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Abstract. From Seifert’s algorithm, one can view a link diagram as a dia-
gram consisting of twisted bands and disks representing a Seifert surface. We
develop a theory of generalized banded diagram that generalizes this disk-and-
band decomposition illustration of Seifert surface. We prove generalization
of Alexander-Yamada’s theorem; under some additional assumptions, general-
ized banded diagram can be converted to a closed braid diagram preserving its
disk-and-band decomposition structure of Seifert surface. As an application,
we prove strongly quasipositive property for various cases, including almost
positive links.

1. Introduction

By the famous Seifert algorithm, from a diagram D of a link L one can construct
a Seifert surface of L called the canonical Seifert surface. Although this algorithm
is easy and intuitive, it is a useful tool to investigate knots and links from their
diagrams. The canonical Seifert surface often attains the minimum genus, thus it
gives a direct connection between diagrams and surfaces.

In a slightly different prospect, from a (closed) braid representative of a link L
over the band generators one naturally obtains a Seifert surface called the braided
surface. This plays an important role due to a close connection to contact geometry.

As we will review in Section 2, as a natural framework to treat canonical Seifert
surfaces and braided surfaces in a unified manner, a notion of banded diagram has
appeared (without the name, or, in a slightly different form) in several places (see
[HIK, Section 6], or [St2, Section 3] for example). Roughly speaking, a banded
diagram is a diagram that consists of mutually disjoint oriented circles and bands
depicted by signed arcs connecting circles. This represents a Seifert surface rather
than a link itself.

The aim of this paper is to develop a theory of generalized banded diagrams.
Roughly speaking, a generalized banded diagram D is a diagram consisting of circles
and signed arcs that indicate twisted bands, allowing more general configurations
and intersections of circles and arcs.

As in the usual link diagrams and banded diagrams, we can assign the oriented
surface SD which we call the canonical surface SD of D. In general, such a surface
is not embedded, it is immersed with ribbon singularities. We will mainly treat
the case where SD is embedded, hence gives rise to a Seifert surface, which we call
geometric.

We will introduce generalized banded diagrams in Section 3, and develop a notion
of marking, a method to relate usual link diagrams and generalized banded diagrams
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in Section 4. As we will see there, unlike the canonical Seifert surface construction,
where a minimum genus Seifert surface cannot appear for many knots, our marking
method can construct a minimum genus Seifert surface.

Our main theorem proven in Section 5 is the following.

Theorem 5.12. Let D be a geometric generalized banded diagram. If D is simple
and admissible, then by finitely many Y-moves, B-moves, and A-moves, we can
make D into an ordinary banded diagram D′ such that all the Seifert circles of D′

are coherent (i.e., D′ is a closed braid diagram).

The main theorem says that under additional assumptions which we call simple
and admissible, one can convert a generalized banded diagram D into a closed braid
diagram, by particular operations which we call Y-moves, B-moves, and A-moves.

Theorem 5.12 can be understood as a strengthened version of Alexander’s the-
orem and Yamada’s refinement [Ya]. Alexander’s theorem says that every link
diagram can be converted to a closed braid diagram. Yamada’s refinement shows
that such a conversion can be done preserving the number of Seifert circles. The
moves in Theorem 5.12 preserve the disk-and-band decomposition (i.e., handle de-
composition) structure of the canonical surface SD. Thus Theorem 5.12 says that
a conversion to a closed braid diagram can be done preserving the Seifert sur-
faces determined by the diagrams, together with their disk-and-band decomposition
structures.

This allows us to study the braid index, the strong quasipositivity, and the max-
imum euler characteristic from generalized banded diagrams. Thus the generalized
banded diagram method can be understood as an enhancement of the classical and
naive diagrammatic approach.

As applications of generalized banded diagram techniques, we will prove strong
quasipositivity for various classes of diagrams.

Theorem 6.4. A successively almost positive braid link is strongly quasipositive.

Theorem 6.11.[FLL, Theorem A] An almost positive link is strongly quasipositive.

As we will see and discuss, our proof based on generalized banded diagram is
constructive and gives additional insight on the braid index of strongly quasipositive
braid representatives. Furthermore, our argument can be used to show the strong
quasipositivity for many other cases.

The generalized banded diagram technique give a supporting evidence for the
assertion that weakly successively almost positive links [IS], a generalization of
positive links, are strongly quasipositive.
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2. Banded diagrams

Throughout the paper, we always treat knots or links in R3, and diagrams in
R2, though we sometimes use an isotopy in S3 or S2 to make the embeddings or
diagrams simpler.

By abuse of notation, we often view an object in R2 as an object in R3 by taking
a suitable lift. For example, for a circle s in R2, by the same symbol s we often
mean a circle s× {h} ⊂ R2 × R = R3 where the height h is suitably chosen.

2.1. Relations of two circles. We summarize our terminologies of relative posi-
tions of disjoint oriented circles in R2 (see Figure 1).

A circle s in R2 bounds a disk Ds in R2. We will often say that a subset Y of
R2 lies in the inside (resp. outside) of s if Y ⊂ Ds (resp. Y ⊂ R2 \Ds).

Definition 2.1. Let s and s′ be disjoint circles in R2.

• We say that s′ is contained in s if s′ ⊂ Ds, namely, the circle s′ lies in the
inside of s.

• We say that s and s′ are nested if Ds ∩Ds′ are not empty.

Thus s and s′ are non-nested if and only if Ds ∩Ds′ = ∅. More generally, we say
that a family of mutually disjoint circles S = {s1, . . . , sm} in R2 are non-nested if
Dsi ∩Dsj = ∅ for i 6= j.

Definition 2.2 (Coherent circles). Let s and s′ be disjoint, oriented circles in R2.
By viewing s and s′ as oriented circles in S2 = R2 ∪ {∞}, s ∪ s′ cuts an annulus
A from S2. We say that s and s′ are coherent (resp. incoherent) s and s′ are
homologous (resp. non-homologous) in A.

s

s′

s

s′

s

s′

s

s′

s′ is contained in s s and s′ are non-nested

s and s′ are coherent

Figure 1. Relative positions of two (oriented) circles in R2

2.2. Banded diagram. By Seifert’s algorithm the link diagram D in R2 is decom-
posed as a disjoint union of circles (called Seifert circles) and positively or negatively
twisted bands (crossings of D). We denote by s(D) the number of Seifert circles of
D.
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By expressing a band by a signed arc, we may view the link diagram D as a
union of circles and (signed) arcs. This arc-and-circle illustration is useful because
it describes not only a link itself, but also its Seifert surface together with its
specified handle decomposition.

The banded diagram is a framework to treat arc-and-circle illustrations of link
diagrams.

Definition 2.3 (Banded diagram). A banded diagram D is a pair (S,A) such that

• S = S(D) is a disjoint union of oriented circles in R2.
• A = A(D) is a disjoint union of signed arcs in R2 connecting two circles
s, s′ ∈ S.

We call a circle in S a Seifert circle, and an arc in A a band. The bands are
allowed to transversely intersect Seifert circles in their interiors, but they satisfy
the following coherency assumption.

(Coherency): For each band a, The signs of intersections of Seifert circles
are the same.

✻ ✻ ✻ ✻ ✻
· · ·

The coherency assumption implies that

• For each Seifert circle s and band a, the number of intersections of a and s
is at most one.

• If a band a intersects with two distinct Seifert circles s and s′, then s and
s′ are coherent.

