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1. Introduction

In his book [Ad, p. 105 bottom], C. Adams mentions a result of Morton that there exist knots, whose genus g is strictly
less than their weak genus g̃, the minimal genus of (the surface of Seifert’s algorithm applied on) all their diagrams.
This observation appears just as a remark in [Mo], but was very striking to the author. Motivated by Morton’s example,
the author started in a series of papers [St2, St, St3] the study of the invariant g̃. A key role in what we can say so
far about g̃ plays [St2, theorem 3.1], saying that knots of given g̃ decompose into finitely many sequences of the kind
introduced in [St4], and called there “braiding sequences”, that is, can be obtained from finitely many diagrams by
successive applications of antiparallel twists at a crossing

��� � (1)

This theorem has several direct consequences, inter alia, to the enumeration of such knots or the properties of their
knot polynomials.

In this paper, we extend the series of boundedness and stability criteria for the Jones polynomial V [J], presented in
[St] for positive knots, to alternating knots. We make more precise our observation of [St3], that any coefficient of
V of an alternating knot has an upper bound, which is polynomial in the crossing number for fixed genus, by writing
down an explicite estimate. Furthermore, we show that the value range of any sequence of fixed length of leading or
trailing coefficients of V of an alternating knot of given genus stabilizes as its crossing number goes to infinity.

Both properties are generalized in slightly weaker forms to non-alternating knots. Finally, we use these extensions to
generalize Morton’s example to a series of knots with fixed genus, but arbitrarily high weak genus. Thus, unfortunately,
no control from below can be expected on g from g̃.

It is to be expected that a proof for specific series of examples is possible by skein module calculations also using Mor-
ton’s inequality [Mo] maxdegv P

�
2 � g̃ involving the maximal degree of the v variable in the HOMFLY polynomial

P [H]. We decide here, however, to present a criterion using the Jones polynomial (and more exactly the Kauffman
bracket), whose derivation is more analytical.�

Support by a DFG postdoc grant is gratefully acknowledged.
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2 2 Preliminaries

2. Preliminaries

The Jones polynomial [J] is a Laurent polynomial in one variable t (more precisely in its square root) associated to an
oriented knot or link in S3 and can be defined by being 1 on the unknot and the (skein) relation

t � 1V	 � tV ��
 �
t � 1  2 � t1  2 � V)( � 0 � (2)

with V	�� V� � V)( denoting diagrams equal except near one crossing, which is resp. positive, negative and smoothed out.

Briefly after Jones’s discovery, Kauffman [Ka] found another definition of this invariant called “Kauffman’s state
model” or “Kauffman bracket” (see also [Ad, � 6.2]).

Recall, that the Kuaffman bracket � D � of a diagram D is a Laurent polynomial in a variable A, obtained by summing
over all states the terms

A#A � #B � � A2 � A � 2 ��� S � � 1 � (3)

where a state is a choice of splittings of type A or B for any single crossing (see figure 1), #A and #B denote the
number of type A (resp. type B) splittings and � S � the number of (disjoint) circles obtained after all splittings in a state.

AA
B

B
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B

B

Figure 1: The A- and B-corners of a crossing, and its both splittings. The corner A (resp.
B) is the one passed by the overcrossing strand when rotated counterclockwise (resp.
clockwise) towards the undercrossing strand. A type A (resp. B) splitting is obtained by
connecting the A (resp. B) corners of the crossing.

The Jones polynomial of a link L is related to the Kauffman bracket of some diagram of it D by

VL
�
t � ��� � t � 3  4 � � w � D � � D � ��� A ! t " 1 # 4 � (4)

The Kauffman bracket skein module of a room (a disc with a distinguished number of points on its boundary) is the
module, say, over $ , generated by isotopy classes of inhabitants of this room (tangle diagrams in this disc, intersecting
its boundary exactly in the distinguished points), and with relations corresponding to resolving the crossings according
to the Kauffman bracket relation. � A 
 A � 1

See, e. g., [BFK].

The concept of a braiding sequence was introduced in [St4] in the context of Vassiliev invariants, but subsequently
turned out to be more useful in a special case when considering knot diagrams, on which the Seifert algorithm [Ad,� 4.3] gives a surface of given genus. (We subsequently call this genus the genus of the diagram.)

Definition 2.1 A t̄2-move is the move in a diagram D is a replacement of (a neighborhood of) some distinguished
crossing in D by the tangle of 3 antiparallely twisted crossings, as shown in (1).

