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1 Introduction

The Alexander polynomial∆ remains one of the most fundamental invariants of knots and links in 3-space. Due to its
profound importance, many features of the polynomial have been studied over the years in a variety of contexts. Roots
of the polynomial are related, among others, to the monodromy and dynamics of surface homeomorphisms [Ro, SW2],
divisibility [Mu3] and orderability [PR] of knot groups, and statistical mechanical models of the Alexander polynomial
[LW]. They are also studied in connection to Lehmer’s question on the existence of a Mahler measure minimizing
polynomial [GH, Hi, SW].

The topological understanding of the Alexander polynomialhas led a long time ago to the insight what (Laurent) poly-
nomials occur for an arbitrary knot. Ironically, the question to characterize the Alexander polynomials ofalternating
knots turns out to be far more difficult, even although in general alternating knots are much better understood. Hoste,
based on computer verification, made the following conjecture about 10 years ago, which was later popularized by
Murasugi (see, e.g., [LMu]).

Conjecture 1.1 (Hoste’s conjecture)If z∈ C is a root of the Alexander polynomial∆ of an alternating knot, then
ℜe z> −1.

This conjecture is true for knots up to genus 4 [St]. It is truealso for special alternating knots (knots which are
simultaneously positive and alternating). For such knots all roots of ∆ lie on the complex unit circle (and−1 is not
a zero of the Alexander polynomial of any knot; for a clarification see [Ga, St2]). The same is true also for special
(non-split) alternating links, as explained in [St2, St8].(This property will play a role in our work here, so it is worth
paying some attention to it.)

See§8 below for a more detailed discussion on known and conjectured properties of the Alexander polynomial of an
alternating knot.
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2 1 Introduction

Recently, Lyubich and Murasugi [LMu] studied the roots of the Alexander polynomial of a 2-bridge (rational) knot
or link, motivated by Hoste’s conjecture. Although they could not settle the conjecture completely, they proved many
special cases, and several results going beyond the statement of the conjecture. One of their results is:

Theorem 1.1 (Lyubich-Murasugi, [LMu, theorem 1]) LetL be a 2-bridge (rational) knot or link andzbe a root of the
Alexander polynomial∆(L). Then−3 < ℜe z< 6.

Our first result in this paper, proved in§2, is the following.

Theorem 1.2 Let L be a 2-bridge (rational) knot or link andzbe a root of the Alexander polynomial∆(L). Then

∣
∣z1/2−z−1/2

∣
∣ < 2. (1)

The condition (1) will play a fundamental role throughout the paper1. Let us thus say that a complex numberz 6= 0 is
internal if it satifies (1), andexternalotherwise. LetD be thedomain of internal complex numbers.

It can be verified (see below lemma 2.1) that if (1) holds, then

−3
2

< ℜe z, (2)

and
|z| < 3+2

√
2≈ 5.8284, (3)

which improves either estimates in theorem 1.1. Despite that (2) is insufficient for Hoste’s conjecture in its strict form,
we can confirm the conjecture in certain cases (proposition 2.1). We will see, too, that outsideD, one can address it
in a larger setting (cf. theorem 1.4).

We subsequently found that theorem 1.2 was independently obtained by Koseleff and Pecker [KP]. For other properties
of the Alexander polynomial of 2-bridge knots see [Bu, Ha].

A closer look revealed that the proof of theorem 1.2 can be adapted at some cost to 3-braid alternating links. These
are considered in§4, where we obtain the following result. Let us stipulate in general below that all constants given in
decimal expansion are rounded.

Theorem 1.3 Let L be a (non-split) 3-braid alternating knot or link andzbe a root of the Alexander polynomial∆(L).
Then

∣
∣z1/2−z−1/2

∣
∣< 2.45317. (4)

Next, we will study Montesinos links. There is a dichotomy between parallel (45) and reverse Montesinos links (26).
With regard to Hoste’s conjecture we will, in particular, prove:

Theorem 1.4 An externalzeroz of the Alexander polynomial of an alternating Montesinos knot hasℜe z> −1. In
particular, all zeros of the Alexander polynomial satisfy (2). Moreover, for a parallel Montesinos knotzsatisfies (3).

There is also a more precise statement possible for reverse knots. See theorem 3.1 in§3. It applies also to alternat-
ing Montesinos links (for various component orientations). We do not only restrict the external zeros stronger than
predicted by the conjecture, but address also a large familyof non-alternating Montesinos links along the way. In
opposition to the 2-bridge and 3-braid case, however, the domains we obtain are in general unbounded. (Murasugi has
established that zeros cannot be contained in a bounded domain; see example 3.1.)

Parallel Montesinos links are studied in§5, where we obtain the above stated bounds in theorem 5.1. Theproof is
much more elaborate than in the reverse case and requires a very complex (in either sense) calculation. This is moved
out into a separate section§6.

1Of course,z−1/2 is supposed to be the inverse of the same between the two rootsof z chosen to bez1/2. Which one is chosen then is no longer
relevant, for the norm.
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In §7 we address extensions of the zero location to the skein polynomial.

In §8 we discuss the relation of Hoste’s conjecture to two other conjectures on the Alexander polynomial of an alter-
nating knot: the well-known Fox trapezoidality conjectureand its extension, the log-concavity conjecture.

We conclude with a few problems in§9.

The practical examples and computations of polynomials androots were assisted by MATHEMATICATM [Wo] and
KnotScape [HT].

The following abbreviations will be used throughout: ‘resp.’ will mean ‘respectively’, ‘w.l.o.g.’ will stand for ‘without
loss of generality’, and ‘r.h.s.’ resp. ‘l.h.s.’ for ‘right-hand side’ resp. ‘left-hand side’.

2 Rational links

Before we turn to knot theory, it will be important to gain a basic description of the domainD that occurs in theorem
1.2. We will need the below lemma and a part of the calculationfor it with a more serious reason later in§6. (We thus
conform in the proof to the designations we will use there, except thatzwill be changed tot.)

Lemma 2.1 The domainD is bounded by the graphs of the four functions

± f±(x) = ±
√

−x2 +2x+7±4
√

2x+3. (5)

-2 2 4 6

-4

-2

2

4

These expressions will be needed below, and thus we will designate them using two
functions f+ and f−, where the subscript refers to theinner ‘±’ in (5), i.e., the one in
front of 4

√
2x+3.

We notice thatf± is defined on
[

−3
2
,3±2

√
2
]

(for the same among ‘±’ as the sub-

script of f ). A few special values are

f±

(

−3
2

)

=

√
7

2
,

f−(−1) = 0,

f+(−1) =
√

8,
and f±

(
3±2

√
2
)

= 0. (6)

(The two ‘±’ in the last formula are to be chosen equal.) A MATHEMATICATM plot
on the right shows the functions.

The below calculation is a simple instance of type of arguments which will be needed later. They are not really
sophisticated, but create an enormous scope for errors (which have painfully plagued the author during this work).
Thus it is compelling to include enough details.

Proof. The condition on the boundary ofD is

|z1/2−z−1/2| = 2. (7)

It can be written as
∣
∣
∣
∣
z−2+

1
z

∣
∣
∣
∣

2

= 16.

For
z= b+ l

√
−1 (8)

this becomes
(

b−2+
b

b2 + l2

)2

+

(

l − l
b2 + l2

)2

= 16.

Clearing the denominator, usingd = |z| with

d =
√

b2 + l2 ,



4 2 Rational links

and setting
D = d2 = |z|2 ,

we have
((b−2)D+b)2+(D−b2)(D−1)2 = 16D2 .

This rearranges to a cubic equation inD, but the constant term vanishes, and so, dividing byD 6= 0, we have

D2 +D(−4b−14)+ (2b−1)2 = 0. (9)

Solving forD and usingl = ±
√

D−b2 gives the result (withx = b). �

The proof of theorem 1.2, as well as all following knot-theoretic proofs, relies on a recursive calculation based on the
skein relation for the Alexander polynomial,

∆
( )

− ∆
( )

=
(

z1/2−z−1/2
)

∆
( )

. (10)

We call the diagram fragments above apositive, a negative, and asmoothed outcrossing. The dichotomy between
positive and negative crossings will be called(skein) signof the crossing.

In fact, it is more natural, in our case, to set
w = z1/2−z−1/2 , (11)

and regard∆ as a (genuine) polynomial inw, which is theConway polynomial∇. Thus in fact theorem 1.2 is more
naturally written in terms of∇. The variablew will keep its meaning (11) in the following. (The sign ambiguity
resulting from the choice of complex root will not create problems.)

A rational (2-bridge) knot or link is represented in Schubert’s form [Sh] asL = S(q, p), wherep andq are coprime
integers with 0< p < q. A diagram ofS(q, p) can be obtained from any continued fraction expansion of therational
numberp/q:

p
q

= (b1, . . . ,bn) =
1

b1 +
1

b2 + . . . 1
bn

(12)

(The numbersbi are non-zero integers.) In this diagram eachbi corresponds to a group of|bi | crossings, called in the
following a twist. S(q, p) a knot for oddq and a 2-component link for evenq.

The below diagrams show how to join twists into a rational tangle and how to close it up. (Note that the twists
are composed in a non-alternating way when the sign ofbi changes.) The displayed sequence of the type (12) is

(1,2,4,−4) =
34
49

, and thus the knot depicted isS(49,34).

