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Abstract. This paper discusses a flaw in Murasugi-Przytycki’'s Memain fndex of a graph with applications
to knot theory” Mem. Amer. Math. S0d.06 (1993). We point out and partly fix a gap occurring in the probf
Murasugi-Przytycki's braid index inequalities involvitige graph index. We explain why their notion of index
fails to precisely reflect the reduction of Seifert circlgstbeir diagram move, and redefine the index to account
for that discrepancy.
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1 Introduction

As an important part of the literature devoted to studyirglihaid index in the aftermath of the discovery of the
Jones polynomial and its successors, Murasugi-Przytyb&moir [MP] introduces the notion of index of a graph.

Their motivation stems from the relation discovered [Yaldren the braid index and the number of Seifert circles
of a link diagram. They introduce a link diagram move to reglthe number of Seifert circles (Figure 8.2 of [MP]).

The Murasugi-Przytycki move reduces this number by one,camd(often) be applied repeatedly. However, the
choice of move(s) is in general highly ambiguous, and thebemof applicable moves depends heavily on this
choice. The highest economy on Seifert circles is thus aeligzhen the number of moves is maximized.

Murasugi-Przytycki's definition of graph index bases oreasformation of graphs, which is to model their diagram
move on the level of Seifert graphs (see the proof of lemmar8[BIP]). The precise definition of the index (and
where a problem occurs with it) will be discussed in detalbiae but it is important to notice already here that it
entails a maximization over possible ways to modify the brap

Murasugi-Przytycki aim to obtain then the inequality
b(L) < s(D)—ind(D). Q)

HereD is a diagram of(D) Seifert circles of a link with braid indexb(L), and ind D) is the index of the Seifert
graph ofD. The inequality (1) is one of the central results of [MP], anany applications there and elsewhere, for
example [Oh], rely on it.

During our study of Murasugi-Przytycki’s proof, we found apg It occurred when we wanted to understand the
diagram move of Figure 8.2 of [MP]. Murasugi-Przytycki seemassume that Figure 8.2 is the general case, but
we will explain that it is not. Taking care of the missing caseads to a modified definition of index, which we

call indg. Roughly speaking, the correction needed is that in cedifiiations some edges in the star of a vertex
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are not contracted (unlike in their procedure; see belowniiein 3.2). Therefore, Murasugi-Przytycki’s diagram
move just proves instead of (1) that
b(L) < (D) —indo(D). 2)

Then the question naturally arises of how {BJ and indy(D) relate to each other. We will argue that
ind(D) < indo(D), @3)

which justifies (1). This is necessary in order to rehahditlhe applications of this inequality inside and outside
Murasugi-Przytycki's Memoir. We then speculated, basedurcomputational evidence, whether in fact always

ind(D) = indo(D). (4)

Later Traczyk [Tr] provided an argument that this is indeegbt by proving the reverse inequality to (3). Our
understanding is that Traczyk’s work thus clarifies an inigaoirpoint in the matter, but that this is not exactly what
is needed (and it is not enough) to fix the error.

In that realm, the explanation of igdand (3) remains necessary, and succeeds only at a (minar)Tdas draw-
back is that Murasugi-Przytycki’'s definition of index losiés geometric meaninger <. It simplifies the true
transformation of the Seifert graph under their diagramenava way which is priori incorrect but (fortunately)

a posterioriturns out to still give the right quantity. This fact must laéén care of in subsequent applications of
Murasugi-Przytycki's method, e.g., in [MT].

The following account tries to explain the details.

2 Braid representations and braid index

Thebraid group B, onn strands (or strings) is considered to be generated by the gtendard generators; for

i=1,...,n—1. These are subject to relations of the typeo;| = 1 for |i — j| > 1, which we callcommutativity
relations(the bracket denotes the commutator) and 6;0;+1 = 0;0;i10;, which we callYang-Baxte or shortly
YB) relations.

A classical theorem of Alexander [Al] asserts that each linkan be represented as= [3 the closureof some
braid 3. We call3 then abraid representatiorof L. Thebraid index L) of a link L is the smallest number of
strands among all braid representationt o6ee [Mo, FW, Mu]. A braid3 onb(L) strands wit}"fs =Lis called a
minimal braid (representatiorgf L.

