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1. Introduction

The motivation for the present paper came out of considerations of Gauß diagrams recently introduced
by Polyak and Viro [23] and Fiedler [12] and their applications to positive knots [29].

For the definition of a positive crossing, positive knot, Gauß diagram, linked pair p � q of crossings
(denoted by p

�
q) see [29].

Among others, the Polyak-Viro-Fiedler formulas gave a new elegant proof that any positive diagram of
the unknot has only reducible crossings. A ”classical” argument rewritten in terms of Gauß diagrams
is as follows: Let D be such a diagram. Then the Seifert algorithm must give a disc on D (see [9, 29]).
Hence n � D ��� c � D ��� 1, where where c � D � is the number of crossings of D and n � D � the number of its
Seifert circles. Therefore, smoothing out each crossing in D must augment the number of components. If
there were a linked pair in D (that is, a pair of crossings, such that smoothing them both out according to
the usual skein rule, we obtain again a knot rather than a three component link diagram) we could choose
it to be smoothed out at the beginning (as the result of smoothing out all crossings in D obviously is
independent of the order of smoothings) and smoothing out the second crossing in the linked pair would
reduce the number of components. Hence D has no linked pair, and so all crossings in D are reducible.

2. Knot diagrams with canonical Seifert surfaces of genus one

The starting point of our discussion here is in how far does the picture change when we consider n � D �	�
c � D �	
 1, that is, exactly one smoothing out of a crossing reduces the number of components and the
genus of the canonical Seifert surface is one.

The answer is:�
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2 2 Knot diagrams with canonical Seifert surfaces of genus one

Theorem 2.1 Let D be a reduced diagram on which the Seifert algorithm gives a surface of genus one
(such surface we will call canonical). Then D is a rational knot diagram corresponding to the Conway
notation [16] C � p � q � with p � q �� non-zero and even or a � p � q � r � -pretzel knot diagram P � p � q � r � with
p � q � r odd.

This was observed also by Lee Rudolph [26, p. 4 top] without proof. Here we write up one. Our
approach will be more useful later.

Proof. Let D be such a diagram. First, D is connected. Then D has the following property: whenever a
linked pair of crossings is smoothed out in D, the resulting diagram has only reducible crossings (that is,
no linked pairs). Now in the smoothed out version the segments are run through in the following order:

IIIII

I IV

One convinces oneself, that then in D subdiagrams of the following kind do not occur:

d c �
a

c

c �d c

a

� a � � b � � c �
To do so, choose one linked pair, remove it, swopping 2 of the opposite segments into which the chords
of the linked pair separate the solid line and observe that the two remaining chords are linked.

Now fix some chord d in D. The exclusion of (b) and (c) shows that the following holds:

a
�

c � a � d � c
�

d ��� c � � d : c
�

c ���
In words this means: for each two chords c and d intersecting a chord a, it holds: any other chord c �
intersects either both or no one of them.

Now make the following procedure: color d blue and all a with a
�

d red. Assume now any blue
colored chord is intersecting any red colored chord and that some chord is not yet colored. Then (by
connectedness of D) take one (call it b) intersecting some (w.l.o.g.) blue colored chord c. As c intersects
some (in fact, any) red colored chord e, either (i) b intersects all chords intersecting e, in particular all
blue chords. Then color b red. Or (ii) b � e. If b intersects all colored chords intersecting c, then color b
blue. Else b does not intersect some colored chord f with f � c.

c

b
f

e

Then f
�

e (else (c)) and so � f � : f � � f � f � � b. Give then b the color of f . Then one more chord
is colored and still any blue colored chord intersects any red colored chord. At the end this procedure
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partitions all chords of D into red and blue and D looks like this

blue

red

Now look at each partition separately. By exclusion of (a) and (b) and the fact that each blue chord is
intersected by some fixed red chord, whenever two blue chords intersect, any other blue chord intersects
exactly one of them. Then the partition looks like

or

I II

To see this, (re)color the blue chords black and white such that any chord intersecting a black (white)
chord is colored white (black). Then by the above properties two chords intersect exactly if they have
different color.

