.

Lemma 4.2 If an irreducible factorX̃(z) of ∇̃(K) has at least one zero on[−4,0], then the corresponding
factor

X(t) = X̃(t −2+ t−1)

of the Alexander polynomial
∆(K) = ∇̃(K)(t −2+ t−1)

is irreducible (and has at least one zero onS1).

Proof. Assume two mutually inverse rootsξ andξ−1 of X have the same minimal polynomialY. Then
Y(t) = ctk ·Y(t−1) for somec∈ R, c 6= 0. By unimodularity (5), we haveY(1) =±1 6= 0, and thusc= 1,
i.e.,Y must be reciprocal. ThenY = Ỹ(t −2+ t−1) would yield a factorỸ of X̃. Thus if X̃ is irreducible,
but X is not, thenX must factor ascY(t)Y(t−1) for some (integer, not purportedly irreducible) polynomial
Y. However, ifX̃(z) has a zerozon [−4,0], thenX has a zeroξ onS1. But the minimal polynomial ofξ is
real, thus suchξ has the same minimal polynomial asξ = ξ−1, which we excluded. �
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4.3 Modifications and Extensions

4.3.1 Signature-root estimates for positive and almost positive links

Recall that for any (non-split) alternating linkL, we have (14). In combination with theorem 2.2, we obtain
thus in definition 3.2 thatL is regular. More relevantly, we will need these properties here for positive [Cr]
(as already mentioned) and almost positive links [St3].

Theorem 4.3 ([Cr, St3]) Positive links and almost positive links are regular.

Corollary 4.2 If K is a positive or almost positive knot, then inequality (40) holds.

Proof. Use again lemma 3.4 and theorem 4.3. �

Proposition 4.3 If L is a positive or almost positive link, then

ζ(∆L,C\S1)≤ 1−χ(L)−σ(L) .

Proof. With theorem 4.3, use (50). We notice thatσ(L) ≥ 0, asL can be unlinked by switching positive
crossings only. �

4.3.2 Positive large signature knots

Theorem 4.4 Let K be a positive or almost positive knot withσ ≥ 2g−2. Then j•(K) determines∆(K)
up to finite ambiguity.

Proof. Let X be an irreducible polynomial inZ[t]. Let us assumeX as a genuine polynomial (unlike∆),
and normalize it so that mindegX = 0 and maxcfX > 0 (we will useX as a factor of some Alexander
polynomial of a knot). Let forX 6= t ±1,

j multX ∆ :=
1
2

max{| jξ(K) | : X(ξ) = 0, |ξ|= 1} ,

whenX has a zeroξ onS1, and jmultX ∆ = 0 otherwise. The following is the part of∆ detected byj•:

∆̃ := ∏
X|∆

Xj multX ∆. (58)

(Note that because of (8),X = t±1 does not occur in this product.) Then clearly∆̃ is determined byj•(K),
and along the proof of theorem 4.1 we have

∆̃ | ∆ , span∆ ≥ spañ∆ ≥ σ .

Fromσ ≥ 2g−2 we have then for∆∗ := ∆/∆̃ that span∆∗ ≤ 2.

We remark that withx ∈ C also x̄,1/x̄ and 1/x are zeros of∆∗. Up to units inZ[t±1], thus again∆∗ is
symmetric and unimodular, hence it admits a conversion to a Conway polynomial∇̂ via (3), which is of
the form

∇∗(z) = 1+bz2 . (59)

If ∆∗ = 1, then j• determines∆ .
= ∆̃. Thus assume∆∗ 6= 1. We claim then its both zeros are onS1.