−→

rational tangle −→ rational link

It will be important, throughout the paper, to distinguish how twists (of more than one crossing) look like when strands
are oriented. We call a twistreverseif smoothing out a crossing renders the other crossings nugatory. Otherwise it is
parallel.

parallel twist reverse twists
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There are several standard ways to choose an expansion (12).One is to take allbi to be positive. This gives an
alternating diagram ofL (thereby explaining that rational links are alternating);we will use this form in§5. Here we use
theevencontinued fraction, determined by demanding thatbi = 2ai be even (and non-zero). Such a representation gives
rise to a (in general non-alternating) diagram of the 2-bridge link L = S(q, p). (Note that an even expansion requires
one ofp andq to be even; this can be achieved, though, since for oddq, there is an identificationS(q, p) = S(q,q− p).)

For a 2-bridge linkL = S(q, p), in the diagram coming from the even continued fraction expansion

p
q

= (2a1, . . . ,2an) , (13)

eachai corresponds to a group of 2|ai| crossings in a reverse twist.

Proof of theorem 1.2. In this proof, as well as in§3, we will deal only with reverse twists, before handling the
parallel ones in§4 and§5.

We fix nowz∈ C for which (1) doesnot hold:
∣
∣z1/2−z−1/2

∣
∣ ≥ 2. (14)

Since the quantitity will be continuously needed, let for the scope of this section,

y = |w| =
∣
∣z1/2−z−1/2

∣
∣ .

Let us meet the convention that whenn = 0 we have the unknot, and forn = −1 the two component unlink. This lets
(16) below hold also in these exceptional cases. Let forL = S(q, p) with (13),

[2a1, . . . ,2an] :=
∣
∣∆(L)(z)

∣
∣ .

The proof of theorem 1.2 is essentially accomplished by the following lemma.

Lemma 2.2
[2a1, . . . ,2an] ≥ [2a1, . . . ,2an−1] . (15)

Proof. Use induction onn. Forn = 0 the claim is trivial: the r.h.s. vanishes and the l.h.s. is 1.

For the induction step we use the skein relation for the Alexander polynomial (10), which implies

∆(L(2a1, . . . ,2an))(z) = ±an ·w ·∆(L(2a1, . . . ,2an−1))(z)+ ∆(L(2a1, . . . ,2an−2))(z) . (16)

The sign beforean depends on the skein sign (as explained below (10)) of the crossings in the twist corresponding to
2an. This sign changes betweenan−1 andan precisely if the signs ofan−1 andan are equal. We may thus set the ‘±’
in (16) to be(−1)n−1, when we fix thata1 > 0 and the twist corresponding toa1 is (skein) positive. Let us take this
convention here to omit the ‘±’. (The other choice results in mirroring the entire diagram, which has no effect on the
zeros of∆.)

Taking norms, we have
[2a1, . . . ,2an] ≥ |an| ·y · [2a1, . . . ,2an−1]− [2a1, . . . ,2an−2] .

Now using (14) and the induction assumption[2a1, . . . ,2an−1] ≥ [2a1, . . . ,2an−2], we are done. �

This concludes the proof of theorem 1.2. �

Remark 2.1 It is clear from the proof that in fact forz with (14) we have|∆(L)(z)| ≥ 1. This observation applies
also to several of the situations below. On the other hand, the (2,n)-torus knots show that the bound 2 in (1) can be
arbitrarily approximated, and cannot be improved.

Wheny < 2, the recursive estimate gets gradually ruined, however, it can be salvaged in certain cases. We show the
below proposition as an improvement of [LMu, theorem 3]. Similar considerations will be possible later also for (at
least reverse) Montesinos links. These, however, so far do little about the remaining situations, and since they do not
lead to a complete statement, we will for space reasons no longer dwell upon them.



6 3 Montesinos links I: reverse links

Proposition 2.1 If in (13) no three consecutiveai = ±1, then Hoste’s conjecture holds. If noai is ±1, then
∣
∣z1/2−

z−1/2
∣
∣< 1, and in particular

3
8

< ℜe z and |z| < 3+
√

5
2

. (17)

Proof. If no ai is±1, theny≥ 1 is enough to make the recursive estimate work to exclude zeros. The conditiony< 1
implies (17) by a calculation similar to the one for lemma 2.1.

If ai = ±1 occur, one can see that exactlyn such consecutive ones (followed, if any, by anai with |ai | ≥ 2), would
make the estimate work if

yn−yn−1− . . .−y−1
yn−1−yn−2− . . .−y−1

≥ 1
2y−1

,

and if the numerator on the left is positive. This can be seen (for 1 < y < 2) to be equivalent to

n ≤ 1+ logy
2

(2−y)(2y+1)
. (18)

For ℜe z≤−1 the minimal value ofy can be found to be

y =
4
√

12 (19)

(attained atz = 1±
√
−2). One can also check, using the derivative, that the r.h.s.of (18) is increasing iny for

1 < y < 2. Setting (19), this r.h.s. evaluates to≈ 2.8, so thatn ≤ 2 (i.e., no 3 consecutiveai = ±1) is enough for
Hoste’s conjecture. (Thezwith y≤ 1 create no problem, as we see from the non-strict version of the first inequality in
(17).) �

3 Montesinos links I: reverse links

There was some hope to extend the proof of theorem 1.2. In thisrealm our aim is to prove Hoste’s conjecture for
every alternating Montesinos knot. (We will see its assertion fulfilled also for many non-alternating ones.) We also
cover alternating (and many non-alternating) Montesinos links. The treatment (including all component orientations
for links) is completed only in§5 (see remark 3.3).

A Montesinos link has the presentation
L = M(e, p1/q1, . . . , pn/qn) (20)

with integerse andpi ,qi satisfying(pi ,qi) = 1 and|qi| > 1. The notation (20) is well-known, but conventions differ
throughout the literature. The convention we use here is as in [St6, St7]. We will repeat only the relevant properties;
seeop.cit. for further explanation (and for the difference to the form used at some other places).

Figure 1: The Montesinos knot with notation M(4,3/11,−1/4,2/5).
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The integere is calledinteger part, andpi/qi are thefractional parts. The numbern is calledlengthof the Montesinos
link. For n≤ 2, the Montesinos link becomes a rational link. When allpi = ±1, we stipulate that we signqi so that
pi = 1, and write

L = M(1/q1, . . . ,1/qn) = P(q1, . . . ,qn) . (21)

In this case the Montesinos linkL is called apretzel link.

The knot in figure 1 should clarify matters. The twist of 4 crossings on the right gives the integer part. The three
factional parts are read off from the other twists by

(3,1,2) =
3
11

, (−4) = −1
4

, and (2,2) =
2
5

.

Let us here for clarity introduce two degenerate instances of (20), which we will occasionally use below. Ifqi = 0,
thenpi/qi = ±∞, and this means that the Montesinos link becomes the connected sum of rational linksS(q j , p j) for
j 6= i. If pi = 0, then the rational tanglepi/qi can be omitted in (20). These two cases will be used also in thepretzel
notation (21) by settingqi = 0 resp.qi = ±∞ (with the understanding 1/±∞ = 0).

Theorem 3.1 Consider the Montesinos link (20), where|pi | < qi , and withpiqi ande even and non-zero. LetL be
oriented so that it conforms to the pattern

e
p1

q1

p2

q2

pn

qn
. (22)

Let zbe a root of the Alexander polynomial of such a link andw be as in (11).

1. Then

|w| < 2 or |ℑm(w2)| <
2|w|
|e| . (23)

2. If L is alternating, then
|w| < 2 or ℜe(w2) > −2. (24)

The form (20) determines anunorientedMontesinos link, and is unique up to reversal and cyclic permutations of the
vector(p1/q1, . . . , pn/qn), and up to the identification

M(e, . . . , pi/qi, . . .) = M(e±1, . . . ,(pi ∓qi)/qi , . . .) . (25)

This shows the existence of one of the standard presentations (20), where|pi | < qi , ande 6= 0 only if all pi have the
same sign ase.

Remark 3.1 It was shown in [LT] thatL is alternating if and only if in this standard presentation all pi have the same
sign (but not necessarilye 6= 0). We call this below thealternating formof L. This criterion also means that in any
presentation (20) with 0< |pi| < qi , the linkL is alternating if and only if|e| is not smaller than the number ofpi of
opposite sign toe.

The property (25) shows that choosing|pi | < qi andpiqi even is no restriction. The restriction in theorem 3.1 comes
from the non-vanishing ofe and the orientation condition (22). The other (parallel) orientation will be treated in§5.
However, the assumptione 6= 0 is essential here. Fore= 0 there are (non-alternating pretzel) links with∆ = 0.

Remark 3.2 It will be relevant to notice that adjusting the parity ofpiqi when |pi | < qi is connected with adding
sgn(pi) to e and switching the sign ofpi .
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Keep in mind that the Alexander polynomial is extremely sensitive to the reversal of orientation of individual (but not
all) components of links. We thus next spend some words on orientation.

Remark 3.3 With eandpiqi even, there is a choice of component orientation which conforms to (22). For a knot, this
is the only choice. For a link, there may be further choices when individual components are reversed. Then one can
still achieve (22), but this requires to abandon the evenness of piqi . However, in this section we stick to the evenness
condition. In§5 we will see how to handle parallel twists, which will enableus to work (with alternating links) also
whenpiqi is odd. Lemma 5.1 can be used to deal with the remaining cases of orientation for (alternating) links.

Whenpiqi are even, the orientation condition (22) can be satisfied (upto orientation for links) if the twists correspond-
ing toe are reverse:

e
p1

q1

p2

q2

pn

qn
(26)

(and strands drawn unoriented may have either orientation).

