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Abstract. We prove for rational knots a conjecture of Adams et al. that an alternating unknotting number one knot has
an alternating unknotting number one diagram. We use this then to show a refined signed version of the Kanenobu–
Murakami theorem on unknotting number one rational knots. Together with a similar refinement of the linking form
condition of Montesinos-Lickorish and the HOMFLY polynomial, we prove a condition for a knot to be 2-trivadjacent,
improving the previously known condition on the degree-2-Vassiliev invariant.

We finally show several partial cases of the conjecture that the knots with everywhere 1-trivial knot diagrams are
exactly the trivial, trefoil and figure eight knots. (A knot diagram is called everywhere n-trivial, if it turns into an
unknot diagram by switching any set of n of its crossings.)
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Resumé. On montre pour des nœuds rationnels la conjecture d’Adams et al. que chaque nœud alterné du nombre
gordien 1 a un diagramme alterné de nombre gordien 1. On applique ceci pour montrer une version signée du
theorème de Kanenobu–Murakami sur les nœuds rationnels de nombre gordien 1. Avec une version pareille de la
condition de Montesinos-Lickorish sur la forme d’enlacement et le polynôme de HOMFLY, on obtient une condition
pour un nœud d’être 2-trivadjacent, qui généralise la condition de l’invariant de Vassiliev du degré 2.

On finit par obtenir un resultat partiel sur la conjecture que le seuls nœuds avec des diagrammes partout 1-triviaux
sont le nœud trivial, le trèfle et le nœud huit. (Un diagramme d’un nœud est dit partout n-trivial, s’il tourne dans un
diagramme du nœud trivial sous le changement de chaque ensemble de n de ses croisements.)

Mots clefs: diagramme de nœud, changement de croisement, nombre gordien, nœud trivadjacent, polynôme de HOM-
FLY.

1. Introduction

The concept of n-trivadjacency (see [AK, HL]) has been recently introduced as a specialization of Gusarov’s notion of
n-triviality [G] (introduced in the context of Vassiliev invariants [BN]), and generalization of the property unknotting
number one [Li, Sc, We] (with which it coincides for n � 1), and is also related to other unknotting operations [Ask,
Ask2, MN]. In [AK], N. Askitas and E. Kalfagianni studied the case n

�
3, obtaining several results on n-trivadjacent

knots in these cases (in particular, all such knots have unit Alexander polynomial and are 5-trivial). These conditions,
on the other hand, strongly restrict the class of such knots (the simplest non-trivial examples have very likely not less
than 23 crossings and certainly not less than 14 crossings). The case n � 2 is rather different, since the results of
[AK] do not apply, and in fact there are simple examples of 2-trivadjacent knots (the trefoil and figure-8 are such).
Therefore, beside the classic unknotting number one case n � 1, the 2-trivadjacent case is most interesting to study.
�
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2 2 PRELIMINARIES

In this paper we will deal with the cases n � 2. We start in � 3 with n � 1 and prove in � 3.2 a refined (signed) version
of the unknotting number theorem of Kanenobu–Murakami [KM] for rational knots. This theorem uses another result,
proved previously in � 3.1, confirming for rational unknotting number one knots a conjecture due to Bernhard, Jablan
and Adams, concerning the existence of an unknotting number one minimal (crossing number) diagram.

Then in � 4 we consider n � 2 and prove a condition for 2-trivadjacency using the skein (HOMFLY) polynomial [H],
which generalizes the previously known condition � v2 ��� 1 in the v2 �	� 1 case (v2 denotes the degree-2-Vassiliev
invariant). Together with the signed refinement of the theorem of Lickorish [Li] in [St3], this allows to decide about
2-trivadjacency for most knots in Rolfsen’s tables [Ro, appendix], with 19 exceptions.

Finally, in � 5 we consider a generalization of n-triviality we call everywhere-n-triviality, and consider in particular
the case n � 1 (where the condition on a knot diagram means that it remains/becomes unknotted after switch of any
arbitrary crossing). We present some computational evidence for a conjecture stating that the only non-trivial knots
possessing everywhere 1-trivial diagrams are the trefoil and figure eight knot (and giving all these diagrams). We then
apply the results of � 3 to deduce a partial statement towards this conjecture.

2. Preliminaries

A knot diagram D is an immersed oriented closed curve in the plane with transverse self-intersections, called crossings,
each one of which is weighted by a sign indicating over- and underpassing strand. The set of all knot diagrams we
denote by D, so that D 
�� Reidemeister moves �� K is the set of all knots.

For a knot diagram D, and a subset S of the set C � D � of its crossings, let DS be the diagram obtained from D by
switching all crossings in S. Let Dp � D � p � . The knot represented by a diagram D we denote by �D � . The unknot we
will write as � .

The concept of n-triviality was introduced by Gusarov [G], who proved its fundamental importance in the study of
Vassiliev invariants. (Here and in the sequel ’ � ’ denotes a not necessarily proper inclusion.)

Definition 2.1 A knot diagram D is called n-trivial, if there are subsets S1 ��������� Sn � C � D � with Si � S j ��� for i �� j,
such that for any ���� I � � 1 ��������� n � the diagram D ! i " ISi is an unknot diagram. A knot K is called n-trivial, is it has an
n-trivial diagram.

The concept of n-trivadjacency arises from n-triviality when demanding � Si �#� 1.

Definition 2.2 A knot diagram D is called n-trivadjacent, or n-adjacent to the unknot, if there is a subset S � C � D �
with � S �$� n, such that DS % is an unknot diagram for any �&�� S '(� S. A knot is called n-trivadjacent if it has an
n-trivadjacent diagram.

A related, but much more classical, concept is that of the unknotting number of diagrams and knots.

