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1 Introduction

The Alexander polynomidl remains one of the most fundamental invariants of knotsialkd In 3-space. Due to its
profound importance, many features of the polynomial haentstudied over the years in a variety of contexts. Roots
of the polynomial are related, among others, to the monowgmd dynamics of surface homeomorphisms [Ro, SW2],
divisibility [Mu3] and orderability [PR] of knot groups, arstatistical mechanical models of the Alexander polyndmia
[LW]. They are also studied in connection to Lehmer’s questin the existence of a Mahler measure minimizing
polynomial [GH, Hi, SW].

The topological understanding of the Alexander polynoinée led a long time ago to the insight what (Laurent) poly-
nomials occur for an arbitrary knot. Ironically, the questio characterize the Alexander polynomialatiérnating
knots turns out to be far more difficult, even although in gahalternating knots are much better understood. Hoste,
based on computer verification, made the following conjecabout 10 years ago, which was later popularized by
Murasugi (see, e.g., [LMu]).

Conjecture 1.1 (Hoste’s conjecture)f z e C is a root of the Alexander polynomial of an alternating knot, then
Uez> —1.

This conjecture is true for knots up to genus 4 [St]. It is telgo for special alternating knots (knots which are
simultaneously positive and alternating). For such knbteats of A lie on the complex unit circle (and1 is not

a zero of the Alexander polynomial of any knot; for a clarifion see [Ga, St2]). The same is true also for special
(non-split) alternating links, as explained in [St2, St8]his property will play a role in our work here, so it is worth
paying some attention to it.)

Sees8 below for a more detailed discussion on known and conjedtproperties of the Alexander polynomial of an
alternating knot.



2 1 Introduction

Recently, Lyubich and Murasugi [LMu] studied the roots of #hlexander polynomial of a 2-bridge (rational) knot
or link, motivated by Hoste’s conjecture. Although they ltboot settle the conjecture completely, they proved many
special cases, and several results going beyond the stdtefrithe conjecture. One of their results is:

Theorem 1.1 (Lyubich-Murasugi, [LMu, theorem 1]) Ldt be a 2-bridge (rational) knot or link arabe a root of the
Alexander polynomial\(L). Then—3 < Oe z< 6.

Ouir first result in this paper, proved a2, is the following.
Theorem 1.2 LetL be a 2-bridge (rational) knot or link arzbe a root of the Alexander polynomia(L). Then
22—z <2 (1)

The condition (1) will play a fundamental role throughou thapet. Let us thus say that a complex numbet 0 is
internal if it satifies (1), andexternalotherwise. LetD be thedomain of internal complex numbers

It can be verified (see below lemma 2.1) that if (1) holds, then

3
-Z<O 2
> < Uez (2)

and
7 < 3422~ 5.8284, (3)

which improves either estimates in theorem 1.1. Despitie(®)as insufficient for Hoste’s conjecture in its strict foy
we can confirm the conjecture in certain cases (propositibn 2Ve will see, too, that outsid®, one can address it
in a larger settingdf. theorem 1.4).

We subsequently found that theorem 1.2 was independertiynatal by Koseleff and Pecker [KP]. For other properties
of the Alexander polynomial of 2-bridge knots see [Bu, Ha].

A closer look revealed that the proof of theorem 1.2 can bgtedleat some cost to 3-braid alternating links. These
are considered if4, where we obtain the following result. Let us stipulate@émgral below that all constants given in
decimal expansion are rounded.

Theorem 1.3 Let L be a (non-split) 3-braid alternating knot or link anbde a root of the Alexander polynomia(L).
Then
|22 —z71/?| < 2.45317. (4)

Next, we will study Montesinos links. There is a dichotomyeen parallel (45) and reverse Montesinos links (26).
With regard to Hoste’s conjecture we will, in particularope:

Theorem 1.4 An externalzeroz of the Alexander polynomial of an alternating Montesinostdmase z> —1. In
particular, all zeros of the Alexander polynomial satisty. Moreover, for a parallel Montesinos krsatisfies (3).

There is also a more precise statement possible for revergs.kSee theorem 3.1 §8. It applies also to alternat-
ing Montesinos links (for various component orientationgje do not only restrict the external zeros stronger than
predicted by the conjecture, but address also a large fashihon-alternating Montesinos links along the way. In
opposition to the 2-bridge and 3-braid case, however, theadts we obtain are in general unbounded. (Murasugi has
established that zeros cannot be contained in a boundedmi@aa example 3.1.)

Parallel Montesinos links are studied §&, where we obtain the above stated bounds in theorem 5.1 pitiod is
much more elaborate than in the reverse case and requireg eoveplex (in either sense) calculation. This is moved
outinto a separate sectigf.

LOf coursez /2 is supposed to be the inverse of the same between the twoafmthosen to be'/2. Which one is chosen then is no longer
relevant, for the norm.



In §7 we address extensions of the zero location to the skeimpoijal.

In §8 we discuss the relation of Hoste’s conjecture to two otbejertures on the Alexander polynomial of an alter-
nating knot: the well-known Fox trapezoidality conjectarel its extension, the log-concavity conjecture.

We conclude with a few problems §9.

The practical examples and computations of polynomialsrants were assisted by MATHEMATICK [Wo] and
KnotScape [HT].

The following abbreviations will be used throughout: ‘résyll mean ‘respectively’, ‘w.l.0.g.” will stand for ‘wihout
loss of generality’, and ‘r.h.s.’ resp. ‘l.h.s.’ for ‘rigitand side’ resp. ‘left-hand side’.

2 Rational links

Before we turn to knot theory, it will be important to gain aslzadescription of the domai® that occurs in theorem
1.2. We will need the below lemma and a part of the calculdtoit with a more serious reason latergé. (We thus
conform in the proof to the designations we will use thereeggx thatz will be changed ta.)

Lemma 2.1 The domain® is bounded by the graphs of the four functions

+fi(x) = i\/—x2+2x+7i4\/2x+3. (5)
These expressions will be needed below, and thus we wilgdast them using two
functionsf, andf_, where the subscript refers to thmer‘+’ in (5), i.e., the one in 4
front of 4/2x+ 3.

We notice thatf.. is defined on{—g,si 2\/5} (for the same amongt’ as the sub-
script of f). A few special values are

3\ V7 f (-1) = 0,
fi<_§>:7, (1 _vs and f(@3z2vd) =0 (®) | -

(The two &’ in the last formula are to be chosen equal.) A MATHEMATI&Aplot “
on the right shows the functions.

The below calculation is a simple instance of type of argusherhich will be needed later. They are not really
sophisticated, but create an enormous scope for errorglfWizve painfully plagued the author during this work).
Thus it is compelling to include enough details.

Proof. The condition on the boundary d? is

22712 =2, (7)
It can be written as
112
z—2+=| =16.
z
For
z=b+l1v/—1 (8)

this becomes

b \? I\?
(b‘2+bz—+|z> +<I_bz—+lz> =16

Clearing the denominator, usinlg= |z| with

d=vb2+12,
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and setting
D= d* =2’

we have
((b—2)D+b)?+ (D—b?)(D—-1)? = 16D?.
This rearranges to a cubic equatiorCinbut the constant term vanishes, and so, dividin®by 0, we have
D?+D(—4b—14)+ (2b—1)> = 0. (9)

Solving forD and usind = ++/D — b2 gives the result (witkx = b). O

The proof of theorem 1.2, as well as all following knot-thetar proofs, relies on a recursive calculation based on the
skein relation for the Alexander polynomial,

2(3X) ~a(X) = (#=2) 8() (). 10

We call the diagram fragments aboveasitive a negative and asmoothed outrossing. The dichotomy between
positive and negative crossings will be calls#lein) sigrof the crossing.

In fact, it is more natural, in our case, to set

w=2?2_712 (11)
and regard\ as a (genuine) polynomial iw, which is theConway polynomiall. Thus in fact theorem 1.2 is more
naturally written in terms ofl. The variablew will keep its meaning (11) in the following. (The sign ambhigu
resulting from the choice of complex root will not create fgiems.)
A rational (2-bridge) knot or link is represented in Schusebrm [Sh] asL = S(q, p), wherep andq are coprime

integers with O< p < g. A diagram ofS(q, p) can be obtained from any continued fraction expansion ofatienal

numberp/q:

= (by,...,by) = -t (12)

1
by + ————
bo+...1

bn
(The numberg; are non-zero integers.) In this diagram ehchorresponds to a group ;| crossings, called in the
following atwist S(q, p) a knot for oddq and a 2-component link for even

The below diagrams show how to join twists into a rationalgtarand how to close it up. (Note that the twists
are composed in a non-alternating way when the sigh; @hanges.) The displayed sequence of the type (12) is

4 .
(1,2,4,-4) = 3— and thus the knot depicted$49,34).