Definition 3.1 We call a Montesinos link as in (26) areverse Montesinos link.

To see how the orientation condition (26) leads to (22), it isenough to see, by remark 3.3, that one can always choose
e even. To do so, note first that the connectivity of the tanglespi/qi is determined by the parities ofpi andqi , and
we assumepi or qi is even. Assumee is odd. When allpi are even, (26) cannot be satisfied. Thus necessarily some
qi is even. Then one can apply (25) changing the parity ofe without changing the oddness ofpi . (Note also that the
condition (26) is automatically fulfilled if someqi is even.)

Note also that when the orientation (22) is given and allpiqi are even, then all twists in the diagram are reverse. Our
aim is here to see how to adapt the proof of theorem 1.2 by first confining ourselves to reverse twists. As indicated in
that proof, the postponement of parallel twists is the main reason for the division of the treatment of Montesinos links
into two sections.

Remark 3.4 Note that the second part of condition (24) is equivalent toℜe z> 0, so (24) again implies Hoste’s
conjecture. However, the second part of (23) gives a furtherrestriction also for alternating links. This condition
visually means forz that when|z| is large,z is close to the (for alternating links positive) real axis. (Such zeros indeed
occur; see the below example.)

Example 3.1 The condition (1) is too strong to assert in theorem 3.1 even for an alternating link. A computer
verification in the tables of [HT] exhibited the Montesinos knot 157711 = M(2,1/2,2/5,2/5,2/3) and its mutant
1510057= M(2,1/2,2/5,2/3,2/5), where the Alexander polynomial has a zerozwith z1/2−z−1/2 ≈±2.09826. Later
Murasugi showed me the knotsM(2,2/5, . . . ,2/5,5/12), for which he proved that they have arbitrarily large real
positive∆ zeros.

Proof of theorem 3.1. The existence of the even continued fraction expansion (13)for pi/qi is ensured when|pi |< qi

andpiqi is even. These links have, with the orientation we chose, a star-like plumbing Seifert surface. (For rational
links the star was just a line.) We use, in analogy to the rational link case, induction over the length of the arms of the
star. The problem is to start the induction properly. For theinduction step the same argument (and the condition (1))
is sufficient.

The induction start consists in havingpi = ±1 andqi even, allowingqi = 0 (with±1/0 = ±∞), and showing that

[M(e, . . . , pi−1/qi−1, pi+1/qi+1, . . .)] ≥ [M(e, . . . , pi−1/qi−1,±∞, pi+1/qi+1, . . .)] . (27)
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This inequality needs some explanation. Here and below for convenience we switch signs so thatpi = 1 butqi may be
negative. (The l.h.s. corresponds for rational links to therole of the unknot, and the r.h.s. to this of the 2-component
unlink.)

In the formula (27) again[L] stands for|∆(L)(z)| for an a priori fixed z∈ C violating (23) resp. (24). The link
M(e, . . . ,±∞, . . .) means that the twists of 1/qi are removed in such a way that the Montesinos link becomes the
connected sum of reverse(2,q j)-torus links for j 6= i (and splits if at least twoqi become zero).

The formula (27) can be established by direct calculation. The case that someq j = 0 for j 6= i is trivial (the r.h.s. is
zero). Otherwise, scaling by a power ofw = z1/2−z−1/2 and 1/2n−2, we are left to prove

∣
∣
∣−e

4
· q1 · . . . ·qn · w2 + σn−2,n−1(q1, . . . ,qn)

∣
∣
∣ ≥

∣
∣
∣
∣

1
2

q1 · . . . ·qn · w

∣
∣
∣
∣
. (28)

Here we stipulate thatqi is left out everywhere andσk,l is the elementary symmetric polynomial of degreek in l
variables. (Note that the twists counted bye have opposite skein sign to those counted byqi .)

We deal with (28) in two different ways, according to the two assertions of the theorem.

1. The inequality (28) now follows by looking only at the imaginary part of the l.h.s. and using the (logical)
negation of (23). With this inequality, we obtain the containment of zeros using the recursive norm estimate

[L] ≥ [L′] . (29)

Here again a linkL stands for∆(L)(z), andw is as in (11). The Montesinos linkL differs fromL′ either by the
creation of a new fractional part±1/qi, or by replacing a fractional part with even fraction expansion (. . . ,al−1)
by (. . . ,al−1,al ), where (al is even and non-zero and) the sign ofal is chosen in (29).

What (29) accomplishes now is to contain the zeros in the desired domain under successively removing the
last entry in the integer sequence (geometrically, deplumbing bands). We can iterate this until we arrive at the
reverse(2,e)-torus link.

2. If L is alternating, then by remark 3.1 (up to mirroring)

e ≥ s := #{i : qi < 0} .

First assumee> s. The inequality (28) can be restated
∣
∣
∣
∣
∣
−e

4
w2 + ∑

j 6=i

1
q j

∣
∣
∣
∣
∣
≥ |w|

2
. (30)

Let si := #{ j 6= i : q j < 0} . Thus we havee> si . Now assume, in opposition to (24), thatℜe (w2) ≤ −2. We
rewrite the above inequality (30) as
∣
∣
∣
∣
∣
∣
∣
∣
∣

[(

−si

4
ℜe(w2)+ ∑

j 6= i
qj < 0

1
q j

)

+
(e−si

4
(−ℜe(w2))

)

+

(

∑
j 6= i

qj > 0

1
q j

)]

− e
4

ℑm(w2) ·
√
−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≥ |w|
2

. (31)

The parenthesized summands in the real part are all positive(sincee > si and|q j | ≥ 2). Looking only at the
second term, and usinge> si ≥ 0, we see thus that the l.h.s. is at least

∣
∣
∣
∣
−1

4
ℜe(w2)− 1

4
ℑm(w2) ·

√
−1

∣
∣
∣
∣

=
|w|2

4
≥ |w|

2
,

because|w| ≥ 2, and this establishes (30).

Now let us analyze what the consequence (29) means. Whene> 0, it means that we can keep the containment
of zeros when we create new or extend existing fractional parts. This again we reduce the problem to the reverse
(2,e)-torus link.
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There remains the casee= s. If in the alternating form allpiqi are even, thene= s= 0 (see remark 3.2), which
is out of the scope of theorem 3.1. (It follows from theorem 3.2.) If somepiqi are odd, then we need a little
more explanation, and postpone the treatment of this situation to lemma 5.1.

The casee< 0 is analogous (and equivalent under mirroring). �

Remark 3.5 When in the assumption of theorem 3.1, the linkL is alternating ande, pi > 0, then the first sum in (31)
disappears, and we see that (31) can fail only ifℜe(w2) > 0, which may then replace the second alternative in (24):

|w| < 2 or ℜe(w2) > 0. (32)

It should be kept in mind that even if we write the condition onz at the end, the reasoning is reverse: we assume
this condition violated forz from the beginning and see that this assumption is sufficientto propagate the estimates
inductively.

It remains to treat the links withe= 0. Note that whene= 0, the link (20) is alternating iff allpiqi have the same
sign (see remark 3.1 and [LT]). Thus in the context of theorem3.1, forL to be alternating, allpi > 0. This situation is
dealt with in theorem 3.2 below. Unlike theorem 3.1, the alternation condition is essential to have the method working.
Keep in mind that the orientation (22) will be completed onlywith the casee= 0 of lemma 5.1.

Theorem 3.2 Consider the Montesinos linkL in (20), where 0< pi < qi, with piqi even, ande= 0. LetL be oriented
so that it conforms to the pattern (22). Then any rootzof the Alexander polynomial∆(L) satisfies (1).

Proof. Again we only remark how to start the induction. We have to prove instead of (27),

[M(1/q1, . . . ,1/qn)] ≥ [M(1/q2, . . . ,1/qn)] (33)

(for qi even and possibly 0, with the treatment of 1/0 = ±∞ as explained below (27)).

The Alexander polynomials of these pretzel links are just monomials inw, and both inequalities are easily established.

With inequality (33), we obtain the containment of zeros using the premise (29). Now the Montesinos linkL differs
from L′ by replacing a fractional part with even fraction expansion(. . . ,al−1) by (. . . ,al−1,al ), where the sign ofal is
chosen in (29).

In opposition to the previous proof, we have not justified with (33) in (29) the creation of a new fractional part when
modifyingL′ to L. This is, however, not necessary. By induction, we can reduce the zero location to the pretzel links
P(q1, . . . ,qn). These links are special alternating, and so all their∆ zeros lie on the unit circle. �

4 Closed 3-braid links

Proof of theorem 1.3. If L is a non-split 3-braid alternating link, then by [St4], it iseither the closure of alternating
3-braid, or among a tiny family of pretzel links. Latter links are special alternating. For them (see§1 and [St2]) all
roots of∆(L) have unit norm, and hence satisfy (1).

We assume now thatL is closureβ̂ of an alternating 3-braid

β = (p1,q1, . . . , pn,qn) = σp1
1 σ−q1

2 · . . . ·σpn
1 σ−qn

2 , (34)

wheren, pi,qi are positive integers andσi are Artin’s standard generators. Let callσpi
1 andσ−qi

2 syllables, andn the
lengthof the alternating braidβ. We will keepn with this meaning throughout the proof.

Let againz satisfy (14). We will later see that this assumption must be improved, which will lead to the auxiliary
constant on the right of (4).