As in the usual diagram case, we denote by s(D) := #S the number of Seifert
circles of D. As we will see shortly, we will regard a band a as lying above a Seifert
circle s, thus we usually write a band a as an overarc.

As a natural generalization of Seifert’s algorithm, from a banded diagram we
obtain a surface as follows.

Definition 2.4 (Canonical Seifert surface of banded diagram). We take a dis-
joint union of disks Ds ⊂ R3 bounded by Seifert circles s ∈ S having constant
z-coordinate (height) hs. The heights {hs}s∈S are taken so that they satisfy

hs′ > hs if s′ is contained in s. (2.1)

Along each (signed) arc a ∈ A we attach a positively or negatively twisted band so
that

the band a lies above of disks Ds . (2.2)

We call the surface SD obtained in this manner the canonical Seifert surface of D.
We call the link ∂SD the link represented by D.

This construction is a common generalization of two natural constructions of
Seifert surfaces.

Example 2.5 (Canonical Seifert surface of link diagram). According to Seifert’s
algorithm, a link diagram D in R2 is naturally regarded as a banded diagram
D = D(D). The canonical Seifert surface SD is the Seifert surface obtained by
Seifert’s algorithm.
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Remark 2.6. We point out that when we use diagrams in S2, the condition of
nested Seifert circles does not make sense, thus neither does (2.1). Keeping track of
nesting of Seifert circles is one main technical reason we mostly work with diagrams
in R2. Furthermore, there are other choices for the heights of disks when one applies
Seifert’s algorithm. In particular, there can be several non-isotopic Seifert surfaces
obtained by Seifert’s algorithm from the same diagram.

In some papers, ‘canonical Seifert surface’ means a Seifert surface obtained by
Seifert’s algorithm from a diagram allowing such a kind of freedom of disk height
choices. We stipulate that in our paper, we regard as canonical only the Seifert
surface coming with the height property (2.1).

Example 2.7 (Braided surface from band generators). Let β be an n-braid ex-
pressed as a product of band generators {a±1

i,j }1≤i<j≤n. Here the band generator is
a braid defined by

ai,j = (σi+1σi+2 · · ·σj−1)
−1σi(σi+1σi+2 · · ·σj−1) ,

where σi denotes the standard generator of the braid group Bn (see Figure 2).

.
.
.

.
.
.

.
.
.

(i) (ii) (iii)
1

i

i+ 1

n

1

i

j

n

1

i

j

n

Figure 2. (i) The standard generator σi. (ii) The band generator
ai,j . (iii) ai,j viewed as a boundary of a twisted band

The band generator a±1
i,j is viewed as a boundary of positively or negatively

twisted band attached to the i-th and j-th strand. Consequently, the closed braid

β̂ has a natural Seifert surface, called the braided surface Sβ, consisting of n disks
bounded by braid strands and twisted bands that correspond to each ai,j in β. We
may view the diagram Dβ as a banded diagram D = D(β) so that its canonical
Seifert surface SD is the same as Sβ .

Using the terminologies of banded diagrams, braided surfaces and quasipositive
Seifert surfaces are defined as follows.

Definition 2.8 (Braided surface). Let D be a banded diagram such that all the
Seifert circles are coherent (hence ∂SD is a closed braid diagram). We say that a
Seifert surface S of a link L is a braided surface if it is isotopic to the canonical
Seifert surface SD.

Definition 2.9 (Quasipositive Seifert surface). A Seifert surface S is quasipositive
if S is isotopic to a braided surface having only positive bands. A link L is strongly
quasipositive if L bounds a quasipositive Seifert surface (i.e., L is represented by a
strongly quasipositive braid, a braid which is a product of positive band generators
{ai,j} ).
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2.3. Y-move. In [Ya] Yamada showed that a knot diagram D can be converted
to a closed braid diagram by particular types of isotopy which he called bunching
operations. A remarkable feature is that his operation preserves the number of
Seifert circles. Consequently, the braid index b(L) of the link is given by

b(L) = min{s(D) |D is a diagram of L} (2.3)

([Ya, Theorem 3]).
The Y-move is Yamada’s bunching operation adapted to banded diagrams.

Definition 2.10 (Y-move). Let D be a banded diagram, and s and s′ be its Seifert
circles. Assume that there exists an oriented simple arc γ from a point on s and a
point on s′ such that the interior of γ is disjoint from D.

We replace a Seifert circle s with a new Seifert circle sγ , which is the band sum
of s and s′ along γ, to get a new generalized banded diagram Dγ (see Figure 3).

We say that Dγ is obtained from D by Y-move along γ.

According to the positions of s and s′, there are three cases of Y-moves.

(i) s and s′ are non-nested.
(ii) s′ is contained in s.
(iii) s is contained in s′.

(i)

(ii)

(iii)

s s′ sγ

s

s′
sγ

s

s′

sγ

Figure 3. Y-move along an arc γ (dashed arrow). (i) the case s
and s′ are non-nested. (ii) the case s′ is contained in s. (iii) the
case s is contained in s′.

A diagram D is a closed braid diagram if all the Seifert circles are coherent. The
Y-move makes D closer to a closed braid diagram since after the Y-move the two
Seifert circles s and s′ are coherent.

The advantage of the banded diagram point of view is that the canonical Seifert
surface SDγ

is isotopic to SD. Therefore, a Y-move preserves not only the number of
Seifert circles and underlying links, but also the isotopy classes of canonical Seifert
surfaces and their disk-and-band decomposition structure.
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Using the banded diagram terminology, one can generalize Yamada’s theorem
[Ya] in the following form.

Theorem 2.11. [HIK, Theorem 6.4], [St2, Lemma 3.3] For every banded diagram
D, by applying Y-moves finitely many times, one can make all the Seifert circles
of D coherent. In particular, the canonical Seifert surface of a banded diagram is
isotopic to a braided surface having the same number of disks and (positively and
negatively twisted) bands.

Consequently, we get a generalization of Yamada’s equality (2.3).

Corollary 2.12.

b(L) = min{s(D) | D is a banded diagram of L} ,

where s(D) is the number of Seifert circles of D.

Furthermore, it recovers a famous result that positive links are strongly quasi-
positive.

Corollary 2.13. [Na, Rud3] If all the signs of bands of a banded diagram D are pos-
itive, then SD is quasipositive on s(D) strands. In particular, the canonical Seifert
surface of a positive link is quasipositive, so a positive link is strongly quasipositive.

2.4. Self-linking number. A closed n-braid diagram Dβ is regarded as a not only
an oriented link, but as a transverse link T in the standard contact S3.

The self-linking number, the most fundamental invariant of a transverse link, is
given by the following formula of Bennequin [Be]:

sl(T ) = −n+ w(Dβ) = −n+ c+(Dβ)− c−(Dβ), (2.4)

where c±(Dβ) denotes the number of positive and negative crossings of Dβ and

w(Dβ) = c+(Dβ)− c−(Dβ)

is the writhe of the diagram Dβ .

The maximum self-linking number sl(L) of a link L is defined as the maximum
of the self-linking number of a transverse link which is topologically isotopic to L.

Theorem 2.14 (Bennequin’s inequality [Be]). Let χ(L) be the maximum euler
characteristic of Seifert surfaces of L. Then

sl(L) ≤ −χ(L) .

As a natural extension of Bennequin’s formula (2.4) we define the self-linking
number of banded diagram as follows.