R

rational tangle rational link
It will be important, throughout the paper, to distinguigiwhtwists (of more than one crossing) look like when strands

are oriented. We call a twiséverseif smoothing out a crossing renders the other crossingstongaOtherwise it is
parallel.

SO K A

parallel twist reverse twists



There are several standard ways to choose an expansion Qt).is to take alb; to be positive. This gives an
alternating diagram df (thereby explaining that rational links are alternatirvgd;will use this form irg5. Here we use
theevencontinued fraction, determined by demanding that 2a; be even (and non-zero). Such a representation gives
rise to a (in general non-alternating) diagram of the 24witink L = S(q, p). (Note that an even expansion requires
one ofp andqto be even; this can be achieved, though, since forgpdtkre is an identificatios(q, p) = S(q,9— p).)

For a 2-bridge link = §(q, p), in the diagram coming from the even continued fraction esgmn

g — (2ay,...,280), (13)
eacha; corresponds to a group of&| crossings in a reverse twist.

Proof of theorem 1.2. In this proof, as well as i3, we will deal only with reverse twists, before handling the
parallel ones irg4 andgb.

We fix nowz e C for which (1) doesot hold:
|72 -71% > 2 (14)
Since the quantitity will be continuously needed, let far Htope of this section,
y=|w =|2/2-zY2.

Let us meet the convention that whes- 0 we have the unknot, and far= —1 the two component unlink. This lets
(16) below hold also in these exceptional cases. Let ferS(q, p) with (13),

[2a1,...,2a) = |A(L)(2)].

The proof of theorem 1.2 is essentially accomplished by dlewing lemma.

Lemma 2.2
[2a3,...,2a5] > [2a1,...,28n_1]. (15)

Proof. Use induction om. Forn = 0 the claim is trivial: the r.h.s. vanishes and the l.h.s.is 1
For the induction step we use the skein relation for the Adebest polynomial (10), which implies

A(L(2a1,...,28n))(2) = £an-w-A(L(2ay,...,2an-1))(2) + A(L(2ay,...,280-2))(2). (16)

The sign before,, depends on the skein sign (as explained below (10)) of thesirgs in the twist corresponding to
2a,. This sign changes betwean 1 anda,, precisely if the signs of,_; anda, are equal. We may thus set the'*

in (16) to be(—1)""1, when we fix thaia; > 0 and the twist corresponding & is (skein) positive. Let us take this
convention here to omit thet”. (The other choice results in mirroring the entire diagravhich has no effect on the
zeros ofAA.)

Taking norms, we have

[2a1,...,2a0] > |an|-Y-[2a1,...,280_1] — [284,...,28n_2].
Now using (14) and the induction assumpti@ay, ..., 2a,_1] > [2ay,...,2an_2|, We are done. O
This concludes the proof of theorem 1.2. O

Remark 2.1 It is clear from the proof that in fact far with (14) we have/A(L)(z)| > 1. This observation applies
also to several of the situations below. On the other hara(2m)-torus knots show that the bound 2 in (1) can be
arbitrarily approximated, and cannot be improved.

Wheny < 2, the recursive estimate gets gradually ruined, howetveari be salvaged in certain cases. We show the
below proposition as an improvement of [LMu, theorem 3]. i&mconsiderations will be possible later also for (at
least reverse) Montesinos links. These, however, so faitttbhdbout the remaining situations, and since they do not
lead to a complete statement, we will for space reasons ryetawell upon them.



6 3 Montesinos links I: reverse links

Proposition 2.1 If in (13) no three consecutiva = +1, then Hoste’s conjecture holds. If apis +1, then\zl/2 —
z'Y2| < 1, and in particular

3++5

3
— <[ . 17
g <fez and |7 < 5 (7)

Proof. If no g is +1, theny > 1 is enough to make the recursive estimate work to excludesz&he conditiory < 1
implies (17) by a calculation similar to the one for lemma.2.1

If & = +1 occur, one can see that exaatiguch consecutive ones (followed, if any, byarwith |a;| > 2), would
make the estimate work if
yl -yl —y-1 - 1

yrioyn2o Ty 17 2y—1’

and if the numerator on the left is positive. This can be séarl(< y < 2) to be equivalent to

2
n<l+log ———. 18
R APE YRy 49
For e z< —1 the minimal value of can be found to be

(attained az = 1+ +/—2). One can also check, using the derivative, that the df.618) is increasing iry for
1 <y< 2. Setting (19), this r.h.s. evaluates~02.8, so thain < 2 (i.e., no 3 consecutiva; = +1) is enough for
Hoste’s conjecture. (Thewith y < 1 create no problem, as we see from the non-strict versidmedinst inequality in
a7).) O

3 Montesinos links I: reverse links

There was some hope to extend the proof of theorem 1.2. Irréhlsn our aim is to prove Hoste’s conjecture for
every alternating Montesinos knot. (We will see its assarfulfilled also for many non-alternating ones.) We also
cover alternating (and many non-alternating) Montesimdss| The treatment (including all component orientations
for links) is completed only ig5 (see remark 3.3).

A Montesinos link has the presentation
L=M(e p1/0s,---,Pn/Ch) (20)

with integerse and p;, g satisfying(pi,qi) = 1 and|qi| > 1. The notation (20) is well-known, but conventions differ
throughout the literature. The convention we use here ia §Stb, St7]. We will repeat only the relevant properties;
seeop.cit. for further explanation (and for the difference to the foreed at some other places).

o5

~_ " \//\
Figure 1: The Montesinos knot with notation M(4,3/11,—1/4,2/5).




The integekris calledinteger part andp; /q; are thefractional parts The numben is calledlengthof the Montesinos
link. Forn < 2, the Montesinos link becomes a rational link. Whenpal= +1, we stipulate that we sigg so that
pi = 1, and write

L=M(1/qy,...,1/0n) = P(qs,.-.,0n)- (21)
In this case the Montesinos lirkis called apretzel link

The knot in figure 1 should clarify matters. The twist of 4 @iogs on the right gives the integer part. The three
factional parts are read off from the other twists by
3 1 2

(37172)_ ﬁv (_4)__2_7 and (232)_ B
Let us here for clarity introduce two degenerate instané€2@), which we will occasionally use below. ¢ = 0,
thenpi/gi = +-o0, and this means that the Montesinos link becomes the cagmheatn of rational link$(q;, pj) for
j #i. If pj =0, then the rational tanglg /g can be omitted in (20). These two cases will be used also iprigtzel
notation (21) by setting; = 0 resp.g; = o (with the understanding/Lt « = 0).

Theorem 3.1 Consider the Montesinos link (20), whelg| < gi, and withp;g; ande even and non-zero. Létbe
oriented so that it conforms to the pattern

01 07] On

L o P B _’j . (22)
C )

Let zbe a root of the Alexander polynomial of such a link amte as in (11).

1. Then )
W <2 or |OmWw)| < % (23)
2. If Lis alternating, then
Wl <2 or Oe(Ww?)>-2. (24)

The form (20) determines amorientedMontesinos link, and is unique up to reversal and cyclic pgations of the
vector(p1/di, ..., Pn/0An), and up to the identification

M(e,...,pi/Gi,-..) =M(ex1,....(pi F &)/, --)- (25)

This shows the existence of one of the standard preserdg@®), wherep;| < qi, ande # 0 only if all p; have the
same sign ase.

Remark 3.1 It was shown in [LT] thaL is alternating if and only if in this standard presentatibrpahave the same
sign (but not necessarily+# 0). We call this below thalternating formof L. This criterion also means that in any
presentation (20) with & |p;i| < g, the linkL is alternating if and only ife| is not smaller than the number pf of
opposite sign te.

The property (25) shows that choosiig| < g andpiq; even is no restriction. The restriction in theorem 3.1 comes
from the non-vanishing of and the orientation condition (22). The other (paralleigotation will be treated 5.
However, the assumptian 0 is essential here. Fer= 0 there are (non-alternating pretzel) links with= 0.

Remark 3.2 It will be relevant to notice that adjusting the parity pig; when|pi| < g is connected with adding
sgn(pi) to e and switching the sign gf;.