Now assume both partitions are of type I, then by even valence both have even number p � q of chords
and D is the diagram C � p � q � with p � q even. Not both partitions can be of type II because of (a). Hence
the remaining case is one partition of type I and one of type II. Then D looks like

q

r p

By even valence p � q, p � r and q � r must be even, so either p � q � r even or p � q � r odd. It is easily seen
that for p � q � r even D is not realizable (or it can be formally checked using the conditions in [10]) hence
p � q � r are odd and D is the pretzel diagram P � p � q � r � . �
This theorem has now some consequences. Now, any � p � q � r � -pretzel knot is alternating for p � q � r � 0
or by [1, exercise 5.32, p. 149] alternating or almost alternating for p � q � 0 � r � 0. This covers all cases
up to obversion (that is, taking the mirror image), so we obtain

Corollary 2.1 Any genus one knot, that is neither alternating nor almost alternating, has no minimal
canonical Seifert surface. �
Using that the only one genus one torus knot is the trefoil and that any non-hyperbolic knot is composite
(so of genus at least two), satellite (so by [19] non-alternating and by [2] non-almost alternating) or a
torus knot, we obtain the statement of the abstract.
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Corollary 2.2 Any non-hyperbolic genus one knot except the trefoil does not have a minimal canonical
Seifert surface. �
A series of such knots are Whitehead doubles of (non-trivial) knots, and so we see that any Whitehead
double of a (non-trivial) knot K does not have a minimal canonical Seifert surface. This was known
for lonely K (that is, K is not a satellite itself) by [36], see the proof of theorem 7 of [9]. Morton [21]
gave an independent argument for showing non-existence of minimal canonical Seifert surfaces using
the HOMFLY polynomial and giving the example of a Whitehead double of the trefoil.

Corollary 2.3 Let K be an alternating genus one knot. Then K � P � p � q � r � with p � q � r � 0 odd, or
K � C � p � q � with p � q � 0 even (or their obverse).

Proof. Take an alternating diagram of K. Then the Seifert algorithm must give a genus one surface on
it [13, 9] and now apply theorem 2.1. �
Corollary 2.4 Let K be an positive genus one knot. Then K � P � p � q � r � with p � q � r � 0 odd.

Proof. Take a positive diagram of K and use again the minimality of the canonical Seifert surface. Then
by theorem 2.1 D is either C � p ��
 q � with p � q � 0 even or P � p � q � r � with p � q � r � 0 odd. However, the
former case in contained in the latter, as C � p ��
 q ��� P � p 
 1 � 1 � q 
 1 � (see the continued fractions [1,�
2.3]). �

Now we come to our result on unknotting numbers.

Corollary 2.5 Let K be a positive unknotting number one knot. Then K is a twist knot (i.e., a rational
knot with Conway notation C � 2 � n � or C � n � 2 � , n ��� ).

Proof. Let K be such a knot. Then by corollary 1 of [26] a positive unknotting number one knot has
also genus one and then by corollary 2.4 K is a � p � q � r � -pretzel knot with p � q � r odd. Now, by corollary 2
of [17], a � p � q � r � -pretzel knot with p � q � r odd has unknotting number 1 if and only if  1 � 1 ! ,  "
 1 ��
 1 ! , #
 3 � 1 ! , or  "
 1 � 3 !%$& p � q � r ! , in which case the knot is a twist knot. �
Remark 2.1 Only odd crossing number twist knots occur. It can be shown that even crossing number
twist knots are not positive. For example, thay have negative Casson invariant (which can be most easily
seen from its Polyak-Viro folmula [23]) and negative minimal degree of the Jones polynomial (it is 
 2)
contradicting the obstructions to positivity of [9] and [31]. Moreover, even crossing number twist knots
have zero signature, contradicting the property of [8, corollary 3.4, p. 497].

Remark 2.2 J. Przytycki informed me of an early draft of himself and Taniyama [25], where he ob-
tained the same and some similar results.

Corollary 2.6 Any positive genus one knot has at most two positive (unoriented) diagrams (in S2), at
most one of the kind C � p ��
 q � , p � q � 0 even, and most one of the kind P � p � q � r � , p � q � r � 0 odd.