Definition 2.15 (Self-linking number of banded diagram). Let a±(D) be the num-
ber of positive and negative bands of a banded diagram D. The self-linking number
of a banded diagram is defined by

sl(D) = −s(D) + a+(D)− a−(D) .

Unlike the closed braid diagrams, banded diagrams no longer represent trans-
verse links in a canonical manner. However, since the Y-move of banded diagrams
preserves the self-linking number, Theorem 2.11 justifies the definition, and leads
to the following.

Corollary 2.16. For a link L,

sl(L) = max{sl(D) | D is a banded diagram of L} .
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3. Generalized banded diagram

When we try to determine the genus, the braid index, or the maximum self-
linking number, a common strategy is as follows. First we look for a candidate that
potentially attains the minimum or maximum. Then we confirm that the candidate
attains the minimum or maximum, by using inequalities concerning computable
invariants.

From this point of view, banded diagrams are useful because they give more
chance to find a candidate attaining the minimum or maximum. In this section,
we introduce a generalized banded diagram, a general form of the banded diagram
machinery.

3.1. Generalized banded diagram. We extend banded diagrams by relaxing the
condition that Seifert circles are mutually disjoint.

Definition 3.1 (Abstract generalized banded diagram). An abstract generalized
banded diagram D is a pair (S,A) such that

• S = S(D) is a set of finitely many oriented circles in R2, which we call Seifert
circles. We allow that two Seifert circles transversely intersect, forming
double point singularities.

• A = A(D) is a disjoint union of signed arcs in R2 connecting two distinct
Seifert circles. We call an element of A a band. Each band a is transverse to
Seifert circles forming double points and it satisfies the coherency property.
(Coherency): For each arc a, the signs of intersections of a and Seifert

circles are the same.

Note that in particular coherency implies that an arc does not intersect a Seifert
circle more than once. A banded diagram is naturally regarded as an abstract
generalized banded diagram. We denote by s(D) the number of Seifert circles of D.

As in the case of banded diagram, we define the self-linking number of abstract
generalized banded diagram by

sl(D) = −s(D) + a+(D)− a−(D) ,

where a±(D) is the number of positive and negative bands.
In the construction of the canonical Seifert surface of a banded diagram D, the

heights of disks and bands are determined from the diagram D by the conditions
(2.1) and (2.2).

To apply an analogous construction for abstract generalized banded diagrams,
we add additional information, the height of disks and bands.

Definition 3.2 (Height assignment). Let X(D) be the set of intersection points of
the interior of arcs and Seifert circles of D. A height assignment H = (h, h′) of D
is a pair of two functions (h, h′) such that

h : S → R

is an injection and

h′ : X(D) → {o, u} .

(Here o represents ‘over’ and u represents ‘under’.)

Definition 3.3 (Generalized banded diagram). A generalized banded diagram is
an abstract generalized banded diagram D with height assignment (h, h′).
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In the following, by abuse of notation, we use the same symbol D to represent
both an abstract generalized banded diagram and a generalized banded diagram.
We remark that both s(D) and sl(D) do not depend on the height assignment.

We express the height assignment by overarc-underarc notation1. Near the
double point intersection of Seifert circles s and s′, we draw s as an overarc if
h(s) > h(s′). Similarly, near the intersection point x of the intersection of a band
a and Seifert circle s, we draw a as an overarc (resp. underarc) if h′(x) = o (resp.
h′(x) = u).

One can try to construct a surface from a generalized banded diagram D in the
following manner. For each Seifert circle s we take a disk Ds in R3 bounded by s
having constant z-coordinate h(s). For each arc a ∈ A we attach a twisted band
ba, so that at each crossing point x of a and Seifert circle s, the band ba lies above
(resp. below) of the disk Ds if h(x) = o (resp. h(x) = u).

Definition 3.4 (Canonical surface). We call the (possibly immersed) surface SD

obtained by this procedure the canonical surface of D.

We call ∂SD the link represented by the generalized banded diagram D. We often
view D as a usual link diagram in an obvious way. See Figure 4 for an (abstract)
generalized banded diagram and its canonical surface.

(i)

(ii)

(iii)

Figure 4. (i) Abstract generalized banded diagram . (ii) Gen-
eralized banded diagram, where the height assignment is depicted
by over-arc/under-arc notation. (iii) The canonical surface of the
generalized banded diagram (ii).

The canonical surface SD is not necessarily embedded, but it is always a ribbon
surface (see Figure 5).

Thus a generalized banded diagram provides the bound of slice genus.

Proposition 3.5. If D is a generalized banded diagram representing a link L,
g4(L) ≤ g(D).

1However, we remark that the height assignment may not be completely determined from the
overarc-underarc notation.
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D SD

Figure 5. A generalized banded diagram whose canonical surface
is immersed. Its height assignment forces bands and disks to in-
tersect.

Although a non-geometric canonical surface is still useful and deserves to be
studied thanks to Proposition 3.5, in the rest of the paper we will mainly treat the
following class of generalized banded diagram.

Definition 3.6 (Geometric generalized banded diagram). A generalized banded
diagram D is geometric if SD is embedded. In this case we call a canonical Surface
SD the canonical Seifert surface to emphasize it is a Seifert surface of the link
represented by D.

3.2. Characterization of ordinary banded diagram. Throughout the rest of
the paper, we call a banded diagram D as defined in Definition 2.3 ordinary banded
diagram, to distinguish from generalized banded diagrams. An ordinary banded di-
agram is regarded as a generalized banded diagram by taking the height assignment
H = (h, h′) so that

(i) h(s) > h(s′) if s is contained in s′

(ii) h′(x) = o for all x ∈ X(D) (i.e., a band always lies above of disks).

Since one of the major differences of generalized and ordinary banded diagrams
is that a generalized banded diagram allows for the intersections of Seifert circles,
the following quantity serves as a measure of to what extent a generalized banded
diagram D is far from ordinary banded diagrams.

Definition 3.7. The Seifert circle crossing number sc(D) of an (abstract) gener-
alized banded diagram D is the number of crossings of Seifert circles.

The ordinary banded diagram is characterized as follows.

Proposition 3.8 (Characterization of ordinary banded diagram). A generalized
banded diagram D is an ordinary banded diagram if and only if it is geometric,
sc(D) = 0, and its height assignment H = (h, h′) satisfies

h(s) > h(s′) if s is contained in s′ .

Proof. Since ‘only if’ direction is obvious, we show that D is ordinary banded dia-
gram under these three conditions. To see this, it is sufficient to see that h′(x) = o
for every crossing x of a band a and a Seifert circle s. Assume, to the contrary,
that there is a band a connecting Seifert circles s0 and s1 and a Seifert circle s
such that a and s form a crossing x with h′(x) = u. With no loss of generality, we
assume that s0 is contained in s, thus by assumption h(s0) > h(s). This implies
that the band a must intersect with the disk Ds (see Figure 6), which contradicts
the assumption that D is geometric. �
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s0
s

s1

Figure 6. The condition h(s0) > h(s) and band a passing below
of s implies that the canonical surface is not embedded.

4. Marking of diagrams

As a framework to relate link diagrams and generalized banded diagrams we
introduce the following notions.

Definition 4.1 (Marking and associated generalized banded diagram). A subset C
of the set of crossings of link diagram D is a marking if smoothing the crossings of
D except C gives rise to a union of circles S that can be regarded as a generalized
banded diagram with appropriate height assignment (i.e., S is a union of circles
with distinct heights).

We assign a generalized banded diagram D(D,C) by viewing the crossings other
than C as a band. We call D(D,C) the generalized banded diagram associated to
the marking C.