If |x| 6= 1 is a zero of∆∗, in order the four numbersx, x̄,1/x̄ and 1/x not to be all distinct (bar is conjugation
in C), we need thatx is real. Since by reciprocity of∆ the product of norms of all zeros is 1, we cannot
have exactly one zero offS1. Thus we have a pair of zerosx,1/x for x∈ R.
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We assumed thatx,1/x have no algebraic conjugates onS1. This means that

∆̃∗(t) = a(x− t)(1/x− t)∈ Z[t] , (60)

for somea∈ Z must be a divisor of∆(K). As such,∆∗(t) = ∆̃∗(t)/t is unimodular (up to sign;cf . below
(6)), and from the form (60) it is seen to be symmetric. It is thus an Alexander polynomial of a knot (as an
example, it occurs for a non-positive twist knot). Then∆∗ allows for a conversion via (3) to a polynomial
∇∗, which becomes of the form (59). It is easy to see that for realzeros of∆∗, we needb< 0.

Whenb< 0 in (59), the polynomial∇∗ in (59) has a zero on the positive real line. Contrarily, the Conway
polynomial of a positive knot or almost positive knot is positive (cf. theorem 2.3). Hence,∇(K) cannot
have such zero. Therefore,∆∗ ∤ ∆(K).

It remains the possibility that∇∗ is one of the polynomials (59) withb> 0. Because of (44), its Alexander
polynomial∆∗ must have zeros already present in∆̃, thus we must have∆∗ | ∆̃. Since∆̃ has only finitely
many factors, this shows that only finitely many∆ = ∆∗ · ∆̃ occur. �

Theorem 4.5 Let Ki be (topologically or algebraically) concordant positive or almost positive knots with
σ(Ki)≥ 2g(Ki)−2. Then∆(Ki) are constant, in particular only finitely manyKi occur.

Proof. To see that in fact∆ is unique, note that all possible∆∗ have simple zeros. However, Alexander
polynomials of concordant knotsK1,2 have the Fox-Milnor property [FM]

f1(t) f1(1/t)∆(K1) = f2(t) f2(1/t)∆(K2) (61)

(with f1,2 ∈ Z[t]). It implies that the multiplicities of the same zero of∆(K1) and∆(K2) on S1 have the
same parity.

For the finiteness property in the almost positive case, we need an extension of lemma 4.1. For this see
the argument in the proof of lemma 5.3 of [St7]. It shows that[∇]2 increases under positivēt ′2 twists in an
almost positive diagram unless the twists are trivial isotopies. Alternatively, use lemma 4.4 below. �

Definition 4.1 We call a knotalmost special alternatingif it has a diagram that differs by one crossing
change from a special alternating one.

Corollary 4.3 Among almost special alternating knots only finitely many are (topologically or algebrai-
cally) concordant. �

In the spirit of corollary 1.1 (but with some more argument needed), we have the following.

Theorem 4.6 No infinite smooth concordance class of positive or almost positive knots contains a positive
or almost positive knotK with σ(K)≥ 2g(K)−2.

Proof. Let {Ki} be smooth concordance class containing such a knotK = K1.

Let again∆̃(K) and∆̃(Ki) be as in (58). Sincẽ∆ is determined byj•, we havẽ∆(Ki) = ∆̃(K) =: ∆̃, and it
divides∆(K) and∆(Ki). Let ∆∗(K) = ∆(K)/∆̃ and∆∗(Ki) = ∆(Ki)/∆̃.

We know from the proof of theorem 4.4 that

span∆∗(K)≤ 2, (62)

all zeros of∆∗(K) are onS1 and∆∗(K) | ∆̃(K) = ∆̃. (Forknots K, we cannot have span∆∗(K) = 1 because
of (8).) By the same argument,if

span∆∗(Ki)≤ 2, (63)
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then all zeros of∆∗(Ki) are onS1 and∆∗(Ki) | ∆̃. This means that we are done (showing that only finitely
many∆(Ki), and henceKi , occur) if we establish (63).

Keep in mind that span∆(Ki) = 2g(Ki) (theorem 4.3).

Case 1.If g(Ki)< g(K), then∆̃ = ∆(Ki), and we are done.

