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1. Introduction

The present note is devoted to the following theorem of Kanenobu [K]:

Theorem 1.1 (Kanenobu [K]) If K is a rational (2-bridge) knot (or link), then���
u
�

u � 1 ��� QK � � u
�

u � 1 	 � 1 
�� 2 VK � u 	 VK � u � 1 	 � 1 ��� (1)

where V is the polynomial of [J] and Q this of [BLM, Ho].

Apart from its elegance, the formula (1) attracted my attention in particular because it provides a simple criterion
to decide about the non-rationality of a knot (apart from considering Schubert’s classification [S] or knot group
arguments).

In the following, we will construct some infinite series of knots, which are not rational, in fact even non-alternating,
but for which (1) is satisfied. These examples have been suggested by empirical calculations (explained subse-
quently), which nevertheless reveal (1) to be a surprisingly powerful test.

2. A systematic collection of examples

The first series of examples we construct suggested by the empirical calculations are basically due to Joan Birman.
(We denote by σi the Artin braid group generators and by ∆ � σ2σ1σ2 the square root of the generator of the center
of the 3 strand braid group B3, as well as by α � the exponent sum of α, and by w, g and c the writhe, genus and
crossing number.)

Proposition 2.1 Let α � B3 be a 3-braid of the form (i) σ6k � 1
1 σ � 1

2 or (ii) σ6k � 1
1 σ � 1

2 σ1σ � 1
2 for k ��� , k � 0 sufficiently

large. Then the knot K � �
∆ 4kα � 1 � ˆsatisfies (1), but is not rational, even non-alternating. Moreover, infinitely many

knots arise this way.�
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2 3 An empirical approach

The proof we give here is of knot-theoretical flavour, but a more generally applicable argument will be given later.

Proof. By [Bi, proposition 2] K and α̂ have the same P [H] (so in particular V and ∆ [Al]) polynomial (such paris of
knots we will subsequently call Birman pairs), and as  ∆ 4kα � 1 ����α � we have by [K, theorem 2] that Q � α̂ 	 � Q � K 	 .
Thus, as α̂ is evidently 2-bridge, (1) holds for K. We show now that K is non-alternating. Assume that K were
alternating. As α̂ is a closed alternating braid, we have that ∆ � K 	 � ∆ � α̂ 	 is a monic polynomial. But by Murasugi
[Mu3] (see also [Cr, corollary 5.3]) such a link is fibered, and therefore, by [Mu2, theorem A] the inequality of
Morton-Williams-Franks [Mo, FW] is sharp on K.

In case α is of type (i), we would then have K to be a � 2 � n 	 torus link, and because of V � K 	 � V � α̂ 	 we would have
K � α̂. But (basically as observed by Birman) Murasugi’s formulas [Mu, � 9-11] show that for k sufficiently large
σ � K 	��� σ � α̂ 	 , a contradiction.

In case α is of type (ii), the (closed braid) diagram α̂ is reduced, and the Morton-Williams-Franks bound for both
K and α̂ is sharp and it is 3. Then by [Mu2, corollary 2] a reduced alternating diagram D of K must have the same
crossing number as the diagram α̂. Therefore, as

g � D 	 � g � K 	 � maxdeg ∆ � K 	 � maxdeg ∆ � α̂ 	 � g � α̂ 	 �
the number of Seifert circles of D is the same as this of α̂, namely 3. But by Morton’s inequalities [Mo] the P
polynomial determines the writhe of a diagram of minimal number of Seifert circles, if the inequality of Morton-
Williams-Franks is sharp. Therefore  α ��� w � α̂ 	 � w � D 	 . As D as a diagram with 3 Seifert circles can be made into a
braid diagram by at most one Vogel move [Vo] and σ changes at most by 2 under a crossing change, the remark after
proposition 11.1 of [Mu] shows � σ � K 	 � σ � α̂ 	 �! 2. However, by Murasugi’s signature formulas, for k large enough�σ � K 	 � σ � α̂ 	 � also gets large enough, a contradiction.

Finally, to show that infinitely many of the knots are distinct, let k " ∞ and use again Murasugi’s signature formulas
showing σ " ∞. #
3. An empirical approach

A more realistic estimate for the quality of (1) as a rationality test can be obtained by examining the tables of
Thistlethwaite [HT].

First, (1) detected all non-rational prime knots of Rolfsen’s [Ro] tables (which are easy to identify from the Conway
notation recorded there). For $ 11 crossing knots, Thistlethwaite does not specify which knots in his tables are
rational, but the number of such knots for given low crossing number can be obtained by computer in a few seconds
by enumerating iterated fractions arising from compositions of the crossing number into the entries of the Conway
notation, and considering (only) fractions p % q with p � q �&� mutually prime and p odd up to the equivalence p % q1 '
p % q2 (&) q1q � 1

2 �+* 1 in ,.-p (see, e. g., [K2]). The numbers are

crossing number 11 12 13 14 15 16
number of rational knots 91 176 352 693 1387 2752

(A general formula for these numbers has been proved by Ernst ans Sumners in [ES].)