A braiding sequence associated to a diagram is a family of diagrams, parametrized by c
�
D � odd numbers x1 � �%�&� � xc � D �

(where c
�
D � henceforth denotes the number of crossings of D), each one indicating the number of t̄2 moves performed

at each crossing. We adopt the convention that for xi ' 0 we switch the crossing numbered by i and apply
� � xi � 1 � t̄2

moves on the switched crossing.

We consider crossings as equivalent, if they form a revsere clusp, so that t̄2 on either of them have the same effect on
the diagram. The maximal number of (such equivalence classes of) crossings over diagrams of genus g we call dg.
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Theorem 2.1 (theorem 3.1 of [St2]) Knot diagrams of given genus decompose into finitely many equivalence classes
modulo t̄2 moves and their inverses. That is, they all can be obtained from finitely many (called “generating”) diagrams
by repeated t̄2 moves.

3. The Jones polynomial of alternating knots of given genus

Directly from [St2, theorem 3.1], in the proof of theorem 9.3 of [St] we mentioned a way how to compute V on
a whole braiding sequence from the Jones polynomials of the generating diagram (as defined in [St2]) and all its
crossing-changed versions. From this principle, the following observation is relatively straightforward, but in view of
the results of [St3, � 6] maybe should be recorded in its own right.

Theorem 3.1 There exists a constant C, such that for any alternating knot K and any k ()$ it holds

��+*VK
�
t �-, tk

�� � max
2g � K � 	 1 . k . dg / K 0 1 Cc

�
K �

k 2 k � (5)

where c
�
K � denotes the crossing number of K and g

�
K � its genus, *V , tk is the coefficient of tk in V , and dg � K � can be

defined by

dg̃ : � min 3 i (54 : limsup
n 6 ∞

�� An 7 g̃ ��
ni � 0 89� (6)

with
An 7 g̃ : �;: K alternating, g

�
K � � g̃, c

�
K � � n < � (7)

Remark 3.1 For fixed c
�
K � the maximal value on the right of (5) is attained at k � c

�
K � � e, which is exponential in

c
�
K � . Therefore, the essence of this theorem is the claim that the coefficients of V for K alternating grow polynomially

in c
�
K � for fixed g

�
K � . This was already noted in [St3], but here we give this more explicite estimate.

Proof. This is basically a repetition of the proof of theorem 9.3 in [St]. If Vn denote the Jones polynomials of Ln,
where Ln are links with diagrams Dn equal except in one room, where n antiparallel half-twist crossings are inserted,
then from the skein relation for the Jones polynomial we have

V2n 	 1
�
t � � t2nV1

�
t � 
 t2n � 1

t2 � 1
� t1  2 � t � 1  2 � V∞

�
t � � (8)

with V∞ denoting the Jones polynomial of L∞, which is the link obtained by smoothing out a(ny) crossing in the room.

We consider now a diagram D in a braiding sequence of diagrams of genus g
�
D � � g̃ and some number of parameters

d � dg̃, where dg̃ can be defined by (6). We have d = 2g̃ 
 1 because of the
�
2 � 2g̃ 
 1 � -torus knot diagram.

Then expand the relation (8) with respect to any of the d crossings, at which t̄2 moves can be applied, obtaining 2d

terms to the right. So their number in exponentially bounded in g̃, and hence it suffices to prove the inequality for each
term separately.

Each term is of the form � t1  2 � t � 1  2 � k > VL
�
t � > tk ? k

∏
i ! 1

�
1 
 t2 
 �%�%� 
 t2ai � � (9)

with k � d, k @A(B$ and ∑ai � O
�
c
�
D �%� , where c

�
D � denotes the crossing number of D, and L being a link obtained

by smoothing out (according to the usual skein rule) some set of crossings in the generating diagram. But the crossing
number of L is linearly bounded in d, hence all its coefficients are exponentially bounded in d. Then, the coefficient
sum of the product term is at most 1

C c
�
K �

d 2 d �
From this the theorem follows, as by [Ka2, Mu, Th] for an alternating diagram D of an alternating knot K, we have
c
�
D � � c

�
K � , and by [Ga], g

�
D � � g

�
K � . C
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Remark 3.2 C can be in principle written down explicitly. However, the resulting number so far has an unattractive

magnitude. By [St], dg̃ � 97 > 8g̃ � 2 � 6
7

for g̃ = 2, but here it is possibly as well fertile to think about sharper bounds.