Theskein polynomial RF&, LM] is a Laurent polynomial in two variabldsandm of oriented knots and links and
can be defined by being 1 on the unknot and the (skein) relation

-1p( N\ A
1p(50) +19(3<) = -mP()(). ©
As usual, the three fragments depict link diagrams idehéitswhere. The convention uses the variables of, but

differs from the one adopted in, [LM] by the interchangé ahd| .

LetP € Z[I*1, m*1]. Theminimalresp.maximal I-degreenindeg P resp. maxdgg is the minimal resp. maximal
exponent of in a monomial (with non-zero coefficient) . Let spanP = maxdegP — mindeg P.

A crossing as on the left in (5) hagithe (or skein sigi 1 and is callegositive A crossing as in the middle of (5)
has writhe—1 and is callechegative Thewrithe w(D) of a link diagramD is the sum of writhes of all its crossings.

The replacement of a (positive or negative) crossing by hieerightmost picture in (5) is callesimoothing out
When all crossings dD are smoothed out, we have a collection of loops caBedert circles Under undoing the
smoothing operation, we can regard each crossifiyas connecting two (distinct) Seifert circles. Isgb) be the
number of Seifert circles db.

In [Mo, FW] it was proved for the skein polynomiB(l, m) that

%span P(L)+1 <b(L), (6)



the Morton-Williams-Frank§MWF) inequality.

It was soon noticed that for many links the Morton-Williafasanks inequality is sharp (i.e., an equality), and for
a while it had been conjectured that this would be so for &dirahting links. Murasugi-Przytycki disproved this
conjecture, obtaining (among others) an 18 crossing coexdenple alternating knot.

The inequality (6) results from two other inequalities, doidlorton, namely that for a diagraB, we have
1-s(D)+w(D) < mindegP(D) < maxdegP(D) < s(D) —1+w(D). (7)

Williams-Franks showed these inequalities for the caserailtrepresentations. Later it was observed from the
algorithms of Yamada [Ya] and Vogel [Vo] that the braid versis actually equivalent to, and not just a special case
of, the diagram version. (These algorithms allow to turn dimgramD into a braid diagram without alterirgiD)
andw(D).) Nonetheless we will refer below to (7) as ‘Morton'’s inetities’.

These inequalities were later improved in [MP] in a way thiateés to settle the braid index problem for many links
(see theorem 7.1 or also [Oh]). For this purpose, MurasurytiPcki developed the concept of index of a graph.
We recall some main points of Murasugi-Przytycki’s workereing to [MP] for further details.

3 Graphindex

Graphs will be finite. It will be no restriction to assume thiaty are planar, i.e., admitting a planar embedding.
(We later make a remark on the ambiguity of the planar emimggddiVe allow different edges to connect the same
two vertices. Such edges will be counted (and in certaing;daseated) separately. We thus understantidtiple
edgeas a set consisting of the edges connecting the same twoeserti

An edge issimpleif no other edge connects the same two vertices. Such an etldgpewometimes denoted by its
two vertices (order irrelevant).

Loop edges can also be allowed, but are not very relevant.

Definition 3.1 Let G be a connected graph. For a vertein G let thestar starv of v be the set of edges i@
incidentfrom v, i.e., those for whiclv is one of the endpoints. L&, = G/v be the graph obtained fro@ by
contracting stav.

Let G\ v be the graph obtained frof@ by deleting stav, andadditionally vitself. (When we delete an edge, we
understand that any vertex it is incident tonist to be deleted along the way.) We cab cut vertexof G, if G\ vis
disconnected.

Let G be a connectedignedgraph; ‘signed’ will mean for us that each edge carries a siggr —. There is no
problem in extending the various introduced graph opematio signed graphs.

Definition 3.2 We define (recursively) a sequence of edges(ey,...,e,) to beindependenin a graphG, if the
following conditions are satisfied.

1. The empty (edge) sequence is independent per definition.

2. Lete connect vertices; andve. Then we demand tha& is simple, i.e. there is no other edge connecting
vi2, and thaey, ..., &, is independentin (one o6y, or Gy, (i.p., {e,...,en} is disjoint from at least one of
starvy and stawy, resp.).

