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Abstract

We study the new formulas of the first author for the degree-3-Vassiliev invariants for knots in the
3-sphere and solid torus and present some results obtained by them. We show that a knot with Jones
polynomial consisting of exactly two monomials must have at least 20 crossings.
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2 2 Gauß diagrams and Gauß sums

1 Introduction

Recently, the first author [Fi] introduced some new knot invariants by generalizing the approach of
Polyak and Viro [PV] of Gauß sums. Conversely to the Polyak-Viro invariants, which are known to be
of finite (Vassiliev) type [BL, BN, BN2, BS, St, Va, Vo], and therefore, at least up to degree

�
12 [K]

orientation non-sensitive, the main hope of this generalization was to find some new invariants that do
distinguish knot and link orientation in S3.

In this mainly expository note we give a definition of these invariants and examples using the com-
puter calculations of the program [St2]. We announce some results, supported by these examples, about
these invariants applied to link mutants in S3. We present some applications of the Gauß sum formulas
for the degree-3-Vassiliev invariant to crossing number inequalities and positive knots.

A mathematically more detailed description of the first author’s approach, including invariance
proofs, can be found in his forthcoming monography [Fi2], especially from the (more interesting) point
of view of these invariants in the solid torus.

2 Gauß diagrams and Gauß sums

Consider a knot K : S1 � ��� 3 (S1 and � 3 oriented). Decompose � 3 ��� 2 ��� so that the projection
(henceforth called knot diagram) of K into � 2 is generic. To this projection we can assign a Gauß
diagram (GD), a circle with oriented chords, by connecting points in S1 mapped to a crossing and
orienting the chord from the preimage of the undercrossing to the preimage of the overcrossing. By
forgetting the orientation of each chord in a GD we obtain its underlying chord diagram (CD) [BN].

Figure 1 shows the knot 62 in its standard projection and the corresponding Gauß diagram.
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Figure 1: The knot 62 and its Gauß diagram.

A Gauß sum of degree k is a term assigned to a knot diagram, which is of the following form

∑
ordered choices of k crossings of the
knot diagram, satisfying certain condi-
tions

function 	 data, assigned to the crossings 
��
Each summand we will call weight and the function weight function (not to be confused with those in
[BN]!).

Sums of this type (“small state sums”) have been studied for the 1st time for degree
�

2 by the first
author [Fi3, Fi4] and later by Polyak-Viro [PV]. As data of the crossings they considered the writhe
(which is 
 1 on a positive and � 1 on a negative crossing) and as weight functions the elementary
symmetric polynomials. The aim was to find linear combinations of such terms, invariant under the 3
Reidemeister moves, and therefore giving formulas for knot invariants. All such invariants turned out to
be of finite type. This was stated by the authors and proved by Oestlund.
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� 1 
 1

Figure 2: The writhe

Theorem 2.1 (Viro-Polyak-Oestlund) All invariant Gauß sums of degree k with symmetric polynomi-
als in the writhes of the crossings are Vassiliev invariants (VI) of degree

�
k.

Definition 2.1 The winding index of a plane curve C � � 2 ��� around a point p �� C is

w � C � p � : � 1
2πi

�
C

1
z � p

dz �
Pictorially it measures how many times the curve “walks” around p, counting reverse walk nega-

tively.

Definition 2.2 The Whitney index n � C � of a plane curve C is the degree of the map

C ����
C � ��� : S1 � � S1 �

The Whitney index of a knot diagram is the Whitney index of its underlying plane curve.

Definition 2.3 The writhe w � D � of a knot diagram D is the sum of the writhes of all crossings (see figure
2).

Example 2.1 The standard projection of 62 has Whitney index 1 and writhe � 2.

In the following we will decisively use the following fact.

Lemma 2.1 Two plane diagrams of the same knot (i.e., ambient isotopic) with the same n and w are
regular isotopic.

In other words, the ambient isotopy classes of knots decompose into regular isotopy classes parametrized
by two numbers n and w. The only restriction to n and w is that their sum is odd.

There are four ways to modify n and w by Reidemeister I moves, as depicted on figure 3 (where
‘n ��� ’ denotes the operation ‘n � n � 1’ and the result of the move on a strand without crossings is
displayed).

In the following we will look for regular isotopy invariants of the knot diagram.

Definition 2.4 A smoothing of a crossing is the procedure

p � � p

D �p
D �p

�
where D �p denotes the component, where the under- is smoothed to the overcrossing. Note, that apart
from the link diagram resulted after this operation, we have the 2 “traces” of p on two of the components
of the link diagram, as well as the “trace” of p in its complement. We will sometimes forget about the
one or the other and simply omit the corresponding mark in the picture.
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n 
�
�� w ��� n 
�
�� w 
�
 n ��� � w ��� n ��� � w 
�

Figure 3: The four ways to modify n and w by Reidemeister I moves.

Definition 2.5 Smoothing simultaneously 2 crossings p � q in a knot diagram, the resulting link may have
1 or 3 components. In former case call p � q linked, else not linked. In terms of the Gauß diagram the
chords corresponding to linked crossings intersect.

Definition 2.6 Call in a pair p � q of linked crossings p distinguished, if D �p contains the undercrossing
of q, i.e., if the Gauß diagram looks as

p q

Apart from w, for each crossing p we have four1 more data:

i !p : � w � D !p � p �"� n !p : � n � D !p �#�
(Here in the definition of i !p by p we mean the trace of p in the complement, as described above.) Set

ip : � i �p 
 i �p � np : � n �p 
 n �p � δp : � i �p � i �p �
3 The degree-3-Vassiliev invariant and positive knots

3.1 A formula for the degree-3-Vassiliev invariant

Smoothing simultaneously 3 crossings and counting the traces of all crossings on the components of the
resulting link, we obtain a partition of 6. The following 5 are possible. Each one corresponds to one of
the 5 degree 3 CD’s underlying the Gauß diagram (which is not true in higher degree), see figure 4. This
partition we will call (rough) configuration.