Definition 2.3 The unknotting number u � D � of a diagram D is defined as

u � D � : � min �)� S � : S � C � D � � �DS �)�*�&� �
The unknotting number u � K � of a knot K is defined as

u � K � : � min � u � D � : �D �)� K � � (1)

Note that a diagram of a non-trivial knot (i.e., not the unknot) has unknotting number 1 iff it is 1-trivadjacent. We will
later apply tools developed to study unknotting number one to 2-trivadjacency.

Similarly, we have the crossing number of diagrams and knots.
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Definition 2.4 The crossing number c � D � of a diagram D is defined as �C � D �+� . The crossing number c � K � of a knot
K is defined as

c � K � : � min � c � D � : �D �,� K � �
A diagram D with �D �-� K and c � D �.� c � K � is called minimal (crossing number) diagram for K.

Definition 2.5 We call a diagram prime if there is no closed curve intersecting it transversely in exactly two points
such that both its interior and exterior contain crossings of the diagram. (This closed curve is not to intersect the
diagram at the crossings.) Otherwise the diagram is called composite. We call a knot prime if in any of its composite
diagrams, one of the arcs separated by the closed curve is unknotted.

We will consider knots with special types of diagrams, studied for a long time.

Definition 2.6 A knot diagram is called alternating, if the strand passes all crossings alternatingly as under- and
over-crossings. A knot is called alternating, if it has an alternating diagram.

∞ 0 1 / 1 4

P Q

P
Q P

sum P� Q product PQ closure P / 2 / 3 4 2

Figure 1: Conway’s tangles and operations with them. (The designation ‘product’ is very
unlucky, as this operation is neither commutative, nor associative, nor is it distributive with
‘sum’. Also, ‘sum’ is associative, but not commutative.)

A subclass of the alternating knots are the rational knots, which we define according to Conway [Co].

Definition 2.7 A tangle diagram is a diagram consisting of strands crossing each other, and having 4 ends. A rational
tangle diagram is the one that can be obtained from the primitive Conway tangle diagrams by iterated left-associative
product in the way displayed in figure 1. (A simple but typical example of a rational tangle is shown also there.) A
rational knot is a knot having a diagram which is the closure of a rational tangle diagram. We call this diagram a
rational knot diagram.

The left-associative product representation determining the rational tangle diagram is called the Conway notation for
the rational knot.

The skein, or HOMFLY, polynomial P is a Laurent polynomial in two variables l and m of oriented knots and links
and can be defined by being 1 on the unknot and the (skein) relation

l 0 1 P 1 243 l P 1 25�&/ mP 1 2 � (2)

Here the 3 diagram fragments are understood to represent the differing parts of otherwise identical link diagrams. We
call the left resp. middle one a positive resp. negative crossing. The procedure by replacing any of those by the right
diagram is called smoothing out.
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The Jones polynomial V , and (one variable) Alexander polynomial ∆ are obtained from P by the substitutions

V � t �6� P �7/ it � i � t 0 1 8 2 / t1 8 2 ��� �
∆ � t �6� P �7/ i � i � t1 8 2 / t 0 1 8 2 ��� �

hence these polynomials also satisfy corresponding skein relations.

For an account on the skein polynomial we refer to the papers [H] and [LM]. (Note: our convention here for P differs
from [LM] by interchange of l and l 0 1, that is, our P � l � m � is Lickorish and Millett’s P � l 0 1 � m � .)
We will denote by � P � mk the coefficient of mk in P (this is a polynomial in l).

We continue by some discussion of nugatory crossings.

Definition 2.8 A crossing p in a knot diagram D is called nugatory, if Dp and D represent the same knot: �Dp �-�9�D � .

(This definition deviates from the commonly used one requiring there to be a closed curve in the plane intersecting D
transversely only in p.)

By det � K � we denote the determinant of K, given by � ∆ K �7/ 1 �+� , ∆ K being the Alexander polynomial of K.

Let :<;p be the group of units of : p �=:>
 p : . There is an equivalence (explained in [St]), related to some identities from
the theory of elliptic forms, between the existence of representations of a natural number p as the sum of the squares
of two coprime numbers, the lack of (prime) divisors of p of the form 4k 3 3, and the existence of square roots of / 1
in the unit group : ;p of the congruence ring.

3. Rational knots of unknotting number one

3.1. The Adams-Bernhard-Jablan conjecture

The fascination of unknotting numbers is the sharp contrast between the effort in defining them (as the minimal number
of crossing changes necessary to perform in some diagram to create an unknot) and calculating them. Yet no tool is
available to compute unknotting numbers, which is simultaneously satisfactory simple and generally applicable (see
[Ki, table on p. 49], loc. cit. and related discussion).

Therefore, one was tempted to make conjectures about easy ways of determining unknotting numbers. For a while it
was hoped that one could replace the infinite set on the right of (1) by a finite one, and compute the unknotting number
of a knot correctly just from minimal (crossing number) diagrams, that is by

min � u � D � : �D �)� K � c � D �?� c � K ��� � (3)

However, this hope was disappointed by the example 108 of Bleiler [Bl] and Nakanishi [Na], for which the unknotting
number is 2, yet (3) gives the value 3.

To salvage the situation, several subsequent conjectures expressed some weaker but hopefully more realistic desires,
the most suggestive of which is to allow in between the crossing changes the freedom to change the knot diagram to a
minimal one.

Definition 3.1 For a knot K let a modified unknotting sequence be a sequence � D0 ��������� Dn � of length n, with (i)
�D0 ��� K, �Dn ���@� , (ii) c � Di �A� c ���Di �B� , and (iii) C pi D C � Di � : �E� Di � p �,�&�Di F 1 � for 0 � i G n. Define the modified
unknotting number u 'H� K � as the smallest length n of a modified unknotting sequence of K.