A marking C contains the same number of positive and negative crossings. When
C = ∅, its associated generalized banded diagramD(D, ∅) is nothing but an ordinary
banded diagram in Example 2.5.

For a general marking, its associated banded diagram is not always geometric,
as the next example shows.

Example 4.2. Let D be a link diagram in Figure 7 left, and let C be the set of
shaded crossings. The associated generalized banded diagram (Figure 7 right) is
not geometric.

Figure 7. Marking of a diagram D and associated generalized
banded diagram D(D,C) (the signs of bands are omitted).

As in the previous section, we will mainly treat a geometric marking, a marking
whose associated generalized banded diagram D(D,C) is geometric.

The canonical Seifert surface SD(D,C) is a generalization of the canonical Seifert
surface construction. It gives a useful technique to explore the genus of knots from
its diagrams.
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The canonical genus of K is the minimum genus of a canonical Seifert surface
SD := SD(D,∅) of a diagram of K. Clearly we have the inequality

gc(K) := min{g(SD) |D is a diagram of K} ≥ g(K) . (4.1)

It is known that the inequality is strict in general. Indeed, the difference gc(K) −
g(K) can be arbitrary large as the Whitehead double of a suitable knot shows.

On the other hand, when we utilize markings, the situation is completely differ-
ent. Here we state for knots, to make clear the difference from (4.1), but the same
conclusion holds for links and their maximum euler characteristics.

Proposition 4.3. For every knot K, there exists a diagram D of K and a geometric
marking C of D such that g(K) = g(SD(D,C)). Namely,

min{g(SD(D,C)) | (D,C) is a diagram of K with geometric marking C } = g(K) .

Proof. It is known that every knot K has a closed braid representative β (over the
band generator {ai,j}) such that its braided surface Sβ attains the minimum genus
[Rud1, Section 3] (see also [BF, Theorem 4.2]). Let D be the closed braid diagram
Dβ. For each band generator

a±1
i,j = (σi+1σi+2 · · ·σj−1)

−1 σ±1
i (σi+1σi+2 · · ·σj−1)

of β, we regard the underlined crossings as a marking C. Then C is a geometric
marking and SD(D,C) = Sβ. �

To investigate how to use markings, we consider the following properties.

Definition 4.4. Let D be a diagram of a link L. We say that a geometric marking
C of D is

– maximum if #C is maximum among all the geometric markings of D.
– locally maximum if there is no geometric marking C′ such that C ( C′.
– full if C contains all the negative crossings of D.
– tight if χ(SD(D,C)) = χ(L).
– quasipositive if SD(D,C) is quasipositive.

By definition, full implies maximum and maximum implies locally maximum. A
quasipositive marking is always tight. None of the converse of these three implica-
tions are true.

Example 4.5. For the closed 4-braid diagram σ−1
3 σ−1

2 σ−1
2 σ−1

2 σ−1
1 σ3σ2σ1, the mark-

ing C = {σ−1
2 , σ2} indicated by underline is locally maximum. However, C is not

maximum since C′ = {σ−1
1 , σ−1

3 , σ1, σ3} is a marking. Furthermore, C′ is maximum
and tight. However, C′ is neither full nor quasipositive.

To explain the reason why we would like to care about a (locally) maximum
marking, we observe the following.

Lemma 4.6. Let D be a diagram of a link L, and let C and C′ be geometric
markings of D such that C ( C′. Then

χ(SD(D,C)) < χ(SD(D,C′)).

Thus a tight marking is locally maximum.
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Proof. Let UC and UC′ be the unlink diagram consisting of the Seifert circles of
D(D,C) and D(D,C′), respectively. By definition, UC is obtained from UC′ by
resolving the crossings of C′ \C. Since each crossing of UC′ connects distinct com-
ponents, the first crossing change reduces the number of components. Furthermore,
since each crossing change increases or decreases the number of components by one,

s(D(D,C)) = #components of the unlink UC

≤ #components of the unlink UC′ +#C′ −#C − 2

= s(D(D,C′)) + #C′ −#C − 2.

Thus

χ(SD(D,C)) = s(D(D,C))− (c(D) −#C)

≤ s(D(D,C′))− (c(D)−#C′)− 2

= χ(SD(D,C′))− 2 .

�

On the other hand, a maximum marking may not be tight. In particular, there
is a diagram without tight marking.

Example 4.7. Let D be the closed braid diagram of the 4-braid (word)

σ−1
3 σ−1

3 σ2σ
−1
3 σ2σ1σ1σ1σ

−1
2 σ1σ

−1
2

which represents the unknot U . (This is Morton’s example of a closed irreducible,
i.e. non-destabilizable, 4-braid whose closure is the unknot [Mo].) The marking
C indicated by underline is a maximum (hence locally maximum) marking but
χ(SD(D,C)) = 4 − 9 = −5 < 1 = χ(U), thus C is not tight. Furthermore, D has no
tight marking.

Here we give one sufficient condition for the tightness of markings.

Proposition 4.8. A geometric marking C is tight if C is full and s(D(D,C)) =
s(D).

Proof. Since the marking C contains all the negative crossings of D, #C = 2c−(D),
where c−(D) is the number of negative crossings of D. From the assumption
s(D(D,C)) = s(D),

χ(SD(D,C)) = s(D(D,C)) − c(D) + 2c−(D) = s(D)− w(D) .

Thus by Bennequin’s inequality we conclude

s(D)− w(D) = χ(SD(D,C)) ≤ χ(L) ≤ −sl(L) ≤ −sl(D) = s(D)− w(D) .

Thus C is tight. �

Proposition 4.8 often allows us to find a minimum genus Seifert surface from a
diagram, even though the canonical Seifert surface does not attain the minimum.

Example 4.9. From a diagram D of Figure 8, the marking C indicated by shaded
crossings is geometric. It contains all the negative crossings and s(D(D,C)) =
s(D) = 4, so by Proposition 4.8 it is a tight marking.
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Figure 8. Example of tight marking

5. From generalized banded diagram to ordinary banded diagram

In this section we discuss an extension of Theorem 2.11 for generalized banded
diagrams. We develop a technique to convert a geometric generalized banded into
an ordinary banded diagram, preserving its canonical Seifert surface.

5.1. Regions. Let D be an abstract generalized banded diagram. For a Seifert
circle s, let Ds be the disk bounded by s. Some of the other Seifert circles of D
not contained in Ds intersect with Ds as arcs. They cut Ds into several connected
components. We call these connected components of Ds the regions of s.

We view the regions as N -gons by regarding the intersections of Seifert circles
as their corners.

Definition 5.1. Let R be a region of a Seifert circle s.

• R is trivial if it is a 0-gon, namely, R = Ds.
• R is simple if every corner of R is an intersection of s and other Seifert
circles.

• R is innermost if R contains no non-trivial regions of other Seifert circles.

Example 5.2. Let us consider the abstract banded diagram in Figure 9 and its
Seifert circle s. The shaded disk represents Ds. In the definitions concerning
regions, bands are irrelevant, thus we omit bands not to make the diagram unnec-
essarily complicated.

The Seifert circle s has six regions (a)–(f). To emphasize the polygon structure
of regions, we add vertices at each corner, the intersection point of Seifert circles.
A white vertex is an intersection of s and other Seifert circles, and a black vertex is
an intersection of Seifert circles other than s. The condition that R is simple says
that ∂R contains no black vertices.

