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1 Introduction

The Alexander polynomial ∆, and its equivalent version due to Conway ∇, remains of profound importance as an

invariant of knots and links in 3-space. Many features of the polynomial have been studied over the years in a

variety of contexts, including surface homeomorphisms, knot groups, Lehmer’s question on the existence of a Mahler

measure minimizing polynomial, knot homology, etc. (See [Ro] for a classical treatise and [LMu, St6] for more recent

references, beyond those to follow below.)

A knot or link is alternating if it has an alternating diagram, one where every strand passes crossings (alternatingly)

over-under. Alternating knots are a class of knots well-studied, and enjoying many special properties. The question

to characterize their Alexander polynomials has sparked extensive efforts. Beyond the classical theorem of Crowell-

Murasugi, there are several further-going conjectures on the appearance of the Alexander polynomial for alternating

links (sometimes more commonly known for knots only). This includes Fox’s Trapezoidal conjecture on the coeffi-

cients of the polynomial, and Hoste’s conjecture on its roots. There are a number of refinements and similar conjectures

for the Conway polynomial of positive links (see §3).

Various root location problems and some of these conjectures have been addressed in a recent monograph of Hirasawa-

Murasugi [HM]. The goal of this note is to show how the work in Chudnovsky-Seymour [CS] on the real-rootedness

of independence polynomials of claw-free graphs can be used to give short elegant proofs of these conjectures for

some classes of links and to partially recover and extend a main result of Hirasawa-Murasugi (see remark 5.3).

We will explain in §2 in a proper graph-theory context a slightly generalized form of Chudnovsky-Seymour’s theorem

and in §4 its relation to the construction of plumbing links. We will apply this relationship then (together with some

further-going arguments) to alternating plumbing links in §5.
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2 Weighted independence polynomial

Graphs considered here will be finite, i.e., with a finite number of vertices and edges. Multiple edges (cycles of length

2) are allowed, but no loops (edges from a vertex to itself). We will write E(G) for the edge set and V (G) for the

vertex set. Write also v(G) = |V (G)| for the number of vertices.

For a graph G, its line graph Λ = Λ(G) is defined to have a vertex for each edge in G, and an edge for each pair of

edges in G with a common vertex.

The independence polynomial I(G,x) of G is defined as

I(G,x) = ∑
A⊂V(G)

x|A| ,

where A goes over independent vertex sets, i.e., sets with no edge in G between any two vertices in A.

Now note that

I(Λ(G),x) = µ(G,x) = ∑
L matching

of G

x|L| , (1)

where a matching of G is a set of edges in G with no common vertex.

A vertex of valence 1 is called a leaf . A tree with no vertices of valence ≥ 3 (i.e., all vertices are of valence 2 except

for two leaves) is a path. The tree of three edges which is not a path is the claw. A graph is claw-free, if no induced

subgraph is a claw.

Theorem 2.1 (Chudnovsky-Seymour [CS]) If G is claw-free, then all roots of I(G,x) are real. In particular, this holds

for G = Λ(G′) for any graph G′.

We will also call below a polynomial with all roots real to be real-rooted.

It will be somewhat useful to extend this theorem to weighted independence polynomials. Consider a weighted graph,

i.e., for which each vertex v has a weight lv. For now we will assume lv is a positive real number (while occasionally

making remarks for more general weights).

The weighted independence polynomial I(G,x) of a weighted graph G is defined as

I(G,x) = ∑
A⊂V (G)

x|A| ∏
v∈A

lv ,

where again A goes over independent vertex sets (cf. (1.8) on page 413 and (2.11–2.14) on page 416 in [La]).

Theorem 2.2 If G is claw-free and weighted (with lv > 0), then all roots of I(G,x) are real.

One way to prove this theorem is to observe that nothing really obstructs the approach of Chudnovsky-Seymour [CS]

for this generalized case. However, we will need to work out an argument in a way that makes later exposition clearer.

A reviewer has pointed out that theorem 2.2 (and generalizations of it) is also well treated in the article of Lass [La].

The proof sketched here turned out to be essentially the one attributed (in §1) there to Engström [En].

Proof. Let G be a graph with vertices V (G) = {v1, . . . ,vn} and edge multiplicities mi j between vi and v j. And let

v = (l1, . . . , ln) a vector of positive integers li ∈ Z+.

We define the blowup graph Gv. Vertices of Gv are

V (Gv) = {vi, j : 1 ≤ i ≤ n ,1 ≤ j ≤ li } .

And edge multiplicities are defined as

m(vi, j,vi′, j′) =

{

mi,i′ if i 6= i′

1 if i = i′
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Pictorially, this means replacing in G each vertex with label li by a clique of size li (each vertex connected to the same

vertices outside the clique).

It is easy to see that when G is claw-free, so is Gv.

Note also that if G = Λ(G′) then Gv = Λ(G′
[v]), where we identify v = (le : e ∈ E(G′)) and G′

[v] means that in G′ each

edge e ∈ E(G′) is replaced by le parallel edges.

Now if a graph G is weighted with positive integer weights v = (lv : v ∈V (G)), applying theorem 2.1 gives that

I(G,x) = I(Gv,x)

has only real roots. (Note that on the left we have a weighted independence polynomial, while on the right an ordinary

one.)