Another straightforward consequence was already noted in [St] and is repeated here, because it will be related to the
extension of Morton’s example.

Proposition 3.1 Let t ( S1 : �D: z (FE : � z � � 1 < . Then : VK
�
t � : g̃

�
K � � g <HGIE is bounded for any g (54 .

Proof. Repeat the previous formulas, noting that the partial sums of the Neumann series of t 2 and t � 2 are both bounded
if � t � � 1. C
Finally, we come to the announced stability result for the “edges” of the Jones polynomial.

Definition 3.1 For some polynomial V (B$ * t � t � 1, define the minimal and maximal degree and the span (elsewhere
called “breadth”, not to the author’s taste) of V by

mindegV : � min : a (J$ : *V , ta K� 0 <L� maxdegV : � max : a (M$ : *V , ta K� 0 <N� and spanV : � maxdegV � mindegV �
Then the list λlV of V ’s leading coefficients of length l is the l-tuple

� *V , tmindegV O k
� l � 1
k ! 0 (P$ l. Analogously define the

list τlV of the trailing coefficients of V of length l.

Theorem 3.2 Fix g, l and n mod 2. Then the sets Λ l 7 g : �Q: λlVK : K ( An 7 g < and Tl 7 g : �R: τlVK : K ( An 7 g < (with An 7 g
as in (7)) stabilize as n � ∞, that is, are all the same when n = n0 for some n0.

Proof. The proof of this property is closely related to its analoga for positive knots from [St3, � 6]. We show it just for
λlV (because λlVK � τlV!K , so in fact Λ l 7 g � Tl 7 g).

By recalling carefully the proof of theorem 5.2 of [St3] for the case t � 0, we see that if : Li < ∞
i ! � ∞ for i mod 2 fixed are

links as in (8) (that is, a one-parameter antiparallel twist sequence), then *VLi

�
t �-, tk , and more generally the

�
l2 � l1 
 1 � -

tuple � *VLi

�
t �S, tl

� l2
l ! l1

for any k � l1 7 2 (5$ , stabilize as i � ∞, with the property, that a (not necessarily minimal) point of
stabilization m0, that is, a number, such that *VLi1

�
t �-, tk � *VLi2

�
t �-, tk resp.� *VLi1

�
t �-, tl

� l2
l ! l1 � � *VLi2

�
t �S, tl

� l2
l ! l1

for all i1 7 2 = m0, is dependent on k resp. l1 7 2, but (very crucially) independent on the link diagram outside of the twist
box.

We now have the following

Lemma 3.1 Let D be an alternating diagram and D @ be obtained from D by applying a (antiparallel) twist at any of its
positive resp. negative crossings. Then mindegV

�
D � � mindegV

�
D @ � resp. maxdegV

�
D � � maxdegV

�
D @ � .

Proof. First forget about D’s orientation and consider its unoriented version. It can be seen from the expression of
mindegV and maxdegV in terms of the checkerboard shading (see [Ad, pp. 160-162] or [Ka3]) that under a twist (in
the unoriented version) mindegV changes only locally, i. e., by something independent on the rest of the diagram.

Now, considering again D with orientation, mindegV has a lower [St3, lemma 6.1] and upper [St6, theorem 4.2]
bounds in terms of the diagram genus (which is fixed by an antiparallel twist) and the number of negative crossings
(which is preserved as well, if the twist is at a positive crossing), hence mindegV

�
D � ranges within some finite interval

under antiparallel positive twists. But if the local change of mindegV were non-zero, by applying successive further
twists, we would be able to push mindegV

�
D � arbitrarily high or low, contradicting one of the bounds.

Applying the argument on the mirror images, we get the statement for maxdegV and negative twists. C



5

Remark 3.3 Therefore, twisting at positive crossings, mindegV stays always the same. But then we see, that the
dependence of m0 on k resp. l1 7 2 is in fact just a dependence on k � mindegV resp. l1 7 2 � mindegV , because of the
freedom to rescale V by a power of t (this is not very clear from the generating series representation of [St3, � 6]). This
is the second crucial point.

Prepared with lemma 3.1 and this observation, fix g, and consider separately any of the finitely many braiding se-
quences of alternating (knot) diagrams of genus g, and also consider therein all the twist boxes separately. First
consider the twist boxes with positive crossings.