To do the induction step, let us call an alternating braidβ′ a reductionof an alternating braidβ, if β′ is obtained
by reducing onepi or qi by 1 in (34), and possibly changing(. . . , pi ,0, pi+1, . . .) → (. . . , pi + pi+1, . . .) (resp. forqi).
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Oppositely, callβ′ anextensionof β if β′ is obtained by augmenting onepi or qi by 1 in (34). (This is slightly more
restrictive than the inverse of a reduction, sincen is not changed.)

We are led again to prove an analogue of (15). Here we need to work more carefully, and some modifications are
necessary. Let us reintroduce the numberw from (11), and write

y = |w|−1.

The analogue of (15) we will prove is
[β] ≥ y · [β′] (35)

for [β] = |∆(β̂)(z)|, whereβ′ is a reduction ofβ and again hat denotes the usual braid closure.

The proof of (35) goes again by induction on the number of crossings (or word length)∑n
i=1 pi + qi in (34). For this

we use again (14) and the skein relation (10) at a crossing in the syllable reduced inβ to obtainβ′. This relation now
reads as (16), withan = ±1, and the sign chosen as before.

Let us also assume thatn≥ 2, since the casen = 1 is easy.

If the reduction ofβ does not changen, then induction goes as before. (We previously forgot the extra factory
occurring, since we just neededy > 1.) If the reduction ofβ changesn, i.e., pi = 1 or qi = 1, then we need an extra
argument which will lead to the auxiliary constant on the right of (4).

Let us focus on the caseqi = 1; the casepi = 1 is analogous. Again by applying the skein relation (10) at the crossing
of qi = 1, we see that it is enough to prove














m














≥














m














. (36)

Hereβ andβ′ are depicted only in the differing spot, and a box with labelm inside meansσm
1 for m> 0. (Note that for

n = 1 the inequality is false, which forces the assumptionn≥ 2.)

We use crossing number induction on the combination of (35) and (36).

Now we use the Fibonacci polynomialsFn for n≥ 0, defined by

F0(z) = 0, F1(z) = 1, and Fn(z) = zFn−1(z)+Fn−2(z)

for n≥ 2. It is directly verified by induction that for a complex numberw with |w| > 1,
∣
∣
∣
∣

Fm−1(w)

Fm(w)

∣
∣
∣
∣
≤ 1

|w|−1
=

1
y

. (37)

It is an easy consequence of the skein relation (10) for∆ that form> 0,

∆




 m




(z) = Fm(w) ·∆









(z)+Fm−1(w) ·∆









(z) . (38)

Now we expand both hand sides of (36) using (38) at the boxes with m. In the below inequality a braidβ stands for
∆(β̂)(z), and only the differing parts of the braids are depicted.

∣
∣
∣
∣
∣
∣
∣
∣
∣

Fm +Fm−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

≥

∣
∣
∣
∣
∣
∣
∣
∣
∣

Fm +Fm−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (39)
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The reason we have done this is that now the second braid on theright simplifies to an alternating braidβ′, which is
an iterated reduction of the first braidβ on the left. Similarly is (without simplification) the second braid on the left.

The first braid on the right simplifies by two crossings (at least), but remains non-alternating after that. For it we use
(36) as induction assumption. This is justified except ifn = 2 andq1 = q2 = 1 (since then the assumptionn≥ 2 no
longer holds after the simplification), which we will treat extra later.

We thus use induction assumption to estimate the contributions of the 3 last braids in (39) against the first. For the
values∆(z) we count by how may crossings the right braids simplify and apply inductively and iteratedly (35). Then
we compare the coefficientsFi using (37). We see that then (39) will follow from

1− 1
y2 ≥ 1

y2 +
1
y4 . (40)

This is satisfied if 1/y= 1/(|w|−1) is not larger than the smallest (real) positive zerot of −1+2t2+ t4, which would
lead to a worse bound fory than we stated.

There are some ways to improve (40) by observing where we are too generous in passing from (39). One such place is
(37). By iteratedly substituting this estimate into the recursion forFn, we see that the the r.h.s. can be changed to the
continued fractions (defined in (13))

(|w|, |w|, . . . , |w|,1) → x :=
|w|
2

−

√
( |w|

2

)2

−1 =
y+1

2
−

√
(

y+1
2

)2

−1. (41)

Then (40) modifies to

1− x
y
≥ 1

y2 +
x
y3 . (42)

This is again regarded, via (41), as an inequality for realy. It is easy to see thatx decreases wheny increases. Thus
the difference of the two hand sides has again a unique positive zero. It is found to bey≈ 1.45317, which reflects in
the bound given in (4).

In the extra casen= 2, q1 = q2 = 1, the first braid in (36) gives a Hopf link, the last one splits(and has zero Alexander
polynomial), and the other two give unknots. The polynomialof a Hopf link is ∆ = ±w, and so we see that the
inequality (36) holds from (14). �

This proof of theorem 1.3 can be further extended to a positive 3-braid.

Theorem 4.1 Let L be a (non-split) positive braid knot or link of braid index 3 and z be a root of the Alexander
polynomial∆(L). Then

∣
∣z1/2−z−1/2

∣
∣ < 3.274601. (43)

Proof. By [St5], again a positive braid link of braid index 3 is the closure of a positive 3-braid. In this case ‘−qi ’
become ‘qi ’ in (34).

The sole difficulty is to properly adapt (39). Here we consider thetwo syllablesσm
1 andσl

2 following theσ−1
2 :

[. . .σm
1 σl

2 . . .] ≥ [. . .σ−1
2 σm

1 σl
2 . . .] . (44)

Again we use (38) to expand this inequality into this time 8 terms form, l = 0,1.

In passing to the analogue of (40), the 4 braids on the left-hand side remain positive. The analogue of first braid on
the right of (39) simplifies just by 2 crossings, which leads to 1/y. In two terms on the right theσ−1

2 does not cancel.
Then we delete theσ−1

2 in them using (44) applied as induction assumption (over thecrossing number). This leads to
the inequality

1− 2x
y
− x2

y2 ≥ 1
y

+
x
y

+
x
y2 +

x2

y2 ,

and to (43). (Again, the casen = 1 in (44) must be excluded, and handledad hocin (35). The extra care forn = 2 is
no longer needed.) �
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Remark 4.1 It is not clear what improvements are possible. However, Hirasawa was quoted in [LMu] considering the
example 10152. From his observation it is clear that (1) (and Hoste’s conjecture) is not true for positive 3-braid links.
Also, there exist (non-split) 3-braid links whose Alexander polynomial vanishes (see [St5]). This hints to why such
recursive skein calculations are difficult to work for general 3-braids.

5 Montesinos links II: the parallel case

Definition 5.1 A Montesinos link as in (45) will be called aparallel Montesinos link.

Theorem 5.1 Consider the Montesinos linkL in (20), where 0< pi < qi (with piqi possibly odd), ande≥ 0. LetL be
oriented (and admit an orientation) so that it conforms to the pattern (45).

e
p1

q1

p2

q2

pn

qn
(45)

Then any external rootzof the Alexander polynomial∆(L) satisfies (3). Moreover,ℜe z> −1.

Proof. In this case we work with the positive but not necessarily even continued fraction expansion ofpi/qi

pi/qi = (a1, . . . ,an) .

(Herea j = ai, j > 0 andan > 1.) The induction step must be refined as follows.

If the twists corresponding toan are parallel, we use the skein relation as for (36) to reduce this to

[(. . . ,an−1 +1)] = [(. . . ,an−1,1)] ≥ [(. . . ,an−1,0)] = [(. . .)] , (46)

which works by induction. Here it is understood that we modify only one factional part of the Montesinos linkL,
and the end of the continued fraction expansion of this factional part is shown only. (The ellipsis stands for the same
sequence of positive integers.) Again[L] stands for|∆(L)(z)|.
If the twists corresponding toan are reverse andan = 2p is even, we use (16) (replacingan by p = an/2).

If the twists corresponding toan are reverse andan = 2p−1 is odd (withp > 1 sincean ≥ 2), we use (16) in the form

(. . . ,an−1,an) = p ·w · (. . . ,an−1)+ (. . . ,an−1,−1) = p ·w · (. . . ,an−1)+ (. . . ,an−1−1) , (47)

where the links are denoted as in (46), and againL stands for∆(L)(z). If an−1 = 1, both sequences on the right of (47)
simplify by one entry, but the induction assumption still applies.

For all three types of induction step argument, the assumption (14) suffices.

The main difficulty lies again in the induction start. It willbe helpful to remember that the Alexander polynomial of
the pretzel linkP(q1, . . . ,qn) from (21) is invariant under permutation of theqi . This can be seen from the explicit
formula (51) below, and is more generally owed to the mutation invariance of∆. With this observation our task lies in
showing

[P(q1, . . . ,qn)] ≥ [P(q2, . . . ,qn)] , (48)

whereqi are odd and positive. Once we have (48), the proof is completed as for theorem 3.2, by reducing the zero
location to the special alternating pretzel linksP(q1, . . . ,qn).

We move the proof that the negation of (3) is sufficient for (48) to a separate lemma 6.1, which we work on in the next
section. Indeed, some skillful estimation is needed, and our condition (3) is cruder than (1), but it is the optimal bound
for |z| that fits with (1).
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The second stated estimate was obtained with particular focus on Hoste’s conjecture and is given in lemma 6.3. Its
proof is considerably longer, and clearly displays the difficulties in seeking further improvement using this method
(and moderately manageable calculations). �

We conclude with the remaining case of (reverse) orientation (22) for alternating knots, completing the proof of
theorem 3.1 (see the remarks following the theorem, in particular remark 3.2).