8 3 Montesinos links I: reverse links

Keep in mind that the Alexander polynomial is extremely #dresto the reversal of orientation of individual (but not
all) components of links. We thus next spend some words @mtaiion.

Remark 3.3 With eandp;q; even, there is a choice of component orientation which aomédo (22). For a knot, this

is the only choice. For a link, there may be further choicesmvimdividual components are reversed. Then one can
still achieve (22), but this requires to abandon the eveagg;gi. However, in this section we stick to the evenness
condition. In§5 we will see how to handle parallel twists, which will enabketo work (with alternating links) also
whenp;q; is odd. Lemma 5.1 can be used to deal with the remaining cdseeatation for (alternating) links.

Whenp;q; are even, the orientation condition (22) can be satisfiedqpientation for links) if the twists correspond-

ing toeare reverse:
L P P2 Pn —J
[— 81 Q2 On —}

(and strands drawn unoriented may have either orientation)

(26)

Definition 3.1 We call a Montesinos link as in (26)raverse Montesinos link

To see how the orientation condition (26) leads to (22), éisugh to see, by remark 3.3, that one can always choose
e even. To do so, note first that the connectivity of the tanglég; is determined by the parities @ andq;, and

we assume; or g; is even. Assume is odd. When allp; are even, (26) cannot be satisfied. Thus necessarily some
gi is even. Then one can apply (25) changing the parity without changing the oddness pf. (Note also that the
condition (26) is automatically fulfilled if some is even.)

Note also that when the orientation (22) is given andoall are even, then all twists in the diagram are reverse. Our
aim is here to see how to adapt the proof of theorem 1.2 by firsfirting ourselves to reverse twists. As indicated in
that proof, the postponement of parallel twists is the ma@son for the division of the treatment of Montesinos links
into two sections.

Remark 3.4 Note that the second part of condition (24) is equivalenfl®z > 0, so (24) again implies Hoste’s
conjecture. However, the second part of (23) gives a funtbstriction also for alternating links. This condition
visually means foz that whenz] is large,zis close to the (for alternating links positive) real axiSu¢h zeros indeed
occur; see the below example.)

Example 3.1 The condition (1) is too strong to assert in theorem 3.1 ewerah alternating link. A computer
verification in the tables of [HT] exhibited the Montesinosok 15711 = M(2,1/2,2/5,2/5,2/3) and its mutant
1510057= M(2,1/2,2/5,2/3,2/5), where the Alexander polynomial has a zewith /2 — 7 1/2 ~ +2.09826. Later
Murasugi showed me the knokd(2,2/5,...,2/5,5/12), for which he proved that they have arbitrarily large real
positiveA zeros.

Proof of theorem 3.1. The existence of the even continued fraction expansionf¢t3) /q; is ensured whefpi| < g;
andp;q; is even. These links have, with the orientation we chosegralike plumbing Seifert surface. (For rational
links the star was just a line.) We use, in analogy to the matiink case, induction over the length of the arms of the
star. The problem is to start the induction properly. Foritftiction step the same argument (and the condition (1))
is sufficient.

The induction start consists in havipg= +1 andg; even, allowingg; = 0 (with +1/0 = +), and showing that

M(e,..., pi-1/0i-1, Pi+1/Gi+1,- )] = [M(&;..., Pi1/Gi-1, £, Piya/Gis1,- )] 27)



This inequality needs some explanation. Here and belowdiovenience we switch signs so thgt= 1 butg; may be
negative. (The I.h.s. corresponds for rational links tortile of the unknot, and the r.h.s. to this of the 2-component
unlink.)

In the formula (27) agairlL] stands for/A(L)(z)| for an a priori fixed z € C violating (23) resp. (24). The link
M(e,...,£o,...) means that the twists of/f; are removed in such a way that the Montesinos link becomes the
connected sum of rever$g, q;)-torus links forj # i (and splits if at least twg; become zero).

The formula (27) can be established by direct calculatidme Gase that sonmgy = 0 for j # i is trivial (the r.h.s. is
zero). Otherwise, scaling by a powenef= z/2 — z /2 and 1/2"-2, we are left to prove

e 1
—Z-ql-...-qn-\A/2+0n,2,n,1(q1,...,qn) > —ql-...-qn-w‘. (28)

2|3
Here we stipulate thag; is left out everywhere andy) is the elementary symmetric polynomial of degtem |
variables. (Note that the twists countedéilyave opposite skein sign to those countedjby

We deal with (28) in two different ways, according to the tvesertions of the theorem.

1. The inequality (28) now follows by looking only at the imiagry part of the I.h.s. and using the (logical)
negation of (23). With this inequality, we obtain the contaent of zeros using the recursive norm estimate

L > [L]. (29)

Here again a link stands foA(L)(z), andw is as in (11). The Montesinos linkdiffers fromL’ either by the
creation of a new fractional pattl/q;, or by replacing a fractional part with even fraction expans. .., a_1)
by (...,a_1,a), where & is even and non-zero and) the sigrepfs chosen in (29).

What (29) accomplishes now is to contain the zeros in theretslomain under successively removing the
last entry in the integer sequence (geometrically, deplngibands). We can iterate this until we arrive at the
reverseg2, e)-torus link.

2. If Lis alternating, then by remark 3.1 (up to mirroring)

e>s:=#{i:q<0}.
First assume > s. The inequality (28) can be restated

v

e 1
‘—ZWZ-I—Z— > = (30)

7

Lets :=#{j#1i:qj <0}. Thus we have > s. Now assume, in opposition to (24), tHae (w?) < —2. We
rewrite the above inequality (30) as

S 1 e—s§ 1 e |w]
= = — = (- === W=l >
[( 4De(wz)+j; qj) + (2 (-Dew)) + < ,-; qjﬂ Z0mw?)-v=1 | = L. (31)
q; <0 q; >0
The parenthesized summands in the real part are all pogsifveee > 5 and|qj| > 2). Looking only at the
second term, and usirgy> § > 0, we see thus that the l.h.s. is at least

1 1 _wEw
‘—ZDe(vvz)— ZDm(WZ)-\/—_l‘ =5

becausew| > 2, and this establishes (30).

Now let us analyze what the consequence (29) means. Wheb, it means that we can keep the containment
of zeros when we create new or extend existing fractionaspahis again we reduce the problem to the reverse
(2,e)-torus link.
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There remains the cage=s. If in the alternating form alp;q; are even, thee= s= 0 (see remark 3.2), which
is out of the scope of theorem 3.1. (It follows from theore. BIf somep;q; are odd, then we need a little
more explanation, and postpone the treatment of this gtutd lemma 5.1.

The case < 0 is analogous (and equivalent under mirroring). O

Remark 3.5 When in the assumption of theorem 3.1, the linis alternating an@, p; > 0, then the first sumin (31)
disappears, and we see that (31) can fail onlyéf(w?) > 0, which may then replace the second alternative in (24):

W <2 or Oe(w?) >D0. (32)

It should be kept in mind that even if we write the conditionoat the end, the reasoning is reverse: we assume
this condition violated foz from the beginning and see that this assumption is suffit@ptopagate the estimates
inductively.

It remains to treat the links wite = 0. Note that where = 0, the link (20) is alternating iff alp;g; have the same
sign (see remark 3.1 and [LT]). Thus in the context of theoBeforL to be alternating, alp; > 0. This situation is
dealt with in theorem 3.2 below. Unlike theorem 3.1, theraki¢ion condition is essential to have the method working.
Keep in mind that the orientation (22) will be completed owith the casee= 0 of lemma 5.1.

Theorem 3.2 Consider the Montesinos linkin (20), where O< p; < g;, with pjg; even, ance= 0. LetL be oriented
so that it conforms to the pattern (22). Then any ot the Alexander polynomidl(L) satisfies (1).

Proof. Again we only remark how to start the induction. We have tosprinstead of (27),

(for gi even and possibly 0, with the treatment gDE= +o as explained below (27)).
The Alexander polynomials of these pretzel links are jushamials inw, and both inequalities are easily established.

With inequality (33), we obtain the containment of zerosigghe premise (29). Now the Montesinos linkdiffers
from L’ by replacing a fractional part with even fraction expangion,a_1) by (...,a_1,a), where the sign o is
chosenin (29).