From lemma 3.1 and remark 3.3 we see that λlV stabilizes after m0 twists for some m0 at any positive crossing (under
further twists at that crossing), independently on how many twists have been done at the negative crossings. Therefore,
to capture all contributions of knots in this braiding sequence to λlV , it suffices to consider separately the finitely many
cases, where at each positive crossing at most m0 twists are performed. Therefore, we fix for the rest of the proof the
number of twists at each positive crossing.

We now show that the same argument can be made to apply for (twists at) the negative crossings.

Recall that (8) is the explicite form of the recursive relation

Vk 	 4
�
t � � �

t2 
 1 � Vk 	 2
�
t � � t2Vk

�
t � � (10)

with the subscripts of V denoting the number of positive (half-)twists. Now consider for a diagram D in the sequence

V @D � t � : � tc � D � VD
�
t � �

with c
�
D � being the crossing number of D. Then because of c

�
Dk 	 2m

� � c
�
Dk
� 
 2m, V @ again satisfies (10), but

this time with subscripts of V denoting the number of negative twists. As D is alternating, by [Ka2, Mu, Th],
mindegV @ � D � � � mindegV

�
!D � , where !D is the mirror image of D, and applying negative twists at D is the same as

applying positive at !D, which by lemma 3.1 fixes mindegV
�
!D � , hence also mindegV @ � D � .

Therefore, having fixed the number of twists at the positive crossings in D, we are interested in the leading l coefficients
(that now have fixed positions) of the polynomialsV @ of the diagrams D, which again satisfy (10) in every twist box, the
subscripts counting the number of negative twists. But because of (10), and its iterated version (8), these coefficients
stabilize by the positive twist case argument. C
Remark 3.4 Note that the use of [Ka2, Mu, Th] is crucial – we need upper control on mindegV @ � D � , hence a lower
control on the span of V

�
D � from c

�
D � . The only (in fact, larger) class of knots, for which such control exists are the

adequate knots of Lickorish and Thistlethwaite [LT]. It would be interesting, whether any of the results generalize to
these knots. However, much trouble is expected because of the need of existence of an adequate diagram of minimal
weak genus. On the other hand, from (8) it can be hoped, that a more careful analysis can prove the theorem 3.2 in
full generality.

We conclude by another property of the Jones polynomials which is not expected to hold always, but at least “generi-
cally” with growing crossing number – the 2-periodicity almost everywhere of their coefficients. We just draw attention
to the problem, leaving it open.

Definition 3.2 Call *m � n , G *mindegV � maxdegV , for some V (P$ * t � t � 1, and m � n (P$ with n T m 
 2 a 2-periodic
interval of V , if *V , tk � *V , tk O 2 for each k ( *m � n � 2 , . Denote this by *m � n , ( 2p

�
V � .

Conjecture 3.1

∑
K U An V g ��� WX

m 7 n YZU 2p � VK � *m � n , ���
n �An 7 g � �[�A�\�]�

n ^ ∞ 1

for any fixed g.
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4. Inequalities for non-alternating knots

We show now a version of theorem 3.1 for non-alternating knots. An analogon to theorem 3.2 is a consequence of it.

Theorem 4.1 There is some constant C T 0 such that for any knot K and any k (5$ it holds�� *VK
�
t �S, tk

�� � � C spanVK
� dg̃ / K 0 � � C c

�
K �_� dg̃ / K 0 �

Proof. If K has a diagram D in a d-parameter antiparallel braiding sequence of diagrams of genus g̃
�
K � (so d � d g̃ � K � ),

as before, from (8) you have that VK is the sum of 2d terms of the form (9), with k @ (`$ , k � d and c
�
L � � 2d.

Therefore, VK
�
t � > � t 
 1 � d is the sum of terms as in (9), but this time with the product of 1 � t 2ai 	 2, and so the

coefficients of VK
�
t � > � t 
 1 � d are bounded independently on c

�
D � by something exponential in d. Now, w.l.o.g.,

multiply V̄K
�
t � : � VK

�
t � > � t 
 1 � d by a power of t, so that it to have minimal degree 0 (i. e., to be an honest polynomial

it t with absolute term). The Taylor expansion of 1a
t b 1 c d around t � 0 has an n-th coefficient, which is O

�
nd � 1 � in

n, with O
� � � independent on d. Therefore, d V̄K

�
t � > 1a

t b 1 c d e tk � O
�
kd � in k with O

� � � depending exponentially in d.