The regions (a),(b) are simple. The regions (d),(e),(f) are innermost.

5.2. B-move. Our elementary but critical observation is that a certain type of
bigon region, which we call admissible as defined below, can be removed by isotopy.
(By definition, a bigon region is always simple.)

Definition 5.3 (Admissible bigon region). Let D be a geometric banded diagram.
Let R be a bigon region for a Seifert circle s, cut from a subarc of another Seifert
circle s′. We put sR = ∂R ∩ s and s′R = ∂R ∩ s′. We say that a bigon region R is
admissible if it satisfies the following two conditions.

(a) Both sR and s′R are oriented subarcs from one corner p to the other corner
q.
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D

s

(a) (b) (c) (d)

(e)

(f)

Figure 9. Regions of a Seifert circle s for an abstract banded
diagram D. (Since the bands are irrelevant, we omit displaying
them.)

(b) R ⊂ Ds′ .

Definition 5.4 (B-move). Let D be a geometric banded diagram and let R be an
admissible bigon region. Assume that the interior Int(R) of R contains no Seifert
circles.

Arcs of D having non-empty intersections with R are classified into the eight
types as depicted in Figure 10 because otherwise they contradict the assumption
that D is geometric.

We push the disk Ds along the bigon R to get a geometric generalized banded
diagram D′. The canonical Seifert surface SD′ is isotopic to SD (see Figure 10). We
call the operation the B-move along the admissible bigon region R.

R

ss′

B-move

Figure 10. B-move (the case h(s) > h(s′)). There are only 8
types of bands near an admissible bigon region R without other
Seifert circles inside it.
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In a similar vein, for later use, we introduce the following basic operation similar
to the B-move, which we call A-move (annulus move).

Definition 5.5 (A-move). Let D be a geometric generalized banded diagram. As-
sume that two Seifert circles s and s′ satisfy the following properties:

(a) Ds′ ⊂ Ds, s and s′ are coherent, and s ∪ s′ cuts an annulus A from R2.
(b) s and s′ are disjoint from other Seifert circles.
(c) The interior Int(A) of A contains no Seifert circles.
(d) h(s) > h(s′). Furthermore, h(s′′) > h(s′) holds for every Seifert circle s′′

contained in s′.

Then, as in the B-move case, arcs of D having non-empty intersection with A
are classified into the seven types as depicted in Figure 11. The property (d) means
that for each intersection point x of an arc and s′, we have h′(x) = o. Namely, arcs
always lie above of s′. This implies that the one can put the canonical Seifert surface
SD so that the interior of the annulus A×{h(s′)} is disjoint from SD. Therefore, by
enlarging the Seifert circle s′ along A × {h(s′)}, we get a new generalized banded
diagram D′ whose canonical Seifert surface SD′ is isotopic to SD. We call this
operation A-move.

A

s

s′

A-move

z = h(s′)

Figure 11. A-move

5.3. Drilling Y-move. In this section we give a certain extension of the Y-move
for a generalized banded diagram.

Although it is interesting and important to develop Y-moves in full generality,
here we do this for the simplest case which is sufficient in our purpose.

Let D be a generalized banded diagram with height assignment H = (h, h′).
Let s and s′ be incoherent Seifert circles of D. Here we straightforwardly extend
Definition 2.2 of (in)coherence, for two disjoint Seifert circles. This means that,
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whenever we say that Seifert circles s and s′ of a generalized banded diagram are
(in)coherent, it implies that s and s′ are disjoint.

Assume that there exists an oriented simple arc γ from a point on s to a point
on s′, such that the interior of γ is disjoint from D. Recall that as we have seen in
Figure 3, there are there cases according to the positions of s and s′.

(i) s and s′ are non-nested.
(ii) s′ is contained in s.
(iii) s is contained in s′.

By reversing the orientation of γ, the case (iii) can be changed to the case (ii).
Here we present a generalization of Y-move for the case (ii), which we call drilling
Y-move.

Definition 5.6 (Drilling Y-move for generalized banded diagram). In the setting
above, we replace a Seifert circle s with a new Seifert circle sγ , which is the band
sum of s and s′ along γ, to get an abstract generalized banded diagram Dγ . Thus
the set of Seifert circles S(Dγ) of Dγ is S(Dγ) = (D \ {s}) ∪ {sγ}.

The height assignment Hγ = (hγ , h
′
γ) is defined as follows. As for the height

hγ : S(Dγ) → R of Seifert circles, we take a natural choice.

hγ(u) =

{
h(u) u 6= sγ

h(s) u = sγ

Let Xγ be the crossings of bands and the Seifert circle sγ created by the opera-
tion. Then X(Dγ) = X(D)∪Xγ . Assume that x ∈ Xγ is a crossing of a band a and
sγ . Since the band a cannot intersect with s′ more than once, one of the endpoints
of x lies inside s′. Let sx (possibly s′) be the Seifert circle of Dγ that contains such
an endpoint.

Then we define

h′
γ(x) =





h′(x) x 6∈ Xγ

o x ∈ Xγ , if h(sx) > h(s′)

o x ∈ Xγ , if h(sx) = h(s′) and h(s) < h(s′)

u x ∈ Xγ , if h(s′) > h(sx)

u x ∈ Xγ , if h(sx) = h(s′) and h(s) > h(s′)

Here we remark that h(sx) = h(s′) implies sx = s′ because h is injective.
We call the generalized banded diagram Dγ the generalized banded diagram by

applying Y-move along γ (see Figure 12).

Although the definition looks a bit complicated, the effect of a Y-move is easily
understood. The canonical surface S(Dγ) is obtained from SD by drilling the disk
Ds. Thus, if D is geometric, so is Dγ , and their canonical Seifert surfaces are
isotopic. This is why we call the Y-move ‘drilling’.

5.4. Bigon removal lemma. We are ready to state and prove the most useful
and fundamental lemma for geometric generalized banded diagram.

Theorem 5.7 (Bigon removal lemma). Let D be a geometric generalized banded
diagram. Let R be an innermost admissible bigon region R (see Definition 5.1 for
the definition of innermost in our sense). By drilling Y-moves inside R and by a
B-move, we remove the bigon R to be able to get a new generalized banded diagram
D′ such that sc(D′) = sc(D)− 2.
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γ

s

s0

s1

s′

sγ

Figure 12. Y-move for a generalized banded diagram for the
non-nested case, case (ii). Here the height assignment is h(s0) <
h(s′) < h(s1) < h(s).

Proof. Let s′ be the Seifert circle that cuts a region R of s. Since the condition (b)
of the admissibility says that R can be also viewed as a region of s′, we may freely
interchange the role of s and s′ if needed.

Assume that Int(R) contains Seifert circles s1, . . . , sm. Since we are assuming
R is innermost, s1, . . . , sm are mutually disjoint. Let p and q be the corner of the
bigon R, taken so that sR := ∂R ∩ s and s′R := ∂R ∩ s′ are oriented from p to q.

Let Di be the disk bounded by si and X = R \
⋃m

i=1 Di. We view a band a ∈ A
of the banded diagram D as a properly embedded arc of R by taking R ∩ a. Then
these arcs cut X into several connected components. Let a be an arc that connects
a point x on sR or s′R and a point on si. By interchanging the role of s and s′ if
needed, we assume that there is an arc a connecting sR and si.