Lemma 5.1 Consider the Montesinos linkL in (20), wheree≥ 0 and 0< pi < qi , with a non-zero numberm of piqi

odd. LetL be oriented so that it conforms to the pattern (26). Then any root z of the Alexander polynomial∆(L)
satisfies (32).

For theorem 3.1 we need only the special casee= 0, but the other cases are necessary to justify the statementabout
arbitrarily oriented (alternating Montesinos) links madein remark 3.3. Note also that (23) still holds for the links in
the lemma, by (the already established part of) theorem 3.1.

Proof. Observe that the pattern (26) can be achieved up to componentorientation if and only ifl := e+ m is even.
Thus the parity ofl is implied by (26).

The argument goes as for theorem 5.1. We reduce, again by inductively using (14), the problem to the pretzel links

P(1,1, . . . ,1
︸ ︷︷ ︸

l copies

,q1, . . . ,qn−m) , (49)

with qi > 0 even. In the analogue of (27) we have to prove, either someqi in (49) is replaced by±∞ on the left and
by 0 on the right, or an entry 1 in (49) is retained on the left and replaced by 0 on the right. (With this we can reduce
the zero location to the reverse(2, l)-torus link.) Both situations were previously studied in (28), whene= l > 0 and
all qi > 0. We finished this case off with the conclusion (32). �

6 The pretzel link estimates

Lemma 6.1 For t = zoutside the bound (3) andqi > 0 odd, we have
∣
∣∆(P(q1, . . . ,qn−1))(t)

∣
∣ ≤

∣
∣∆(P(q1, . . . ,qn))(t)

∣
∣ . (50)

The change of variable from (3) was done with regard to the proof of the lemma. The proof depends heavily on the
following explicit formula for the Alexander polynomial ofa pretzel link.

Lemma 6.2 Let ui =
qi −1

2
. Then

∆(P(q1, . . . ,qn))(t) =
1

√
t
n−1

(t +1)

[
n

∏
i=1

(ui(t −1)+ t )−
n

∏
i=1

(ui(t −1)−1)

]

. (51)

Proof. Let us stipulate that a linkL stands for∆(L)(t). Use iteratedly the identity

P(q1, . . . ,qn) = ui(t
1/2− t−1/2)P(q1, . . . ,qi−1,qi+1, . . . ,qn)+P(q1, . . . ,qi−1,1,qi+1, . . . ,qn) ,

to get

P(q1, . . . ,qn) = ∑
S

(t1/2− t−1/2)|S|
(

∏
i∈S

ui

)

P(1,1, . . . ,1
︸ ︷︷ ︸

n−|S| copies

) ,

where the sum runs over subsetsSof {1, . . . ,n}. Now the pretzel link occurring in the sum is just the(2,k) torus link
for k = n−|S|, whose polynomial is

tk− (−1)k

√
t
k−1

(t +1)
.

The rest follows by grouping terms properly. �

The below term and its notation will be used extensively in the following, so we highlight its definition.
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Definition 6.1 Let for v ∈ C \ {0} the argumentargv ∈ R/2π be the number satisfyingv = eargv
√
−1 · |v|. Unless

otherwise noted, the convention we use is that argv∈ [0,2π).

Proof of lemma 6.1. With lemma 6.2, we have to prove

(un(t −1)−1)

∣
∣
∣
∣
∣

n

∏
i=1

ui(t −1)+ t
ui(t −1)−1

−1

∣
∣
∣
∣
∣
≥
√

|t|
∣
∣
∣
∣
∣

n−1

∏
i=1

ui(t −1)+ t
ui(t −1)−1

−1

∣
∣
∣
∣
∣
.

This is equivalent to stating that withui ≥ 0,
s= un+1≥ 1, (52)

and
ai =

ui

ui +1
, (53)

the numbers

z= ηn−1 =
n−1

∏
i=1

ui(t −1)+ t
ui(t −1)−1

=
n−1

∏
i=1

t −ai

ait −1

satisfy √

|t| |z−1| ≤
∣
∣z(t −an)− (ant −1)

∣
∣ ·s. (54)

Our attitude throughout this section will be that we transform (54) into a series of inequalities, each following one of
which is at least as strong as the previous one. At some point we will see that under our assumtions some inequality
holds, and hence so does (54).

To examine the condition (54) here, we first observe that for|t| ≥ 1 and 0≤ ai < 1 from (53), we have

|t −ai| ≥ |ait −1| . (55)

Thus
|z| = |ηn−1| ≥ 1.

For (54), it is enough to have √

|t||z−1| ≤
(
|z||t −a|− |at−1|

)
·s

and
√

|t| ≤ |z||t −a|− |at−1|
|z|+1

·s

The minimal value of the r.h.s. over|z| ≥ 1 is attained for|z| = 1, and thus it is sufficient to have

√

|t| ≤ |t −a|− |at−1|
2

·s. (56)

We will next estimate the numerator. Consider figure 2. We assume thatB= t −a andA= at−1 for a natural number
s≥ 1 (with the meaning in (52)) and

a =
s−1

s
. (57)

The Cosine law in△OAX gives

OA
2

=

(
2s−1

2s

)2

|t −1|2+

( |t +1|
2s

)2

−2cos(π−α)
2s−1
(2s)2 |t −1||t +1| ,

and in△OBX

OB
2

=

(
2s−1

2s

)2

|t −1|2+

( |t +1|
2s

)2

−2cos(α)
2s−1
(2s)2 |t −1||t +1| .

Thus

OB
2−OA

2
=

2s−1
2s2

(
cos(π−α)−cos(α)

)
|t −1||t +1| . (58)



16 6 The pretzel link estimates

OM = −1

t −1 T

D

A

B

X
α

β

φ2

φ1

1
s

|t|
s

Figure 2: Various notations used in the proof of lemmas 6.1 and 6.3.

Now consider the above picture fors= 1. The Cosine law in△ODT gives

|t|2 =

( |t +1|
2

)2

+

( |t −1|
2

)2

−2cos(α)
|t −1||t +1|

4
,

and in△ODM,

1 =

( |t +1|
2

)2

+

( |t −1|
2

)2

−2cos(π−α)
|t −1||t +1|

4
.

Thus

−2

(

−|t|2 +
|t −1|2

4
+

|t +1|2
4

)

= −cos(α) · |t −1||t +1|

and

2

(

−1+
|t −1|2

4
+

|t +1|2
4

)

= cos(π−α) · |t−1||t +1| .

Adding the last two identities and substituting into (58) gives

OB
2−OA

2
=

2s−1
s2

(
|t|2−1

)
, (59)

which is rewritten as

|t −a|2−|at−1|2 =
2s−1

s2

(
|t|2−1

)
. (60)

Now

|t −a|+ |at−1| ≤ (a+1)(|t|+1) =
2s−1

s
(|t|+1) ,
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and so from (60),

|t −a|− |at−1| ≥ 1
s
(|t|−1) . (61)

Combining this with (56) gives the sufficient stronger condition

|t|
2
− 1

2
≥
√

|t| ,

which is true for|t| ≥ 3+2
√

2. �

Remark 6.1 The formula in lemma 6.2 is valid also forqi < 0. One can draw from this also some conclusions on the
∆ zeros of certain non-alternating pretzel links. Note that for an alternating pretzel link, the formula combined with
(the strict inequality part of) (55) readily proves that at with |t| > 1 (and then also for|t|< 1) cannot be a zero, which
we knew from the links being special alternating.

This, relatively smooth, estimate is too generous to work for small |t|. Under the conditionℜe t≤ −1 we have made
more (laborious) attempts to approach Hoste’s conjecture following this strategy. Here is what we could prove:

Lemma 6.3 For an externalt with ℜe t≤−1, andqi > 0 odd, we have (50).

This lemma requires the most substantial work of the paper. The property thatt is external enters again in an essential
manner: the serious difficulty we face aroundt = −1 cannot be overcome also in (50). (Compare to the 3-braid
calculation, and the comment on it in§9.) An important insight that can be gained from the below proof is that (50)
fails for certain values oft (with ℜe t≤−1) close to−1. For sucht a rather different approach might be needed – and
it is further motivated by the the length of the following calculation.

We need some preparations. We first have to return to lemma 2.1. According to the notation in its proof, but changing
z to t, we will write

b = ℜe t, l = ℑmt, and d = |t| =
√

l2 +b2 . (62)

Lemma 6.4 Let t ∈ C with ℜe t≤−1. Thent is external if and only ifb andd in (62) satisfy

b ≤ 1+d2

2
−2d (63)

for |l | ≤
√

8 (i.e.,d ≤ 3), andb≤−1 otherwise.

Proof. First we ascertain that on
[

−3
2
,−1

]

the functionf+ of (5) is increasing, whilef− is decreasing. (We can do

this using the derivatives of the squares.) According to (6), this explains that no restriction enters for|l | ≤ f+(1) =
√

8.

For the otherl , it is enough for (63) to show that equality

b =
1+d2

2
−2d (64)

occurs on the boundary ofD. The condition (7) was rewritten as (9). Now, rearranging for b gives

b2−b(1+D)+
1−14D+D2

4
= 0.