Then for the calculation of u ' one still has to consider only finitely many diagrams, and one hopes for

Conjecture 3.1 (see [Be, Ja]) u � K �.� u 'B� K � for any knot K.
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A special case of this conjecture (for unknotting number one and alternating knots) was made by C. Adams.

Conjecture 3.2 (Adams [Ad, question 4, p. 61]) An alternating knot of unknotting number one has an alternating
diagram of unknotting number one.

Remark 3.1 By [Ka, Mu, Th] for an alternating prime knot ‘alternating diagram’ is equivalent to ‘minimal diagram’.
If the alternating knot is not prime only the forward implication I is true, but unknotting number one knots are prime
[Sc, Zh], so the conjecture of Adams is indeed a special case of the conjecture of Bernhard and Jablan.

Remark 3.2 By the proof of the Tait flyping conjecture [MT] any alternating diagram of some alternating knot has
the same unknotting number, hence if an alternating knot has an alternating diagram of unknotting number one, the
same is true for all its alternating diagrams.

Remark 3.3 It has been pointed out by Jablan, that conjecture 3.2 (and hence conjecture 3.1) is in general false, if
Nakanishi’s table entry u � 929 �J� 1 is correct, see [Ki, table, p. 49]. So far, however, I have not seen an unknotting
number one diagram of 929.

Here we confirm the Adams conjecture (and so the Bernhard-Jablan conjecture) for rational knots.

Theorem 3.1 Any rational knot of unknotting number one has an alternating diagram of unknotting number one.

Rational knots will be denoted according to Schubert [Sh] by S � p � q � (p K q K 0 � � p � q �L� 1) or according to Conway
[Co] by C � a1 ��������� ar � . To explain the relation between both notations, define the iterated fraction (IF) of a sequence of
integers a �M� a1 ��������� ar � recursively by

IF � a1 � : � a1 ��������� IF � a1 ��������� ar 0 1 � ar � : � 1
IF � a1 ��������� ar 0 1 � 3 ar � ar 3 1

ar 0 1 3 1

����� 3 1
a1

�

It will be helpful to extend the operations ‘ 3 ’ and ‘1 
 � ’ to NPOQ� ∞ � by 1 
 0 � ∞ � 1 
 ∞ � 0 � k 3 ∞ � ∞ R k D : . In this
sense, IF is a map �SR r DUT �

IF : : r /WVXNYOQ� ∞ � �
Then S � p � q �.� C � a1 ��������� ar � with IF � ar ��������� a1 �Z� p 
 q. (By convention, a1 ��������� ar may sometimes be ordered back-
wards in other papers.)

The rational diagram associated to the Conway form C � a1 ��������� ar � is that of the product � ����� ��� arar 0 1 � ar 0 2 � ����� � a1 in
the tangle construction of figure 1.

Example 3.1 The rational tangle / 2 / 3 4 2 in figure 1 closes to a rational knot with Conway notationC � 2 � 4 � / 3 � / 2 � ,
whose associated iterated fraction is

IF ��/ 2 � / 3 � 4 � 2 �A� 2 3 1

4 3 1

/ 3 3 1
/ 2

�

When considering orientation of the ambient space, S � p � q � and S � p ' � q ' � are equivalent iff p � p ' and q � q ' or
qq '\[ 1 mod p. We denote this equivalence by S � p � q � �� S � p ' � q ']� , i.e. S � p � q � �� S � p � q ^ 1 � , the inversion meant in
: ;p. If the orientation of the ambient space is not considered, then additionally S � p � q � is equivalent to S � p � / q ^ 1 � : �
S � p � � p / q �7^ 1 � . We denote this weaker equivalence by ‘ _ ’. These equivalences follow from Schubert’s classification
[Sh], which is explained also in textbooks like [BZ, Ro].

Our proof of theorem 3.1 decisively uses some work done in this context by Kanenobu and Murakami [KM].
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Theorem 3.2 (Kanenobu and Murakami [KM]) A rational knot is of unknotting number one if and only if it can be
expressed as C � a � a1 ��������� ar � � 2 � / ar ��������� / a1 � for some integers a � a1 ��������� ar �� 0.

More specifically we will use some details of their proof, which we will indicate below.

Proof of theorem 3.1. Consider in more detail the argument in [KM, proof of theorem 1, (ii) I (iii)]. Take a rational
unknotting number one knot K and fix the sign ε D �`� 1 � appearing in the proof. The symmetry of the expression of
K in m and n allows us to take m to be the bigger one and hence to be able to choose t of either signs without spoiling
a �� 0.

First consider the case where a is of the same sign as ε. Choose t also to be of sign ε. Then, taking the expression of n 
 t
as iterated fraction with all numbers of the same sign, one obtains according to Kanenobu and Murakami an expression
K � C � a � a1 ��������� ar � 2ε � / ar ��������� / a1 � with a � a1 ��������� ar all of sign ε. (An illustration of these knots is given in [KM].)
But now (unless we are in the uninteresting twist knot case n � 0) ε IF �7/ a1 ��������� / ar �JG9/ 1, hence, expressing 1 G
ε IF �7/ a1 ��������� / ar � 2ε �aG 2 as iterated fraction with all numbers of sign ε, we have C � ε � εa '1 ��������� εa 'r � with all a 'i K 0.
Now, switching one of the crossings in the (first) groups of the tangles C � 2ε � / ar ��������� / a1 � and C � ε � εa '1 ��������� εa 'r �
(those of 1 or 2 crossings resp.) gives the same tangle and, after adding the remaining twists and closing up, the same
knot, which from former expression is seen to be the unknot. Hence the diagram C � a � a1 ��������� ar � ε � εa '1 ��������� εa 'r � is
alternating and unknots by switching the middle ε to / ε, and we are done.