If p and q are not linked, either p � D �q or p � D �q . We will write this sign before q, and analogously
the corresponding one before p. The configuration � 4 � 2 � 0 is made of triples of crossings � p � q � r � with� p � r � and � q � r � linked and p and q not linked, p � D �q and q � D �p , i.e. “ � p 
 q” (so the rough
configuration of � 4 � 2 � 0 is � 4 � 2 � ).

To introduce some notation, write a configuration as a bracketed sequence of 6 entries of the form
‘[sign] letter [digit]’. Walking around the circle, the letter indicates the name of the crossing the chord
represents (p � q or r), a basepoint of which we pass, the sign whether we pass the over-( 
 ) or undercross-
ing ( � ), and the digit after the first occurence of a letter the type2 of the crossing the chord represents.

1In fact, these are only 3 data, since for all p we have n $p % n &p ' n.
2The type of a crossing will be defined in the next section, so at present simply forget about it and about the option to write

the digit.
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� 3111 � � 2211 � � 33 � � 42 � � 51 �

Figure 4: The rough configurations

p q

r

Figure 5: The Gauß diagram of the configuration � 4 � 2 � 0. Both orientations of r are possible.

The sign and the digit are optional. If we omit one of them we do not fix the orientation of the chord or
the type of the crossing.

A Gauß sum we will write as “ ( config )+*,( weight )+- ”, e.g.. 
 q 
 pr � p � qr /0* wp 
 wq 
 wr - means ∑1
4 2 2 3 0wp 
 wq 
 wr �

If we omit the weight, we will mean “by default” the product of the writhes of the involved crossings3.
Everything up to now works as well for 2 crossings instead of 3 with 4 entries within the brackets. So,
interpreted as a Gauß sum, e.g.. 
 q 
 p � q � p / : � ∑

p 2 q linked
p distinguished

wp 4 wq �
The summation has to be understood so that we sum over distinct unordered p � q � r but if a configuration
has a non-trivial automorphism (i.e., e.g. if p � q � r match, so do q � r� p, as in the case of � 3 � 3 � ), only one
of the matching permutations is taken.

Here is a formula for the degree-3-Vassiliev invariant (in one of its variations modulo degree-2-
Vassiliev invariants).

vt3 � . pqrpqr /5
 . 
 q 
 pr � p � qr /6
 1
2
.
pqpq /0* wp 
 wq -7� (1)

The idea of finding it is (roughly) the following (for an exact proof, see [Fi2]).

We have to check how a linear combination of Gauß sums

v � ∑
conf. η

cη ∑
crsg. choices

of conf. η

function �8�9�:�;� (2)

3It will always be clear from the context whether by this notation we mean the Gauß sum or the configuration.
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behaves under, say, a type III move.

r

p q < � r

q p

To measure the difference of each Gauß sum on both sides of such a move, we have to care of the choices
of 3 crossings which land in different configurations η � µ in both diagrams. For such configurations at
least 2 of the chosen crossings must be among p � q � r. In case exactly 2 of them are among p � q � r,
we have to deal with an unknown bηµ – the number of choices of the third one (or rather the sum of
“function �8�9�:�;� ” over such choices). The difference of the Gauß sum on both sides is a certain linear
combination of all bηµ’s. Each bηµ may appear multiple times for different summands in (2).

There exist linear dependencies between the bµη’s which allow to eliminate some in the sum. For
the rest, the difference of v to be 0 (i.e., v to be invariant under Reidemeister III), we have to ensure that
all the coefficients of the remaining b’s vanish. These are in turn linear combinations of various cµ’s.
This way we obtain linear equations for the cµ’s. At this point the system could still be solved by hand,
due to the limited number of configurations.

Remark 3.1 As for Vassiliev invariants of the same degree there may be many formulas, differing by
scaling and lower degree Vassiliev invariants, it appears desirable to introduce some “standard” set of
low-degree Vassiliev invariants, and relate everything to it. vt3 satisfies the relation

vt3 � 4v3
� � 1

3
V
1
2 3 � 1 �=� 1

9
V
1
3 3 � 1 �#�

where v3 is the formula of [PV]

v3
� 1

2
. � q 
 p � r � p 
 q 
 r /5
 . 
 p � q 
 r � p 
 q � r /6� (3)

and V is the Jones polynomial [J].

Here is a consequence we announce of formula (1) (see [St4] for a proof and a sharper result).

Definition 3.1 Call a knot diagram positive if all its crossings have writhe 1.

Definition 3.2 Call a knot diagram reduced if it does not look as

A B �
i.e., its corresponding Gauß diagram has no isolated chord.

Theorem 3.1 The number of crossings of a reduced positive diagram of a knot K is at most vt3 � K � .
This renders it decidable whether for a given knot such a positive diagram exists.

Example 3.1 We have vt3 � 62 � � 4, so for our 62 there is no such diagram (it would have to have
�

4
crossings).

As another application, it follows from (1), that vt3 is always integral and even more, the identity
vt3 � 4v3 shows, that vt3 � K � is always even for any K. In fact it is even always divisible by 4. This can
be shown either via Vassiliev theory arguments or from the other known conditions to the values of the
Jones polynomial on knots (summarized by Jones [J2, > 12]).
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3.2 A lower bound for the crossing number

Here a final consequence of formula (1). Obviously in a diagram of c crossings, we have�
vt3
� �@? c

2 A 
 ? c3 A � c3

6
�

whence

c B 3
C

6
�
vt3
� � 3

D EE
2V
1
2 3 � 1 �F
 2

3
V
1
3 3 � 1 � EE � (4)

This way the Jones polynomial can be sometimes more powerful to give lower bounds for the cross-
ing number of a knot than by its span [Ka3, Mu, Th]. In all such cases the knot is non-alternating.
A similar lower bound for c was given by Polyak and Viro [PV2] in terms of the degree-2 (Casson)
invariant: c BHG 8v2.