Proof. It follows from theorem 2.1 that all diagrams C � p ��
 q � depict distinct rational knots, as the
expression C � a1 ��������� an � with all ai even is unique for any rational knot. In the pretzel case note, that the
diagrams P � p � q � r � with p � q � r � 0 odd are alternating and do not admit a flype [20] (modulo permuting
p � q and r, which however is also realized by orientation reversal and isotopies of the diagram in S2). �
Example 2.1 C � 4 ��
 4 � and P � 3 � 1 � 3 � are the only positive diagrams of the knot 74.
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Example 2.2 Any � p � q � r � -pretzel knot with p � q � r � 1 odd is not rational (e.g., again by the above
flyping argument, as rational knots are alternating) and hence its � p � q � r � -pretzel diagram is its unique
positive diagram.

Conjecture 2.1 These are the only positive knots with only one positive diagram.

Theorem 2.1 allows to reproduce in a much easier way [32, corollary 3.1]:

Corollary 2.7 Any connected almost positive unknot diagram is a one crossing diagram or an unknotted
twist knot diagram.

Proof. By the inequality of of Bennequin-Vogel (see [29]) the canonical Seifert surface of such a dia-
gram must have genus at most one. The genus zero case is the one crossing diagram, so look at the genus
one case. Switching a crossing in a positive canonical genus one diagram and possibly annihelatng it
by a Reidemeister II move with another one gives a diagram of (i) C � p ��
 q � with p � q ' 0 even and not
p � q � 0 or (ii) P � p � q � r � with p � q � r odd, q � r � 0 and p '(
 1. Case (i) with pq � 0 comes (before the
Reidemeister move) from a diagram of the desired type, and for pq � 0 the diagram is knotted (e.g., as
positive, connected and of more than one crossing). A direct calculation of v3 of [29] shows that case
(ii) is a knotted diagram unless p �)
 1 *+� q � 1 � r � 1 � as desired. �
Finally, we repeat some results of Rudolph [26] slightly simplifying their proofs by not involving counts
of Seifert circles (his notations O ,-� O . ).

Theorem 2.2 Let D be a k-almost positive diagram of an achiral or slice knot. Then the canonical
Seifert surface of such a diagram has genus at most k.

Proof sketch. For slice use the Kronheimer-Mrowka-Menasco-Bennequin inequality with the slice
genus instead of the Seifert genus (called in [26] “slice Bennequin inequality (sBi)”). For achiral knots
reduce it to the slice case by Lee Rudolph’s trick (consider D#D). �
Corollary 2.8 Any positive non-trivial knot is non-slice.

Proof. See the arguments in the introduction and combine them with theorem 2.2. �
Corollary 2.9 Any non-trivial positive and almost positive knot is chiral and non-slice.

Proof. Let K be an achiral or slice non-trivial positive or almost positive knot. Then using theorem 2.2
and the arguments in the proof of corollary 2.7 it has either a connected positive diagram of � 1 crossing,
contradicting corollary 2.8 or a diagram P � p ��
 1 � q �/� C � p ��
 1 � q � with p � q � 1 odd. But such a knot
is rational and has a positive rational diagram, hence it is again by corollary 2.8 chiral and non-slice,
contradicting the assumption. �
Corollaries 2.8 and 2.9 are obtained also in [8, 25, 34] always using the signature.

3. Higher genera

Definition 3.1 Chords a1 �������0� an in a Gauß diagram are called neighbored, if no two of them intersect
and any other chord intersects either all of no one of them.

Any collection of neighbored chords has two outer chords (i.e., ones with respect to which the rest of the
collection lies on one side) and the segments of the solid line belonging to the collection are the segments
between the basepoints of the two outer chords containing basepoints of chords in the collection only.
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We need some standard definitions, which we formulate here in our favourable Gauß diagram setting.

Definition 3.2 A knot diagram is reduced or irreducible, if its Gauß diagram has no isolated chord, else
it is called reducible. A crossing corresponding to an isolated chord in a reducible knot diagram is called
reducible. A diagram is called connected, if the intersection graph of its Gauß diagram is so.