Solving this gives two values forb, but since onlyb < 0 is relevant, we obtain the solution (64) (withd =
√

D). �

Lemma 6.5 When 0≤ x≤ 1
3

, we have

arcsinx+arctanx≤ 2x.
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Proof. Since the statement is clear (as an equality) forx= 0, it is enough to check that the inequality of the derivatives

is true whenx2 ≤
√

17−1
8

>
1
9

. �

Proof of lemma 6.3. We fix some externalt ∈C with ℜe t≤−1 for the entire proof. Assume, to reduce technicalities,
w.l.o.g. that

ℑmt < 0. (65)

Then the numbers

r i =
t −ai

ait −1
(66)

have positive imaginary parts, and

0 ≤ argr i <
π
2

. (67)

We will try to understand precisely for whichz∈ C the conditions (54) are satisfied. We will see that the products

z = ηn−1 =
n−1

∏
i=1

r i (68)

may violate (54) whenan = 0, argηn−1 ∈ [0,2π) is aboveπ, and|ηn−1| is close to 1.

To partly remedy this, we first prove a bound on the norm ofηn−1 in terms of its argument. It turns out that, although

r i can get arbitrary close to 1, there is some lower bound on the ratio
log|r i |
argr i

. This means that (for fixedt) products of

r i with argument close to or aboveπ will be bounded in norm above 1. We will prove such a bound in (69).

Consider2 figure 2, withB = t −a andA = at−1 for a from (57) and a natural numbers≥ 1.

Lemma 6.6 The anglesα andβ are not acute.

Proof. Consider firstβ. It is obvious (and easy to argue exactly) thatβ increases withs, and so it is sufficient to look
at s= 1. The claim then follows fromℜe t≤−1. Since, by looking at△OAX we see thatα = β + φ1, it is clear that
α is not acute either. �

Lemma 6.7 We have forz= ηn−1 from (68) the inequality

|z| ≥ 1+arg(z) · τ (69)

for

τ :=
(|t|−1)|t−1|
(|t|+1)|t +1| . (70)

Proof. Let z= r i with u = ui ands= u+1. We will prove (69) first whenu > 0; for u = 0 we will need later an extra
calculation. When we complete the caseu = 0, we will be done, since when (69) holds forz= r i , it holds for their
products, too.

Case 1.Thus assumeu > 0. Considerr i in (66). Letφ = argr i . Look again at figure 2. We have

sinφ1 ≤ AX

OX
=

|t +1|
(2u+1)|t−1| ,

and becauseα is not acute by lemma 6.6, also

tanφ2 ≤ BX

OX
=

|t +1|
(2u+1)|t−1| .

2For better visibility, we drew figure 2 whenℑmt > 0; if necessary, imagine the conjugate (vertical reflection).
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Therefore,

φ = φ1 + φ2 ≤ arcsin

( |t +1|
(2u+1)|t−1|

)

+arctan

( |t +1|
(2u+1)|t−1|

)

.

Now |t +1|< |t −1| whenℜe t≤−1, and 2u+1= 2s−1≥ 3 (for s= u+1> 1), and thus by lemma 6.5,

argr i = φ ≤ 2|t +1|
(2s−1)|t−1| . (71)

Next, we return to (61). From this inequality, we have (fora = ai , since the calculation applies for every indexi)

|r i |−1 =
|t −a|− |at−1|

|at−1| ≥ |t|−1
s|at−1| , (72)

and combining this with (71) gives
|r i |−1
argr i

≥ (|t|−1)|t−1|
2|t +1| · 2s−1

s|at−1| . (73)

Now
2s−1

s|at−1| =
2s−1

|(s−1)t−s| ≥
2s−1

(s−1)|t|+s
≥ 2

|t|+1
. (74)

By using (74) in (73), the statement (69) follows forz= r i whenu > 0.

Case 2.In the caseu = 0, we haver i = −t from (53) and (66), and so the inequality to prove is

|t| ≥ 1+arg(−t)τ .

Simplifying, and using arg(−t) ≤ tan(arg−t) =

∣
∣
∣
∣

ℑmt
ℜe t

∣
∣
∣
∣
, we see that it is enough to prove

(|t|+1)|t +1|
|t −1| ≥

∣
∣
∣
∣

ℑmt
ℜe t

∣
∣
∣
∣
.

With the designations in (62), this can be written as

(d+1)
√

d2 +2b+1√
d2−2b+1

≥
√

d2−b2

|b| .

Squaring and rearranging terms, and changingb to−b, with 1≤ b≤ d, gives

(d+1)2b2 ≥ (d2−b2)

(

1+
4b

d2−2b+1

)

,

or

d2b2 +2db2+2b2−d2 ≥ 4b(d2−b2)

d2−2b+1
.

Used2b2−d2 ≥ 0 on the left, multiply by the denominator on the right, and use thereind2 +1≥ 2d. We obtain the
sufficient simpler condition

(2db2 +2b2)(2d−2b) ≥ 4bd2−4b3 ,

or
4(1+d)b2(d−b) ≥ 4(d−b)b(d+b) ,

which becomes clear after reducing by common factors. This concludes the proof of lemma 6.7. �

We will in the sequel often writeτ for the expression in (70). We will use a part of the followingcalculation later.

Lemma 6.8 When
t = −1− l

√
−1, (75)

for l > 0, thenf (l) = τ from (70) is a strictly increasing function inl .
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Proof. The expression in (70) can with (75) be rewritten as

τ =

√
4+ l2

(√
1+ l2−1

)2

l3
. (76)

Using this presentation, it is straightforward, but somewhat painful, to verify that the derivativef ′(l) is positive for
l > 0. Another possibly simpler way is to use the substitution

d = |t| =
√

l2 +1 (77)

in (76) to rewrite (and simplify)τ andτ2, and obtain

τ =

√
3+d2

(
d−1

)2

√
d2−1

3 , and τ2 =

(
3+d2

)(
d−1

)

(
d+1

)3 .

The positivity of the derivative (ind for d > 1) of τ2 is likely easier to check. �

The following lemma is an exercise in Euclidean geometry.

Lemma 6.9 For p1, p2 ∈ C andm> 1, the set
{

x∈ C : |x− p1| = m|x− p2|
}

is a circle with

center
m2

m2−1
p2−

1
m2−1

p1 and radius
m

m2−1
|p2− p1| . (78) �

Now, with z∈ C satisfying (69), we return to (54).

Case 1.s= 1. We have to examine
√

|t| ≤ |− tz−1|
|z−1| . (79)

Keep in mind that with (65) we have arg(−t) ∈
(

0,
π
2

)

.

Case 1.1.argz< 2π−arg(−tz). Let γ = argz andk = |z|. By squaring (79), using Cosine law and the assumption of
the case, we see that it is sufficient to have

1+k2|t|2−2cos(γ) ·k|t|
1+k2−2cos(γ) ·k ≥ |t| .

This is equivalent to

|t|2 +2cos(γ)k
|t|2−|t|

1+k2−2cos(γ)k
− |t|2−1

1+k2−2cos(γ)k
≥ |t| ,

and further

|t|(|t|−1)

(

1+
2cos(γ)k

1+k2−2cos(γ)k

)

≥ |t|2−1
1+k2−2cos(γ)k

.

This in turn simplifies to

1+k2 ≥ |t|+1
|t| ,

which is certainly true, since withk = |z| and|t| both at least 1, the left-hand side is at least 2, while the right-hand
side is at most 2.

π ≥ argz≥ 2π−arg(−tz) . (80)Case 1.2.
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In particular, since arg(−t)<
π
2

, we must have argz>
3π
4

. We consider again (79). It is easy to see that forzsatisfying

(80) and having a fixed norm,|z−1| is maximal and|− tz−1| is minimal whenz is real negative. Thus assume for
k = |z| ≥ 1 from (69) that

z= −k ≤ −1, (81)

so that the condition (79) to test becomes
|kt−1|2 ≥ |t|(1+k)2 ,

or with (62),
(kb−1)2+k2l2 = k2d2−2kb+1≥ d(1+k)2 . (82)

When az as in (81) is given, one sees next that fort of fixed normd = |t| (cf. (62)), | − tz− 1| decreases when
b = ℜe t < 0 increases.

An upper bound forb is given by the condition (63) for externalt. For d ≤ 3, we can thus work just with thoset for
which (63) is an equality, as in (64). Using that with (64), wehave

2(b+d) = (d−1)2 , (83)

the test (82) can then be rewritten as

k2(d2−d)−k(d−1)2+(1−d) ≥ 0.

We haved ≥ 1, and the cased = 1 givest = −1, which is not interesting. Thus, dividing byd−1, and using (81), we
see easily the necessary inequality.

We have to test (82) also forb = −1 andl ≤−
√

8, i.e.,d ≥ 3. Substitutingb = −1 in (82), dividing byd−1 > 0 and
simplifying, we obtain

k2d−2k−1 ≥ 0,

which is true ford ≥ 3 andk≥ 1. Thus we are done in this case.

Case 1.3.π < argz. We apply the formula (78) to the circle

C :=
{

x∈ C :
√

|t| |z−x| ≤ |y−x|
}

for y = −tz. We are interested whether 1∈C. The center ofC is

|t|
|t|−1

z− 1
|t|−1

y,

and its radius is √

|t|
|t|−1

· |y−z| =

√

|t|
|t|−1

· |t +1||z| .