Case 2.If g(Ki) > g(K)+ 1, then by (18) and almost positivitygs(Ki) ≥ g(Ki)− 1 > g(K) ≥ gs(K), a
contradiction. (Only at this place is smoothness of the concordance, but crucially, needed.)

Case 3.If g(Ki) = g(K), then (63) follows from (62).

Case 4.Thus considerg(Ki) = g(K)+1. If ∆̃(K) =∆(K), we have (63). Thus we assume that span∆∗(K)=
2.

Take a zeroξ of ∆∗(K) on S1; sinceξ 6= ±1 from (8), and because of (62), it is a simple zero. Thus
multξ ∆(K)−multξ(∆̃) = 1 is odd. Because of (61) and the remark after it, multξ ∆(Ki)−multξ ∆(K) is

even. Thus multξ ∆(Ki)> multξ ∆̃ (keep in mind̃∆ | ∆(Ki)).

Now let X be the minimal polynomial ofξ. Then forξ 6=±1, we haveX = ∆∗(K). Thus

(∆(K) = ∆∗(K) · ∆̃) | ∆(Ki) , (64)

with span(∆(Ki)/∆(K)) = 2g(Ki)−2g(K)= 2, and then modifying the argument referred to directly before
(63) by replacing̃∆ by ∆(K), we obtain again(∆(Ki)/∆(K)) | ∆(K), and finitely many∆(Ki). �

4.4 Concordance of links

Here we will discuss ways of extending to links the proof of theorem 1.1 and its subsequent modifications
in section 4.3. The stronger smooth concordance versions follow the reasoning for knots, and we highlight
only additionally needed arguments.

We first address our main result. The below proof manifests the cornerstones of its extension.

Theorem 4.7 Only finitely many special alternating links are concordant. (More precisely, linking num-
bers and the signature jump function identify the Alexanderpolynomial of a special alternating link.)

Proof. First, concordance is a homology invariance, and preserveslinking numbers. Thus it must map
between split components, and we may just consider non-split (special alternating) linksL. We use then
the link case of theorem 3.1 to ascertain all roots of∆L to be onS1.

Now we will need the fact thatj• is a link concordance invariant. This is less obvious than the case of
knots, but is known (cf., e.g., [CK, CF] or [F, Theorem 4.2]). Thus we can again employsignatures, and
most of the proof of theorem 4.1 can be followed. The proof of lemma 4.1 remains valid for (positive)
links.

The principal departure occurs in noticing that unimodularity fails for links. Evidently, each polynomial is
the scalar multiple of a primitive polynomial (and shares its roots), but the option that∆(Ki) are multiples
of each other does exist for links. (It occurs for example forthe reverse(2, p) torus links.) One can get
disposed of this problem thus.

Fix the numbern of components ofL. Hoste’s formula (cf. remark below (7)) expresses

λ(L) := [∇(L)]n−1 = ∑
Γ

∏
(i, j)∈Γ

l i j

as a sum over spanning treesΓ of the linking graphΛ(L) of L. This is the graph given by each vertex for
a componentL[i] of L and an edge labelledl i j = lk(L[i],L[ j ]) between verticesL[i] andL[ j ] if l i j 6= 0. For
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a positive link, alllk(L[i],L[ j ]) ≥ 0, and if L is non-split,Λ(L) is connected. Each summand in Hoste’s
formula is positive, and at least one is there. This shows

λ(L) > 0 (65)

(cf. below (14)). But since concordance preserves linking numbers, we need to haveλ(L) = λ(L′) whenL
and andL′ are concordant.

This removes the scaling ambiguity and determines∆ uniquely. �

For the extension to positive and almost positive links, we will use the work in §3.3, in particular corollary
3.3.

Theorem 4.8 If Li are positive links withσ(Li)≥−1−χ(Li), then only finitely manyLi are concordant.