Among such arcs, we take one which is the closest to p. Namely, all arcs whose
endpoint sits on a subarc of sR between p and x connects sR and s′R. Then we
find an arc γ in X connecting s′R and si whose interior is disjoint from D. Thus
by applying a drilling Y-move along γ, we can remove the Seifert circle si from the
inside of bigon R.

By repeating the same procedure, we eventually remove all Seifert circles inside
R. Then we apply B-move to remove R.

x

p

q

X
sR s′R

γ

Figure 13. When an innermost admissible bigon R contains
Seifert circles, then it admits a drilling Y-move.

�
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5.5. Simple and admissible generalized banded diagram. We introduce the
following class of generalized banded diagrams that can be effectively simplified by
bigon removals.

Definition 5.8 (Simple generalized banded diagram). A generalized banded dia-
gram D is simple if for each Seifert circle s, all the regions of s are simple.

Definition 5.9 (Admissible generalized banded diagram). A generalized banded
diagram D is admissible if for each pair of Seifert circles (s, s′), s ∪ s′ forms an
abstract generalized banded diagram Dk (k ≥ 0) in Figure 14.

k k

Figure 14. Diagram Dk (k ≥ 0). Dk has exactly k admissible
bigons. D0 is just a disjoint union of non-nested coherent circles.

The diagram Dk can be made disjoint by removing admissible bigon regions.

Proposition 5.10. Let D be a geometric generalized banded diagram. If D is
admissible and simple, then by Y-moves and B-moves one can change D into a new
generalized banded diagram D′ such that sc(D′) = 0.

Proof. Take an innermost bigon region R of D. By assumption R is admissible.
Since bigon removal in Theorem 5.7 preserves the property that D is admissible
and simple, applying Theorem 5.7 finitely many times we eventually remove all the
intersections of Seifert circles. �

Although a geometric generalized banded diagram D with sc(D) = 0 obtained
in Proposition 5.10 is close to an ordinary banded diagram, it has still significant
differences – the height assignment, the height of disks and bands may be compli-
cated.

However, as the next theorem shows, by Y-moves and A-moves one can covert
such a generalized banded diagram into an ordinary banded diagram.

Theorem 5.11. Let D be a geometric generalized banded diagram. If sc(D) = 0
(i.e. all the Seifert circles are disjoint as circles in R2), then D can be converted to
an ordinary banded diagram by Y-moves and A-moves.

Proof. By Proposition 3.8 it is sufficient to show that one can achieve the property

h(s) > h(s′) whenever s is contained in s′. (5.1)

Let n = s(D) = #S(D) be the number of Seifert circles. With no loss of gener-
ality, we assume that h(S) = {1, 2, . . . , n}.

Let s be a Seifert circle such that the height condition (5.1) fails. Namely, there
is a Seifert circle s′ contained in s but h(s) > h(s′). Among such Seifert circles
s, we take one so that its height h(s) is minimum. Let {s1, . . . , sm} be the Seifert
circles contained in s. We assume that h(s1) < h(s2) < · · · < h(sm).
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Let X = Ds \
⋃m

i=1 IntDsi . We denote by sa1
, . . . , saℓ

, s (a1 < a2 < · · · < aℓ) the
Seifert circles that appear as the boundary of X .

If sai
and s are incoherent for some i, then we can find an arc in X connecting

s and sai
whose interior is disjoint from D. In this case, by applying a drilling

Y-move for s, we reduce the number m.
Thus we assume that the Seifert circles sai

and s are coherent for all i. Since sai

and saj
are non-nested, this means that sai

and saj
are incoherent whenever i 6= j.

If X is an annulus (i.e., ℓ = 1), the assumptions (a)–(c) of A-move in Definition
5.5 are satisfied (with s′ = sa1

). Since we are assuming that the Seifert circle s is
taken so that its height is minimum among all Seifert circles violating (5.1), the
assumption (d) of A-move is also satisfied. Therefore we can apply the A-move to
reduce the number m.

When ℓ > 1, we take an arc γ in X connecting sa1
and sa2

so that its interior is
disjoint from D. The height sa1

is the minimum of {h(s1), . . . , h(sm)}, the height
of Seifert circles contained in s, because by our choice of the Seifert circle s, all
the Seifert circles s′ contained in sai

satisfy h(s′) > h(sai
) ≥ h(sa1

). In particular,
h(sa1

) < h(s).
Thus we may assume that the interior of bands of D are disjoint from Ds ×

{h(sa1
)}. Thus we can apply an (ordinary) Y-move to change the Seifert circle

sa1
to shallow sa2

(see Figure 15). This reduces the number ℓ of the boundary
components of X .

X

z = h(sa1
) z = h(sa1

)

sa1
sa2γ

s

Ds

sa1
sa2

Y-move

Figure 15. (Ordinary) Y-move that decreases the number ℓ of
the boundary components of X .

All these operations preserve the height of Seifert circles. Therefore by iterating
these procedures we eventually convert D into an ordinary banded diagram.

�

Theorem 2.11, Proposition 5.10 and Theorem 5.11, prove our following main
theorem.
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Theorem 5.12. Let D be a geometric generalized banded diagram of a link L. If D
is simple and admissible, then by finitely many Y-moves, B-moves, and A-moves,
we can make D into an ordinary banded diagram D′ such that all the Seifert circles
of D′ are coherent (i.e. D′ is a closed braid diagram).

We remark that our proof of Theorem 5.12 is algorithmic. Since a Y-move, B-
move and A-move preserve the self-linking number and the number of Seifert circles,
Theorem 5.12 extends Corollary 2.12 and Corollary 2.16 for geometric, simple and
admissible generalized banded diagrams.

Corollary 5.13. Let D(L) be the set of geometric, simple and admissible general-
ized banded diagrams of a link L. Then

b(L) = min{s(D) | D ∈ D(L)}, sl(L) = max{sl(D) | D ∈ D(L)}.

Furthermore, we have the following criteria and construction of strongly quasi-
positive links and its quasipositive Seifert surface.

Corollary 5.14. If a link L is represented by a geometric, simple and admissi-
ble generalized banded diagram D which has no negative bands, then L is strongly
quasipositive and SD is quasipositive. In particular, χ(SD) = χ(L) = −sl(L), and
L admits a strongly quasipositive braid representative of s(D) strands.

We say that a marking C of a diagram D simple (resp. admissible) if D(D,C) is
simple (resp. admissible). By Corollary 5.14 we have the following useful sufficient
condition for strong quasipositivity.

Corollary 5.15. If a geometric marking C of D is full, simple and admissible,
then C is quasipositive.

For the convenience to readers, we summarize the implications among the prop-
erties of geometric markings.

full ✲

✲

✻
✘✘✘✘✘✘✘✘✿

❄
maximum

(∗)
(∗∗)

✲
locally maximum

quasipositive tight (∗) If simple and admissible (Corollary 5.15)
(∗∗) If s(D(D,C)) = s(D) (Proposition 4.8)

6. Applications

In this section, as an application of the generalized banded diagram technique,
we prove strong quasipositivity for various links.

Definition 6.1 ((Weakly) successively almost positive diagram). A diagram D is
successively almost positive if all the negative crossings of D appear successively
along a single overarc of D. Similarly, a diagram D is weakly successively almost
positive if all the negative crossings lie on a single overarc of D. Such an overarc is
called the negative overarc (see Figure 16).

We say that a link L is successively almost positive (resp. weakly successively
almost positive) if L can be represented by a successively almost positive diagram
(resp. weakly successively almost positive diagram).