We have 1∈C when|center| ≤ radius−1, which can be simplified to

∣
∣|t|z−y

∣
∣ ≤

√

|t| |t +1||z|− (|t|−1) ,

or to
∣
∣t + |t|

∣
∣ ≤

√

|t| |t +1|− |t|−1
|z| . (84)

Here we notice that for given|t|, the value
∣
∣|t|+ t

∣
∣−
√

|t| |t +1| (85)

is increasing withℜe t≤−1. To see this, express (85) usingb, l andd as in (62):

∣
∣|t|+ t

∣
∣−

√

|t||t +1| =
√

(b+d)2+ l2−
√

d ·
√

(b+1)2+ l2

=
√

2d2 +2bd−
√

d ·
√

d2 +2b+1. (86)
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Regard this for fixedd as a function inb∈ [−d,−1]. The non-negativity of its derivative becomes, after multiplying
by the denominators,

d
√

d2 +2b+1−
√

d ·
√

2d2 +2bd ≥ 0,

or after squaring
d2(d2 +2b+1

)
≥ d2 (2d+2b) ,

which is seen to hold by simplifying.

With (63) in mind, ford ≤ 3 we find it thus again enough to evaluate (85) forb = ℜe t as in (64). Then we have in
particular

|t +1| =
√

2(d−1) and |t −1| = 2
√

d . (87)

Using the first equality for the second term in (86), and (83) for the first, we see that the condition (84) becomes

(
1−

√
2
)√

d(d−1) ≤−d−1
|z| .

Dividing by d−1 for d > 1 (sinced = 1 is again trivial) and rearranging translates this into

|z| ≥ 1
(√

2−1
)√

d
. (88)

With (69) and the assumption of the case, the condition (88) will be satisfied when

1+ πτ ≥ 1
(√

2−1
)√

d
. (89)

Now with (70) and (87) we have

τ =
d−1
d+1

· |t −1|
|t +1| =

√
2d

d+1
.

Substituting this into (89) and multiplying by all denominators, we obtain

(√
2−1

)√
d(d+1)+ π

√
2
(√

2−1
)
d−d−1 ≥ 0. (90)

The first summand is increasing ind for d > 1. So is the rest of the l.h.s., which one sees from the linear coefficient
π
√

2
(√

2−1
)
−1 > 0. Thus it is enough to test (90) ford = 1, which is easy.

Next we have to test (84) forb = −1 andd ≥ 3. Substitutingb = −1 in (86), we see that (84) becomes

√
2d

√
d−1−

√
d ·
√

d2−1 ≤ −d−1
|z| . (91)

Now by lemma 6.8, we have (withf being the function therein)τ ≥ f
(√

8
)

=

√

3
8

, so that by (69)

|z| ≥ 1+

√

3
8

π >
5
2

.

Thus after dividing by
√

d−1 and rearranging, we see that (91) would be implied by

√
2d+

2
√

d−1
5

≤
√

d
√

d+1,

which is seen to hold ford ≥ 3 from
√

d−1≤
√

d and
√

2+2/5≤ 2≤
√

d+1. Herewith we can conclude the case.

Case 2.s≥ 2. Here it turns out unnecessary to assumet is external, and thus (by similar monotonicity arguments) we
will substitute onlyb = −1 (for all d ≥ 1) into certain inequalities we want to show, instead of bothering with (64).
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We distinguish three subcases similar to case 1. However, inthe conditions there the role of−t is taken by the more
general

r =
t −a
at−1

(92)

with a as in (57), now satisfyinga≥ 1
2

.

Case 2.1.2π−argrz≥ argz. Then it is easy to see that (forℜe t≤−1)

|at−1| ≥
∣
∣
∣
1
2

t −1
∣
∣
∣ >

√

|t| . (93)

For the right inequality,
∣
∣
∣
1
2

t −1
∣
∣
∣ >

√

|t| , (94)

note that amongt with ℜe t≤−1 and given norm,
∣
∣
∣
1
2

t −1
∣
∣
∣ is smallest whenℜe t = −1, so it is enough to check (94)

only for sucht. This is easily done by squaring twice both hand sides.

Now (54) can be written
√

|t|
s|at−1| ≤

|rz−1|
|z−1| . (95)

We know from (94) that the l.h.s. of (95) is smaller than 1, while from (72) we have|r| ≥ 1. Under the assumption of
this case the conclusion follows easily. (Formally, one canrepeat the calculation in case 1.1, replacing|t| by |r|.)
Case 2.2.2π−argrz≤ argr and argr ≤ π. Looking at (95) and using (93), we see that it is enough to prove

|rz−1| ≥ |z−1| . (96)

Now, for argzas chosen, multiplying the complex numbersz andrz by e
√
−1(π−argz) will increase the right-hand side,

and decrease the left-hand side. Thus it is enough to test (96) whenz is real negative.

Then we see that (96) will in particular follow ifℜe r ≥ 1. Looking at the diagram in figure 2, we see that this is
equivalent to the angleβ not being acute, a property proved in lemma 6.6. This argument finishes case 2.2.

Case 2.3.argr ≥ π. Thus we have (69). Now consider

C :=
{

x∈ C :
s|at−1|
√

|t|
|y−x| ≥ |z−x|

}

with y = r ·zanda from (57). By (78) and (93), this setC is the the exterior of a circle. The center of the circle is

s2|at−1|2
s2|at−1|2−|t|y−

|t|
s2|at−1|2−|t|z. (97)

Using
∣
∣
∣
∣

t −a
at−1

−1

∣
∣
∣
∣
=

∣
∣
∣
∣

t −a−at+1
at−1

∣
∣
∣
∣
=

∣
∣
∣
∣

(t +1)(1−a)

at−1

∣
∣
∣
∣

=
|t +1|

s|at−1| ,

the radius evaluates to

s|at−1|
√

|t|
s2|at−1|2−|t| |y−z| =

s|at−1|
√

|t|
s2|at−1|2−|t| |z|

∣
∣
∣
∣

t −a
at−1

−1

∣
∣
∣
∣
=

|t +1||z|
√

|t|
s2|at−1|2−|t| . (98)

We need 1∈C. This is implied by|center| ≥ radius+1. This inequality can be rewritten and strengthened by clearing
denominators in (97) and (98), using (92) and decreasing theleft-hand side by the triangular inequality:

(

s2|at−1||t−a|− |t|
)

|z| ≥ |t +1||z|
√

|t|+s2|at−1|2−|t| .
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This can be further reorganized as

|t|(|z|−1) ≤ s2|at−1|
(

|z||t −a|− |at−1|
)

−
√

|t||t +1||z| .

Since, by (55) or (72),|r| ≥ 1 in (92), it is sufficient that

|t|(|z|−1) ≤ s2|at−1|(|z|−1)|t−a|−
√

|t||t +1||z| . (99)

We simplify (99) to

|t| ≤ s2|at−1||t−a|−
√

|t| |z||t +1|
|z|−1

.

Then we use (69). So it is enough to have

|t| ≤ s2|at−1||t−a|−
(

1+
1

πτ

)
√

|t| |t +1| .

Furthermore, we need to look only ats= 2 (anda = 1/2), which minimizes|at−1| and|t −a|:

|t| ≤ |t −2||2t−1|−
(

1+
1

πτ

)
√

|t| |t +1| . (100)

Here we see again that it is enough to testt in (75), since amongt with ℜe t≤−1 and given|t|, the one withℜe t=−1
makes|2t−1| and|t−2| smallest. It also makes|t−1|/|t +1| smallest, and thus minimizesτ. Settingt as in (75) and
encountering the expression in (76), let us simplify the calculation by using that

τ =

√
4+ l2

(√
1+ l2−1

)2

l3
≥ l

2
√

4+ l2
.

Then we have
|t +1|

τ
≤ 2

√

l2 +4. (101)

By expanding the parenthesis in (100), applying (101) on thelast term, and then making the substitution (77), we have

d ≤
√

d2 +8·
√

4d2 +5−
√

d2−1·
√

d− 2
π
√

d ·
√

d2 +3. (102)

It is enough to prove that (102) holds for alld ≥ 1. By usingd ≤ d
√

d on the left and
√

d2−1≤ d and
√

4d2 +5≥
2d ≥

√
d2 +3 on the right, this can be simplified (and strengthened) to

(

1+
2
π

)√
d ≤

√

d2 +8,

which now can be easily checked (after squaring) ford ≥ 1.

With this the case distinction, and the proof of lemma 6.3, iscomplete. �

7 Extensions to the skein polynomial

An advantage of using the skein relation (10), in contrast tothe Seifert matrix, is that, to a limited extent, it offers
some information beyond the Alexander polynomial. We have obtained the following about the skein (HOMFLY-PT)
polynomialP [LMi], in analogy to theorem 1.2. We use the convention ofP with the variablesv,w, the unknot having
polynomialP = 1, and the skein relation

v−1P
( )

− vP
( )

= wP
( )

.

(This is the form used in [Mo], except that we changedz to w to avoid confusion with the variablez in (1). This way,
w correctly reflects the role it plays in (11).)
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Theorem 7.1 Let L be a 2-bridge link, and(v,w) ∈ C2, v,w 6= 0 be a root ofPL(v,w) with |v| 6= 1. Then

|w| < max
k>0

(
|v|2k +1

)
|v−v−1|

|1−v2k|
. (103)

(We leave it to the reader to see why we can write ‘max’ above, whereas in general we would have to write ‘sup’, and
that this maximum is finite.)

Proof. This is mainly an adaptation of the proof of theorem 1.2. We fixv ∈ C with v 6= 0 and|v| 6= 1, and study
PL(v,w) as a polynomial inw using a recursive norm estimate.

Assume againw violates (103). Fork = ±1 this condition simplifies to

|w| < |v| + 1
|v| . (104)

When (104) fails, we have for the polynomial of the two component unlinkU ,

∣
∣PU(v,z)

∣
∣ =

∣
∣
∣
∣

v−v−1

w

∣
∣
∣
∣
≤ 1.