Proof. We adapt the proof of theorem 4.4. First we need to provide fora possible zeroξ = ±1 of ∆ by
setting

j multt±1 ∆(L) := | j+∓1(L)|

for the definition (58) of∆̃(L). Then, using (50) and (41), we have again∆(Li) = ∆̃ ·∆∗(Li), with ∆̃
determined byj• (and so equal for allLi ), and span∆∗(Li) ≤ 2. Further note that, because of (65),∆∗(Li)
are fixed under scaling with integers. We rewrite and normalize∆∗(Li) as

∆̂i(t) := ∆∗(Li)(t) · tmaxdeg∆(Li) = a ·
(
t −

(
x+ 1/x

)
+ 1/t

)
∈ Z[t±1] ,

wherex∈R, x 6= 0,±1 anda∈ Z, a 6= 0. (For linksLi , the additional possibilities∆∗ = t±1, (t±1) ·(t±1)
come in, but they do not affect any finiteness considerations.) Under (3),∆̂ gives the polynomial

∇̂(z) = az2−a(x+ 1/x−2) ∈ Z[z2] . (66)

A polynomial∇̂i(z) of this type for(a,x) = (ai ,xi) is to divide each∇(Li) (with integer polynomial quo-
tient):

∇̂i(z) | ∇(Li) . (67)

This situation is managed by showing that only finitely many possible∇̂i(z) occur, as follows.

If xi > 0, then the absolute term of∇̂i/ai in (66) is negative. Thuŝ∇i(
√

z) has a real positive root, and
hence cannot divide the positive polynomials∇(Li)(

√
z) (as argued in the proof of theorem 4.4).

Let thereforexi < 0. Comparing the lowest coefficients in (67) gives

ai
(
xi + 1/xi −2

)
| λ

for λ = λ(Li) with (65), and it is crucial here thatλ does not depend oni. A priori, for xi ∈ R the
parenthesis may represent rational numbers with arbitrarily large denominators. But we avoid this problem
here by noticing that forxi < 0, we have

∣∣xi + 1/xi −2
∣∣> 4.

This bounds|ai |< λ/4, and sinceai ∈ Z, we have only finitely many possible values forai . Then the same
is true forxi + 1/xi −2, and hence for̂∇i and∆̂.

This finiteness argument puts though the proof of theorem 4.4. �

To deal with almost positive links, we first record the following observations.

Lemma 4.3 If L is almost positive (and non-split), then (65) holds.
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Proof. Let D be an almost positive connected diagram representingL. The only way in whichλ(L) = 0,
is if under the crossing switch from a positive diagram, one edge inΛ(L) disappears and disconnects the
graph. Then one easily sees thatD must look like

T4T2 T3T1 (68)

(with all crossings in the tanglesTi positive), in which caseL is a split positive link. �

Lemma 4.4 Let D be an almost positive connected diagram ofn components andc a positive crossing of
D. Set

λ′(D) = [∇(D)]n+1 .

Let D′
p be obtained fromD by applyingp times at̄ ′2 twist atc. If

(λ(D),λ′(D)) = (λ(D′
p),λ

′(D′
p)) , (69)

thenc is nugatory after isotopy (i.e., the twists do not change thelink type), or all links ofD′
p are split.

Proof. We apply lemma 4.3 on the diagramD′ obtained after smoothing outc. From (69) we have that
λ(D′) = 0 (we needλ′ in (69) for the case thatc is a crossing of the same component ofD) . Then,
reinstallingc, we see that eitherc is nugatory (if it connects two differentTi in (68)), or all links are split
(if c occurs within someTi). �

Theorem 4.9 Let Li are almost positive links withσ ≥−1−χ. Then only finitely manyLi are concordant.