Definition 3.3 A knot diagram is twist reduced if it is reduced and there is no sequence of flypes

PQ 
	1 P
Q (1)

transforming it into a diagram on which a reducing t̄2 move


21
can be applied (the mirrored picture we understand as well as such a move). The reverse of this move
we will call just a t̄2 move.

The t̄2 twist sequence of a diagram we will call the series of diagrams obtainable by applying t̄2 moves
at D’s crossings. Such a sequence can be parametrized by a tuple of integers corresponding to D’s
crossings (in some fixed order) indicating how many t̄2 moves are applied at any crossing.

Theorem 3.1 There exist numbers cn � n ��� with cn � O � 8n � such that any twist reduced diagram of
Seifert genus n has at most cn crossings. Therefore, any knot diagram of Seifert genus n lies in the t̄2
twist sequence of some diagram of at most cn crossings.

To explain in the following what happens we need some definitions. We consider first the flypes in more
detail.

Definition 3.4 The flype in (1) is called the flype at crossing p, where p is the distinguished crossing in
both diagrams not belonging to the tangles P and Q (and their transfroms). If a diagram admits a flype
at crossing p, then we say that p admits a flype.

There is an evident bijection between the crossings of the diagram before and after the flype, so that
we can we can trace a crossing in a sequence of flypes and identify it with its image in the fransformed
diagram when convenient.

When considering orientation, according to the orientation near p we distinguish two versions of flypes
we call of type A and B, whose differnce will be very important in the following. The diagram on the
right hand-side of (1) for these two versions of the flype is given on figure 1.

Note, that any crossing admits a flype of maximally only one type.

Definition 3.5 We call two crossings p and q of a knot diagram linked, notationally p
�

q, if the crossing
strands are passed in cyclic order pqpq along the solid line, and unlinked if the cyclic order is ppqq.
Call two crossings p and q equivalent p 3 q, if they are linked with the same set of other chords, that is
if � c 4� a � b : c

�
a 5�� c

�
b. Call p and q 3 -equivalent p 3 q, if they are equivalent and unlinked and3 6 -equivalent p 3 6 q, if they are equivalent and linked.
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p P
Q

p P
Q

type A type B

Figure 1: A flype of type A and B

It is an exercise to check that 3 -equivalence and 3 6 -equivalence are indeed equivalence relations and
that two crossings are 3 - (resp. 3 6 -) equivalent if and only if after a sequence of type B (resp. type A)
flypes they can be made to form a reverse (resp. parallel) clusp.

reverse clusp parallel clusp

Proof of theorem 3.1. We proved that we can set c1 : � 4. Now use induction and consider a twist
reduced diagram D of Seifert genus n � 1. Fix a linked pair � p � q � in D. Build D � and D � � as follows:

D D � D � �
p

q


7
8
8
9
9
9
9
8
9
:1
remove p and q and

mark their basepoints

III

III IV


�
9
9
;
<1
swap

I and III

IIIII

I IV

Then D and D � � are realizable (i.e., correspond to a knot diagram), but D � may not be so. Moreover, D � �
is of Seifert genus n.

Assume D � � has reducible chords. Now, one can see that the linking status of two chords in D � � is
different from this in D iff (a) one of the two chords is linked with both p and q and the other one is
linked with either p or q in D or (b) the one chord is linked with p, but not q, and the other chord is
linked with q, but not p. Hence there are three kinds of reducible chords in D � � :

1) linked exactly with both p and q and with exactly those chords linked with either p or q in D,

2) linked with p, but not q, and exactly those chords linked with q in D,

3) linked with q, but not p, and exactly those chords linked with p in D.

If one of the first group has more than 2 elements or one of the other two has more than one element,
then by type B flypes looking on Gauß diagrams like

B

A 
	1 B �
A

you can get these ' 3 chords (resp. 2 chords together with p or q) neighbored and D becomes reducible.
Hence D � � has at most 4 reducible chords.