There are examples, where the inequality (4) does better than either this of [Ka3, Mu, Th] and [PV2].

Example 3.2 The knot 16809894 of Thistlethwaite’s tables [HT] (see figure 6) has a non-monic Jones
polynomial of span 9, from which one finds v2

� 12, and hence the inequalities of [Ka3, Mu, Th]
and [PV2] both give 10 as a lower bound for its crossing number. The diagram of figure 6 has 5
Seifert circles, and the Morton-Williams-Franks inequality [Mo, FW] gives 5 as lower bound for its
braid index, hence it indeed has braid index 5 by [Ya]. If 16809894 had a representation as a closure
of a homogeneous 5 braid, its crossing number 16 would show (see, e. g., corollary 4.1 of [Cr]) that
maxdeg ∆ B 1I 2 � 16 � 5 
 1 � � 6. However, maxdeg ∆ � 5 for this knot, so 16809894 is not a closed
homogeneous 5 braid, and [Mu2, proposition 7.4] cannot be applied to it. However, v3

� 42, which
shows c B 11, as 24v3 ) 1000.

In general the combination of the v2 and spanV bounds will perform well, and examples like the one
above, at least among not too complicated knots, are difficult to find, but considered separately, one can
construct larger classes of knots where (4) gives better results.

For spanV an appealing example are torus knots (or a connected sum of such with a knot like 52,
which leads out of the scope of proposition 7 of [Mu2]) by [J2, proposition 11.9] and the formulas for
v3 on torus knots due to Simon Willerton in [Wi], who used an unpublished (hard) result of Thang Le
(see also [St3, > 8]).

As for the v2 bound, one can show from [St8, theorem 3.1] that for all but finitely many positive
knots of given genus the v2 bound for the crossing number will minorate the one of v3.

16809894

Figure 6: A knot showing that the inequality (4) is sometimes better than the ones
of [Ka3, Mu, Th] and [PV2].

The above mentioned conditions of Jones to the value range of the Jones polynomial imply that no
other Jones polynomial than the unit one can have only one monomial and that the only polynomials
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of exactly two monomials, which can occur as Jones polynomials of some knot, are of the form � a 

1 � t12ay � at12

1
a � 1 3 y with a � y �KJ , a �� 0 �9� 1 and y �� 0 (in particular no Jones polynomial of some knot

can have span exactly one). The simplest such example is 2t12 � t24. The existence of a knot with
such a polynomial is unclear. In contrast to it there is a remarkable result of Traczyk about an infinite
number of 2-component links with Jones polynomial with 2 monomials (reproduced by Przytycki in
[P3]). Using (4) we can now show that such a knot must have at least 20 crossings. Namely, for a
(hypothetic) knot with V � 2t12 � t24 the inequality (4) gives c BML 3G 6912 N � 20, whereas the span of
V is 12 and L G 8v2 N � 10. By a further bit of argument you can exclude crossing number 20 using that
the minimal coefficient is 1 in a positive diagram, a consequence of Kauffman’s state model (see [St5]).

As a final application of (1) we mention, that from it it straightforwardly follows, that the � 2 � 2n � 1 �
torus knot diagram is the unique diagram maximizing v3 over all diagrams of this (and lower) crossing
number. A bit more on argument shows that in fact it maximizes v3 in crossing number

�
2n.

4 Refined Gauß diagrams

Here we present a generalization of the degree-3-Vassiliev invariant to knots in the solid torus [Go].

Consider a two component link K O T in S3 where T is the trivial knot (unknot). Let K � T � S3 be
oriented. Deform K O T in S3 �P� 3 OQ* ∞ - so that ∞ � T . This isotopy is unique up to isotopy. Such a link
we can represent choosing an appropriate projection � 3 �R� 2 as knot with a point in its complement,
on which T projects, assuming the orientation of T to be from the sheet of paper to the reader’s eye.

Luckily, lemma 2.1 can be generalized to such diagrams.

Lemma 4.1 If K O T and K �9O T � isotopic, implying that K and K � isotopic within the solid torus S3 S T T
S3 S T � , and in the above described projection K and K � have equal n and w, then K and K � are regular
isotopic in S3 S T .

The new idea of the first author was to refine the crossings in a Gauß diagram, i. e. to assign to each
one a type. In order to bound the number of configurations and the dimension of the equation system, at
present this has been only done for types in J 2 and J 3. Here for our introductory purpose we considerJ

2 graduation of the crossings.

Definition 4.1 The type of a crossing p in a refined diagram is w � D �p � T � mod 2.

We will distinguish two cases of refined diagrams according to the parity of w � K � T � .
In view of lemma 4.1 the receipt to find invariant Gauß sums remains the same, however, we gain

with the type a new useful ingredient.

The price we pay is that the combinatorial trouble arising here is serious – the linear equation sys-
tems became too large and had to be solved by computer. We shall later say a word on dimensions. The
solutions have been computed by K. Mohnke (even linking number) and myself (odd linking number)
using MATHEMATICATM[Wo]. Many of them (and the really interesting ones) are very long and our
lack of deeper insight into the solutions, which is a constant negative companion of electronical calcu-
lations, prevents us from finding nice expressions for them. Therefore, here we will record just some
short (but, unfortunately, less interesting) ones.

We can incorporate the study of knots into this scheme by considering T the meridian of the knot4 K
(of course, we could also try it with K O T the split link, but this does not give anything new). T carries
a natural orientation from K and S3. K is isotopic to K � exactly if so are K O T and K �"O T � . Since for T
the meridian of K we have w � K � T � � 1, from this point of view the odd linking number invariants are
more interesting. However, by applying cabling operations we can also hope to gain some information
for knots from the even linking number invariants.