Proof. The preceding lemmas provide the ingredients needed to modify the proof of theorem 4.5 (without
claiming uniqueness of∆). Lemma 4.4 shows that only finitely many almost positive links occur with
given Alexander polynomial∆ 6= 0. (Note again that we many consider only non-split links.) Lemma 4.3
eliminates the possiblily of∆(Li) being infinitely many multiples of the same polynomial (as needed to
argue for theorem 4.7). �

Corollary 4.4 If Li are almost special alternating links, then only finitely many Li are concordant. �

Turning to smooth concordance, we need an extra caveat for the analogue of theorem 4.6.

Theorem 4.10 1. No infinite smooth concordance class of positive links contains a positive linkL with
σ(L)≥−1−χ(L).

2. No infinite smooth concordance class of positive or almostpositive links contains a positive or almost
positive linkL with σ(L)≥−χ(L), or σ(L) ≥−1−χ(L) and det(L) 6= 0.

Proof. Mostly we repeat the proof of theorem 4.6 (and use its notation). For links, we need to extend case
4 of that proof. This case occurs only for almost positive links (because of (11) for positive ones), whence
the first statement in the theorem.

For the second statement, the goal is to show again (as in (64))

∆(L) | ∆(Li) . (70)

Then again for̂∆(Li) = ∆(Li)/∆(L) we have span̂∆(Li)≤ 2, and all zeros of̂∆(Li) must be onS1 and be±1
or zeros of∆(L). This leaves finitely many choices for∆̂(Li) (with scaling by integers fixed), and∆(Li).
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The argument in the proof of theorem 4.6 applies again ifξ 6=±1. Notice the extension of (61) to links, due
to Kawauchi [Kw, Theorem B]. Thus considerξ = ±1. ThenX = t ∓1. If X = ∆∗(L), its zero is simple,
and we argue as for theorem 4.6 that (70) holds. Otherwise, for span∆∗(L) ≤ 2, we have∆∗(L) = (t ±1)2

or ∆∗(L) = t2−1 (keep in mind that∆∗ is reciprocal up to units inZ[t±1]).

If ∆∗(L) = t2−1, the zeros are simple, and we have as before (70). If∆∗(L) = (t −1)2, then (70) changes
to ∆(L) | ∆(Li) · (t −1)2. Now for n component links, because of (65), we have

mult1 ∆ = mindeg∇ = n−1,

which is the same forL andLi . Thus∆(L) | ∆(Li) · (t −1)2 implies (70). The situation∆∗(L) = (t +1)2

cannot be dealt with any more, and the assumptions are made toexclude it. �

Links can be covered also in some version of proposition 4.2,but we confined ourselves to knots only,
intending the criterion as a technical tool for practical computations (see proposition 4.4).

4.5 Computational results

Our results allow computational verification on a large number of instances, thus drawing evidence for
conjecture 1.1. For example, we have the following.

Corollary 4.5 If Ki are positive knots of genus at most 4, then only finitely manyKi are (topologically or
algebraically) concordant. Moreover, only finitely many positive knots are smoothly concordant to anyKi .

Proof. The first part is an application of theorem 4.5. The compilation of generators (see theorem 2.4)
allows one to verify that for genusg≤ 4 all positive knots haveσ ≥ 2g−2, with one exception, the knot
1445657(whereσ = g= 4). For the smooth concordance, use theorem 4.6. �

For low crossing knots, we focussed only on smooth concordance, as statements for topological concor-
dance are trivial over a finite domain, and far more difficult over the same domain as the smooth version
(see remark 4.3).

Proposition 4.4 If K is a positive knot of at most 16 crossings, then positive smooth concordance deter-
mines the Alexander polynomial (as in (52)). �

We skip the proof, which is a lengthy computational check in the tables of KnotScape [HT] (for a proof
of similar flavour, see theorem 4.11). Essentially, we ascertained using theorems 2.4 and 2.1 that we can
invoke proposition 4.2 (resorting ourselves to∇̃ with lemma 4.2), or if not, the slightly more general (but
slightly more awkward to test) proposition 4.1.