Now assume, removing these reducible chords from D � � and calling the result D � � � , D � � � has more than
8cn chords. Then by induction it, and also D � � , has at least 9 3 -equivalent chords obtained by t̄2 twists



8 3 Higher genera

and possible subsequent flypes. Now, putting the 4 basepoints of p and q on the solid line of D � � will
still leave a collection of 3 3 -equivalent chords a, b, and c in D � � that have in D the same linking status
with p and q. But then by the above remarks they are linked with the same sets of (other) chords in D
as well, because the linking status in D is determined by the linking status in D � � and the position w.r.t.
the basepoints of p and q in D, which for all of a, b and c is the same. Hence this collection will remain3 -equivalent by exchanging segments I and III and reinstalling p and q, and 3 -equivalent chords can
be made to form a reverse clusp by flypes, so D is twist reducible after possible flypes, a contradiction.

Hence D � � � has at most 8cn chords, D � � has at most 8cn � 4 chords and D has at most cn = 1 > 8cn � 6
chords. �
The proof together with c1 � 4 shows that we have cn > 34 ? 8n @ 1 A 6

7 . This bound is clearly quite unsharp
and very likely it can be improved.

Remark 3.1 The description how the linking status changes by smoothing a linked pair and the fact that
a diagram is of genus 0 iff it has no linked pair inductively show that the genus of a diagram depends only
on the intersection graph of its Gauß diagram. A special case of a conjecture of Chmutov and Duzhin [7,�
4.2.3] (slightly reformulated for realizable Gauß diagrams and without considering relations) asserts

that this intersection graph determines the diagram up to (iterated) mutations, so our observation of
invariance of the diagram genus can be considered as some small evidence for this conjecture.

Corollary 3.1 There are only polynomially many in the crossing number alternating knots of given
genus and positive knots of given genus or given unknotting number.

Proof. The statements for the genus of an alternating knot follow from the fact that alternating and
positive knots have minimal canonical Seifert surfaces and that flypes preserve the knot type.

For K alternating use that an alternating diagram of K has minimal crossing number by [15, 22, 33].
For K positive use that if K has a positive diagram of c crossings, then by [29, theorem 6.1] and [24,
theorem 2.2.E], c � K ��'&B 2c.

For the statement about the unknotting number, use the inequality in corollary 1 of [26] implying that
the genus of a positive knot is at most equal to its unknotting number (see also [29]). �
The proof of the Tait flyping conjecture [20] allows a more specific statement about the alternating case.
It is most elegantly expressed using the following

Definition 3.6 A sequence  an ! ∞
n C 1 is called periodically polynomial in n with period d �D� , if there

are polynomials P0 �������0� Pd A 1 �FEHG n I , such that an � Pn mod d � n � , and periodically polynomial, if it is
periodically polynomial with period d for some d ��� .

Corollary 3.2 The number of alternating knots of genus g and n crossings (as well as the number of
such knots up to in- and/or obversion and the number of invertible and/or achiral ones among them) is
periodically polynomial in n for almost all n (that is, with finitely many exceptional values of n).

This fact follows from standard combinatorial arguments, but maybe it is desirable to explain them in
more detail.

Proof sketch. Parametrize as above a t̄2 twist sequence of diagrams of genus g by the number of twists
at each crossing of the corresponding t̄2 irreducible diagram D.

We start by the observation, that if a crossing p of a non-trivial (that is, of more than one element)3 -equiavlence class does not admit a type A flype, and if it admits a type B flype, then it does so after
any number of t̄2 twists at it.

Now, for any t̄2 irreducible diagram D of genus g let l � lD be the number of trivial 3 -equiavlence classes
of its crossings. Then the braiding sequence generated by D we decompose into 2l subsequences, sorting
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a diagram D � in D’s sequence according to whether or not each of the l 3 -equiavlence classes in D � is
trivial or not.

The previous observation now says that if a diagram in one of these subsequences B occurs in another
subsequence B � , then B and B � contain diagrams of the same knots. Therefore, we can discard all
duplicated subsequences and are left with caring about duplications in any subsequence itself.

Thus, we can enumerate the number of knots in each t̄2 twist subsequence separately. Now, by flyping
the diagram so as 3 -equivalent chords to become neighbored, any such subsequence can be represented
by a Gauß diagram with thickened chords, depicting non-trivial collections of neighbored chords.