4In this case we will omit T and identify the link with the knot.
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Figure 7: The knot 62 with its meridian

As, as we saw, one can treat knots in S3 as knots with meridian, it was for a brief period tempting to
find out what the invariants can do for knots in S3 this way. In the present note we content ourselves to
some failed examples with knots serving to explain the (cabling) idea, which can be more successfully
applied to links. We will give more interesting examples in a later note.

Although, after testing the examples given below, finally we found out, that for knots this way the
solid torus Vassiliev invariants and their cablings don’t give more information than the usual degree-3-
Vassiliev invariant in S3, we will give some evidence that (especially at finer crossing type) they may be
better than the degree-3-Vassiliev invariants for 2-component links.

4.1 Even linking number case

For the case w � K � T �VU 0 � mod 2 � the linear equation system was with 50 equations and 48 variables.
We obtained 34 invariants. 15 of them are stable and 19 non-stable.

Definition 4.2 A knot invariant v of regular isotopy is called k-stable for some k �WJ , if there exist
numbers n1 � w1 �:�9�:�:� nk � wk

�YX and a function fv : J k � 2 � J , such that for all knots K and all n � w �ZJ
v � K � n � w � � fv � v � K � n1 � w1 �"�:�9�9�[� v � K � nk � wk �\� n � w �#�

Here we use the parametrization of the regular isotopy classes discussed after lemma 2.1 and by “K”
we mean the ambient isotopy class of K. “Stable” means “1-stable”.

In other words, “stable” means that the change of the invariant under change of n or w (Reidemeister
I) does not depend on the concrete knot. Roughly, an unstable invariant contains more information than
any ambient isotopy invariant derived from it, together with n and w.

Examples of stable invariants are all Vassiliev invariants (where f depends on v � K � n1 � w1 � only) and
the Kauffman bracket [Ka] (where f depends on v � K � n1 � w1 � and w).

Here is an example of such an invariant.

vt
1
1 3

3
� � . 
 p0 
 r0 � p � r /]* wrwp � ir � ip �^-V
 . 
 p0 
 q1 
 r1 � q � p � r /� . 
 r1 
 p0 
 q1 � r � q � p /6
 . 
 p1 � q0 � r0 
 q � p 
 r /� . 
 q0 � p1 � r0 
 p � q 
 r /_� . 
 p1 
 q0 
 r0 � p � q � r /� . 
 r1 
 p0 
 q0 � r � q � p /_� 1

2
. 
 p1 
 r0 � p � r /0* wp -
 . 
 p0 
 q0 
 r1 � p � q � r /6
 . 
 p0 
 q0 
 r1 � q � p � r /
 1

2
. 
 p0 
 r1 � p � r /]* wp -7�
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This invariant is stable, asymmetric (changes the sign under mirroring5 K O T ) and ambient invariant
(that is, invariant under Reidemeister I).

K O T is invertible (that is, isotopic to �Q� K O T � : � � K O`� T ; we reverse the orientation of all
components!) exactly if �Q� K O T � and f lip � K O T � : � f lip � K �#OY� T are regular isotopic (as their n � w
are equal) and this is exactly if so are f lip � K �#O T and � K O T .

Figure 8 shows the 3 operations on a link with K � trefoil.

K O T � K O T f lip � K �#O T !K O T

Figure 8: The 3 operations on a link

Another invariant is

vt
1
2 3

3
� ( formula for vt3 only over crossings of type 0 )
 4

. 
 p1 � q0 
 r0 � p 
 q � r /5
 . 
 p1 � q0r0 
 q � pr /
 . 
 p1 � q0r1 
 q � pr /5
 . � p1 
 q0r0 � q 
 pr /
 . � p1 
 q0r1 � q 
 pr /a� . 
 p1 � q1r0 
 q � pr /� . 
 p1 � q1r1 
 q � pr /a� . � p1 
 q1r0 � q 
 pr /� . � p1 
 q1r1 � q 
 pr /5
 . 
 p0 � q0r1 
 q � pr /
 . � p0 
 q0r1 � q 
 pr /5�
It has the same properties as vt

1
1 3

3 .

4.2 Odd linking number case

For the case w � K � T �bU 1 � mod 2 � we had 120 equations and 111 variables. We obtained 33 invariants,
14 stable and 19 non-stable ones. The most complicated ones have 55 terms. Here is a simple one

vt
1
3 3

3
� � . 
 p1 � q1 
 r1 � p 
 q � r /a� . 
 p1 � q0 
 r0 � p 
 q � r /� . 
 p1 � q1 � r0 
 q � p 
 r /a� . 
 p1 � q1 � r1 
 q � p 
 r /
 . 
 p0 � r0 � p 
 q1 
 r � q /6
 . 
 p0 � r1 � p 
 q1 
 r � q /
 . 
 p1 � q1 
 r0 
 q � r � p /6
 . � q0 
 r1 
 p1 � p 
 q � r /
 . � q1 
 r0 
 p1 � p 
 q � r /5
 . 
 p1 � q0 
 r1 
 q � r � p /
 . 
 p1 � q1 
 r1 
 q � r � p /6
 . 
 p1 � q0 
 r0 
 q � r � p /
 . � q1 
 r1 
 p1 � p 
 q � r /5
 . � q0 
 r0 
 p1 � p 
 q � r /6�

This invariant is non-stable and asymmetric. One can make the observation that augmenting of n by
2 at fixed w adds one and the same contribution to the value of vt

1
3 3

3 . We have

vt
1
3 3

3 � K � n � w � � vt
1
3 2 1 3

3 � K �F
 vt
1
3 2 2 3

3 � K � 4 n 
 vt
1
3 2 3 3

3 � K � 4 w �
where the vt

1
3 2 i 3

3 are ambient isotopy invariants, and therefore vt
1
3 3

3 is 3-stable.
5Note that mirroring on K c T means mirroring in d 2 of the diagram of K with the point T and not crossing change, since we

need T to point to us.
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Remark 4.1 In fact, vt
1
3 2 2 3

3
� vt

1
3 2 3 3

3 , so vt
1
3 3

3 is 2-stable. This can be deduced from the fact, that we have
no � 5 � 1 � -configuration with isolated chord of type 0. Analogously, if we had no � 5 � 1 � -configuration with
isolated chord of type 1 instead of 0, then we had vt

1
3 2 2 3

3
� � vt

1
3 2 3 3

3 .