Let a and ε be of different signs. Now, observe that so far in fact we showed that the tangle C � a1 ��������� ar � 2ε � / ar ��������� / a1 �
has a representation C � C � b1 ��������� bs � with all the entries bi of the same sign (equal to this of a1) and s � 2r 3 1, such
that the tangle diagram reduces to a diagram of the 0-tangle by changing a crossing p, and hence unknots the closed
tangle diagram C � a � b1 ��������� bs � . Adding the a half twists to C � b1 ��������� bs � gives an alternating diagram if a and a1 have
the same sign. This is the case we already discussed.

In the opposite case consider the bijection map of tangles

C � b1 ��������� bs �cbdV C � 1 � b1 / 1 � b2 ��������� bs � (4)

for b1 K 1. Switching the image crossing of p in the image tangle of C again gives the 0-tangle because of the identity

1 
 IF � bs ��������� b1 �)3 1 
 IF � bs ��������� b2 � b1 / 1 � 1 �4� 1 � (5)

The exceptional cases, where the performability of this crossing change may be spoiled by taking the image under
the bijection (4) are only those of r � 0 and r � 1, � a1 �e� 1, and they can be checked directly. The case r � 0 gives
a twist knot, and for r �f� a1 �`� 1 we also obtain a twist knot, as a1 and ε are of the same sign, and � a1 � 2ε � / a1 �)�
�d� 1 � 2 � / 1 �A�M�g� 2 � . Otherwise, p exists also in the tangle on the right of (4), and is not the crossing of the initial ‘1’.

But now because of the same identity (5) we have

C � a � / sgn � a � � b2 ��������� bs �?� C � a / 1 � sgn � a �h/ b2 ��������� / bs �
if � b1 �#� 1, respectively

C � a � b1 ��������� bs �4� C � a / 1 � / sgn � b1 � � sgn � b1 �h/ b1 ��������� / bs �
for � b1 �iK 1, such that the corresponding diagram on the right hand-side is alternating (possibly with nugatory crossings
if a / 1 � 0) and the tangle made up of the last s groups therein getting the 0-tangle by one crossing change. Hence
the knot diagram unknots by that same crossing change, and we are also done in this second case. j

Corollary 3.1 The number of almost alternating unknot diagrams of at most n crossings grows exponentially in n.

This is some evidence against the existence of an easy classification of all such diagrams. Note, that contrarily the
number of k-almost positive unknot diagrams grows polynomially in the crossing number for any k (see [St2]).

Proof. The ‘at least’ part of the statement follows from theorem 3.1, the uniqueness of the Conway representation with
all entries even (just take a and all ai above to be even), and the exponential growth of the number of compositions
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into even parts. The ‘at most’ part follows from the exponential growth of the total number of knot diagrams of n
crossings, as shown by Welsh [W]. j
Our final remarks concern an exact description of the counterexamples to the Bleiler conjecture for unknotting number
one rational knots. In [Bl] he conjectured that any rational knot realizes its unknotting number in a rational diagram
corresponding to the expression of its iterated fraction with all (Conway) coefficients even. This conjecture was
disproved by Kanenobu and Murakami [KM], quoting the counterexample 814. We will show now exactly for which
other rational knots of unknotting number one this phenomenon occurs.

Lemma 3.1 If S � p � q � is an unknotting number one counterexample to the Bleiler conjecture, then it is equivalent to
S � 2mn � 1 � 2n2 � for coprime odd numbers m K n K 1.

Proof. The proof of this fact follows by carefully analyzing the proof of the main theorem in [KM]. If n � 1, then
we have a twist knot, and if one of m and n is even, then the fraction n
 t occurring therein has an expression as
iterated fraction with all integers even, and so S � p � q � has an unknotting number one rational diagram with all Conway
coefficients even. j

Lemma 3.2 If S � p � q � has unknotting number one and is not a counterexample to the Bleiler conjecture, then it is
equivalent to S � 2mn � 1 � 2n2 � for coprime numbers m K n

�
1, such that at least one of m and n is even.

Proof. From the uniqueness of the iterated fraction expression with all integers even it becomes clear that an unknot-
ting number one rational diagram with all Conway coefficients even is of the form C � a � a1 ��������� ar � � 2 � / ar ������� / a1 � ,
up to transposition of the integer sequence (where all ai are even). Then again the proof of the main theorem in [KM]
shows that S � p � q �Wk S � 2mn � 1 � 2n2 � such that if t is defined as there, at least one of � n � t � , and hence � n � m � is even. j
This leads to the following definition.

Definition 3.2 Call two coprime integers p K q
�

1 irregular, if there exist coprime integers m K n K 1 with p �
2mn � 1 and 2n2q ^ 1 [@� 1 mod p (for some 3 independent sign choices ‘ � ’), and in all such solution pairs � m � n � both
numbers are odd (where the sign choices are allowed to depend on n and m).

The reason for this technical definition is that it exactly tells when counterexamples to the Bleiler conjecture arise.

Proposition 3.1 S � p � q � is an unknotting number one counterexample to the Bleiler conjecture iff p and q are irregular.

Proof. This is basically the combination of the two last lemmas, and the remark for the twist knots, that in a solution
(in the sense of definition 3.2) with n � 1, m can be varied by � 1, so can be made even. j
We illustrate the fact by two examples.

Example 3.2 If m � 5, n � 3 and p � 2mn 3 1 � 31, then q � 2n2 � 18 and � m � n �.�	� 5 � 3 � is a solution for � p � q �.�� 31 � 18 � . The inverse of 18 in : ;31 is 19, and representations of � 18 and � 19 as 2n2 in : 31 occur for n � 3 � 5 � 26 � 28.
In latter three cases p � 2mn � 1 K 31, and for n � 3 the only representation of p � 2mn � 1 � 6m � 1 � 31 is for
m � 5. Thus � 5 � 3 � is the only solution, and, as seen already on the knot level, S � 31 � 18 �A� 814 is a counterexample to
the Bleiler conjecture.