In opposition to the previous proof, we have not justifiedwB3) in (29) the creation of a new fractional part when
modifyingL’ to L. This is, however, not necessary. By induction, we can redoe zero location to the pretzel links
P(qi,.-.,qn). These links are special alternating, and so all theieros lie on the unit circle. O

4 Closed 3-braid links

Proof of theorem 1.3. If L is a non-split 3-braid alternating link, then by [St4], ita&her the closure of alternating
3-braid, or among a tiny family of pretzel links. Latter Imkre special alternating. For them ($&eand [St2]) all
roots of A(L) have unit norm, and hence satisfy (1).

We assume now thatis closureﬁ of an alternating 3-braid
B = (p17q17 ey pna Qn) = O—:rLJlo—z_ql B O.:FLJnO-EQn 9 (34)
wheren, pi,q; are positive integers angl are Artin’s standard generators. Let caff ando, ™ syllables andn the

lengthof the alternating brai@. We will keepn with this meaning throughout the proof.

Let againz satisfy (14). We will later see that this assumption mustrbproved, which will lead to the auxiliary
constant on the right of (4).

To do the induction step, let us call an alternating bifdlich reductionof an alternating braid, if p’ is obtained
by reducing onegp; or g; by 1 in (34), and possibly changirg. ., pi,0, pi+1,--.) — (..., pi + Pi+1,-..) (resp. forg;).
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Oppositely, calp’ anextensiorof B if B’ is obtained by augmenting ore or g; by 1 in (34). (This is slightly more
restrictive than the inverse of a reduction, sinds not changed.)

We are led again to prove an analogue of (15). Here we need iio more carefully, and some modifications are
necessary. Let us reintroduce the numisérom (11), and write

y=|w|—1.

The analogue of (15) we will prove is
Bl >y-[B] (35)
for [B] = |A([§)(z)|, wherep’ is a reduction of8 and again hat denotes the usual braid closure.

The proof of (35) goes again by induction on the number ofsings (or word length¥ ! ; pi + g in (34). For this
we use again (14) and the skein relation (10) at a crossirgisyllable reduced if to obtainp’. This relation now
reads as (16), with, = +1, and the sign chosen as before.

Let us also assume that> 2, since the case= 1 is easy.

If the reduction off3 does not changa, then induction goes as before. (We previously forgot theaefactory
occurring, since we just needgd> 1.) If the reduction o3 changes, i.e., p; =1 org; = 1, then we need an extra
argument which will lead to the auxiliary constant on thentigf (4).

Let us focus on the casg= 1; the casey = 1 is analogous. Again by applying the skein relation (10hatdrossing
of g = 1, we see that it is enough to prove

1 0
-

m

v

(36)

N
VA L

Here andp’ are depicted only in the differing spot, and a box with laibéhside means?" for m > 0. (Note that for
n= 1 the inequality is false, which forces the assumption2.)

We use crossing number induction on the combination of (88)(&86).
Now we use the Fibonacci polynomiddgfor n > 0, defined by

Fo(2) =0, Fi(z) =1, and F(2) = zR—1(2) + Fn_2(2)

for n> 2. Itis directly verified by induction that for a complex nuerlw with |w| > 1,

<ty G0
It is an easy consequence of the skein relation (10Aftbrat form > 0,
1 k
A m (2) = Fn(w)-A \ (2) + Fn-1(w) - A (2). (38)

Now we expand both hand sides of (36) using (38) at the boxtsiwiln the below inequality a braifl stands for
A(B)(2), and only the differing parts of the braids are depicted.
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The reason we have done this is that now the second braid aigthesimplifies to an alternating brafti, which is
an iterated reduction of the first brgdon the left. Similarly is (without simplification) the seabbraid on the left.

The first braid on the right simplifies by two crossings (astgabut remains non-alternating after that. For it we use
(36) as induction assumption. This is justified excepti 2 andgi = gz = 1 (since then the assumptiorn> 2 no
longer holds after the simplification), which we will treattiea later.

We thus use induction assumption to estimate the contobsitdf the 3 last braids in (39) against the first. For the
valuesA(z) we count by how may crossings the right braids simplify anglyamductively and iteratedly (35). Then
we compare the coefficienis using (37). We see that then (39) will follow from

.11
y2 Ty oy

This is satisfied if Iy = 1/(Jw| — 1) is not larger than the smallest (real) positive zeod — 1+ 2t?+t4, which would
lead to a worse bound fgrthan we stated.

1 (40)

There are some ways to improve (40) by observing where weargdanerous in passing from (39). One such place is
(37). By iteratedly substituting this estimate into theursion forF,, we see that the the r.h.s. can be changed to the
continued fractions (defined in (13))

2 2
(I, W, ..., |w], 1) Hx;:@—,/(@> 1= #-,/(#) ~1. (41)

Then (40) modifies to
1 x

1-X> =4 X
TV
This is again regarded, via (41), as an inequality for yedt is easy to see thatdecreases whenincreases. Thus

y
the difference of the two hand sides has again a unique y®giiro. It is found to bg ~ 1.45317, which reflects in
the bound given in (4).

(42)

In the extra casa = 2,q; = g2 = 1, the first braid in (36) gives a Hopf link, the last one spl#tad has zero Alexander
polynomial), and the other two give unknots. The polynonoial Hopf link isA = +w, and so we see that the
inequality (36) holds from (14). O

This proof of theorem 1.3 can be further extended to a pes&braid.

Theorem 4.1 Let L be a (non-split) positive braid knot or link of braid index Bdez be a root of the Alexander
polynomialA(L). Then
|2/2—z7Y/?| < 3.274601 (43)

Proof. By [St5], again a positive braid link of braid index 3 is th@slire of a positive 3-braid. In this cased’
become ¢’ in (34).

The sole difficulty is to properly adapt (39). Here we consitie two syllableso?! andcx'2 following thecgl:
[...ofdb...] > [...0, c0h. . ]. (44)

Again we use (38) to expand this inequality into this time@gform,| =0, 1.

In passing to the analogue of (40), the 4 braids on the lafttside remain positive. The analogue of first braid on
the right of (39) simplifies just by 2 crossings, which leagld ty. In two terms on the right therg1 does not cancel.
Then we delete therg1 in them using (44) applied as induction assumption (ovecthssing number). This leads to
the inequality

2Xx X 1 x x X

1————2 > —+—+—2+_27

y 'y y vy yy
and to (43). (Again, the case= 1 in (44) must be excluded, and handbtihocin (35). The extra care far = 2 is
no longer needed.) O
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Remark 4.1 Itis not clear what improvements are possible. Howevegstiwa was quoted in [LMu] considering the
example 18s,. From his observation it is clear that (1) (and Hoste’s coiie=) is not true for positive 3-braid links.
Also, there exist (non-split) 3-braid links whose Alexandelynomial vanishes (see [St5]). This hints to why such
recursive skein calculations are difficult to work for geale&d-braids.

5 Montesinos links Il: the parallel case

Definition 5.1 A Montesinos link as in (45) will be calledgarallel Montesinos link

Theorem 5.1 Consider the Montesinos lirkin (20), where G< p; < gi (with p;qg; possibly odd), ané > 0. LetL be
oriented (and admit an orientation) so that it conforms toghttern (45).

p1 P2 Pn

_ B
L S SSpSSy

(45)

Then any external roatof the Alexander polynomial(L) satisfies (3). Moreovef]e z> —1.

Proof. In this case we work with the positive but not necessarilynezantinued fraction expansion pf/q;

Pi/gi = (a,...,an).
(Hereaj = & ; > 0 anda, > 1.) The induction step must be refined as follows.
If the twists corresponding ta, are parallel, we use the skein relation as for (36) to reduised

(a1 + D] =[(--an-1,1)] > [(--,80-1,0)] = [(-.)], (46)

which works by induction. Here it is understood that we mypdifly one factional part of the Montesinos lihk
and the end of the continued fraction expansion of this daeti part is shown only. (The ellipsis stands for the same
sequence of positive integers.) Agdiih stands fofA(L)(2)|.

If the twists corresponding ta, are reverse ana, = 2p is even, we use (16) (replaciag by p = an/2).
If the twists corresponding tay, are reverse anah, = 2p— 1 is odd (withp > 1 sincea, > 2), we use (16) in the form

(..r,8n-1,80) =p-W-(...,a8n-1) + (-..,an-1,—1) = p-w-(...,an-1) + (...,an-1— 1), (47)

where the links are denoted as in (46), and agatands foA(L)(2). If an—1 = 1, both sequences on the right of (47)
simplify by one entry, but the induction assumption stilpaes.