(n)

� JLKNMLO
n chords

Odering in a fixed manner these thikened chords, flype transformations of the diagram descend to per-
muations of the thickened chords therein. Then we count compositions (representations of a natural
number as sum of unordered natural numbers) of the crossing number of fixed length modulo the action
of a subgroup of the symmetric group. That is, if the c crossings decompose into l trivial, m non-trivial
odd size and n even size 3 -equivalence classes, we consider

M : �QPR� a1 �������0� am � b1 �������0� bn �S��� m = n : ∑ai � ∑b j � c 
 l � ai ' 3 odd, bi even TSU G � (2)

with G being a subgroup of Sm V Sn. Allowing in- and obversion, the picture remains the same, just the
group G generally becomes larger.

By Burnside’s lemma [14, lemma 14.3 on p. 1058], WM W is the arithmetic mean of the cardinalities of the
fix point sets of the action of each element of G, which are tuples as in (2) with additional conditions of
the kind ai � a j with 1 > i � j > m and/or bi � b j with 1 > i � j > n for specific pairs � i � j � . That is, this
reduces to enumerating compositions with specified parts equal. But such counts admit straightforward
recursive formulae, from which their periodical polynomiality is evident.

Arguing this way for each series separately gives the assertion. �
The origin of the exceptional cases in the beginning is the fact that each sequence starts giving a contri-
bution only from a certain crossing number on. This way we see that the number of exceptions may a
priori be larger than cg, but it certainly will not be larger than

max
D

c � D ��� 2c � � D �X�
where D runs over all t̄2 irreducible diagrams of genus g and c � � D � the number of crossings of D admit-
ting a type A flype (that is, a flype which is desroyed by a t̄2 move near this crossing).

Remark 3.2 The proof suggests, that the period will generally not be much smaller than the least com-
mon multiple of the lengths of the orbits of the crossings in the t̄2 irreducible diagrams of genus g under
their symmetries, and as already the number of diagrams is expected to grow rapidly with g, so will the
number of symmetries, and hence the period. Therefore, the phenomenon of the above corollary will be
hardly empirically visible even for small g.

We note that corollary 3.2 implies the following identity, where An Y g is the set of alternating genus g
knots of n crossings:

dg � min

Z
i ��� : limsup

n [ ∞ \\ An Y g \\ni � 0 ]&� (3)

This identity can be taken as a self-contained definition of dg but it reveals little about its nature.
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Remark 3.3 It is also worth mentioning, that by the same (slice) Bennequin inequality arguments as
in corollary 1 of [26] the corollary 3.1 extends (for both genus and unknotting number) to k-almost
positive knots for any given k, if we replace the crossing number of the knot by the minimal crossing
number of an k-almost positive diagram of it (for the definition and preperties of k-almost positive knots,
I propose to the reaser to consult [25, 31]). Unfortunately, yet, beside the positive case ([29, cor. 6.2]),
there is no inequality relation (in the non-trivial direction) available between both crossing numbers. If
such inequality exists, already considering Whitehead doubles (whose number grows exponentially in
the crossing number; see remarks after question 5.1), one sees that generically a knot is not k-almost
positive for any finite choice of values of k, and hence in particular k-almost positive knots exist for
infinitely many k. This fact was established in [31] using the Jones polynomial. Note, contrarily, that it
is not yet clear whether for all, almost all or for which k there are k-almost positive knots. Although both
arguments, the one here and this of [31], are in principle constructive, they will be very hard to apply
for high values of k, unless more structure and regularity is exhibited to avoid the resulting calculational
explosion.

Let d � K � denote the bridge number of K and g̃ � K � the weak genus of K, i.e., the minimal genus of all
its diagrams. (The genus of a diagram we call the genus of the surface, obtained by applying the Seifert
algorithm to this diagram).

Our next corollary adresses Vassiliev invariants, and more precisely the question: how well are Vassiliev
invariants determined by their values on knots of given genus? Clearly there are Vassiliev invariants
vanishing on knots of bounded genus – the Conway (polynomial) Vassiliev invariants. But already
asking for primitive Vassiliev invariants with this property seems non-trivial (see conjecture 5.1). Here
we obtain the answer for the weak genus.