Example 3.3 If again m � 5, n � 3, but p � 2mn / 1 � 29, then again q � 18 and � 5 � 3 � is a solution for � p � q �,�
� 29 � 18 � . However, now � m ' � n 'E�.�	� 7 � 2 � is also one, because p � 2m ' n 'l3 1 and 2n ' 2 m q [n/ 1 mod p. Thus (29,18) is
not irregular and, as the reader may verify, S � 29 � 18 � is not a counterexample to the Bleiler conjecture.
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3.2. A signed version of Kanenobu–Murakami

In this section we establish a refinement of the result of Kanenobu–Murakami [KM] on unknotting number 1 rational
knots.

We say that K has positive unknotting number 1 (denoted by u F � K �L� 1) if it unknots by switching a positive crossing
to negative. Similarly u 0 � K �)� 1 denotes the situation with opposite sign. These concepts were introduced in [CL].
Trivially u F � K �A� 1 odI u 0 � !K �A� 1, !K being the mirror image of K, and u � K �A� 1 oQI u F � K �L� 1 or u 0 � K �L� 1.

In [St] we considered knots unknotting by switching crossings of either sign and showed

Proposition 3.2 ([St]) Let K be an unknotting number one knot which can be unknotted both by switching a positive
and a negative crossing (not necessarily in the same diagram), and det � K �.� d. Then : ;d has square roots of / 1.

In the case of rational knots a stronger condition than Proposition 3.2 follows from the Culler-Shalen-Gordon-Luecke
theorem about cyclic surgeries [CSGL, CSGL2, CSGL3], applied in [KM], as we show below.

Henceforth, let σ be the signature, and DK denote the double branched cover of S3 over a knot K. By H1 � H1 � DK �L�
H1 � DK � :>� we denote its homology group over : (the various abbreviated versions will be used at places where no
confusion arises) and by λ : H1 p H1 VqN4
`: the linking form on it. Then det � K � is the order of H1 � DK � . There is a
sign convention for λ depending on the orientation of DK . Our choice will be here the same as that in [St3]. If we do
not care about the orientation of DK , then the following theorem is true up to interchange of ‘2n2’ and ‘ / 2n2’.

Theorem 3.3 Let K � S � p � q � be a rational unknotting number 1 knot, which unknots by switching a positive crossing
to negative, i.e. u F � K �)� 1. Then S � p � q � �� S � 2mn � 1 � 2n2 � if p [ 1 mod 4 (or σ � K �)� 0) and S � p � q � �� S � 2mn �
1 � / 2n2 � if p [ 3 mod 4 (or σ � K �.� 2) with � m � n �.� 1, m K n.

For the proof we will need one of the theorems from [St3], which generalizes the theorem of [Li] in an analogous way
as theorem 3.3 generalizes the one of [KM], and of which Proposition 3.2 is a consequence:

Theorem 3.4 ([St3]) Let K be an unknotting number one knot which can be unknotted by switching a positive crossing
to the negative, and det � K �,� d. Then there is a generator g of H1 � DK � with λ � g � g �Z�r3 2 
 d D Ns
t: if σ � K �Z� 0 and
λ � g � g �L�9/ 2 
 d if σ � K �L� 2.

Proof of theorem 3.3. First we consider the case that p has a divisor 4k 3 3.

If K � S � p � q � , then H1 � DK � has a generator g with λ � g � g �L� q 
 p.

If u F � K �u� 1, then in particular u � K �v� 1 and thus by [KM] K _ S � p � � 2n2 � with p � 2mn � 1. Thus there is a
generator g ' D H1 � DK � with λ � g ' � g ']�.�r� 2n2 
 p.

On the other hand, theorem 3.4 implies that there is a generator g ' ' with λ � g ' ' � g ' 'w�v� 2ip 0 1 
 p (with i �	x / 1 used
for abbreviation). Since p has a divisor 4k 3 3, : ;p has no square roots of / 1, and thus λ � g ' � g ']�Z� 2ip 0 1n2 
 p. Thus
K �� S � p � 2ip 0 1n2 � , as desired.

Assume now K �� S � p � 2ip 0 1n2 � . Then by [KM], u � K �,� 1 and moreover, H1 � DK � has a generator g with λ � g � g �,�
2ip 0 1n2 
 p. If now u 0 � K �v� 1, by (the mirrored version of) theorem 3.4, H1 � DK � would have a generator g ' ' with
λ � g ' ' � g ' ']�)�n/ 2ip 0 1 
 p. But g and g ' ' are multiples of each other, and : ;p has no square roots of / 1, a contradiction.
Therefore, u F � K �.� 1.

This shows the theorem in case p has a divisor 4k 3 3. Now consider any odd p K 1.

Let u F � K �v� 1. Apply [KM] and consider the notation S � p � q � for K with p � 2mn � 1 and q �n� 2n2, rather than
q 0 1 �y� 2n2. Then for any k D : , S � p 3 2kq � q � is also of this form, so u � S � p 3 2kq � q ���W� 1.

Choose ai as in

a1 3 1

a2 3 1

����� 3 1
an

� p
q

(6)
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all of positive sign. Then the diagram D of K corresponding to the notation C � a1 ��������� an � is alternating, and by theorem
3.1 there is a crossing c in D whose switch unknots K (we call this crossing unknotting crossing).