Remark 4.2 Generally, a Gauß sum invariant induces on an ambient isotopy class a polynomial of n
and w, henceforth called � n � w � -polynomial, where w and n appear with exponents

�
1 resp.

�
1 


maxdegn � all weights � , where degn is the degree with respect to n’s of the crossings only.

Remark 4.3 In fact, vt
1
3 2 2 3

3
� vt

1
3 2 3 3

3 , so vt
1
3 3

3 is 2-stable. This can be deduced from the fact, that we have
no � 5 � 1 � -configuration with isolated chord of type 0. Analogously, if we had no � 5 � 1 � -configuration with
isolated chord of type 1 instead of 0, then we had vt

1
3 2 2 3

3
� � vt

1
3 2 3 3

3 .

4.3 Chirality

From the ambient invariance and asymmetry of vt
1
2 3

3 it follows that each amphicheral link must have
zero invariant. This can be used to detect chirality of links. The following example is due to the first
author.

Example 4.1 For the link K O T on figure 9 with K the figure 8 knot we have vt
1
2 3

3
� 4, so it is non-

amphicheral. The components themselves are amphicheral, and all other invariants of degree
�

3 ( lk
and the two component link degree 3 Gauß sum of [PV] ) are 0 and fail.

Figure 9: A non-amphicheral link with even linking number.

Two hard examples of chiral knots are [Ka, p.218] 1048 (where the HOMFLY polynomial [H] fails
to detect chirality) and 942 (where the HOMFLY and Kauffman [Ka2] polynomials fail). After we
experimentally observed and the second author subsequently proved more generally in [St3] that our
solid torus invariants will not be able to do it either, there is another idea based on Gauß sums, which
can be used at least in the case the knot is alternating.

The flyping theorem of Menasco and Thistlethwaite [MT] shows that in alternating diagrams not
only vt3 is an invariant, but all its three single terms in (1) are! The first and third one are clearly
invariants of the intersection graph of the associated Gauß diagram.

The intersection graph of a Gauß diagram is a graph with vertices corresponding to arrows in the
Gauß diagram and edges connecting intersecting arrows/vertices. It is an exercise to see that the in-
tersection graph is preserved by flypes, and therefore so are the single terms in (1). (A little bit more
argument shows invariance also for the second term in the Polyak-Viro formula (3) and hence also for
the other one.)
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The third of (1) term is easily computed on 1048 and its mirror image to be � 8 (note, that all three
terms are negated by obversion), and its non-vanishing renders it easy to decide about 1048’s chirality.
The first term deals (even easier) with the other three alternating troublemakers in Rolfsen’s tables [Ro,
appendix A] – 1091, 10104 (HOMFLY) and 1071 (HOMFLY and Kauffman). The argument does not
work for the non-alternating 942 and 10125 (HOMFLY), but they both have signature � 2, and so a
signature trick works there (see [St6]).

4.4 Skein equivalence and mutation

As Gauß sums change unpredictably under crossing changes, we could hope that they manage to detect
skein equivalent knots. However, checking one such example – the skein equivalent triple 88, !10129
and 136714 (see figure 10) discovered by Thistlethwaite [LM] (and later in greater variety by Kanenobu
[Kn]) – we observed the same disappointment.

88 !10129 136714

Figure 10: The skein equivalent knots of Thistlethwaite. They form the beginning
of a larger series of skein equivalent knots constructed by Kanenobu [Kn].

It is known that mutants always make trouble to distinguish. According to Przytycki, one applicable
method is to calculate truncations (in the Alexander variable) of the HOMFLY polynomial of a 3-cable
of the link. Nothing simpler works: that the knot polynomials themselves do not detect mutation is an
easy consequence of the local diagrammatic relations they satisfy, and subsequently it was shown that all
cablings of the Jones polynomial [MT], and the 2-cablings of the HOMFLY [P, P2] and Kauffman [LL]
polynomial fail. Such truncations have been shown to have subexponential complexity by Przytycka
and Przytycki [PP] and later with sharper estimates by Vertigan (see appendix to [PP2] and [Ki, p. 111])
and were used by Morton and Traczyk and independently by J. Murakami to distinguish, inter alia, the
Kinoshita-Terasaka and Conway knots (figure 11), the most famous example of mutants.

Again, there is no sense in trying to distinguish mutant knots by applying the solid torus invariants
on the meridian of the knots or their cables. However, interestingly, some invariants do distinguish (and
even without cabling) pairs of solid torus knots which are not (necessarily) mutants in the solid torus
but give mutated links when considered with T in S3. The second author gave such examples in [St7].

5 The computer programs

The program gsinv [St2] can compute the Fiedler solid torus invariants. It is written in C++ [S] and
at present it has e 4000 lines. Here is a brief summary of its features.f It reads in a knot from a projection file produced by J. Weeks’ program SnapPea6 [W], generates

the associated extended Gauß diagram (Gauß diagram with all data assigned to each chord) and
computes a given Gauß sum on it.

6Unfortunately, the link entry program of SnapPea is not yet available on other systems than AppleTM .
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KT C

Figure 11: The Kinoshita-Terasaka/Conway mutants

f It can also create a PostScript (PS) [Ad] image of the knot. This feature has been extended to
handle arbitrary regular link and tangle projections (i.e., every component has at least three edges,
so that a dotted component is no longer allowed; see -l option). The pictures in this paper have
been generated this way.f Another functionality is that it can output the Millett-Ewing format of the link (but not tangle!)
projection, making possible by their powerful programs the calculation of the various polynomials
of the link.f It contains detailed comments, so we hope that it will be (re)usable.