Corollary 3.3 Fix g �^� . Then for n 1 ∞ there are more than polynomially many (in n) linearly
independent primitive Vassiliev invariants of degree n vanishing on knots of weak genus at most g.

Proof. By corollary 3.1 and the braiding polynomial arguments of [28] the space of Vassiliev invariants
of degree n restricted to knots of weak genus at most g is polynomially bounded (above) in n. Then the
assertion follows from the result of [6]. �
Contrast this with

Theorem 3.2 (see [30]) Let S $_� = be infinite. Then if some Vassiliev invariant v vanishes on all
alternating knots K with g � K ��� g̃ � K �-� S, then v ` 0.

Contrarily to this we ask

Question 3.1 Is a Vassiliev invariant v of degree at most n, such that v � K �a� 0 if K has a canonical
Seifert surface of genus at most n, zero?

The reason for this question is the desire to prove an exponential upper bound in n for the number of
Vassiliev invariants of degree at most n, which would follow from [28], if the answer to question 3.1 is
positive.

Compare this with conjecture 5.1 and the following two theorems.

Theorem 3.3 (see [27, 28]) Any Vassiliev invariant vanishing on alternating knots is zero.

Theorem 3.4 (see [28]) Any Vassiliev invariant vanishing on positive knots is zero.

Then we have
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Corollary 3.4 The ratio d � K ��b g̃ � K � is bounded for all knots K.

Proof. This is clear from the previous remarks as you can isotope in the plane any diagram near a
crossing so as t̄2 moves at that crossing not to create additional local extrema. �
Question 3.2 Is there a sequence of knots Kn such that d � Kn �0b g � Kn � grows unboundedly for n 1 ∞?

Remark 3.4 Promising candidates for such a sequence are easily found, for example Whitehead dou-
bles of knots of unboundedly growing bridge number, so the main difficulty in answering this question
seems the lack of nice lower bounds for d � K � .
The last consequence generalizes a result of [29] and answers a question posed therein.

Corollary 3.5 There are only finitely many alternating (in fact, homogeneous [9]) knots with the same
Alexander polynomial.

Proof. We use the teminology of [9,
�
1]. Assume there is an infinite family of such knots. Then all they

have the same weak genus [9, corollary 4.1] and hence by theorem 3.1 there is an infinite family F of
such knots in the same t̄2 twist sequence of some diagram D. A t̄2 twist corresponds to inserting a vertex
p on an edge e of the Seifert graph of D. W.l.o.g. e is not an isthmus (else D is composite and the t̄2
twist corresponds to twisting one of the components, which preserves the knot type), hence p is not a cut
vertex and so lies on some circle in its block of the Seifert graph. Therefore, F contains diagrams with
the maximal circle length of the Seifert graph blocks arbitrarily large, which by the proof of theorem 5
of [9] renders the top degree coefficient of ∆ arbitrarily large, contradicting the assumption. �
4. A remark on links

So far we developed the theory only for knots. It is worth saying some words on links.

It turns out that the picture is basically the same here. Having a non-split link diagram, by replacing
crossings of different components by parallel clusps (which preserves the genus), we get back to the
knot case. In fact we see that the numbers dc

g (defined analogously to dg, but for c component links),
satisfy dc

g > dg 
 c � 1, and so, for example, you can show that the sequences

∑
c c 1 odd

ac
n Y g

an Y g � ∑
c even

ac
n Y g

an d 1 Y g � and therefore also
∑

c c 1
ac

n Y g
an Y g � an d 1 Y g

for fixed g tend to zero as n 1 ∞ ,where

ac
n Y g : � #  L alternating non-split link of c components with g � L �e� g and c � L �e� n !

and an Y g : � a1
n Y g. That is, alternating knots present the richest variety on alternating links of given genus.

This preoperty will extend to split links without trivial split components, if the following conjecture is
true.

Conjecture 4.1 The d-numbers are strongly superadditive, that is, da = b � da � db for any positive a � b �� .
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5. Some questions and conjectures revisited

We review several questions and conjectures in the light of the preceeding results. The first question is
related to Vassiliev invariants [3, 5].