We claim that switching c renders the rational (sub)tangle � a2 ��������� an � in D trivial (i.e. into the 0-tangle). Assume
this were not the case. Add 2k twists to the group of crossings a1 for k K 0, obtaining an alternating diagram with
notation C � a1 3 2k � a2 ��������� an � corresponding to S � p 3 2kq � q � . Since u � S � p 3 2kq � q ���J� 1, there must be for every
k a crossing ck in C � a1 3 2k � a2 ��������� an � unknotting the diagram. This crossing can not be in the group of a1 3 2k
crossings, since resolving a clasp after ck’s switch, we would obtain a reduced alternating diagram. Thus all ck belong
to the tangle � a2 ��������� an � for almost all k. But if no crossing switch makes � a2 ��������� an � into the zero tangle, all these
crossing switched versions of � a2 ��������� an � will compose with a1 3 2k for k high enough to non-trivial rational knots, a
contradiction.

Thus there is a crossing c unknotting the tangle � a2 ��������� an � . Since adding/removing two crossings to/from the group
of a1 3 2k crossings (or switching the signs of the crossings in this group when a1 3 2k becomes negative under
the decrease of k) does not alter the orientation of the crossings in � a2 ��������� an � in the diagram C � a1 3 2k � a2 ��������� an � ,
S � p 3 2kq � q � have either all u F � 1 or all u 0 � 1 for k D : .

By a classical result of Dirichlet (see e.g. [Z, Korollar, p. 46]) there are infinitely many primes s � 4k 3 3, so choose
one not dividing q. Thus there is a k0 with s � p̃ : � 2k0q 3 p. Without loss of generality choose k0 to be of the same sign
as q �9� 2n2, so that p̃

�
p. If now u F � S � p � q ���Z� 1, then also u F � S � p̃ � q ���,� 1, and thus by the already proved case

4k 3 3 � p̃ we have S � p̃ � q � �� S � 2m ' n ' � 1 � 2i p̃ 0 1n ' 2 � . On the other hand � p̃ � q �,�M� 2mn � 1 3 2 � k0 � n2 � � 2n2 � . Since :>;p̃
has no square roots of / 1, we must have � p̃ � q �A�9� 2mn � 1 3 2 � k0 � n2 � 2i p̃ 0 1n2 � . Since 2 � q �@� 2n2, we have 4 � p̃ / p,
and thus � p � q �L�M� 2mn � 1 � 2ip 0 1n2 � , as desired.

The converse conclusion for general p goes in the same way: add 2k0 twists to a1, use that the sign of the unknotting
crossing in the alternating diagram C � a1 3 2k0 � a2 ��������� an � of S � p̃ � q � must be positive, and undo the 2k0 twists (not
spoiling the sign of the unknotting crossing) to get back S � p � q � . j
Remark 3.4 The proof shows also that for rational K, u F � K �Z� 1 if and only if its alternating diagram has a positive
unknotting crossing (i.e. a positive crossing, whose switch unknots).

An application of this theorem is

Proposition 3.3 The only twist knot which unknots by switching crossings of either signs (not necessarily in the same
diagram) is the figure-8-knot.

Proof. Let K unknot in both ways, i.e., K and !K both unknot by switching a positive crossing to the negative. Then
σ � K �.� 0. By [KM], K � S � p � q � unknots by 1 crossing change iff

S � p � q �4_ S � 2mn � 11 � � 22n2 �
for � m � n �.� 1. If we do not care about obversion, as in [KM], then both � 1 z 2 are independently choosable. However,
if we fix the sign of the crossing we switch to unknot to be positive, then because of Theorem 3.3 and σ � K �Z� 0 this
means to fix the choice of � 2 to be ‘ 3 ’. Fix also ε D � 1 � / 1 � . Thus

S � p � q � �� S � 2mn 3 ε � 3 2n2 � � (7)

Now assume a twist knot S � p � 2 � with determinant p and its obverse S � p � / 2 � unknot by switching a positive crossing
to the negative. Then σ � S � p � 2 ���L� 0 and p [ 1 mod 4. S � p � � 2 � has the alternative representation S � p � � p � 1 ��
 2 � but
only the negative sign is relevant for (7), as the second component of the pair is always even.

S � p � 2 � is trivially of the form (7), set n � 1 and m �n� p / ε ��
 2. However, either S � p � / 2 � or S � p � � p / 1 ��
 2 � is also of
the form (7). This suffices to show p � 5, as we describe now.

First consider the case where S � p � / 2 � is of the form (7). Then

C k � l : � k � l �.� 1 � kl � p � 1
2 � k2 [9/ 1 mod p � (8)
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First note from the last condition that k � 1 would lead to p � 2, which is impossible as p
�

5. If k � 2, then p � 5,
so assume k K 2. Also 2l � p 3 1 and 2k � p 3 1 from the middle condition in (8).

Now, because of 2kl [r� 1 � p � and k2 [9/ 1 � p � we have p �t� 2l � k � k and as � p � k �,� 1 we have p �t� 2l � k � .
If p � 2l 3 k, then 2l � p 3 1, 2k � p 3 1 and k K 2 imply 2l 3 k � p. As 2l m k � p � 1, we have p � 1 � k � p / k � . Thus

p � k2 � 1
k / 1

� k 3 1 3 2
k / 1 �

Now k
�

3 leads to p � k 3 2, which together with the obvious k � p and p [�� 1 � k � leads to k � 3 and again p � 5,
or to p � k 3 1 and a contradiction to the middle condition in (8).

If p � 2l / k, then 2l � k because of 2l � k D � 2 � p 3 1 � . But then � l � k �Z� k 
 2 � 1 leads to k � 2, and again p � 5.