For all three types of induction step argument, the assumfti4) suffices.

The main difficulty lies again in the induction start. It wile helpful to remember that the Alexander polynomial of
the pretzel linkP(qa, ...,dn) from (21) is invariant under permutation of tke This can be seen from the explicit
formula (51) below, and is more generally owed to the mutaitivariance ofA. With this observation our task lies in
showing

[P(Au,....0n)] = [P(d2,---,n)], (48)

whereq; are odd and positive. Once we have (48), the proof is complktefor theorem 3.2, by reducing the zero
location to the special alternating pretzel lifk&, ..., 0n)-

We move the proof that the negation of (3) is sufficient for) (#8a separate lemma 6.1, which we work on in the next
section. Indeed, some skillful estimation is needed, amatondition (3) is cruder than (1), but it is the optimal bound
for |z that fits with (1).
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The second stated estimate was obtained with particulaisfon Hoste's conjecture and is given in lemma 6.3. Its
proof is considerably longer, and clearly displays the ditties in seeking further improvement using this method
(and moderately manageable calculations). O

We conclude with the remaining case of (reverse) oriemati?) for alternating knots, completing the proof of
theorem 3.1 (see the remarks following the theorem, ina&r remark 3.2).

Lemma 5.1 Consider the Montesinos linkin (20), wheree > 0 and 0< p; < g;, with a non-zero numben of p;q;
odd. LetL be oriented so that it conforms to the pattern (26). Then anyz of the Alexander polynomiaA(L)
satisfies (32).

For theorem 3.1 we need only the special aase0, but the other cases are necessary to justify the statexhent
arbitrarily oriented (alternating Montesinos) links madeemark 3.3. Note also that (23) still holds for the links in
the lemma, by (the already established part of) theorem 3.1.

Proof. Observe that the pattern (26) can be achieved up to comporientation if and only ifl := e+ mis even.
Thus the parity of is implied by (26).
The argument goes as for theorem 5.1. We reduce, again bgtinely using (14), the problem to the pretzel links
P(lvlv'"717q17"'7qn*m)3 (49)
N——
| copies

with g; > 0 even. In the analogue of (27) we have to prove, either sprive(49) is replaced byt on the left and
by 0 on the right, or an entry 1 in (49) is retained on the left eaplaced by 0 on the right. (With this we can reduce

the zero location to the reverg§2 | )-torus link.) Both situations were previously studied i8Y2vhene=1 > 0 and
all g, > 0. We finished this case off with the conclusion (32). d

6 The pretzel link estimates

Lemma 6.1 Fort = zoutside the bound (3) argl > 0 odd, we have
|AP(GL. -, Gn-2)) (1) | < [A(P(dg,--.,an)) (D) |- (50)

The change of variable from (3) was done with regard to thefpebthe lemma. The proof depends heavily on the
following explicit formula for the Alexander polynomial afpretzel link.

Lemma 6.2 Letu; = q'T_l Then

N S
VTRt +1)

Proof. Let us stipulate that a link stands foA(L)(t). Use iteratedly the identity

A(P(qy,-..,Gn))(t) =

ﬁ(ui(t—lﬂ—t)—ﬁ(ui(t—l)—l)] . (51)

P(QL cee 7Qn) = Ui (tl/z _t_l/z) P(q17 oo 7qi—17qi+17 oo aQn) + P(q17 oo 7qi—17 17 Qi+17 oo aQn) )

to get
P(1,..,0n) = 5 2=t Y3)S (u ) P(L,1,....1),
=3 ([u)P, .
n— |9 copies
where the sum runs over subs8tsf {1,...,n}. Now the pretzel link occurring in the sum is just tf#k) torus link
for k=n—1|9, whose polynomial is
tk _ (_1)k
VIt

The rest follows by grouping terms properly. O
The below term and its notation will be used extensively mftiilowing, so we highlight its definition.
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Definition 6.1 Let for v e C\ {0} the argumentargv € R/21t be the number satisfying= e9v~1.|v|. Unless
otherwise noted, the convention we use is thavardo, 2m).

Proof of lemma 6.1. With lemma 6.2, we have to prove

Dou(t—1)+t — —1)+t
Up(t—1)—1 —_ —-1].
This is equivalent to stating that with > 0,
S=up+1>1, (52)
and
Ui
- 53
=T (53)
the numbers
n— 1 1 n—-1 t—a
Z=Nnp-1= I_!u| —1)— ”at_
satisfy
Vitlz—1] < |zt —an) — (at - 1) -s. (54)

Our attitude throughout this section will be that we transf@54) into a series of inequalities, each following one of
which is at least as strong as the previous one. At some p@ntilisee that under our assumtions some inequality
holds, and hence so does (54).

To examine the condition (54) here, we first observe thaftfor 1 and 0< g < 1 from (53), we have
t—al > Jait— 1] (55)

Thus
17l = [Nn-1| > 1.

For (54), itis enough to have

VItiz=1] < (|2t —a —|at—1]) s

i< el
- |7+ 1

and

The minimal value of the r.h.s. ovig > 1 is attained folz| = 1, and thus it is sufficient to have

t—a|—Jat—1
\/HSLZM"S- (56)

We will next estimate the numerator. Consider figure 2. WemassthaB =t —a andA = at — 1 for a natural number
s> 1 (with the meaning in (52)) and

a=—. (57)
The Cosine law iMOAX gives

—2  [2s—1\? » (t+11\? 25— 1
A2 — t—124 (=) -2 —o) -1t +1
and inAOBX
_ 2s—1\? t+1]
OF = t—124 (=) —2co t—1jt+1].
(23)' |+(ZS> S{)(>2| It+1]
Thus o5 1
OB’ — OA = =~ (cogm—a) — coga)) |t — [t +1]. (58)

2s?
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>
Figure 2: Various notations used in the proof of lemmas 6.1 and 6.3.
Now consider the above picture fe= 1. The Cosine law ilMODT gives
t+1\? /[t—1]\? t—1||t+1]
t)2= | -2 -
= (57) + (57) ~zeosm I
and inAODM,
N =12 t—1/jt+1
1= ( > + 5 2cosm—a) ] .
Thus ) )
t—1 t+1
-2 —|t|2+uﬂL t+1] = —coga)-|t— 1|t +1]
4 4
and ) )
t—1 t+1
2(—14—%4—%) = cogm—a)-|t—1||t+1].
Adding the last two identities and substituting into (58)es
— 2s—1
OB’ -OR = == (It 1), (59)
which is rewritten as e 1
s_
t—al>—|at—1]? = = (t2—1). (60)
Now
2s—1
[t—al+|at— 1] < (a+1)(|t|+1) = (t|+1),

S
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and so from (60),

el —Jat—1/> (it~ 1. (61)
Combining this with (56) gives the sufficient stronger cdiuat
B3> VA,
2 2
which is true forjt| > 3+2v/2. O

Remark 6.1 The formula in lemma 6.2 is valid also fgr < 0. One can draw from this also some conclusions on the
A zeros of certain non-alternating pretzel links. Note tloatan alternating pretzel link, the formula combined with
(the strict inequality part of) (55) readily proves thatwith |t| > 1 (and then also folt| < 1) cannot be a zero, which
we knew from the links being special alternating.

This, relatively smooth, estimate is too generous to worlsfoall|t|. Under the conditioile t < —1 we have made
more (laborious) attempts to approach Hoste’s conjectll@iing this strategy. Here is what we could prove:

Lemma 6.3 For an external with Je t < —1, andg; > 0 odd, we have (50).

This lemma requires the most substantial work of the pagw®s.property that is external enters again in an essential
manner: the serious difficulty we face aroung —1 cannot be overcome also in (50). (Compare to the 3-braid
calculation, and the comment on it§8.) An important insight that can be gained from the belowopis that (50)
fails for certain values of (with Je t < —1) close to—1. For such a rather different approach might be needed — and
it is further motivated by the the length of the following callation.

We need some preparations. We first have to return to lemma2cbrding to the notation in its proof, but changing
ztot, we will write

b=0et, |=0mt, and d=[t| = VI2+b2. (62)
Lemma 6.4 Lett € C with Jet< —1. Thent is external if and only ib andd in (62) satisfy

b <

2
1+2d —2d (63)

for |I| < /8 (i.e.,d < 3), andb < —1 otherwise.