An independent sas$ a set of edges admitting an ordering as an independengisegu

Theindexind(G), resp. positive indexnd_ (G) and negative indexnd_(G) of G are defined as the maximal
length of an independent edge set (or sequence), resp.eindept positive or negative edge set/sequentk iA
sequence imaximal independeitittit realizes the index o6.
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Now to each link diagrand we associate itSeifert graph G=I'(D), which is a planar bipartite signed graph. It
consists of a vertex for each Seifert circleDrand an edge for each crossing, connecting two Seifert sirélach
edge is signed by the writhe (or skein sign) of the crossinggtesents, as explained below (5). Note that several
edges between the same vertices can thus occur, and theyisnaagay different signs. We will for convenience
sometimes identify crossings/Seifert circledoivith edges/vertices db.

Then we can setind, (D) = ind4) (F(D)). Murasugi-Przytycki claim the following:

Proposition 3.1 (see [MP, (8.4) and (8.8)]) I is a diagram of an oriented link, then

maxdegP(L) < w(D)+s(D)—1-2ind.(D) (8)
mindegP(L) > w(D)—-s(D)+1+2ind_(D) 9
b(L) < mpb(D):=s(D)—ind(D). (10)

An important operation on diagrams studied in relation ®itidex is this oMurasugi sum decompositiqsee
[Cr, §1]). On the level of Seifert graphs it corresponds (maintydlibck decomposition.

Definition 3.3 Thejoin (or block sum G * G, of two graphsG; andG; is defined by

V1 Vo
* = (12)

This operation depends on the choice of a verter each one of the grapl. (Although this dependence will
not be notationally highlighted, it should be kept in mind.)

Every connected non-trivial (i.e. with at least one edg@pfiG can be written as a joi®; * ... x G, for some
non-trivial connected graphg;, such that n@s; has a cut vertex. We caB; the block componentsr join factors
of the graplG.

The precise relation between block and Murasugi sum decsitigois as follows. A Seifert circle ib is separat-
ing, if it has crossings attached to it from both its interior &xterior. A diagram with no separating Seifert circles
is calledspecial Theblocksof D are the connected sum components of the piecBsalftained by Murasugi sum
decomposition oD along its separating Seifert circles. See for this [€1, but keep in mind that Cromwell's
definition of blocks does not take into account connected dacomposition. (Thus some of Cromwell’'s blocks
can decompose into several blocks in our sense.)

Theneach block component 6{D) is the Seifert graph of a block of it is for the sake of this analogy that we
alter here Cromwell’s definition.)

If G=T(D) is a block component itself (i.e., has no cut vertex, &8nid prime and special), one can recoBer
uniquely from a concrete planar embeddingfboth regarded up to moves®). Itis helpful, e.g., in comparing
figures 1 and 2 below, to keep in mind the correspondence ketadlock ofD and the planar embedding of its
Seifert graph. However, under block sum, there is littlesedn dwelling upon planar embeddings. This is why the
block sum (11) of two graph&; andG; is understood to depend on not more than the choice of vextide G;.

For any diagranD, we have
ind4+(D)+ind_(D) > ind(D). (12)

For alternating (and more generally homogeneous [Cr])rdiagD equality holds, because each join factor of
I'(D) contains only edges of the same sign. This implies that iLithsdiagrams (8), (9) are sharp, then (6) and
(10) become sharp, too.

Conjecture 3.1 (Murasugi-Przytycki) ID is an alternating diagram of a lilk thenb(L) = mpb(D).
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Now we must understand the move of Murasugi-Przytycki tlatesponds to the choice of a simple edgend
the contraction of the star ofin G. To set the record straight, we should mention that this nveag considered,
apparently simultaneously and independently, also by cZafil[Ch], although merited there only with secondary
attention. With this understanding, we will refer to it b&lstill as the Murasugi-Przytycki move.

This move is shown in figure 8.2 of [MP], but see figure 1 belowdanore authentic situation. L& be the
diagram before the move ardl the diagram resulting from it. Let us for simplicity identiin edge with its
crossing and a vertex with its Seifert circle (see the remalidve proposition 3.1). In this language, the move of
Murasugi-Przytycki eliminates one crossing, correspogdbe. The crossings of the other edgeés# e incident

to vdo not disappear under the Murasugi-Przytycki move. Instéeey become i’ parts of join factors of (D')

that correspond to a Murasugi summand on the opposite sithe ofiodified Seifert circle. See the proof of lemma
8.6 in [MP], and figures 1 and 2 below.

The subtlety, which seems to have been overlooked in thd pf@iIP], is illustrated in figures 1 and 2. The Seifert
circles adjacent te may be nested iD in such a way that relaying the arc wby the move, one does (and can)
notgo alongall Seifert circles adjacent ta In the Seifert grapls’ = I'(D’) of D’ some of the edges incidentto
in G =T (D) may not enter, as written in the proof of lemma 8.6 in [MP]pibtock components that are 2-vertex
graphs (with a multiple edge).