Below we provide instructions for use and we are always grateful for comments and suggestions
about it.

A modification of this program is possible to handle general diagrams by using the extended Dowker
notation (see > 5.3), but we will develop one only at request.

An additional small program br2proj is provided to generate input files of a closed braid and its
axis (so as to examine the invariants as conjugacy invariants for braids) from a braid word. Therefore,
this way it is possible to use the invariants (at least for braids) without SnapPea’s graphical interface.

Another programlsd2sp is provided to convert the format of the editor “LinkSmith” in KnotScape
to the SnapPea link projection format (at least in so far that it is recognized as such by gsinv).

A final tool is v23 which contains an implementation of the Polyak-Viro formula for v2 and the
Fiedler formula for v3 I 4 reading in the knot(s) in the notation of Dowker and Thistlethwaite (the con-
vention for obversion being that the sign of the first entry is equal to the writhe of the crossing it
represents).

5.1 How to install and use them

The (gzipped) tar-archive [St2] should be expanded on a UNIX machine with a command like

tar -xzvf gsinv.tgz

It contains the following files:

gsinv.C – the main program. It is to be compiled using the GNU C++
compiler g++, version 2.7.0 ff., with a command like
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g++ -o gsinv gsinv.C &

(Note: due to the large number of complicated expressions for
the invariants with J 3 graduation, compiling will probably last
up to an hour, so it is a good idea to do it in the background.)

comp.h, rat.h,
mydefs.h, x.h, y.h,
eveninv.h, oddinv.h,
lk0mod3.h, lkZ_0.h and
lk1mod3.h

– files included into gsinv.C.

8-17-2-1 – the SnapPea projection file of the 2-cable of 817 provided to re-
produce the below example.

tang.lsd – the LinkSmith format file of a tangle provided to reproduce the
below example 5.4.

mypic.psh – header file for dvips for including the graphics output of the
program into a TEX or LATEX document using the epsf package.
Include the header file using the command

\special{header=mypic.psh}

on the first page of the TEX or LATEX document.

br2proj.C – This program should be compiled with

g++ -o br2proj br2proj.C

The program reads in a braid (word) and generates an input file
with the link consisting of its closure (which must be a knot) and
axis (the point T ). The format of this file slightly differs from
this of SnapPea, so to make gsinv recognize it, invoke it with
the additional parameters ‘-f 1’. The braid has to be sent to
the program br2proj from stdin, indicating first the length
of the braid (i. e., the number of generators and their inverses
counted with multiplicities if appearing in powers) and then the
braid word starting with a ‘{’, followed by a comma separated
list of non-zero integers and terminated by a ‘}’. An integer i
represents σi or σ � 1� i according to its sign. The number of strands
is computed automatically. The braid must close to a knot. The
program writes output on stdout, so redirect it into a file. See
example 5.3.

lsd2sp.C – This program should be compiled with

g++ -o lsd2sp lsd2sp.C

The program reads in from the file specified as argument a Link-
Smith format of a link or tangle diagram and outputs on stdout
the corresponding SnapPea projection file. See example 5.4.

v23.C – This program should be compiled with

g++ -o v23 v23.C
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The program reads in from stdin the Dowker-Thistlethwaite
notation of a (prime) knot diagram in the format: “crossing num-
ber, knot identifier, Dowker-Thistlethwaite notation” and outputs
on stdout the sequence “crossing number, knot identifier, v2,
v3 I 4”. The input may contain multiple lines of the given format,
which are processed separately, until all input is exhausted. See
example 5.5.

A call of the program gsinv from a UNIX shell should look like

gsinv [ -ps ] [ -i <inv#s> ] [ -w <PSwgt> ] [ -m <mode> ] [ -q ]
[ -K ] [ -mod [ 1 | 2 | 3 ] ] [ -h <homcl> ] [ -a <arsz> ]
[ -aw <arwid> ] [ -T ] [ -af ] [ -ken ]
[ -c <crwid> ] [ -J ] [ [ -f [ 0 | 1 ] ] -l <input file> |
<input file> [ <Re(T)> <Im(T)> ] | [ -f [ 0 | 1 ] ] -p
[ -l ] { <input file> } ]

Here “[ thing_1 | thing_2 ]” means either thing_1 or thing_2, “[ thing ]” means
at most one occurence of thing and “{ thing }” means at least one occurence of thing.

Unlike many other programs, if an option of this program requires a parameter, it has to be supplied
as the next command line argument, not as the rest of the argument indicating the option. E.g., “-i6” is
not correct, you have to write “-i 6”. Options are processed in order of appearance from left to right
on the command line; a later option may override a previous one.

When an option of this program requires a parameter, latter must be specified; no defaults exist.
However, all option parameters have default settings, which are taken when the option is not specified
on the command line.

The program has two modi. In invariant mode (which is the default), each input file is processed
by writing the results on stdout (unless the -q option is specified) and into a log-file whose name is
obtained by adding “.log” to the name of the input file. In PS mode (activated by the -ps option) no
output is generated on stdout (so the -q option is obsolete); instead PS images of the input files are
written into corresponding .eps files (see example 5.2). An exception from these modi is the -ken
option (see below).

The meaning of the options is the following:

-ps sets the PS mode – write PS images instead of computing invariants. The -ps option overrides
the -mod option.

-m The next argument should be a number between 1 and 31. Its lowest 5 bits indicate whether an
action should be done for K �9� K � f lip � K �"� !K and f lip � !K � . Default setting is 1 for PS (only
K) and 15 for invariant computation (first 4).

-K This option indicates in PS mode that the dot for T should not be drawn.

-h The next argument should be a non-zero integer indicating the homology class a to be used inJ -graduation. In J -graduation, the Gauß sums are computed like in J 3-graduation with the
only difference that a chord labeled by ‘1’ matches (only) a crossing of type a and a chord
labeled by ‘2’ matches a crossing of type � a, and the linking number must coincide with the
one the invariants are designed for in J (and not only J 3). Presently only invariants for zero
linking number are available. Default setting for a is 1. This option is obsolete when not
specifying ‘-mod 1’ (see -mod option).