Proof. First we ascertain that o[‘hg, —1} the functionf,. of (5) is increasing, whild_ is decreasing. (We can do
this using the derivatives of the squares.) According tott83 explains that no restriction enters figr< f. (1) = /8.
For the othet, it is enough for (63) to show that equality

2
b=1+d

—2d (64)

occurs on the boundary @b. The condition (7) was rewritten as (9). Now, rearranging¥fgives

1-14D+D?
b2—b(1+D)++ —o.

Solving this gives two values fdr, but since onlyb < 0 is relevant, we obtain the solution (64) (widh= v/D). [

[EY

Lemma 6.5 When 0< x < 3 we have
arcsink-+ arctarx < 2x.
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Proof. Since the statementis clear (as an equalityxfer0, it is enough to check that the inequality of the derivative
V17-1_ 1

g o O
Proof oflemma 6.3. We fix some externale C with e t< —1 for the entire proof. Assume, to reduce technicalities,
w.l.o.g. that

is true whené <

Omt<O0. (65)
Then the numbers t_a
r = a1 (66)
have positive imaginary parts, and
0<argr < g (67)

We will try to understand precisely for whiche C the conditions (54) are satisfied. We will see that the pritxluc

n—-1

Z="1n1= El r (68)

may violate (54) whem, = 0, argnn_1 € [0,2m) is abover, and|n,_1| is close to 1.

To partly remedy this, we first prove a bound on the norm,pf; in terms of its argument. It turns out that, although
ri can get arbitrary close to 1, there is some lower bound orﬂﬁmbr(;?—‘::‘. This means that (for fixet) products of

ri with argument close to or abovewill be bounded in norm above 1. We will prove such a bound B) (6

Considef figure 2, withB =t — aandA = at — 1 for a from (57) and a natural numbep> 1.

Lemma 6.6 The anglesx andf3 are not acute.

Proof. Consider firs3. It is obvious (and easy to argue exactly) tBahcreases witls, and so it is sufficient to look
ats= 1. The claim then follows fromile t < —1. Since, by looking at\OAX we see thatt = B+ ¢, it is clear that
o is not acute either. O

Lemma 6.7 We have forz=nn_1 from (68) the inequality

|z > 1+arg2) -t (69)
for (it~ Dlt— 1)
1= W (70)

Proof. Letz=r; with u=u; ands=u+ 1. We will prove (69) first whem > 0; for u = 0 we will need later an extra
calculation. When we complete the case 0, we will be done, since when (69) holds fo r;, it holds for their
products, too.

Case 1.Thus assuma > 0. Consider; in (66). Letgo= argr;. Look again at figure 2. We have

sing < A—_X N ok N
%=X T @ De-1

and because is not acute by lemma 6.6, also

tan <BX_ 4]
%= 5x T Rur o1

2For better visibility, we drew figure 2 whefimt > 0; if necessary, imagine the conjugate (vertical reflegtion
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Therefore,

Q=@ +@ < arcsin N + arctan| S .
(2u+1)t—1| (2u+1)t—1|

Now |t+ 1| < [t—1|whenOet< —1,and 21+ 1=2s—1> 3 (fors=u+ 1> 1), and thus by lemma 6.5,

o~ < - 2t +1|

25— 1)t—1] (1)

Next, we return to (61). From this inequality, we have @Gt a;, since the calculation applies for every indgx

t—al—lat—1 _ [f-1
>

n=1=""——  Zga-1’ (72)
and combining this with (71) gives
nl-1 (t-D-1 25-1 73)
argr; 2lt+1] slat— 1
Now
2s—1 2s—1 2s—1 2 (74)

= > > .
gat—1] |(s—t—9 — (s=Dt|+s ~ |t|]+1
By using (74) in (73), the statement (69) follows fo£ r; whenu > 0.
Case 2.In the casal = 0, we havea; = —t from (53) and (66), and so the inequality to prove is

[t| > 1+arg—t)T.

L . Omt o
Simplifying, and using ang-t) < tan(arg—t) = ’D—Zt’ , We see that it is enough to prove

(Jt|+21)t+1] - |Bmt
[t —1j ~ |Oet

With the designations in (62), this can be written as

(d+1)vVdZ+2b+1 - VdZ —b2
Vd2—-2b+1 - b
Squaring and rearranging terms, and changitm—b, with 1 < b < d, gives
4b
202 > (42— p2
(d+1)b" > (d b)<1+d2—2b+1> ,

or

4b(d? - b?)
d?b? + 2db? + 2b* — d T

Used?b? — d? > 0 on the left, multiply by the denominator on the right, and tisereind? + 1 > 2d. We obtain the

sufficient simpler condition
(2db? + 2b%)(2d — 2b) > 4bd? — 4b>,

or
4(1+d)b%(d—b) > 4(d—b)b(d+b),

which becomes clear after reducing by common factors. Tdslades the proof of lemma 6.7. O
We will in the sequel often write for the expression in (70). We will use a part of the followtaculation later.

Lemma 6.8 When
t=-1-1v/-1, (75)

for | > 0, thenf(l) =1 from (70) is a strictly increasing function In
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Proof. The expression in (70) can with (75) be rewritten as

2
e \/4+|2(\/Ii+|2—1) ' (76)

Using this presentation, it is straightforward, but somatybainful, to verify that the derivativé/(l) is positive for
| > 0. Another possibly simpler way is to use the substitution

d=t| = Vi2+1 (7

in (76) to rewrite (and simplify} andt?, and obtain

V3+d2(d—1)?

=" and 2= —(3+d2)(d_1).

Z-1 (d+1)°
The positivity of the derivative (i for d > 1) of 12 is likely easier to check. O
The following lemma is an exercise in Euclidean geometry.
Lemma 6.9 For p;, p2 € Candm> 1, the set
{xe C: |x—p1| = mix— p2|}

is a circle with

center mznf 1p2— mzl_ 1p1 and radiusmzi_lmz— p1|- (v8) O
Now, with z € C satisfying (69), we return to (54).
Case 1s= 1. We have to examine

il < % | (79)

Keep in mind that with (65) we have drgt) (0, g)

Case 1.1largz < 21— arg —tz). Lety = argzandk = |z|. By squaring (79), using Cosine law and the assumption of
the case, we see that it is sufficient to have
1+K2[t|?> — 2cogy) - Klt|
1+k2—2cogy) -k

> t].

This is equivalent to
[t? — ] P -1

, _
[t 2 cody ke Z cogyk ~ 13K —2cogy)k

> t],

and further

2cogy)k t|>—1

ti(tj—1) (1 > .

(I )( T T —2cody)k) ~ 14K —2cosyk
This in turn simplifies to
[t|+1

it

which is certainly true, since witk = |z and|t| both at least 1, the left-hand side is at least 2, while thiet+iand
side is at most 2.

14k >

Case 1.2. > argz > 2n—arg —tz). (80)
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In particular, since arg-t) < g we must have ar> _n. We consider again (79). Itis easy to see thazfatisfying

(80) and having a fixed norniz — 1| is maximal and — tz— 1| is minimal whenz is real negative. Thus assume for
k= |z > 1 from (69) that
z=-k< -1, (81)

so that the condition (79) to test becomes
|kt — 1% > [t|(1+k)2,

or with (62),
(kb—1)?+K2I? = K?d? — 2kb+ 1> d(1+k)?. (82)

When az as in (81) is given, one sees next that foof fixed normd = [t| (cf. (62)), | —tz— 1| decreases when
b=Oet< 0increases.

An upper bound fob is given by the condition (63) for external Ford < 3, we can thus work just with thosdor
which (63) is an equality, as in (64). Using that with (64), have
2(b+d)=(d—1), (83)
the test (82) can then be rewritten as
k?(d? —d) —k(d—1)%?+(1—d) > 0.
We haved > 1, and the case = 1 givest = —1, which is not interesting. Thus, dividing loly— 1, and using (81), we
see easily the necessary inequality.