Looking at the limits of our method, we see two major cases of failure of the proof of theorem 1.1:

a) When∆(K) has an irreducible factorX with all zeros offS1. A simple such factor could
be∆(63). (Alexander polynomials of non-positive twist knots can not occur; see the end
of the proof of theorem 4.4.)

b) WhenX is a (necessarily multiple) factor withσξ = 0 for all rootsξ of X onS1.

(71)

The practical effectiveness of proposition 4.1, observed in the proof of proposition 4.4, motivated us to
exhibit a concrete instance on which the criterion fails to apply. These efforts, together with diverse other
arguments, point to a noteworthy circumstance. Hereby, theproof of corollary 4.1 drew our attention to a
particular choice of root. Let us below say that thefirst root ξ0 of X on S1 is the one of smallest arg(ξ0),
i.e., havingℑm ξ0 > 0 and closest to 1 (so thatX has no roots onΞ(ξ0); see (46)).

Question 4.1 Let K be a positive knot. Is it true then that
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i) all irreducible factorsX of ∆K have a root onS1, and

ii) for the first rootξ0 of X, we havejξ0
(K) = 2multX ∆K?

This lends considerable further potential to proposition 4.1.

Note some pieces of observable evidence.

1) This is certainly true when∆ = X is irreducible. Thenσ > 0 settles the first property i) (and together
with lemma 4.2 shows that it is enough to test irreducibilityof ∇̃). The second property ii) holds
sinceσξ(K) ≥ 0 for all ξ (K has a positive unknotting sequence), and in (44) the absolute bars can
be dropped.

2) Similarly one sees that part ii) follows from part i) in thecase when (40) is an equality, and in that
case also part (b) of proposition 4.2 applies.

3) It is enough to look at prime knots and prime (positive) diagrams by theorem 2.1.

We then also collected some amount of experimental support.

Theorem 4.11 The answer to question 4.1 is affirmative for

• positive knots with up to 16 crossings,

• knots with positive diagrams of up to 18 crossings, and

• positive braid representations on at most 5 strands with up to 25 crossings, and 6 strands up to 23
crossings.

In particular, for such knots any smoothly concordant positive knot has the same Alexander polynomial (as
in (52)).

Proof. The first family was discussed in proposition 4.4 (which mainly triggered question 4.1). For the
other two families, we started by extensively testing part i) of question 4.1 – again, using lemma 4.2 and
working with ∇̃. (For braids, we obtained∆ from the Burau matrix.) By the above remark 3, we consider
only prime diagrams. This test deals with (also part ii) for)knots when∆ = X is irreducible (by remark 1),
or if (40) is an equality (by remark 2).

For the remaining knots, proposition 3.1 enabled us to test using values of̃∇(K′) part ii) at least in the
situation (which turned out to be rather generic) thatξ0 (or X) is simple, and so are all ‘preceding’ roots of
∆ on Ξ(ξ0).

The instances of failure of this test were collected, and duplications (of the underlying knots) partly re-
moved using a functionality of KnotScape, leaving a list of about 280 entries. We found, for example,
that (at least one of the two parts of) proposition 4.2 applies to all positive 17 crossing diagrams, and 18
crossing diagrams except for 5knots.

To save some notation, let in the following for the trefoil 31,

Πk(t) = ∆(31)(t
k) = t−k−1+ tk , and Π = Π1 . (72)

All these remaining cases have the double factorX = Π, except for two, whereX = Π2. (No knots have
more than one double factor, or one of multiplicity 3 or higher.) We checked (now much more slowly) using
Orevkov’s MATHEMATICATM program (mentioned after (32), and partly assisted by Kearton’s result (73)
below for cables) that the jump at the first multiple root is 4,which finished the work.

Note that answering positively question 4.1 implies∆̃ = ∆, thus along the way we can computationally
extend the scope of proposition 4.4. In particular, after checking part i), wheñ∇(K) (and hence∆(K)) has
no repeated roots, we can use part (a) of proposition 4.2, anddeduce the claim of proposition 4.4 without
needing to apply thẽ∇ value test. �
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4.6 Some examples

However, we also became aware of the following examples.