-f Next argument should be either 0 or 1. 0 (default setting) makes the program expect SnapPea
format in the input file(s), 1 sets the format produced by the program br2proj. Both inputs
formats simultaneously are not allowed. If 1 is set, the possibility to indicate coordinates of T
on the command line (see -p option) is not allowed.
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-w Sets the PS weight to the next argument. This should be a number with 1I 2 ( #
�

1 indi-
cating the degree of smoothing the vertices. 1 (default setting) draws sharp vertices, 1I 2 
 ε
smooth vertices. A good value is 0 � 8. A higher value may be useful to avoid intersections
of the smoothed curves which can occur at long edges in the diagram polygon. This option
automatically sets -ps.

-i Only some special invariants with J 2 graduation given in the next argument should be com-
puted. This option was included at some evolutionary stage and is not particularly recom-
mended. The next argument should be something like “2,5,7-10,4” (meaning that we are
interested in invariants 2,4,5 and 7 to 10 only). Default (without the -i option) is all invariants.
However, only special numbers in the list should be used. For even linking number they are 1
for vt

1
1 3

3 , 16 for vt
1
4 3

3 and 5 for vt
1
2 3

3 , for odd linking number – 15 for vt
1
3 3

3 , 16 for vt
1
4 3

3 and 17 for
vt
1
5 3

3 . Additionally for both linking numbers the usual Gauß sum formulas are available (eval-
uated on K by forgetting T ) – invariant number 2 for vt3 and 3 for v3. The invariants provided
with this option are not included in the invariant list computed without the -i option, but are
linear combinations of invariants in the list. A list of J 2-invariants available for computation is
given in [St7]. The -i option overrides the -mod option.

-p Indicates that all arguments remaining after parsing in all options should be taken as file names
of input files to process (options are all leading arguments starting with a ‘-’ and the arguments
required to follow some of them). In this case each input file is assumed to be a SnapPea
projection file of a knot with a point for T therein (resp. a file of the format rendered by
br2proj, when ‘-f 1’ is specified). The point should be added after drawing the knot by a
double mouse click. (Note that such a projection is useless for SnapPea, as it is not a “regular”
link projection.) If without this option there is only 1 argument remaining after parsing in
all options, the program assumes a SnapPea projection file of a knot with a point therein. If
(without this option) after parsing in all options there are 3 arguments remaining, the program
assumes in the file only a knot and reads in the coordinates of the point T from the last 2
arguments. (If the -l option is used, the possibility to give the second and third argument is
not allowed.) Another number of remaining arguments than 1 or 3 is incorrect without this
option.

-q Quiet mode. Do not print anything on stdout, just into the log-files. Obsolete in PS mode.

-J Compute the series of (formally infinite sum) invariants J of degree 2, depending on a param-
eter a. The program automatically computes the highest absolute value of a type of a crossing
and gives the series only for a between its negated and itself. For each non-zero a �`J the
invariant J is defined by

J � a � : � . 
 pa � q0 � p 
 q/g
 ∑
m h 0 2 n i 0 2

gcd
1
m 2 � n 36j a

. 
 pm � qn � p 
 q /5�
where crossing (type) graduation is taken in J .

-mod The next argument should be either ’2’ (default setting), ‘1” or ’3’ indicating the invariants
using which graduation should be computed. ‘1’ means J -graduation (see the -h option).

-c The next argument should be a number. It explains which part of the diagonal length of the PS
image should be taken as crossing size. When passing an undercrossing the PS pen is taken off
the sheet at this distance from the crossing and put back at the same distance on the other side.

-a The next argument should be a number. It explains which part of the diagonal length of the PS
image should be taken as arrow length. A high value (e.g., 1000) causes the arrow to become
invisibly small, and should be specified if an arrow is not desired.

-l This option forces the program to read from each input file a regular link or tangle projection
for SnapPea and to generate a PS image file of the link. It is therefore similar to the -ps
-K options, with the difference that no point T is allowed in the input files and the link may
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have multiple (not only one or two) components. This option is hence unrelated to the main
functionality of the program. The -l option sets automatically the -ps option and overrides
the -mod option.

-aw This option specifies the width of the arrow. The next argument should be a number c indicating
the ratio between length and width of the arrow, so that if � 0 � 0 � is the top of the arrow, coming
along the positive real line, its two ends are (proportionally) at � c �k� 1 � . Default value for c is 5.
This value may be lowered, if the line segment just before the arrow is strongly curly, so that it
leaves the angle spanned by the two arrow ends.

-ken This option indicates that the Millett-Ewing notation of the read in link projection(s) should
be printed. (This enables to use the Millett-Ewing programs for calculating the classical link
polynomials.) Neither any invariants are calculated, nor PostScript is rendered.

-T This option indicates that, when reading in a projection in the solid torus link format, in the PS
image the dot indicating the trivial component should be omitted.

-af If this option is invoked, it has the effect of suppressing the drawing of an arrow in orienta-
tion direction after the first segment of non-closed components, and at the closed components.
Without this option, on a tangle component, an arrow (in orientation direction) is drawn also
after the first segment (and not only at the end). This is useful when drawing tangle diagrams
with many wired strands to facilitate the recognition of their orientation. If many strands, how-
ever, are short, then this is not desirable, and the -af is thought for such cases. Note, that the
arrow at the end of non-closed components is drawn even if -af is specified; to avoid this, use
the -a option (see there).