Conjecture 5.1 There is no primitive Vassiliev invariant vanishing on knots of genus one (or weaker,
of bounded genus).

As we observed, the condition the Vassiliev invariant to be primitive (and the genus to be bounded) is
essential. Moreover, for a (potential) proof we will need the vanishing on (genus one) knots without
minimal canoncal Seifert surfaces. The case of Whitehead doubles as a special class of such knots has
been considered independently before in different contexts, so it is worth establishing some connection.

It has been observed by McDaniel and Rong [18], that dualizing the (untwisted) Whitehead double
operation (even with any tangle instead of a clusp) on the space of knot invariants induces an endomor-
phism of the filtered (but not graded) space V �)f ∞

n C 1 V n of Vassiliev invariants (the filtration given by
subspaces V n of invariants of degree at most n). An invariant of the kind considered in the conjecture
clearly lies in the kernel of this map. This is of course just a necessary condition, and the primitive
Vassiliev invariant of degree 2 (killed by this map) is easily observed not to have the property in the
conjecture. Anyway, the conjecture inspires the quest for some understanding of this kernel. However,
the dimension of this kernel on V n b V n A 1 is quite large – it is at least 1 b�� n 
 1 � of the whole dimension
of V n b V n A 1. In fact, this map is nilpotent on each V n, because of the observation of Lin (see [4, p.
283, (ii)]) that (n-fold) iterated Whitehead doubles are n-trivial. So there may be very many primitive
Vassiliev invariants lying in the kernel. On the other hand, it is not clear how large the space of primitive
invariants is. We do not yet know for example whether

dim  primitive Vassiliev invariants of degree n !
dim  all Vassiliev invariants of degree n ! 
g
9
9
h1

n i ∞ 0 �
So there are many things that can happen . . .

Another question was posed by C. Adams [1]. Roughly it is:

Question 5.1 How many knots posess minimal canonical Seifert surfaces?

Using theorem 2.1 we can answer the question for genus one knots: for given crossing number poly-
nomially many out of exponentially many. (We will in the following observe, that the results of

�
3

suggest a similar(ly bad) situation for any fixed genus.) That there are exponentially many genus one
knots for given crossing number follows from the fact, that the Whitehead doubles of distinct knots are
distinct, their crossing number is linearly bounded in the crossing number of their companion and that
the number of knots of given crossing number has an exponential lower bound [11]. (On the other hand,
there are at most exponentially many knots of fixed crossing number at all [35].) Therefore, there are
exponentially many Whitehead doubles of crossing number at most n and so also exponentially many
of crossing number exactly n for infinitely many n (as the partial sum sequence of some sequence � an �
grows weaker than any exponential Cn in n, C � 1, if � an � does so).

Question 5.2 (see [29]) Does any positive knot realize its unknotting number in a positive diagram?

Corollary 2.5 allows to answer positively this question for unknotting number one. (In fact, it was my
result of [32], that connected almost positive unknot diagrams are unknotted twist knot diagrams, which
inspired me to prove corollary 2.5). The general answer appears by far not trivial, though.

Question 5.3 Which alternating knots have unknotting number one? Does any alternating unknotting
number one knot realize its unknotting number in an alternating diagram?
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Concerning the first part of the question, there are alternating non-twist knots of unknotting number one.
814 and 76 are examples. (An unknotted version of 76 can be found in [1, fig 5.59, p. 151].) Note, that,
unlike 814 and 76, in general an alternating knot does not realize its unknotting number in an alternating
diagram. The first such example, 108, is due to Bleiler and Nakanishi [1, p. 73] and has unknotting
number two. Therefore, the second part of the question. Note also, that as a consequence of the Tait
flyping conjecture [20], each alternating diagram of an alternating knot has the same unknotting number,
so each alternating knot realizes its unknotting number either in any or in no alternating diagram (see
[29, remark 3.7]).

Acknowledgement. I would wish to thank to the referee, S. Bleiler, S. Boyer, D. Lines, T. Kobayashi,
J. Przytycki, T. Cochran, R. Fintushel, and T. Kanenobu for helpful remarks and discussions and to L.
Paris, B. Perron and O. Couture for their help at Dijon.
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