In case S � p � � p / 1 ��
 2 � is of the form (7), we need to replace the last condition in (8) by

k2 [M� p / 1 ��
 4 mod p � (9)

Then p � 2k � 2k � l � , so p �{� 2k � l � . If l � 1, then we have from the middle condition in (8) that k �f� p � 1 ��
 2, so
4k2 [ 1 � p � , and thus with (9) that 1 [	/ 1 � p � and p � 2, a contradiction. If l � 2, then k ��� p � 1 ��
 4 �	� p / 1 ��
 4,
but we just argued that p divides 2k � 2 �	� p / 1 ��
 2 � 2. Thus p ��� p 3 3 ��
 2, a contradiction, or � p / 1 ��
 2 / 2 � 0,
and p � 5. Otherwise l K 2, and then the same argument as above applies with the role of k and l reversed. j

4. The HOMFLY polynomial and 2-trivadjacency

After considering unknotting number one, we should look closer on 2-trivadjacent knots. We now consider the HOM-
FLY polynomial P. We need the following result (where δ denotes Kronecker’s delta).

Theorem 4.1 (Kneissler [Kn]) X D ln 0 1 :|� l2 � l 0 2 � occurs as the lowest m-coefficient � P � m1 } n in the HOMFLY polyno-
mial of an n component link iff

� l 3 l 0 1 � n F δn ~ 1 � X /�� l 3 l 0 1 � n 0 1 �

We now prove

Theorem 4.2 Let D be a diagram 2-adjacent to the unknot with crossings c1 z 2.

1. If c1 z 2 are linked (i.e., the arcs in the Suzuki graph cross-hooked), then

P � D � [ P � C � 2 � 1 �t� � P � C ��/ 2 � / 1 �t� or P � C � 2 � / 2 �t� � mod m4 � m2 � l 3 l 0 1 � 2 � �
In particular, v2 � D � D ��/ 1 � 1 � . Moreover, in the figure-8-knot case v2 �f/ 1, we have additionally that u F �
u 0 � 1. In the positive (resp. negative) trefoil case, we have u F � 1 (resp. u 0 � 1).

2. If c1 z 2 are unlinked, then
�P � D ��� m0 [ 1 � mod � l 3 l 0 1 � 3 � �

or equivalently v2 � D �.� 0.

Here v2 � 1
 2 ∆ ' ' � 1 � is the Vassiliev invariant of degree 2, and C � p � q � is the rational knot diagram of figure 2. The
coefficient of m1 0 n in the HOMFLY polynomial for an n component link is sometimes called the Akutsu-Deguchi-
Wadati polynomial (because related to their work in [ADW]) and will be denoted by ϒ here. (See [Lb, Lb2] and loc.
cit. for further details.)
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Figure 2: A schematic picture of the C � x � y � rational knot diagram. The twist knot dia-
grams of 3 and 4 crossings for the trefoil are those with � x � y �\��� 1 � 2 � and � x � y �\��� 2 � 2 � and
the 4 and 5 crossing diagrams of the figure eight knot are those with � x � y �W���g� 2 � 2 � and
� x � y �����g� 2 � 3 � , where � n denotes n positive (resp. negative) half-twists.

Proof.

1. If c1 z 2 are both positive, then we have via the HOMFLY skein relation

l 0 2 1 P � D �h/ 1 2W3n1 l 3 l 0 1 2 2 � m2P 1 Dc1 � 0 �Bz c2 � 0 � 2 � (10)

where Dc1 � 0 �Bz c2 � 0 � is the diagram obtained from D by smoothing out c1 z 2. If c1 z 2 are linked, then Dc1 � 0 �Bz c2 � 0 � is a
knot (and not a 3-component link) diagram, and using theorem 4.1, we arrive to the case P � C � 2 � 1 �t� . The other
2 cases follow, when c1 and c2 are both negative (in which case (10) remains valid up to the change of ‘l 0 2’ to
‘l2’) or have opposite sign (in which case ‘l 0 2’ in (10) disappears).

2. If c1 z 2 are unlinked, then Dc1 � 0 �Bz c2 � 0 � is a 3 component link diagram, and the statement follows again from (10)
(with ‘l 0 2’ again possibly replaced by ‘l2’ or omitted) and theorem 4.1. j

This theorem answers a question of X.-S. Lin (see remark to question 2 in [L]) about further conditions to 2-trivadjacent
knots, beside u � 1 and � v2 �+� 1. It can in particular show for many doubled knots with v2 �=� 1 not to be 2-trivadjacent,
like the two figure-8-knot doubles.

The signed unknotting number information in useful in the first case. Theorem 3.4 can be combined with theorem 4.2
to exclude certain knots from being 2-trivadjacent, even if they satisfy the condition on ϒ ��� P � m0 and have unknotting
number 1. For example, 934, 1032 and 10147 have the ϒ polynomial of the figure-8-knot. However, for 10147 we have
(in Thistlethwaite’s obversion convention) σ � 2, so that u 0 �� 1. For 934 and 1032 we have σ � 0, but their determinant
is 69. That they cannot unknot by switching a positive and a negative crossing follows now from Proposition 3.2.

From the knots in Rolfsen’s tables [Ro], presently the following ones have been found to be 2-adjacent to the unknot:
31 � 41 � 817 � 821 � 944 � 1088 � 10136 and 10156. The following 19 knots are undecided: 813 � 814 � 926 � 927 � 933 � 1030 � 1033 �
1042 � 1044 � 1082 � 1087 � 1093 � 10107 � 10113 � 10114 � 10118 � 10119 � 10131 � 10146. The other knots are proved to be not
2-adjacent to the unknot by theorem 4.2 and its signed unknotting number consequences discussed above.

Note, that in two of the undecided 19 cases – for 1087 and 1093 – the unknotting number is not known to be one (see
the tables in [Kw]1). It is unclear in how far the problem to determine 2-trivadjacency is easier or harder than to decide
about unknotting number one.