But clearly d V̄K
�
t � > 1a

t b 1 c d e tk � 0 for k T spanVk, so the first assertion follows. The second inequality follows from

[Ka2, Mu, Th]. C
Corollary 4.1 : λl VK : g̃

�
K � � g < is finite for any l and g.

Proof. Use the bijection between λl VK and λl V̄K , and prove the assertion for λlV̄K . C
A more detailed study may also show a stabiliy property of some kind, for example, when spanVK � ∞.

Corollary 4.2

max
g̃ � K �f! g

��%*VK
�
t � > � t 
 1 � dg ,

tk
�� � Cg

for some constant C independent on k, K and g, that is, VK
�
t � > � t 
 1 � dg has bounded coefficients over all K with

g̃
�
K � � g, and moreover the number of non-zero coefficients of VK

�
t � > � t 
 1 � dg is also bounded for fixed g. C

Corollary 4.3 For K positive we have

spanVK = Cg � K � 2dg / K 0 O 1
g

c
�
K � � 1 (11)

for some constant C depending on g
�
K � . In particular, the are only finitely many positive knots with Jones polynomial

of given minimal and maximal, or just maximal, degree.

Proof. Use the inequality [St7, theorem 6.1] for v2 � � 1
�
6V @ @ � 1 � . C

Remark 4.1 In (11), spanVK 
 1 may stronger be replaced by the number of non-zero coefficients of VK , and c
�
K � by

the maximal crossing number of a positive reduced diagram of K.

Corollary 4.4 (see conjecture 9.1 of [St]) Among the Jones polynomials of knots of given g̃, only finitely many
polynomials of given span occur.

Proof. By theorem 4.1, Jones polynomials of knots of given g̃ with given span have only finitely many coefficient
lists between minimal and maximal degree. But (for knots, unlike for links) the coefficient list recovers the minimal
degree (amd hence the polynomial), because V

�
1 � � 1 and V @ � 1 � � 0. C
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5. Genus and weak genus

Definition 5.1 The untwisted double tangle of a knot is obtained by cutting the knot diagram

��� � (12)

replacing each strand by two

� (13)

and adding a number of half-twists, which are doubly as many as the writhe of the knot diagram (12), and are positive
when orienting the strands antiparallelly

(with the usual convention that � 1 half-twist is a half-twist with the crossing changed). A tangle obtained by any other
number of half-twists is called twisted double tangle of the knot. The difference of the number of its half-twists and
the number of half-twists of the untwisted double tangle is called the twist of the twisted double tangle.

Let w h be the tangles and .

Definition 5.2 The sum T1#T2 of two tangles T1 and T2 is defined by

T1 # T2 : � T1 T2
�

The closure T of a tangle T is defined by

T : � T

Theorem 5.1 If T is a double tangle and some of the knots #nT #w h has a Jones polynomial, in which there are (at
least) two coefficients with absolute value 3 or (at least) one coefficient with absolute value at least 4, or (at least)
six coefficients with absolute value 1, then g̃

�
#nT #w h � �[�\�A�]�

n ^ ∞ ∞ (while clearly all #nT#w h are doubled knots and
hence have genus one).
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Proof. Assume that Kn : � #nT #w h have bounded g̃. By theorem 4.1, our strategy will be to find some kn (i$ , for
which *V#nT #w j � t �-, tkn grows exponentially in n, unless the assertion is satisfied. First, we use the Kauffman [Ka]
definition for V and replace V by the Kauffman bracket � � � (as all the normalization does not affect the norm of an
evaluation on any point on S1 and changes the coefficients just by a sign).

Then consider T in the Kauffman bracket skein module of

�
We have therein

T � P @1 � A � 
 P @2 � A �
for some P @1 7 2 ()$ *A � A � 1, . Then by straightforward calculation

#nT � 1� A2 � A � 2 k � P @2 � � A2 � A � 2 � 
 P @1 � n � P @ n1 l 
 P @ n1

and hence

Bn : �nm #nT#w hpo � 1� A2 � A � 2 k � P @2 � � A2 � A � 2 � 
 P @1 � n � P @ n1 lMq r 
 P @ n1 q r > Ak1 �
Therefore, using s t � � Ak � 1 
 A8 � for some k (5$ and s t � 1, we get, normalizing Bn by a power of A,

Bn � Ak 1 
 A8

1 
 A4 d * P @2 � � A2 � A � 2 � 
 P @1 , n � P @ n1 e 
 P @ n1 �vu Ak 
 Ak 	 8

1 
 A4 w Pn
2 
 u 1 
 � Ak � Ak 	 8

1 
 A4 w Pn
1 � (14)

with P1 : � P @1 and P2 : � P @2 � � A2 � A � 2 � 
 P @1.