Still we see that contracting the starwin G = I'(D), we obtain a grapls = G/v, which is acontractionof

G =T (D). (We will later describeexactlyhow G’ is constructed fron@, but let us for the time being use the
easier to obtailG/v instead.) Here contractid@ of a graphG’ means tha6 is obtained fromG’ by contracting
some (possibly several or no) edges, and we allow multigesthG' to be contracted (by doing so simultaneously
with all edges they consist of).

More precisely, the difference between the block componéétandG’Nis that in the last block component &f
in figure 2 the star ot is contracted to obtain the block component®€tonsisting of edgeb andk. So for the
proof of lemma 8.6 in [MP] and (10), we actually need the failog lemma.

Lemma 4.1 If a graphH’ is a contraction oH, then indH’) <ind(H).

Proof. We prove that each independent set of edgdd’iis independent itd. We do this inductively over the
number of vertices ofi.

Letey,...,e, be independent if’. Theney, ..., e, are independent ibl’ /vy, for some vertex; to whichey is
incident. All edges,, ..., e, exist inH, and so doew;. (During the contractions that tuk into H’, the vertexv;
in H may be identified with others.)

Now H’/v1 is a contraction oH /v1, and thus by induction assumptic, ..., e, are independent ikl /v;. More-
over, sincee; is simple inH’, it is simple inH. (Contractions cannot eliminate multiple edges exceptnyracting
them.) Thusey, ..., e, are independent inl, as we wanted. O

With the lemma, we will establish in lemma 5.1 below that wa caduceat leastind(D) Seifert circles by
Murasugi-Przytycki, moves, and (10) is recovered.

Still is should be understood that the contraction of a weigenot fully correct as modelling the Murasugi-Przytycki
diagram move.

5 Modifying the index

It becomes necessary to understand exactly the transfomtdtthe Seifert grapi® under the move of Murasugi-
Przytycki. We describe it now, also filling in the detail olerked by them.

Now we usemarked graphs This means that edges hav&ggraduation. Each edge either carriesmark (and
is marked or not (and isunmarked. Its markingis the status according to this graduation. This distimci®
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Figure 1: A move of Murasugi-Przytycki, where the relayed strand (dotted line) does not go along a
Seifert circle (denoted as u) adjacent to v. The Seifert circles are depicted in gray to indicate that their

interior may not be empty.
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Figure 2: The various Seifert graphs of the diagrams related to the move of Murasugi-Przytycki in
figure 1, in the case when the relayed strand does not go along all Seifert circles adjacent to v. The
graph of D’ is given in its block decomposition, which corresponds to the Murasugi sum decomposition
along the newly created Seifert circle. For simplicity, we display a multiple edge by attaching the
multiplicity to the edge drawn as simple (otherwise, a letter attached just indicates the name).

different from the+/— signing. However, marked edges carry no sign, so that whgrs sire relevant, one should
distinguish edges into positive, negative (unmarked) aatked ones.

We assuméor the rest of the exposition th& is bipartite ThusG has no loop edges (isthmusses) and no cycles
of length 3, which avoids some technical difficulties.

In the initial (Seifert) graph all edges are unmarked (andycé relevant, the sign of their corresponding crossing)
A marked edge is to be understood as one that cannot be choaaredge. It corresponds to a multiple edge.

Definition 5.1 We choose a non-marked edgand a vertew of e. Letw be the other vertex of (see figure 1).
We define the notionn the opposite side toas follows.

A vertexy # v,w is on the opposite side wif there is a vertex # v,w,y adjacent tov such thaty andw are in
different connected components(@\ v) \ x.

(13)

\Y e w

(Here '\’ stands for the deletion of a vertex together with all itsident edges — but not its adjacent vertices;
definition 3.1.) Otherwise we sayis on the same side as e

The meaning of this distinction is that the Murasugi-Preiktynove lays the arc along a Seifert cirdl@djacent
to (the Seifert circle ofy, if x is on the same side &s This move affects the crossings that conneictv, or to a
Seifert circlez on the same side &s

Definition 5.2 Let G be a marked graply, a vertex ofG, ande a simple unmarke&dge betweer and another
vertexw. We define now the marked grafdy ev.
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The vertices ofG/ev are those ofs exceptw. The edges and their markings are chosen by copying thadSeam
follows. Let an edge in G connect vertices; 5.