Proposition 4.5 Case b) of (71) can occur. The answer to part ii) of question 4.1 is negative in general.

We do not know about a) of (71) (and part i) of question 4.1). See, though, also example 4.1 below.

Proof. If K = T ∗P is a satellite knot with companionT and (zero-framed) patternP of degreen> 0, then

jξ(K) = jξn(T)+ jξ(P) . (73)

This is a direct consequence of Kearton’s satellite signature formula [Ke, Theorem], and suggests satellite
constructions as a method in seeking (negative) examples.

Consider now the satellite knotK = T ∗P around the(p,q)-torus knotT = Tp,q, with the(r,s)-torus knot
patternP= Tr,s, positioned as a closedr-braid in the solid torus. Applying (56) and Seifert’s formula for
the Alexander polynomial of a satellite knot, we have up to units inL[t],

∆(Tp,q∗Tr,s)
.
= ∆p,q,r ·∆(Tr,s)

(cf . (1) and below), with

∆p,q,r = ∆(Tp,q)(t
r)

.
=

(t pqr−1)(tr −1)
(t pr −1)(tqr −1)

.

This polynomial decomposes, using (57), with

multXn(∆p,q,r) =

{
1 if n | pqr butn ∤ pr,qr,
0 otherwise.

Takep= 2,q= 3 (thusT = T2,3 = 31 is the trefoil) andr = 5. ThenX = X6 = Π (from (72)) divides∆2,3,5.
If X6 ∤ ∆(Tr,s), then (73) gives

jeπi/3(Tp,q∗Tr,s) = je5πi/3(Tp,q) = −2,

and hence
je5πi/3(Tp,q∗Tr,s) = 2

(keep in mind (32)) .

Take then somes not divisible by 6 (and 5), and lets≥ 3 · r = 15 to ascertain thatT2,3 ∗Tr,s has a positive
diagram (using the blackboard framing of the positive 3-crossing trefoil diagram). For examples= 16 will
do. This gives a knotK = T2,3 ∗T5,16 with a positive braid representation on 10 strands and 79 crossings,
in particularg(K) = 35. It provides the negative answer to part ii) of question 4.1 in general.

To show that case b) of (71) can occur, considerK#31. This 82 crossing knot is thus the simplest known
potential element in a smooth counterexample family to conjecture 1.1. �

Example 4.1 For K = 15253288, which occurred in the test for proposition 4.4, the Alexander polynomial
factors (with (72)) as

∆(15253288) = t−3 ·Π3 · (1+2t−5t3+2t5+ t6) .

The right factorX has 4 zeros offS1, thus now two onS1. Thus it cannot be the Alexander polynomial
of a positive knot, since there is no positive knot of genus 3 with σ = 2. Thus we see that factors of
polynomials of positive knots are not necessarily again polynomials of this type. This should serve as a
warning regarding the limits of use of factorization.

Remark 4.2 A yet unsettled question is: if̃X | ∇̃ with [X̃]0 =+1, isX̃ positive? Recall that by theorem 2.3
and the remark below it,̃∇(K) is a positive polynomial (more generally for positive links). Furthermore,
we conjectured in [St8] (also for links) that̃∇(K) is strictly log-concave, i.e., [∇̃]k+1[∇̃]k−1 < [∇̃]2k when

0≤ k ≤ maxdeg̃∇. We verified this property for all knotsK in theorem 4.11. In fact, we also found that
all irreducible factors̃X of ∇̃(K) (with [X̃]0 =+1) are positive and strictly log-concave.
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4.7 Further extensions and concluding remarks

We finish the treatment of concordance with several remarks that concern possible (and impossible) exten-
sions of our results, and their relation to other work.