Considering prime alternating knots, I found that the number of knots satisfying (1) coincides up to 16 crossings with
the one of the above table, showing that (1) decides about rationality of any such knot.

A further check showed (1) to be violated for any composite knot of at most 16 crossings, assuming that so far the
crossing number is additive under connected sum and taking from a prime knot and its obverse only one as a factor,
as mirroring a composite factor does not change either of the expressions on both hand-sides of (1). Note, that by
[Me], [Ki] and [Th], (1) is easily shown to be violated by any alternating composite knot, by comparing the edge
coefficients.

It is clear that among the non-alternating knots examples should occur, and the simplest ones are two knots of 12
crossings, 122037, building a (rather famous, see [LM, example 17]) Birman pair1 with 71, and 121879. The complete
list of exceptions (recorded in Dowker-Thistlethwaite [DT] notation) up to 15 crossings is given below:

1For this particular pair the coincidence of the Q polynomials was observed, without further explanation, already in [BLM].
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12 1879 4 12 -18 14 -20 2 8 -22 -24 -10 -6 -16
12 2037 6 10 14 -18 2 -20 4 22 24 -8 -12 16
13 7750 4 12 14 -16 18 -20 2 -22 24 -26 -6 8 -10
13 7960 4 12 16 -22 14 -20 2 8 24 26 -10 -6 18
14 33787 4 12 16 -14 -22 2 -20 24 -26 -28 -10 -8 6 -18
14 43535 6 10 24 -18 2 -20 -22 26 28 -8 -12 4 14 16
14 44370 6 12 16 -22 -18 4 -24 2 -26 -8 -28 -14 -10 -20
14 46672 8 -10 12 -18 20 -22 24 26 -6 28 -2 4 16 14
14 46862 8 -12 -16 -20 22 -2 24 -4 26 -6 28 10 14 18
15 157719 4 12 14 -16 18 -28 2 -22 24 -26 -30 -6 8 -10 -20
15 168643 4 12 18 14 24 22 2 -26 6 -28 -30 10 8 -16 -20
15 233158 6 12 16 -24 -20 -26 4 -28 2 -10 -8 -30 -18 -14 -22
15 247180 6 16 14 20 -26 18 -24 4 2 10 28 30 -12 -8 22

121879 122037

Figure 1: The two simplest knots, for which (1) fails as rationality test

Beside 122037 proposition 2.1 explains two more of these examples, 1443535 (associated to 102) and 1446862 (associ-
ated to the (2,11)-torus knot 11367).

For all 13 knots listed above non-alternation can be proved by the Kauffman [Ka] F polynomial. In fact except for
the Birman (pair) knots, and the 2 further examples 137960, having the same V and Q (but not ∆ ) polynomial as 52,
and 15168643, already the criteria for V of [Ka2] and [Th, theorem 1] work.

The small number of exceptions compared to the total number of knots (given in [HTW]) testifies the quality of (1)
as rationality test.

4. Some more series of examples

It may appear that the 10 knots of the above list outside of the scope of proposition 2.1 satisfy (1) by accidental
coincidence. However, there are patterns underlying some of these remaining examples. Drawing the pictures, one
reveals striking similarities between some of them, which can be extended to infinite series.

Example 4.1 For example, the diagrams of 137960 and 15247180 differ just by a t̄ /2 move at the encircled crossing (see
figure 2). Applying further t̄ /2 moves we find that the next 8 diagrams still satisfy (1). Thus we are lead to conjecture
that this will hold for the whole series of diagrams.

This can be shown by some messy calculation, or by the following analytic argument.

We need to show that

z Q � z 	 � 1 �0� 2

1
V 2 z 354 z2

�
4

2 687 V 2 z
� 4 z2

�
4

2 6 � 1 9



4 4 Some more series of examples

for the polynomials Qi and Vi of the diagrams Di with i twists. Considering the generating functions

g � x � z 	 : � ∞

∑
i : 0

Qi � z 	 xi

and

f � x � y � z 	 : � ∞

∑
i ; j : 0

Vi 2 z 3 4 z2
�

4
2 6 7 Vj 2 z

� 4 z2
�

4
2 6 xiy j

(both series converge absolutely in a neighborhood of � x � y � z 	 � � 0 � 0 � 0 	 resp. � x � z 	 � � 0 � 0 	 because of the exponential
growth of the polynomial coefficients in the crossing number) we find by the relations of the Q and V polynomial,
that these are rational functions in x and y (with coefficients in the fraction field F � F ,� z � 4 z2