The shape of Bn is exponential, and we attack it using the following elementary function theoretic lemmas.

Lemma 5.1 Let f ()$ *A � A � 1, . If f , regarded as a function f : EFx : 0 < � E , has the property max
S1

� f �y� 1 and f K� 0,

then f �Rz Ak for some k ()$ .

Proof. Use the relation
∞

∑
i ! � ∞

* f , 2Ai �|{ 1

0
�� f � e2πiu � �� 2 du � C

Lemma 5.2 Let f : E`x S � E be a holomorphic function for some finite set S } 0, with f
�
x � � f

�
x � (where bar

denotes conjugation). If then f maps some infinite subset of S1 G~E to S1, then f
�
x � f

�
1
�
x �L� 1 wherever defined.

Proof. Use that f
�
x � f

�
1
�
x � is a holomorphic function wherever defined and is equal to 1 on a set with a convergence

point. C
The rest is basically applying appropriately these lemmas.

Lemma 5.3 For any two polynomials P1 and P2 in $ * A � A � 1, with P1 K�Qz Ak1 or P2 K�Qz Ak2 for any k1 7 2 ()$ , there are

infinitely many A ( S1 with ��� Ak 	 Ak O 8

1 	 A4
��� K� ��� 1 	 A4 � Ak � Ak O 8

1 	 A4
��� and max

� �P1
�
A � ���+�P2

�
A � � � T 1.
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Proof. Assume that P1 K��z Ak1 or that P2 K��z Ak2 . As the assertion is symmetric w.r.t. P1 and P2, assume w.l.o.g., that
P1 K�Qz Ak1 . Then by lemma 5.1, there is some x ( S1 and ε T 0 such that

�P1 � ��� S1 � B � x 7 ε � T 1 �
with B

�
x � ε � being the ball around x with radius ε. Set X1

�
A � : � Ak 
 Ak 	 8 and X2

�
A � : � 1 
 A4 � Ak � Ak 	 8. If now,

for infinitely many A ( S1 we have �X1
�
A � � � �X2

�
A � � , then applying lemma 5.2 on X1

�
X2 outside of the zeros of X2

and 1 
 A4, we see that X1
�
A � X1

�
1
�
A � � X2

�
A � X2

�
1
�
A � , in particular every zero A K� 0 of X1 must be either a zero of

X2 or the inverse of such. However, e h πi  8 are zeros of X1, but not of X2.

Therefore, all but finitely many A ( S1 satisfy �X1
�
A � � K� �X2

�
A � � , in particular almost all A in S1 � B

�
x � ε � . C

But now, continuing the proof of theorem 5.1, if max
� �P1

�
A � ���+�P2

�
A � � � T 1 and ��� Ak 	 Ak O 8

1 	 A4
��� K� ��� 1 	 A4 � Ak � Ak O 8

1 	 A4
��� for some

A not zero of X1 7 2 and 1 
 A4, then for

A ( : x ( S1 : �P1
�
x � �yT 1 � 0 K� �X1

�
x � � K� �X2

�
x � �S<Nx : zeros of 1 
 A4 <

we have �Bn
�
A � �y= 1 � ε� 1 
 A4 � min � �X1

�
A � �����X2

�
A � ��� �� �X1

�
A � � � �X2

�
A � � �� � max � �P1

�
A � ���+�P2

�
A � � � n ���A�A���

n ^ ∞ ∞ �
with exponential growth. But from (14), comparing the orders of zeros or poles of Bn as A � 0 and A � ∞ (or from
[Ka2, Mu, Th] using the evident fact that c

�
#nT #w h � � O

�
n � ), we see that span Bn is linearly bounded in n, which

means that some coefficients of Bn grow exponentially in n, and we would be done by contradiction to theorem 4.1.