Case lvis amongvy 2, sayv = vi.

Case 1.1If the other vertex;, of € isw (i.e. e= €), then€' is deleted.

Case 1.2If vy is on the opposite side &) thené€ is retained inG/ev with the same marking.

Case 1.3If v is on the same side asthen€ is retained inG/ev, but marked.

Case 2vis notamong/ ».

Case 2.11f none ofvy > is adjacent tov, then€ retains inG/ev the same vertices and marking.
Case 2.20ne ofvy », sayvy, is adjacent tav. (Thenvz is not adjacent to by bipartacy.)

Case 2.2.1If vi = w, then change; to vin G/ev, and retain the marking.

Case 2.2.2So0 assume next # w. If v is on the opposite side & then retainv; 2 and the marking.

Case 2.2.3If w2 is on the same side &sthen we change; to v, and retain the marking. (Note that by bipartacy,
if v» is on the same side @&sthen so must be;.)

In case of a signed (unmarked) edgethe sign is copied (even if vertices are changed), excefitaércase 1.3,
when¢ receives a mark. In this case the sigreoi deleted.

Since a mark will indicate for us only that the edge cannottiesen ag, the resulting grapls/<v may be reduced
by turning a multiple edge into a simple marked one. (Thie atskes it irrelevant to create a multiple edge in case
1.3)

Definition 5.3 We can extend the definition 3.2 of i(@) to marked graph& by requiring in point 2 thae be
simpleand unmarkedand allowing at every stage the option that a multiple edgefme turned into a simple
marked one. Then in@) coincides with the one previously defined if all edgegsadire unmarked (in particular
ind(D) =ind(I"(D)) when all edges of (D) are understood unmarked).

If we further replace in definition 3.2 the two occurrencesf = G/v; by G/evi, as given in definition 5.2,
then we define the corresponding notions eh@ependenedges and thenodified indexndo(G). Again we set
indo(D) = indo(I (D)) with all edges of (D) unmarked.

If one requires that in a set of 0-independent edges all biéiyeer negative, one obtains the modificationsgnd
ofind..

With this definition, we obtain (2). The property (3) can beyad by induction.
Lemma 5.1 For every marked grapB we have indG) < indo(G).

Proof. We prove inductively over the vertex number Gfthat each independent set of edge<ans also 0-
independent.

Letey,...,e, be independent its. Thuse; is simple and unmarked i8, andey, ..., e, are independent i/ v.
SinceG/v, is a contraction 06 /vy, by the proof of lemma 4.1, the edges. . . , e, are independent i /ev;. By
induction assumption they are thus O0-independe@/igv1. Thereforegy, ..., e, are O-independent iG. O

This fixes Murasugi-Przytycki’s proof of lemma 8.6 in [MP].shmilar fix works for (8) and (9).

We speculated whether in fact (2) can be stronger than (1(4) lis false, then conjecture 3.1 is also false. We
explained, though, that indeed (4) is true (and proved bgZidaas a followup to our note). Still one needs our
(much more awkward) definition of the modified index, at |6dasthe scope of this note, in order to prove (3) or
(4), and fix the gap in [MP].

Also, if one likes to keep the correspondence between ($egeaph and diagram, one must accept the circum-
stance that (in general) not all of stas to be contracted. The idea of using vertex contracticaiggttforwardly,
following [MP]) appeared in at least one further paper, [MT$ contain problems from propagating, we feel thus
some priority justified to our point of caution. This motigdtadditionally the present correction.
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The important difference of ingto ind lies in not affecting edges in case 1.2. The treatmértedices on the
opposite side te, the technical detail missed by Murasugi-Przytycki, doesaffect the result significantly, yet it
creates a lot of calculation overhead (which we experientattempts to use the possibly better estimate (2) prior
to Traczyk’s proof of (4)). Note, however, that it impliestadditivity of indy under block sum in an easier (and
much more natural) way than Murasugi-Przytycki's corregping statement for ind.

Definition 6.1 A marked graph isiot 2-connectedf it has anunmarkededge whose deletion disconnects itGf
is not 2-connected, there is a plane curve interseddinig a single, and unmarked, edge. We call such a curve a
separating curve

Note that the initial (unmarked Seifert) graph Bfis 2-connected because we can assirieas no nugatory
crossings.