We have to test (82) also ftw= —1 andl < —+/8, i.e.,d > 3. Substituting» = —1 in (82), dividing byd — 1 > 0 and
simplifying, we obtain
k’d—2k—1> 0,

which is true ford > 3 andk > 1. Thus we are done in this case.
Case 1.31m< argz. We apply the formula (78) to the circle

C:= {xe@ VIt z=x < |y—x|}
fory= —tz. We are interested whetheelC. The center o€ is

[t 1

f-1° -1

and its radius is

|t| |t|
M—C-w—dz M—C-nunz«

We have le C when|centef < radius— 1, which can be simplified to

Itlz—y| < VItlt+ iz — (|t - 1),

orto
-1

e+ 1tl] < VIt jt+1] - 7 (84)

Here we notice that for giveljt|, the value
|[t]+t] = /It] |t + 1] (85)

is increasing witiJe t < —1. To see this, express (85) usind andd as in (62):

|[t]+t] — /][t +1] \/(b+d)2+12—vd-/(b+1)2+12
V2d2 4 2bd—vd- /d2+2b+1. (86)
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Regard this for fixed as a function irb € [—d, —1]. The non-negativity of its derivative becomes, after npljing

by the denominators,
dvd2+2b+1—+vd-v/202+2bd > 0,

or after squaring
d?(d?+2b+1) > d?(2d+2b),
which is seen to hold by simplifying.

With (63) in mind, ford < 3 we find it thus again enough to evaluate (85)licr Oet as in (64). Then we have in
particular

t+1] =v2(d-1) and |t—1] = 2Vd. (87)

Using the first equality for the second term in (86), and (8BXfhe first, we see that the condition (84) becomes
d-1
(1-v2)Vdd-1) < T

Dividing by d — 1 ford > 1 (sinced = 1 is again trivial) and rearranging translates this into

1

> -— . (88)
= (V2—-1)vd
With (69) and the assumption of the case, the condition (88)e satisfied when
lemr > (89)
T (V2-1)vd
Now with (70) and (87) we have
o d-1 jt-1  vad

TTdri ey drt
Substituting this into (89) and multiplying by all denomiaes, we obtain

(V2-1)vd(d+1)+mv/2(v2-1)d—d—1 > 0. (90)

The first summand is increasingdnfor d > 1. So is the rest of the I.h.s., which one sees from the lineefficient
m/2(v2—1) — 1> 0. Thus itis enough to test (90) fdr= 1, which is easy.

Next we have to test (84) fdr= —1 andd > 3. Substitutingp = —1 in (86), we see that (84) becomes

\/%\/d—l—\/a-\/dz—lg—d;l. (91)

17

Now by lemma 6.8, we have (with being the function thereir)> f (v/8) = \/g, so that by (69)

|Z| 21—|—\/§T[> §
8 2

Thus after dividing by/d — 1 and rearranging, we see that (91) would be implied by

Vad+ 2 2_1 <Vdvd+1,

which is seen to hold fod > 3 from/d— 1 < v/d andv/2+2/5 < 2 < v/d + 1. Herewith we can conclude the case.

Case 2s> 2. Here it turns out unnecessary to assuinseexternal, and thus (by similar monotonicity arguments) w
will substitute onlyb = —1 (for all d > 1) into certain inequalities we want to show, instead of bdtig with (64).
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We distinguish three subcases similar to case 1. Howev#igiconditions there the role eft is taken by the more

general
t—a

= at—1 (92)
with aas in (57), now satisfying > %
Case 2.12rt—argrz > argz. Then it is easy to see that (faret < —1)
|at—1|z‘%t—1‘>\/ﬂ (93)
For the right inequality,
1
5t-1| > V. (94)

. : 1 : .
note that amongwith et < —1 and given norm’,it —1| is smallest whele t= —1, so itis enough to check (94)
only for sucht. This is easily done by squaring twice both hand sides.
Now (54) can be written
[ Jrz—1
< .
sat—1] — |z—1]

(95)
We know from (94) that the I.h.s. of (95) is smaller than 1, leviiiom (72) we havér| > 1. Under the assumption of

this case the conclusion follows easily. (Formally, one egeat the calculation in case 1.1, repladindpy |r|.)

Case 2.22n—argrz < argr and arg < 1t Looking at (95) and using (93), we see that it is enough togro
[rz—1| > |z—1]. (96)
Now, for argz as chosen, multiplying the complex numbeendrz by eV -1 wijll increase the right-hand side,

and decrease the left-hand side. Thus it is enough to tesi@®z is real negative.

Then we see that (96) will in particular follow ifler > 1. Looking at the diagram in figure 2, we see that this is
equivalent to the angl@ not being acute, a property proved in lemma 6.6. This argtfiréshes case 2.2.

Case 2.3argr > 1. Thus we have (69). Now consider

slat — 1]
t

C:= {xe@: |y—x|z|z—x|}

with y=r-zandafrom (57). By (78) and (93), this s&tis the the exterior of a circle. The center of the circle is

Slat—1J2 t
| | v t 5 97)
Llat—1]2—t|]” Llat—1]2—|t]

Using

t—a | _ |t—a-at+l] |(t+1)(1-a)| _ [t+1]

at—1 N at—1 B at—1 ~ slat—1]’
the radius evaluates to

Llat— 12— |t Llat—1]2—t|"" |at—1 Llat—1]2—|t|

We need k C. This is implied by|centef > radius+ 1. This inequality can be rewritten and strengthened byriclga
denominators in (97) and (98), using (92) and decreasintgfitband side by the triangular inequality:

(sz|at—1||t—a|— |t|) 12 > [t+1|[2\/]t]+Jat— 1> [t].
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This can be further reorganized as
(12— 1) < Plat— (|2t - al - lat—1]) = VIt + 1)1z
Since, by (55) or (72)r| > 1in (92), it is sufficient that
tl(j2 - 1) < Slat—1/(|7 - D[t —a] — /[t + LIz (99)

We simplify (99) to

tl|Z|t+1
it < 52|at—1||t—a|_M'
7 -1

Then we use (69). So it is enough to have

lt| < ’jlat—1||t—a] — (1+ %) VI E+1].
Furthermore, we need to look only st 2 (anda = 1/2), which minimizegat — 1| and|t — a|:
|t|<|t—2||2t—1|—(1+%) VIt +1]. (100)
Here we see again that it is enough to tést(75), since amongwith Je t < —1 and giverijt|, the one withJe t=—1

makeg2t — 1| and|t — 2| smallest. It also makegs— 1|/|t + 1| smallest, and thus minimizes Settingt as in (75) and
encountering the expression in (76), let us simplify thewlaltion by using that

o VAF2(V1I412-1)? o
B E T 2V/A+ 12
Then we have 1
2 <oyt (101)
By expanding the parenthesis in (100), applying (101) onesieterm, and then making the substitution (77), we have
d< \/d2+8-\/4d2+5—\/d2—1-\/_—$[\/a-x/d2+3. (102)

It is enough to prove that (102) holds for dl> 1. By usingd < d+v/d on the left and/d2— 1 < d andv/4d2 +5 >
2d > +/d2 + 3 on the right, this can be simplified (and strengthened) to

<1+%) Vd < Vd2+8,

which now can be easily checked (after squaring)for 1.
With this the case distinction, and the proof of lemma 6.8pisiplete. O

7 Extensions to the skein polynomial

An advantage of using the skein relation (10), in contragh&Seifert matrix, is that, to a limited extent, it offers
some information beyond the Alexander polynomial. We hawaioed the following about the skein (HOMFLY-PT)
polynomialP [LMi], in analogy to theorem 1.2. We use the conventiofPafith the variables, w, the unknot having
polynomialP = 1, and the skein relation

t(33) ~vR(3X) ~we() )

(This is the form used in [Mo], except that we changed w to avoid confusion with the variablein (1). This way,
w correctly reflects the role it plays in (11).)
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Theorem 7.1 LetL be a 2-bridge link, anév,w) € C?, v,w # 0 be a root oP_ (v,w) with |v| # 1. Then

(VZ+1) [v—vY
|w| < max . (103)

(We leave it to the reader to see why we can write ‘max’ abovesreas in general we would have to write ‘sup’, and
that this maximum is finite.)

Proof. This is mainly an adaptation of the proof of theorem 1.2. Wevfix C with v # 0 and|v| # 1, and study
PL(v,w) as a polynomial irw using a recursive norm estimate.

Assume agaimv violates (103). Fok = +1 this condition simplifies to

1
W <V + =

v
When (104) fails, we have for the polynomial of the two comg@atrunlinkU,

(104)

v—v1

R = |

<1.