Successively almost positive and weakly successively almost positive diagrams/links
are introduced in [It] and [IS] respectively, as an ‘appropriate’ generalization of pos-
itive links. Indeed, as we have seen in [IS], weakly successively positive links share
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... ...

negative
overarc

negative
overarc

Positive diagram Positive diagram

Figure 16. Successively almost positive diagram (left) and
weakly successively almost positive diagram (right).

many properties as positive links. They provide a unified framework to study posi-
tive links – unlike the class of positive diagrams, weakly successively almost positive
diagrams are closed under a suitable skein relation that allows us to use induction
arguments. In fact, some results on weakly successively almost positive links proven
in [IS] are new, even for positive links that have been studied for a long time.

The most important open problem for weakly successively almost positive links
is the following.

Question 6.2. [IS, Question 12.1 (a)] Is every weakly successively almost positive
link strongly quasipositive ?

Our examples and results provide supporting evidence for the affirmative answer,
and are interesting in their own right.

Indeed, the generalized banded diagram technique allows us to show that many
weakly successively almost positive links are strongly quasipositive and makes it
possible to visualize its quasipositive Seifert surface.

6.1. Braid diagrams and successively almost positive braids. A braid word
is a word over the standard generators {σ1, . . . , σn−1} and their inverses of the n-
braid group Bn. Similarly a band braid word is a word over the band generators
{ai,j}1≤i<j≤n and their inverses. (See Example 2.7.) Since ai,i+1 = σi, sometimes
we view a braid word as a special case of a band braid word.

To avoid cumbersome distinctions, in the following we will often exchange the
roles of a braid word w and the braid β represented by w. That is, by braid we mean
both an element of Bn and its particular braid word representative. In particular,
we denote by Dβ the link diagram obtained by closing β (which, of course, depends
on the word w). As for band braid words, we will again switch the meaning of
a band braid word w and the braid β represented by w. We denote by Dβ the
ordinary banded diagram obtained by closing β.

A braid word w is positive (resp. almost positive) if it is a product of positive
generators σ1, . . . , σn−1 (resp. it has at most one negative generator σ−1

i ). A link
L is a positive braid link (resp. almost positive braid link) if L is the closure of a
positive (resp. almost positive) braid.

Definition 6.3 (Successively almost positive braid). An n-braid word w for β ∈ Bn

is successively almost positive (s.a.p. in short), if up to cyclic permutation it is of
the form

w = (σ−1
j σ−1

j−1 · · ·σ
−1
i )v , (6.1)
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for some 1 ≤ i < j ≤ n − 1, where v is a positive braid word. A link L is a
successively almost positive braid link (s.a.p. braid link, in short) if L is the closure
of a successively almost positive braid.

Since

β = (σ−1
j σ−1

j−1 · · ·σ
−1
i )α

= (σ−1
j · · ·σ−1

1 )(σ1 · · ·σi−1)α

∼ (σ−1
n−1 · · ·σ

−1
1 )(σ1 · · ·σi−1)α(σj+1 · · ·σn−1)

(here ∼ denotes the cyclic permutation), when L is a successively almost positive
braid link, we are always able to take its successively almost positive braid word so
that i = 1 and j = n− 1 in (6.1).

A successively almost positive braid might not be a strongly quasipositive braid.
For example, σ−1

n−1σ
−1
n−2 · · ·σ

−1
1 is not strongly quasipositive, but successively almost

positive.
However, we show that a successively almost positive braid link is strongly quasi-

positive.

Theorem 6.4. A successively almost positive braid link is strongly quasipositive.

To prove this theorem, we give the following algorithm to find a maximum mark-
ing C from a successively almost positive braid word, which, in particular, computes
the maximum euler characteristic of s.a.p. braid link L, since

−χ(L) = −n+ ℓ(β)−#C . (6.2)

In the proof of Theorem 6.4 we will use C just as the marking thus obtained. It
will follow from the proof of the theorem that C is in fact a maximal marking.

In a presentation of a word in a group by letters, we use the following notions.

Definition 6.5. Let v = a1a2a3 · · · ak be a word where ai are letters.

• We say that v is a non-consecutive subword of a word w if for all i, ai occurs
in w right of ai+1, but there may be (arbitrary) letters in between.

• We say v is a (consecutive) subword of w if there are fixed letters {ai}
k
i=1

in w so that ai+1 occurs in w immediately following the occurrence of ai.
(Subwords are stipulated by default consecutive.)

Example 6.6. Let w = σ1σ2σ
−1
3 σ3σ2σ2.

• σ1σ3 is a non-consecutive subword, but σ3σ1 is not a non-consecutive sub-
word.

• σ1σ2σ3 is a non-consecutive subword of w.
• σ1σ2σ

−1
3 is a (consecutive) subword of w.

When the input braid word α is of length ℓ, then Step (2) of Algorithm 1 is done
in time ℓ(α) = ℓ. Since we return to (2) to at most n

2 times, the maximum marking
C (and hence χ(L)) is computed in time O(nℓ).

A successively almost positive braid link L = β̂ is successively almost positive,
hence by [IS], we have 1 − χ(L) = max deg∇L(z) for non-split L, where ∇L(z)
is the Conway polynomial of L. Thus one can also compute the maximum euler
characteristic by computing the Conway polynomial. However, the algorithm is
much faster than computing the Conway polynomial.
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Algorithm 1 Finding a maximum marking of successively almost positive braid
word

Input : A successively almost positive braid word β = (σ−1
n−1 · · ·σ

−1
2 σ−1

1 )α
Output: A maximum marking C of Dβ

(1) Set k1 := 1, j := 1, and C := ∅.
(2) Let k′j be the maximal index such that wj := σkj

σkj+1 . . . σk′

j
(with indices

increasing by 1) occurs as a non-consecutive subword of α. For each index
i = kj , . . . , k

′
j , we always take the first (i.e., leftmost) letter σi in α that

allows us to build such a non-consecutive subword wj .
(3) If such k′j does not exist (i.e., the braid α contains no letter σkj

), put
kj := kj + 1. If kj ≤ n− 1, go back to (2), and otherwise to (6).

(4) If k′j exists, then put C := C ∪ {σ−1
kj

, . . . , σ−1
k′

j
, σkj

, . . . , σk′

j
}, where σk∗

is

the crossing that corresponds to a letter in the non-consecutive subword wj

in (2).
(5) If k′j < n− 2, put kj+1 := k′j + 2 and j := j + 1, and go back to (2).

(6) Stop.

Example 6.7. Here to make notation simpler, we denote by i and −i the generator
σi and σ−1

i , respectively. Let α = 572327161332174124∈ B8.

• Step (2) finds a non-consecutive subword w1 = 12 (572327161332174124),
so k1 = 1, k′1 = 2.

• Since k′1 = 2 < 8 − 2 = 6, we put k2 = k′1 + 2 = 4 and we go back to (2) –
this time we find a non-consecutive subword w2 = 4 (572327161332174124)
so k′2 = 4.

• Since k′2 = 4 < 8− 2 = 6, we put k3 = k′2 +2 = 6 and go back to (2) again.
Then we find a non-consecutive subword w3 = 67 (572327161332174124) so
k′3 = 7.

• Since k′3 = 7 ≥ 8 − 2 = 6, the algorithm stops and we get a maximum
marking

β = −7−6− 5−4− 3−2−157232716133217 4124.

Thus for the link L = β̂, we have −χ(L) = −8 + 25− 10 = 7.