Lemma 6.1 If Gis 2-connected, so i5/V.

Proof. We assume to the contrary th@ev is not 2-connected. Le¥ be a disconnecting edge. So there is a
separating curvgthat intersect§/ev only in €. The only edges i6/ev which do not exist irG are of the typez

in (13). Thatiszis a vertex on the same side@sadjacent to a vertexadjacent torin G. (Note that whenx = w,
then allz adjacent tav are on the same side a3 By definition 5.1, the property afbeing on the same side as
implies that there is a cycle B containing the edges= vw, vxandxz In G/ev, this cycle is shortened wheazis
replaced byz(ande contracted). Thuszbelongs to a cycle iB/ev, and cannot disconne@/v.

Thereforeg persists inG. It must be unmarked i, since the move fror® to G/ev never deletes marks. Thus the
curvey must intersecB in some other edge. The only edges added when recovering it frons/ev (except thae

is decontracted) are of the forxain (13) (withx a vertex adjacent tg, andz a vertex adjacent toon the same side
ase). Theny passes irs through a cycle as the right one in (13) (the one contaimirg/, w in consecutive order;
note thatz # w by bipartacy). InG/ev this cycle is changed only by replacingandvx by vz (and contracting).
The only wayy can avoid this cycle iIG/ev is thaty passes througd = vxin G/ev (andG). But by construction
vxis marked inG/ev, andy is not a separating curve, a contradiction. O

It is easy to see thd&d; * G, is 2-connected iff botlis; andG; are so. This is true regardless of how (i.e., at which
vertices) ¥’ is performed.

Lemma 6.2 If Gy » are 2-connected, then 51 * G2) = indo(G1) +indo(G2).

Proof. It is enough to see that the contraction procedure of an edly&; does not affect edges or markings in
Gy, except possibly the change of vertex at which the block &imG; is performed.

Let v,w be the ends o, and we consider the building &/cv for G = G1 x G,. Letz be the (cut) vertex o6 at
which the block sunG; x G is performed.

If z+ vis not adjacent t@, then nothing is changed &, when buildingG/ev.

Next assume = v. The vertexv must be adjacent to at least one more verekw in G; (elseG; is not 2-
connected oe is multiple). Then we see with this choicexfn definition 5.1 that the vertices i@, exceptv lie
on the opposite side ®@ Thus buildingG/ev does not affecB;.

Finally assume # v, butzis adjacent tos. If z=w s the other end o, then inG/.v all edges incident i, to
w are redirected to with the same marking, and €& is not affected. |1z # w, then choosing for x in definition
5.1, we see that all vertices @5 excepiz are on the opposite side ¢ Thus nothing of5; is affected by building
G/ev. O
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7 Outline of applications

We conclude by briefly outlining the context in which the ab@voblem was encountered.

Beside the standard presentation of the braid groups usitig'sAgeneratorj, another presentation has been
studied for some time [BKL] by means of an extended sdtasfd generatorgand their inverses)

-1 -1

— G .. .G ootl
0} =0i...0j-20j-10]...0;

I7J
for1<i< j<n. (Notethato; = 0jji1.)

A representation of a brai, and its closure link. = [3 as word incﬁf-l is called aband representatianA band
representation of spans naturally a Seifert surface of the linkone glues disks into the strands, and connects
them by half-twisted bands along tbg;j. The resulting surface is calldéntaided Seifert surfacef L.

A minimal genus Seifert surface &f occurring in the form of a braided Seifert surface is calleBesnequin
surface This term was coined by Birman-Menasco [BM] in honor of Beguin, who had proved in [Be] that such
surfaces exist for 3-braid links on a minimal (i.e., 3-sttphraid. It is known that not all links (or knots) carry a
Bennequin surface on a minimal braid.

Murasugi-Przytycki's work (and its present correction)l e applied to obtain the following result;

Theorem 7.1 Any alternating knot of genus up to 4 or of at most 18 crossings

(a) makes the Morton-Williams-Franks inequality (6) shétp., an equality), except if it is the Murasugi-
Przytycki knot or its mutant,

(b) satisfies conjecture 3.1 (for at least one alternatiagr@mD), and

(c) carries a Bennequin surface on a minimal braid.

The proof uses, among others, a computer implementationuo&dtigi-Przytycki's graph algorithm. Details will
be explained in a subsequent paper.
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