Therefore, P1 and P2 are monomials with coefficients z 1 (as happens when T is an unknot double, i. e., #nT#w h are
twist knots). But then the only possibility for them, so as Bn (�$ * A � A � 1, for any n, is to differ by a power of A4, so
that

Bn � Ak � 1 
 A8 � � 1 � A4 
 A8 ���%�&� z A4 � np � 1 ��� 
 Anl

for some k � p � l (5$ , from which the claim is evident. C
We chose to use the new property of � 4 in a part of our proof, although it can also be done in alternative ways. We
invite the reader to think about them.

Exercise 5.1 Use (14) to show that if P1 7 2 K�Rz Ak1 V 2 , then λlBn or τlBn are infinitely many for some value of l, without
using the lemmas, so that the conclusion P1 7 2 �Dz Ak1 V 2 is also possible using corollary 4.1. In a much easier (and less
interesting) way, deduce the same conclusion also from proposition 3.1.

We give some hints to the reader, giving a rough sketch of the argument.

As λl is mapped bijectively under multiplication by a fixed polynomial, eliminate the denominators in (14), and
consider

Pn : ��� 1 
 A4 � Ak � Ak 	 8 �� ��� �
X1
�
A � Pn

1
�
A � 
 � Ak 
 Ak 	 8 �� ��� �

X2
�
A � Pn

2
�
A � � (15)

Lemma 5.4 Let the minimal order of V be defined by min ordV : � min : m T 0 : *V , tmindegV O m K� 0 < , if V ( Z * t � t � 1 ,
is not a monomial. Then *V n � t �S, tmindegV O k � O � n � k  min ordV � > *V , ntmindegV

�
and *V n � t �-, tmindegV O kmin ordV � o � nk > *V , ntmindegV

� � C
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An analogous definition and statement hold for the maximal order max ordV of V .

From (14) clearly not both P1 and P2 are zero, and if just one is zero, the other cannot be a single monomial, so we
would be done by the above lemma. Therefore, assume that both P1 and P2 are non-zero.

Now, if mindegP2 ' mindegP1 and P2 K��z Ak, then for any l for sufficiently large n we have λlPn � λl
� X2 Pn

2
� ,

which by the lemma for l sufficiently large has an unboundedly growing coefficient. An analogous argument with P1
and the maximal degree shows that we are done unless mindegP1 � mindegP2 and maxdegP1 � maxdegP2. Then
the lemma shows that min ord P1 � min ord P2 and max ord P1 � max ord P2 by a similar argument. For example, if
min ord P1 ' min ord P2, consider the coefficient of tmindeg � X1 Pn

1 � 	 min ord P1 � l for l sufficiently large, and compare in (15)
the growth rates of this coefficient as n � ∞ for X1Pn

1 and X2Pn
2 . But now a contradiction follows, considering the

above mentioned coefficient for l � 1, because at least one of mindegX1 K� mindegX2 or maxdegX1 K� maxdegX2
holds, no matter what k is. Therefore, P1 7 2 must be monomials, and then clearly they must have coefficient z 1.

Example 5.1 The two 14 crossing (twisted) doubles of the left-hand trefoil with positive and negative clusp, in
Thistlethwaite’s tables (see [HTW]) included as 1435575 and 1441716, have the Jones polynomials (in the notation
of [St5])

V
�
1435575

� � � 1 1 � 1 1 0 1 * 0 , 1 � 1 1 � 2 1 and V
�
1441716

� � 1 � 1 1 � 1 * 1 , � 1 1 � 1 1 � 1 2 � 1 �
and hence theorem 5.1 can be applied to the tangle in (13) with both w 	 and w � .

6. Problems

In fact, the motivation for this note was to develop the results of � 3 so far as to do the construction of � 5 without use
of proposition 3.1. Using this proposition, the proof is somewhat simpler, but it appeared nicer to link both parts of
the paper in the chosen way.

Nevertheless, I prefer to conclude stressing again some problems that suggest to be of some significance within the
framework of this note.

Problem 6.1 Is there an upper bound for �� *VK
�
t �-, tk

�� for K alternating in terms of g
�
K � and possibly k, but not c

�
K �

(as there is for positive K)? Is there a similar inequality also for non-alternating knots?

Problem 6.2 Can one generalize theorem 3.2 to a stability property for arbitrary knots (and weak genus) by more
refined study of (8)?

Problem 6.3 Are the only finitely many positive knots with Jones polynomial of given span? If we had an infinite
series of such knots, then by corollary 4.3 we know that their genera must grow unboundedly, but yet we cannot
exclude such a case.
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