This replaces the comparison between the unknot and two @eemp unlink polynomial in the proof of theorem 1.2.
For the induction step, we have to modify (16). It depends siayhtly on the sign o&,. LetP,:= P(L(2ay,...,2a,)).
Fora, > 0 the analogue of (16) reads

1—v2n

Pa(viw) = Ve w: S——Pnoa (v, W) + V2P, o (VW) (105)

Fora, < 0, replace in the above formudg by —a, andv by —v—1.
We want to conclude from (105) inductively owethat

[P > [Pn-1]. (106)
Again, taking norms, usingP,_1| > |Py—2|, and dividing by|P,_1|, we see that (106) will follow from

1—v2an

V-W: —
1—

—[v®| > 1. (107)

The condition (103) is then made so that its violation to es@ this inequality. Thereik takes the role o, in
(107). Since the fractional expression on the right of (i®3)e same fottk, maximizing only ovek > 0 is enough.
O

Remark 7.1 One can restrict the maximum in (103) further to th&deeing a divisor of the leading coefficiept=
max cf of the Alexander-Conway polynomial( ) P(1,w) (cf. below (11)). This is because in the presentation

(13), the coefficient expressesjas max cfl = + |'| . In such a way, we can make sense of (103) also vi¥jeal,

except for the g-th roots of unity. (Note that When +1, we have the Alexander-Conway polynomial, for which we
saw before the recursion working in a slightly different Wdw particular, for a fibered 2-bridge link (max(cf= +1)
one needs to take onky= +1, and obtains (104) instead of (103) (which is then validegtdf v = +1).

Used as a practical test, the various Alexander polynonoiatlitions we obtained would apply only to more com-
plicated examples. In contrast, our skein polynomial dotefor a 2-bridge link has some significance also among
relatively simple knots, as we show in the following.

Example 7.1 We tested the condition (103) for several values of the alternating Rolfsen [Ro, appendix] knots. It
can identify as non-rational at least the following ones;, 935, 938, 939, 941, 1049, 1053, 1053, 1059, 1078, 1096, 1097,
10101, and 1Q20. The improvement explained in remark 7.1 rules further oufbeing rational &, 1055, 1058, 1056,
and 1@Qo.
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The complexity of (103), compared to (1), already suggdss statements about the skein polynomial become in-
creasingly technical. Neither turn they out very practicaseful, with the Morton-Williams-Franks (MWF) inequigfi

at hand [Mo]. We thus omit the discussion for space reasanffic§ it to say that experiments with knots in the tables
of [HT] have not turned up examples where the new evaluatstimates we obtained outperform the MWF 3-braid
test.

For similar (and even more compelling) reasons, | have nietrgited either a (skein polynomial) refinement of the
Montesinos link calculation.

Moreover, our recursive skein aproach is diffcult to usedfioother important special caseRfthe Jones polynomial

V. This expresses a&(z) = P(z, w), with w related tozas in (11). (Note, e.g., that under this relation, the retom
(103) is always satisfied, and so theorem 7.1 is useless.)eThéndeed a denseness result in [JZDT] about Jones
polynomial roots of alternating pretzel links. Thus cantis needed among what classes of links the question about
location of roots makes sense.

8 Log-concavity and zeros of the Alexander polynomial

In this (mainly expository) section we put Hoste'’s conjeetin relation to other properties of the Alexander polyno-
mial.

Let here the Alexander polynomiA(t) € Z[t,t ] of knots be regarded in the formal variabl@s opposed ta which
we use to indicate a concrete complex number). Béldty is normalized so that

A(L/t)=At) and A(L)=1. (108)

It is very well known what Alexander polynomials occur for arbitrary knot: the conditions (108) precisely char-
acterize such polynomials. (We will call the first propemgiprocity.) Regarding the (much harder) question about
those polynomials occurring for an alternating knot, savesults and conjectures have been treated over a period of
time.

Let maxded\ be themaximal degreef A (maximal power oft with non-zero coefficient). Because of reciprocity
the minimal degree oA, defined analogously, is mindAg= —maxded\. Crowell and Murasugi [Cw, Mu] proved
that wherK is alternating, the polynomidi (t) is alternating i.e. all coefficients of\k (—t) are positive or all are
negative. We call such polynomials alpositiveresp.negative This is to mean in particular that all coefficients
between mindefy and maxded are non-zero. To avoid ambiguities, let us assume that akaxider polynomials
we treat from now on have this property (which is not auton)ati

The work of Crowell-Murasugi shows also that ralternating, the maximal degree&fgives thegenus ¢K) (and

canonical genugc(K)) of K:
9c(K) = g(K) = maxdedix . (109)

We are here in particular motivated by the log-concavityjecture made in [St2]. L] for k € Z be the coefficient
of tKin a Laurent polynomiaX e Z[t*1]. Call a polynomiaX to belog-concaveif [X]k are log-concave, i.e.

(X]Z > [XJs1[X]k-1 > 0 (110)

forall k e Z. (We assume the non-negativity of these expressions fonieal reasons: we want to regard only positive
and alternating polynomials as log-concave.)

Conjecture 8.1 (log-concavity conjecture)f K is an alternating knot, thef (t) is log-concave.

The log-concavity conjecture is a natural strengthening wfuch older conjecture formulated by Fox, which is now
referred to also as ‘Trapezoidal’ conjecture.

Conjecture 8.2 (Fox's Trapezoidal conjecture)f K is an alternating knot, then there is a numbet 8 < g(K) such
that forAy := |[Ak]x| we have
A[k] = A[k—l] foro< |kl <n,

111
Ay <Ap—qg forn< k| <g(K). (111)
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We call polynomials of this forntrapezoidal Since log-concave polynomials are trapezoidal, the mgeavity
conjecture implies Fox’s conjecture.

The Trapezoidal conjecture has received some attentidreititerature. It was verified for rational (2-bridge) knots
[Ha] (see also [Bu]) and later for a larger class of altemmalgebraic knots [Mu2]. More recently, some linear
inequalities on the coefficients @ coming from Ozsvath-Szab6’s knot Floer homology [OS] hémeen seen to
imply the conjecture fog = 2, and also to settle (for genemg)l in (111) the casék| = g(K). Jong [Jn, Jn2] has
proved independently the Trapezoidal conjecture up to g@rusing the generator description in [St9], and observed
that for genus 2 the log-concavity &f easily follows from trapezoidality. Then, in [St] the proaff log-concavity
was extended to genus at most 4 using similar techniques.uf&/@ur generator classification and an appropriate
calculation to prove there also Hoste’s conjecture up taigdn)

One can find individual examples showing that trapezoigdétit log-concavity) of an Alexander polynomial does
not imply Hoste’s condition, however, there is a more megfuhgeneralization of this intuition. It turns out that
log-concavity poses (essentially) no constraints on tkatlon of zeros of Alexander polynomials, in the following
sense:

Theorem 8.1 The zeros of log-concave alternating Alexander knot pafyiads are dense ift.

This implies that Hoste’s conjecture is (almost) independiem Fox’s or the log-concavity conjecture. There are
minor relations, e.g., an alternating polynomial cannateha real negative zero. There are also conditions arising
when restricting the degree of the polynomial. For exampleggen maxded) = 2, Murasugi has verified that every
alternating Alexander knot polynomial satisfies Hoste'sdition. (More precisely, every roathas[le ze (0, 3), or

|zl =1,0orze Ry isreal.)

Compare theorem 8.1 also to the result in [JZDT] regardiegltnes polynomial roots.

The proof of theorem 8.1 is elementary, and (with length eong in mind) we decided to move it out, trying to focus
on the preceding more substatial details.

9 Problems

It would be interesting to what extent our skein method caruded with regard to Hoste’s conjecture, and link
polynomial properties more broadly. Some open problemssesenehow related.

e For Montesinos links, a more general problem, formulatgiB], is whether there exists (and if so, to find) a
condition on the Alexander polynomial of an arbitrary Maites link. Our method leads to such a condition
in many cases i§3 and§5, but the non-alternating links excluded in theorems 3% still remain difficult
to treat. This is not surprising, since, as we cautioned,ttiere are (non-alternating) Montesinos links with
vanishing polynomial. Thus whatever zero location techaip used, it must naturally bypass such examples.

e Another related problem is to prove that there exist knothauit matched diagrams [Ki, problem 1.60, p.42].
Our proof of theorem 1.2 reflects somehow the existence df diagrams for rational knots (and links), but
they have very special properties which make a recursivatzlon convenient. (The knots in example 3.1
have very similar matched diagrams.)

¢ Finally, Hoste's conjecture remains open also for 3-braddsomputer test of alternating 3-braids of even length
up to 18 determined the maximum of the left hand-side of (Deter 1.94, which suggests that (1) may still be
true. However, (36) is not always true in (and closezte) —1. More generally, no refinement of the argument
is visible to overcome the barrier when approachimjg= 2. See also remark 4.1.
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