�
4 � of ,� z � 4 z2

�
4� )

whose denominators have the form

g � x � z 	 � g1 � x � z 	
g2 � x � z 	 �

with degx g2  3 and � 1 � x 	 � g2 for g and

f � x � y � z 	 � P � x � y � z 	� 1 � x 	 � 1 � y 	 � � z 354 z2
�

4 	 2x
�

4 � � � z � 4 z2
�

4 	 2y
�

4 �
with P � F  x � y � , degx P� degy P  2 for f . To extract the diagonal part i � j of f we are interested in (we call this
‘contracting’), we apply a usual trick from harmonic analysis, obtaining

f̃ � t � z 	 � 1<
0

f � 4 te2πiu � 4 te � 2πiu � z 	 du � 1
2πi =>

u
> :@? t

1
u

f
�
u � t

u
� z � du A

The curve integral can be calculated by evaluating the relevant residues for small t, namely

u � 0 � u � t � u � t 7 2 z
� 4 z2

�
4

2 6 2 �
obtaining rational expressions in t with denominators composed by the following 5 factors:

t2 � t
�

1 � 2 z 354 z2
�

4
2 6 2

t
�

1 � 2 z
� 4 z2

�
4

2 6 2

t
�

1 and 2 z 3B4 z2
�

4
z
� 4 z2

�
4 6 2

t
�

1 �
and with the numerators of at most the same degree in t as this of the denominators.

Thus the identity we wish to show
1

1
�

t
3 z

2 C g � t � z 	 � 1
1
�

t D � f̃ � t � z 	
turns, by multiplying by the LCM of the denominators (which is of degree 8 in t), into a polynomial identity of
degree at most 8 in t. To show it, it suffices to show equality for the first 9 coefficients in the Taylor expansion, which
correspond to the first 9 diagrams, the ones we checked above.

Example 4.2 The knots 137750 and 15157719 on figure 3 differ just by two local replacements of a crossing by a
parallel clasp. If we repeat this procedure, adding the same number of crossings at both places, we obtain 6 further
diagrams satisfying (1).

Again, considering this series as the diagonal part of the 2-parameter series Di ; i E (with respectively i and i / half-twists
inserted: note that for i 3 j odd these are 2 component link diagrams), one can build

f � x � x1 � y � y1 � z 	 : � ∑
i ; j ; i E ; j EGF 0

Vi ; i E 2 z *B4 z2
�

4
2 6 Vj ; j E 2 z *B4 z2

�
4

2 6 xixi E
1y jy j E

1
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137960 15247180

Figure 2: Two examples of non-alternating knots satisfying (1), differing just by a t̄ H2 move.

137750 15157719

Figure 3: Two further similar examples: smoothing out the encircled crossings on the
right gives the knot with the left diagram.

and contract 3 times, obtaining a polynomial in t with coefficients lying in some higher-degree algebraic extension
of F ; likewise one builds the corresponding series for Q,

g � x � x1 � z 	 : � ∑
i ; i E F 0

Qi ; i E � z 	 xixi E
1 �

and contracts once. One can then show the general case by some finite number of checks (or by some even messier
direct calculation).

Instead we show that the knots Di ; j are non-alternating (something we would need to show also in the previous
example, but which is then a special case of the argument given in the following lines).

We consider the maximal z-degree of the Kauffman polynomial and check that for p 3 q � 6 � 7, p � q � 0 it is c � D p ; q 	 �
4, and that the maximal coefficient of z is of the form * ak I ak � 4 for some k �J, , which exhibits non-alternation (see
[Ka, p. 426-427]). For p 3 q � 7, p � q � 0, the same property follows by induction on p 3 q by applying the Kauffman
relation near a crossing p in the box with q twists with q $ p and using the general inequality maxdegz F � K 	  
c � K 	 � 1 for any non-trivial link K, applying it on the diagram on which the crossings in the twist box have become
nugatory.

There is a further similarity of diagrams, between 1444370 and 15233158 (this time involving local changes at 3 cross-
ings), but in this case I could not extend it to an infinite series.



6 5 Questions

5. Questions

We conclude by summarizing the problems suggested by empirical evidence.

Question 5.1 Is there a composite knot satisfying (1)?

Question 5.2 Is there a non-rational alternating knot which satisfies (1) (it would need to be prime)?

Question 5.3 Is there a non-rational knot with the F polynomial of a rational knot?

It should be pointed out, that among rational (and also non-rational, see [L]) knots duplications of F are well-known
and have been tabulated by Kanenobu.
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