Example 5.1 If we write

gsinv -m 6 -i 15 8-17-2-1

assuming in the file 8-17-2-1 the knot � 817 � 2 2 1 with its own meridian, we obtain the following output

file: 8-17-2-1
lk(K,T)%2=1
w=1
n=6

inv #15:
vt33(-k)= 10
vt33(flip(k))= 10

The program computes the parity of lk � K � T � and depending on it chooses the right set of invariants.
Each invariant is indicated by its name (e.g., vt33 for vt

1
3 3

3 ). So we see that, unfortunately, vt
1
3 3

3 does
not detect the (possible) non-invertibility of � 817 � 2 2 1 (implying this of 817).

Example 5.2 If we want to see how K � � 817 � 2 2 1 with its own meridian looks like, type

gsinv -ps -m 15 8-17-2-1

You obtain 4 PS files: 8-17-2-1.epswith K, 8-17-2-1-.epswith � K and8-17-2-1_fl.eps
and 8-17-2-1_mi.eps with f lip � K � and !K respectively. You can include them into a LATEX file as
described above.

Example 5.3 To write the image of the braid σ1σ � 1
2 σ1σ � 3

2 and its axis into the file 6_2.out, type

echo "6 {1,-2,1,-2,-2,-2}" | br2proj > 6_2.out
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and to create an image of it, type

gsinv -ps -w 0.8 -f 1 6_2.out

Example 5.4 To write the SnapPea format of the LinkSmith file tang.lsd into the file tang.sp,
type

lsd2sp tang.lsd > tang.sp

To make a picture of the result, type for example

link -ps -w 0.8 -c 70 -aw 3.0 -af -l -a 1000 tang.sp

Example 5.5 To see the invariants v2 and v3 I 4 of the positive (right-hand) trefoil, given in its Dowker-
Thistlethwaite notation “4 6 2”, type

echo "3 1 4 6 2" | v23

(Remember to always specify crossing number and identifier before the Dowker-Thistlethwaite nota-
tion.) The result is as expected

3 1 1 1

Remark 5.1 The polynomial complexity of the program gsinv allows it to handle examples of about
80 crossings in a few hours. However, at least at about 100 crossings it exhausts the limit of virtual
memory available on an average-sized computer.

5.2 Transforming diagrams

Given a diagram with a point the invariants can be effectively computed. However, usually a link may
be given by a regular (oriented) diagram consisting of components K and T (with T unknotted), so it is
worth saying a word on how to transform such a regular diagram into a diagram of the kind we need.

If we do not pose any condition on the (regular) diagram we start with, such a procedure would
in particular mean to transform the diagram of T therein into the zero crossing diagram, which is a
very subtle question and easily fills several dozens of pages for itself (see [Bi] for an exposition on the
problem and some recent results). Hence, we assume that the diagram of T has no self-crossings. E. g.,
the (closed) mixed braid diagrams of [La] are of this kind.

Given such a diagram of K O T ,

1) use moves of the kind (called in [A, fig. 5.58] “tongue moves”)

T

K

� �
T

K

to permute the over- and undercrossings of T with K (at the cost of adding self-cossings of K)
so that, running along (the orientation of) T , we have just one sequence of overcrossings and one
sequence of undercrossings, i. e., only one bridge of T ;
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2) use moves in the 2-sphere

A < � A

to get the component of the complement of the diagram of K, where the bridge of T ends (that is,
the component entered by T by an overcrossing and exited by an undercrossing)

T

to be the unbounded component in the plane, and finally

3) delete T from the diagram, placing a point into the component of the complement of the diagram
of K, where the bridge of T begins (that is, the component entered by T by an undercrossing and
exited by an overcrossing).

T � �

To reverse the procedure (to come from our type of diagram to a regular one) you just need to reverse
the last step.

5.3 A notation for diagrams

It is often convenient to represent link diagrams in an alphanumeric format, different from braids. The
first systematic way of describing link diagrams in such a way was introduced by Conway [Co]. His
notation was developed rather to reflect algebraic properties of the knot (or link) and is hence not partic-
ularly convenient for a computer. In this regard much better does the notation of Dowker and Thistleth-
waite [DT] for knot diagrams. It has been used to compile by computer prime knot tables up to 16
crossings [HT].

A Dowker notation of an n crossing knot diagram is a permutation (vector) d � � d1 �:�9�9�[� dn � of
the numbers 2 � 4 �9�9�:�9� 2n, with possibly some of them negated. When walking along the line in a knot
diagram and numbering the over/under-crossings in this order from 1 to 2n, the n over- and n under-
crossings pair up in n pairs of an over- and under-crossing, such that any pair consists of an even and
odd entry. If the i-th entry di in a Dowker notation is positive, it indicates that di should be the over-
crossing in a crossing, where 2i � 1 is the under-crossing, else di the under-crossing of the over-crossing
2i � 1. (See, e. g., [A] for more details.) This determines an (oriented) knot diagram up to mirroring
of each composite component and up to moves in S2. There was no convention made by the authors
how to fix the mirroring ambiguity, but one way to do so is to take the sign of the left-most entry in the
vector d corresponding to a crossing in a given composite component to be equal to the writhe of the
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crossing it denotes. (For connected diagrams, the program KnotScape [HT] apparently uses exactly this
convention, taking the sign of the first entry to be the writhe of the corresponding crossing).

Here we propose how to extend this notation for our purpose (and call it extended Dowker notation).

For a link diagram of our type we must additionally to the Dowker notation of the diagram of K
specify (first) the connected component of the complement of the knot diagram of K, where the point T
lies (the one, where the bridge of T begins), and (second) the unbounded one (where the bridge ends).
We use for this the convention, that for 1

�
i
�

2n the component described by i (resp. � i) is the one
to the left (resp. right) of the segment of the line between over/under-crossing i and i mod � 2n �l
 1 in
orientation direction.

(over)crossing i m 1

(over)crossing i

component i component n i

Example 5.6 The diagram of the knot 88 and its meridian on figure 10, with starting counting the
over/under-crossings at the position of the arrow, could be denoted by 10 8 2 14 4 16 6 2 16 � 16 or
by 10 8 2 14 4 16 6 2 10 3 (note, that the crossing (1,10) is positive).
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