Proof of Theorem 6.4. Let us put

νn = σ−1
n−1σ

−1
n−2 · · ·σ

−1
1 ∈ Bn

and β = νnα ∈ Bn, where α is a positive braid (word).
We prove the theorem by induction on the string number n.
Let C be the marking of β obtained by Algorithm 1. For notational simplification

write

SC := { i |σ−1
i is in C } .

If #C = 2(n−1), then by Corollary 5.15, C is quasipositive, so we assume #C/2 <
n−1, i.e., there is a negative crossing σ−1

i0
in β which is not involved in the marking

C. We take the minimal 1 ≤ i0 < n with this property, i.e.,

i0 = min
(
{1, . . . , n− 1} \ SC

)
.

Figure 17 shows the example n = 8, i0 = 4.
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γ1 γ2

δ1

γ3

δ2

γ4

δ3

Figure 17. Successively positive braid with marking. The circled
crossings represent the marking.

Thus we can write

β = νnα = νn(γ1σ1δ1)(γ2σ2δ2) · · · (γi0−1σi0−1δi0−1)γi0 ,

where γi contains only σi′ for i′ > i, and δi contains only σi′ for i′ ≤ i. Thus γi
commutes with (σ′

iδi′) for all i
′ < i, and we can write

β = νnα = νn(γ1γ2 · · · γi0)(σ1δ1)(σ2δ2) · · · (σi0−1δi0−1).

By using braid relations

νnσ
±1
j = σ±1

j−1νn (j = 2, . . . , n− 1),

one can slide (γ1γ2 · · · γi0) across νn to get

β = νnα = (γ′
1γ

′
2 · · · γ

′
i0
)νn(σ1δ1)(σ2δ2) · · · (σi0−1δi0−1),

where γ′
i are the words obtained from γi by replacing each σj by σj−1. By taking

conjugates we get

β′ = νn(σ1δ1)(σ2δ2) · · · (σi0−1δi0−1)(γ
′
1γ

′
2 · · · γ

′
i0
) .

Since γ′
i and (σiδi) contain no σ±1

n−1, the braid β′, which is conjugate to β, has an

isolated σ−1
n−1.

Thus we can (negatively) destabilize β′ to a braid β′′ ∈ Bn−1, which is still of
the s.a.p. form β′′ = νn−1α

′ with α′ positive.
What remains to see is that if we apply Algorithm 1 on β′′, we obtain a marking

C′′ with #C′′ = #C. But this is an easy combinatorial observation which we leave
to the reader. More precisely,

SC′′ = {1, . . . , i0 − 1} ∪ sh(SC ∩ {i0 + 1, . . . , n− 1}) ,

where sh is the shift map i 7→ i− 1.
�

Corollary 6.8. [HIK, Theorem 3.1] An almost positive braid link is strongly quasi-
positive.

The following result which appeared in the proof deserves to be mentioned.

Corollary 6.9. Let L be the closure of a successively almost positive n-braid β =
(σ1 · · ·σn−1)

−1α. If Dβ does not admit a marking that contains all the negative
crossings (in the terminology of Definition 6.5 above, it means that σ1σ2 · · ·σn−1
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is not a non-consecutive subword of α), then β admits a negative destabilization up
to conjugacy. In particular, 1

2spanvPL(v, z) + 1 ≤ b(L) < n.

Here spanvPL(v, z) is the span of the variable v in the HOMFLY polynomial
PL(v, z) of L. This makes a sharp contrast to the following famous result.

Theorem 6.10. [FW]. If L is the closure of a positive braid of the form β =
(σ1 · · ·σn−1)

nα, where α is a positive braid, then b(L) = 1
2spanvPL(v, z) + 1 = n.

6.2. Almost positive links are strongly quasipositive. An almost positive
diagram D is a diagram that has exactly one negative crossing c, which can be seen
as a special case of (weakly) successively almost positive diagram. In [FLL], it is
proven that almost positive links are strongly quasipositive. Their proof is based
on a characterization of quasipositive Seifert surface given in [Rud2].

Here we give an alternative proof that also provides information about the braid
index of strongly quasipositive representatives.

The almost positive diagrams are classified into the following two types [St1]:

Type I: There are no positive crossings that connect the same pair of Seifert
circles as c.

Type II: There is a positive crossing that connects the same pair of Seifert
circles as c.

Theorem 6.11. Almost positive links are strongly quasipositive. More precisely,

• If a link L has an almost positive diagram D of type I, then L admits a
strongly quasipositive braid representative with (s(D)− 1)-strands.

• If a link L has an almost positive diagram D of type II, then L admits a
strongly quasipositive braid representative with s(D)-strands.

Proof. If D is of type I, we use the following operation which we call the Chalcraft-
Murasugi-Przytycki’s move (CMP move in short). Assume that the negative cross-
ing c connects the two Seifert circles s and s′. Since D is of type I, no other crossings
connect s and s′. We move the underarc of the negative crossing c across one of
the Seifert circles s′, swallowing the Seifert circles and crossings adjacent to s′ as
closely as possible (see Figure 18).

c

s
s′

Figure 18. Chalcraft-Murasugi-Przytycki’s move at a negative
crossing c along a Seifert circle s′.

As is clear from Figure 18, the CMP move can be regarded as a move of canonical
Seifert surfaces, rather than just as a move of diagrams or links. The move of the
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underarc of c is achieved by flyping the twisted band at c and the disk Ds′ bounded
by s′. As a consequence, we can regard the diagram D′ obtained by the CMP move
as an ordinary banded diagram D in an obvious way. Since this procedure removes
the negative crossing (band) and the Seifert circle s′,

sl(D) = sl(D) + 2, s(D) = s(D)− 1 (6.3)

holds. D is a (ordinary) banded diagram without negative bands, so by Corollary
2.13 we may convert it to a strongly quasipositive closed braid diagram of (s(D)−1)
strands.

If D is of type II, we take a positive crossing c′ connecting the same Seifert
circles as the negative crossing c. Then C = {c, c′} is a geometric, simple marking2

of D. Furthermore, by taking an isotopy of diagrams in S2, we may assume that
the marking C is admissible. Then

sl(D(D,C)) = sl(D), s(D(D,C)) = s(D). (6.4)

Thus by Corollary 5.14, we see that D(D,C) can be converted to a strongly quasi-
positive closed braid diagram of s(D) strands. �

It is worth pointing out the below corollary, which follows from (6.3) and (6.4).

Corollary 6.12. An almost positive diagram D of a link L, sl(D) = sl(L) if and
only if it is of type II.

Remark 6.13. In [St2] it is explained precisely when the argument for type I
can be generalized to multiple negative crossings, i.e., when can CMP moves at all
negative crossings be performed to remove them and obtain a strongly quasipositive
surface.

As is clear from the proof, our argument can applied for many n-almost positive
diagrams D of a link L; for each negative crossing c of D, if there are no other
crossings connecting the same pair of Seifert circles as c, we try to apply the CMP
move. Similarly, if there is a positive crossing connecting the same pair of Seifert
circles as c, using such a positive crossing, we try to view D as a generalized banded
diagram so that the negative crossing c appears as a crossing of Seifert circles. If
these procedures yield a (geometric, simple and admissible) generalized banded
diagram with no negative band, then we conclude that L is strongly quasipositive.
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[Be] D. Bennequin, Entrelacements et équations de Pfaff. Third Schnepfenried geometry confer-
ence, Vol. 1 (Schnepfenried, 1982), 87–161, Astérisque, 107-108, Soc. Math. France, Paris,
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