This replaces the comparison between the unknot and two component unlink polynomial in the proof of theorem 1.2.

For the induction step, we have to modify (16). It depends nowslightly on the sign ofan. LetPn := P(L(2a1, . . . ,2an)).
Foran > 0 the analogue of (16) reads

Pn(v,w) = v ·w · 1−v2an

1−v2 Pn−1(v,w)+v2anPn−2(v,w) . (105)

Foran < 0, replace in the above formulaan by−an andv by−v−1.

We want to conclude from (105) inductively overn that

|Pn| ≥ |Pn−1| . (106)

Again, taking norms, using|Pn−1| ≥ |Pn−2|, and dividing by|Pn−1|, we see that (106) will follow from
∣
∣
∣
∣
v ·w · 1−v2an

1−v2

∣
∣
∣
∣
−
∣
∣v2an

∣
∣ ≥ 1. (107)

The condition (103) is then made so that its violation to ascertain this inequality. Thereink takes the role ofan in
(107). Since the fractional expression on the right of (103)is the same for±k, maximizing only overk > 0 is enough.
�

Remark 7.1 One can restrict the maximum in (103) further to thosek being a divisor of the leading coefficientµ =
max cf∇ of the Alexander-Conway polynomial∇(w) = P(1,w) (cf. below (11)). This is because in the presentation

(13), the coefficient expresses asµ= max cf∇ =±
n
∏
i=1

ai. In such a way, we can make sense of (103) also when|v|= 1,

except for the 2µ-th roots of unity. (Note that whenv=±1, we have the Alexander-Conway polynomial, for which we
saw before the recursion working in a slightly different way.) In particular, for a fibered 2-bridge link (max cf∇ =±1)
one needs to take onlyk = ±1, and obtains (104) instead of (103) (which is then valid except if v = ±1).

Used as a practical test, the various Alexander polynomial conditions we obtained would apply only to more com-
plicated examples. In contrast, our skein polynomial criterion for a 2-bridge link has some significance also among
relatively simple knots, as we show in the following.

Example 7.1 We tested the condition (103) for several values ofv on the alternating Rolfsen [Ro, appendix] knots. It
can identify as non-rational at least the following ones: 815, 935, 938, 939, 941, 1049, 1053, 1063, 1069, 1078, 1096, 1097,
10101, and 10120. The improvement explained in remark 7.1 rules further out from being rational 925, 1055, 1058, 1066,
and 1080.
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The complexity of (103), compared to (1), already suggests that statements about the skein polynomial become in-
creasingly technical. Neither turn they out very practically useful, with the Morton-Williams-Franks (MWF) inequality
at hand [Mo]. We thus omit the discussion for space reasons. Suffice it to say that experiments with knots in the tables
of [HT] have not turned up examples where the new evaluation estimates we obtained outperform the MWF 3-braid
test.

For similar (and even more compelling) reasons, I have not attempted either a (skein polynomial) refinement of the
Montesinos link calculation.

Moreover, our recursive skein aproach is diffcult to use foranother important special case ofP, the Jones polynomial
V. This expresses asV(z) = P(z,w), with w related toz as in (11). (Note, e.g., that under this relation, the restriction
(103) is always satisfied, and so theorem 7.1 is useless.) There is indeed a denseness result in [JZDT] about Jones
polynomial roots of alternating pretzel links. Thus caution is needed among what classes of links the question about
location of roots makes sense.

8 Log-concavity and zeros of the Alexander polynomial

In this (mainly expository) section we put Hoste’s conjecture in relation to other properties of the Alexander polyno-
mial.

Let here the Alexander polynomial∆(t)∈Z[t, t−1] of knots be regarded in the formal variablet (as opposed toz, which
we use to indicate a concrete complex number). Below∆(t) is normalized so that

∆(1/t) = ∆(t) and ∆(1) = 1. (108)

It is very well known what Alexander polynomials occur for anarbitrary knot: the conditions (108) precisely char-
acterize such polynomials. (We will call the first propertyreciprocity.) Regarding the (much harder) question about
those polynomials occurring for an alternating knot, several results and conjectures have been treated over a period of
time.

Let maxdeg∆ be themaximal degreeof ∆ (maximal power oft with non-zero coefficient). Because of reciprocity
the minimal degree of∆, defined analogously, is mindeg∆ = −maxdeg∆. Crowell and Murasugi [Cw, Mu] proved
that whenK is alternating, the polynomial∆K(t) is alternating, i.e. all coefficients of∆K(−t) are positive or all are
negative. We call such polynomials alsopositiveresp.negative. This is to mean in particular that all coefficients
between mindeg∆ and maxdeg∆ are non-zero. To avoid ambiguities, let us assume that all Alexander polynomials
we treat from now on have this property (which is not automatic).

The work of Crowell-Murasugi shows also that forK alternating, the maximal degree of∆ gives thegenus g(K) (and
canonical genusgc(K)) of K:

gc(K) = g(K) = maxdeg∆K . (109)

We are here in particular motivated by the log-concavity conjecture made in [St2]. Let[X]k for k∈ Z be the coefficient
of tk in a Laurent polynomialX ∈ Z[t±1]. Call a polynomialX to belog-concave, if [X]k are log-concave, i.e.

[X]2k ≥ [X]k+1[X]k−1 ≥ 0 (110)

for all k∈Z. (We assume the non-negativity of these expressions for technical reasons: we want to regard only positive
and alternating polynomials as log-concave.)

Conjecture 8.1 (log-concavity conjecture)If K is an alternating knot, then∆K(t) is log-concave.

The log-concavity conjecture is a natural strengthening ofa much older conjecture formulated by Fox, which is now
referred to also as ‘Trapezoidal’ conjecture.

Conjecture 8.2 (Fox’s Trapezoidal conjecture)If K is an alternating knot, then there is a number 0≤ n≤ g(K) such
that for∆[k] :=

∣
∣[∆K ]k

∣
∣ we have

∆[k] = ∆[k−1] for 0 < |k| ≤ n,
∆[k] < ∆[k−1] for n < |k| ≤ g(K) .

(111)



27

We call polynomials of this formtrapezoidal. Since log-concave polynomials are trapezoidal, the log-concavity
conjecture implies Fox’s conjecture.

The Trapezoidal conjecture has received some attention in the literature. It was verified for rational (2-bridge) knots
[Ha] (see also [Bu]) and later for a larger class of alternating algebraic knots [Mu2]. More recently, some linear
inequalities on the coefficients of∆ coming from Ozsváth-Szabó’s knot Floer homology [OS] have been seen to
imply the conjecture forg = 2, and also to settle (for generalg) in (111) the case|k| = g(K). Jong [Jn, Jn2] has
proved independently the Trapezoidal conjecture up to genus 2 using the generator description in [St9], and observed
that for genus 2 the log-concavity of∆ easily follows from trapezoidality. Then, in [St] the proofof log-concavity
was extended to genus at most 4 using similar techniques. (Weuse our generator classification and an appropriate
calculation to prove there also Hoste’s conjecture up to genus 4.)

One can find individual examples showing that trapezoidality (or log-concavity) of an Alexander polynomial does
not imply Hoste’s condition, however, there is a more meaningful generalization of this intuition. It turns out that
log-concavity poses (essentially) no constraints on the location of zeros of Alexander polynomials, in the following
sense:

Theorem 8.1 The zeros of log-concave alternating Alexander knot polynomials are dense inC.

This implies that Hoste’s conjecture is (almost) independent from Fox’s or the log-concavity conjecture. There are
minor relations, e.g., an alternating polynomial cannot have a real negative zero. There are also conditions arising
when restricting the degree of the polynomial. For example,when maxdeg∆ = 2, Murasugi has verified that every
alternating Alexander knot polynomial satisfies Hoste’s condition. (More precisely, every rootz hasℜe z∈ (0,3), or
|z| = 1, orz∈ R+ is real.)

Compare theorem 8.1 also to the result in [JZDT] regarding the Jones polynomial roots.

The proof of theorem 8.1 is elementary, and (with length concerns in mind) we decided to move it out, trying to focus
on the preceding more substatial details.

9 Problems

It would be interesting to what extent our skein method can beused with regard to Hoste’s conjecture, and link
polynomial properties more broadly. Some open problems seem somehow related.

• For Montesinos links, a more general problem, formulated in[St3], is whether there exists (and if so, to find) a
condition on the Alexander polynomial of an arbitrary Montesinos link. Our method leads to such a condition
in many cases in§3 and§5, but the non-alternating links excluded in theorems 3.2 and 5.1 still remain difficult
to treat. This is not surprising, since, as we cautioned, that there are (non-alternating) Montesinos links with
vanishing polynomial. Thus whatever zero location technique is used, it must naturally bypass such examples.

• Another related problem is to prove that there exist knots without matched diagrams [Ki, problem 1.60, p.42].
Our proof of theorem 1.2 reflects somehow the existence of such diagrams for rational knots (and links), but
they have very special properties which make a recursive calculation convenient. (The knots in example 3.1
have very similar matched diagrams.)

• Finally, Hoste’s conjecture remains open also for 3-braids. A computer test of alternating 3-braids of even length
up to 18 determined the maximum of the left hand-side of (1) tobe≈ 1.94, which suggests that (1) may still be
true. However, (36) is not always true in (and close to)z= −1. More generally, no refinement of the argument
is visible to overcome the barrier when approaching|w| = 2. See also remark 4.1.
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