Theorem 4.2 can clearly be generalized to 3-trivadjacency (and beyond), but in this case the results of [AK] (together
with Suzuki’s work used therein) give much more detailed statements. As mentioned in the introduction, the simplest
potential examples of 3-trivadjacent knots have 14 crossings (there are two such knots, 1441209 and 1443932 in the
tables of [HT]). On the other hand, the apparently simplest known examples (those coming from the simplest relevant
Suzuki graphs) have crossing numbers which can be estimated to be between 21 and 27, the lower bound coming
from calculating the Kauffman polynomial and the (likely much closer to the actual value) upper bound obtained by
applying Thistlethwaite’s moves to reduce the 3-trivadjacent diagram.

1The unknotting number of 10131 is one, although not indicated so there; see [St3].
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5. Everywhere 1-trivial knot diagrams (joint with N. Askitas)

5.1. A conjecture

The generalization of n-triviality we consider now is

Definition 5.1 A knot diagram D is called everywhere n-trivial, if for any S � C � D � with � S �`� n, DS is an unknot
diagram.

For example, if S � C � D � then DS � !D is the mirror image of D, so that in particular an everywhere n-trivial diagram
D with �C � D �+�`� n is an unknot diagram. Another straightforward observation is that if a knot K has an everywhere
n-trivial diagram, then u � K �,� n.

Here we start the investigation of everywhere n-trivial diagrams in the simplest case n � 1. In [St3] we made the
following conjecture:

Conjecture 5.1 The only knots possessing an everywhere 1-trivial diagram are the unknot, trefoil and figure eight
knot.

Beside the statement on knots occurring in such diagrams, it appeared appropriate to let a computer experiment clarify
what everywhere 1-trivial diagrams actually occur. We describe some of the examples thus obtained, and then prove a
general necessary condition such examples have to satisfy.

5.2. Examples of everywhere 1-trivial diagrams

5.2.1. Trefoil and figure-eight-knot

In [HT], Thistlethwaite compiled tables of low crossing number knots and some programs to process these tables,
which, when appropriately applied and combined, give an extremely efficient tool for examining almost any kind of
question related to knot diagrams and/or knot invariants combinatorially derived from them. A collection of examples
obtained this way may be found in [St4].

Given the diagrams in the alternating knot tables, we have for each flype equivalence class of alternating diagrams one
representative. Factoring out flypes is very appropriate when considering crossing changes, because both operations
commute. Generating from each alternating diagram in the alternating knot tables all1 versions obtained by crossing
changes and using the Jones polynomial as a(n excellent) knottedness test, we obtained a list of everywhere 1-trivial
diagrams of low crossing number.

In diagrams of � 14 crossings, it turns out that the trefoil occurs in the following 2 diagrams

� (11)

and the figure-8-knot in the following four

� (12)

and that these are indeed the only non-trivial knots with such diagrams.
1There are many ways to reduce the number of diagrams to consider, but it would distract us too much to discuss this in detail here.
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Question 5.1 Do the trefoil and figure-8-knot have only the everywhere 1-trivial diagrams given in (11) and (12)?

We will later answer question 5.1 affirmatively for the trefoil (diagrams).

5.2.2. The unknot

The unknot, being the simplest knot, is of central importance to study for knot theory (see e.g. [BGRT, BM, Lv, MT]).
The problem to describe, even conjecturally, everywhere 1-trivial diagrams of the unknot appears much more difficult
than in the knotted cases. There is a plenty of such diagrams and their number sensibly increases with growing crossing
number.

Example 5.1 Here are four examples of everywhere 1-trivial unknot diagrams, three of them without fragments like
(resolved clasps):

�

We have a set of local moves to make everywhere 1-trivial diagrams more complicated. They include connected sums,
if both diagrams are (everywhere 1-trivial) unknot diagrams, and the addition of trivial clasps beside a given one:

/WV �
Since everywhere 1-trivial prime unknot diagrams of 6 and 7 crossings exist, the second move implies:

Corollary 5.1 Prime everywhere 1-trivial unknot diagrams of any crossing number
�

6 exist. j
Question 5.2 Are there prime everywhere 1-trivial unknot diagrams without a resolved clasp of every crossing number�

11?

Example 5.2 To the other extreme, there are examples of unknot diagrams without a single nugatory crossing:

�

One observes that these diagrams can be turned into simpler ones by wave moves (or bridge reroutings; see [NS]).
This is also true for all other 12 crossing diagrams. However, there is one 13 crossing diagram which does not allow
wave moves (there are several such examples with 14 crossings):

�

Remark 5.1 In problem 3 of X.-S. Lin’s problem list [L], Zhenghan Wang asks whether two unknot diagrams with
the same underlying curve can always be transformed into each other through unknot diagrams by switching single
crossings each time. Examples of the above type in particular answer negatively this question.
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5.3. A partial statement on conjecture 5.1

We now prove a partial result towards conjecture 5.1, in particular answering positively question 5.1 for the trefoil.

Theorem 5.1 Let D be an everywhere 1-trivial diagram. Then either D is the 3 or 4 crossing trefoil diagram (11), or
D has the following 3 properties.

1. σ � D �.� 0.

2. det � D � is the sum of the squares of two coprime numbers.

3. If �D � is a twist knot, then �D � is the figure-8-knot.

Proof. The first and second property would follow from u F � u 0 � 1. If this is not the case, then D is positive
(or negative), and then it follows from [St2] that D must have (canonical Seifert surface of) genus one. From the
description of such diagrams given in [St2] by direct inspection we see that D must be a twist knot diagram, and
because of everywhere 1-triviality then it must be the 3 or 4 crossing trefoil diagram. The third property follows from
proposition 3.3. j
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