The difference between smooth and topological concordanceseems extremely hard to understand. So far
almost all of our knowledge centers around Freedman’s deep result that all knots with trivial Alexander
polynomial∆ = 1 are topologically slice. Some are known to be not smoothly slice, the first example,
the(−3,5,7)-pretzel knot, apparently due to Casson, using Donaldson’swork. (Rudolph constructed later
more examples; see remark 4.4.) Until recently, no other candidates for topologically but not smoothly
slice knots have been confirmed.

Remark 4.3 If we consider the topological 4-genusgt instead of the smooth onegs, then Rudolph’s slice
Bennequin inequality (17) (along with its more recent invariant manifestations due to Ozsvath-Szabo and
Rasmussen) fails. One can construct examples of positive (or almost positive) knots violatingg= gt (resp.
g≤ gt +1), for instance, by using that the(−3,5,7)-pretzel knot, which is topologically slice, is strongly
quasipositive. The inequality (26) still holds forgt (as mentioned above it), but leads the problem to show
that we can estimateg from above byσ (or someσξ). For this see remark 4.6.

Remark 4.4 Many knots with trivial polynomial (i.e.,∆ = 1) are strongly quasipositive (see [Ru]). There-
fore, for strongly quasipositive knots conjecture 1.1 fails in the topological category. This already provides
some odds against a smooth category version (for strongly quasipositive knots). Our approach does lend
some tangibility to the present formulation. In contrast, for a strongly quasipositive knot there seems no
easy way to controlgc from g (although stillg= gs). Certainly,gc−g can be arbitrarily large. (One can
construct such examples by taking iterated connected sums of the counterexamples to Morton’s conjecture
given in [St].) Thus, at the least, our approach would do verylittle towards a (smooth) strongly quasi-
positive knot version, an impasse which further discourages raising even conjecturally this more general
case.

Example 4.2 For 2-almost positive knots, the family of twist knots studied by Casson and Gordon [CG]
provides a counterexample to conjecture 1.1 at least in the algebraic category. (We do not know of further
examples and about topological concordance.) For 3-almostpositive one obtains many infinite families of
(smoothly) concordant knots using the tangle surgery in [KL].

In a recent paper [Ba], K. Baker discusses a relevant relatedproblem. He hinted (in private exchange) to a
much stronger version of conjecture 1.1 (considered in a very special case by Rudolph, according to [Ba]).
The reason I did not originally raise this quite striking point are the difficulties in dealing with concordance
of (positive) mutants. (Certainly pairsK#K, K#−K for non-invertibleK are algebraically concordant.)

Question 4.2 Is there a (topological or smooth) concordance class containing more than one positive knot?

Remark 4.5 In [HU], Hirasawa and Uchida constructed infinite sets of knots, such that any two elements
of a set have Gordian distance one, i.e., differ by a single crossing change. S. Baader (private communi-
cation) informed me that some of these families contain infinitely many quasipositive knots, and asked if
one can find a family containing infinitely many positive knots. The work in this paper grew out of the
attempt to prohibit (the existence of) such a family. Tristram-Levine signatures again give constraints, and
one is left to rule out Gordian distance one between two knotswith a positive diagram in the same braid-
ing sequence (i.e., differing under iterated twisting), however, no easy tool seems to handle this situation.
Note, contrarily, that such a family does exist for some Gordian distance bigger than one. (For distance 2,
consider positive twist knots.)

Remark 4.6 The preprint [BDL] addresses a solution of conjecture 1.1, based on a solution of the sig-
nature bound problem (see remark 4.3). I have tried to incorporate some according changes here, but
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unfortunately, that preprint came out too late for another major revision. Just a brief remark is made. It
appears that their proof in the smooth category does not require their signature bound, rather the latter
upgrades the proof to the algebraic category. The proof can be easily extended to almost positive knots.
The case of links leaves some argument to be discussed. Theirappoach does not address (52), so that at
least this aspect of the results on knots here remains untouched.
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