Also if G is weighted, and λG is G with weights multiplied by λ > 0, then

x ∈ C is a root of I(G,x) if and only if x/λ is a root of I(λG,x). (2)

If now G is rational weighted, finitely many rational numbers have a common denominator, so λG is integer weighted

for some λ ∈ Z+. Then the claim follows for rational weighted G.

Finally, one obtains the result for real weighted graphs by approximation. For example, approximate coefficients by

rational numbers, assume the limit has a genuine complex root, use uniform convergence on a (genuine complex)

neighborhood, and [St2, Lemma 2] to get a contradiction. �

In fact, in our work below we will not need irrational weights, but we felt it useful to add this short remark.

Remark 2.1 The relationship (2) holds for any real λ 6= 0 and setting λ=−1 one immediately sees theorem 2.2 to hold

if all weights of G are negative. It becomes much more interesting to examine what occurs for weights of either sign.

(It is obvious why zero weights are redundant.) Unpublished work of Hirasawa-Murasugi (with the added ‘translation’

here) implies that theorem 2.2 may hold for some such graphs, but they are very restricted and, along with the methods

of proof, their graph theoretic significance is unclear. Extensions may be the subject of future investigations.

3 Link polynomial conjectures

Let ∆ be the 1-variable Alexander polynomial and ∇ the Conway polynomial of a link L:

∇(L)(t1/2 − t−1/2) = ∆(L)(t) . (3)

The polynomial ∇ satisfies the skein relation

∇

( )

− ∇

( )

= z∇

( )

, (4)

which defines it alternatively (up to a factor, fixed by demanding ∇(©) = 1). We will call the leftmost crossing

right-handed (or positive), the other one left-handed (or negative).

It is well known that ∇(L) for an n component link L has only even/odd degree terms when n is odd/even, and that

mindeg∇(L) ≥ n− 1. Consequently, ∆(t) has terms tk only if k is an integer for odd number of components and half-

integer for even number of components; we will call such k admissible. Let maxdeg∆ and mindeg∆ be the maximal

and minimal degrees. Then maxdeg∆ =−mindeg∆. We have also the symmetry property

∆(t) = (−1)n−1∆(1/t) (5)

for a link L of n components. It is also well known that when a link is split (i.e., have a disconnected planar projection),

then its polynomials are zero. We will thus consistently assume links we consider are non-split. (A knot has 1

component, and is therefore never split.)
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A classical theorem of Crowell-Murasugi [Cw, Mu] asserts that when L is a (non-split) alternating link, then 2maxdeg

∆ = 1−χ(L) for the Euler characteristic χ(L) of L, and in particular for an alternating knot K, we have maxdeg∆ =
g(K) for the genus g(K) of K. Moreover, ∆(L) is an alternating polynomial, i.e., [∆]k[∆]k+1 < 0 for admissible k of

0 ≤ 2k <−χ(L), where [∆]k denotes the coefficient of ∆ in degree k.

There are several further-going conjectures on the appearance of the polynomial for alternating links L . (We state the

versions for links, although some conjectures are more commonly known for knots only.)

Conjecture 3.1 (Fox’s Trapezoidal conjecture) If L is alternating, there is a number 0 ≤ 2m ≤ 1−χ(L) such that

for ∆[k] :=
∣

∣[∆L]k
∣

∣ we have for all admissible k,

∆[k] = ∆[k−1] for 0 < |k| ≤ m,
∆[k] < ∆[k−1] for m < |k| ≤ 1−χ(L) .

(6)

This conjecture was verified for 2-bridge knots (Hartley) and some more arborescent (algebraic) knots (Murasugi

[Mu2]).

We will call an alternating polynomial with the conjectured property also trapezoidal. (With symmetry (5) of the

Alexander polynomial, this is a special case of a unimodal polynomial.) In case m = 0 for links of an odd number

of components, and m = 1/2 for even number, we call the polynomial triangular. (Note that for even components,

symmetry implies that m ≥ 1/2.)

Call a polynomial X log-concave, if its sequence of coefficients [X ]k (in degree k) are log-concave, i.e.,

[X ]2k ≥ [X ]k+1[X ]k−1 ≥ 0 (7)

for all k ∈ Z. (The right non-negativity condition is technically added to restrict us to positive and alternating polyno-

mials; see also remark 3.2 below.)

Conjecture 3.2 (log-concavity conjecture [St2]) If K is an alternating knot/link, then ∆K(t) is log-concave.

It is easily seen as an extension of the Trapezoidal conjecture (see [St2]). The log-concavity conjecture was verified

for knots K of genus g(K)≤ 4 [St3].

A class exhibiting multiple connections (not only here) to alternating links are the positive links. A link diagram is

positive if all its crossings are right-hand. A positive link is a link with such a diagram.

Note that by [St], if L is a positive link, the (simplified) Conway polynomial ∇̃ = ∇(L)(
√

z) is a positive polynomial,

i.e., [∇̃]k > 0 for mindeg∇̃ ≤ k ≤ maxdeg∇̃ with maxdeg∇̃− k an integer.

Conjecture 3.3 (log-concavity conjecture II [St2]) If L is a non-split positive link, then the simplified Conway poly-

nomial ∇(L)(
√

z) is log-concave.

Regarding roots of the polynomials, Hoste, based on computer verification, raised the following question (now known

as a conjecture) about 20 years ago.

Conjecture 3.4 (Hoste’s conjecture) If t ∈C\{0} is a root of the Alexander polynomial ∆ of an alternating knot/link,

then ℜe t >−1.

This is known from Murasugi’s work if L is special alternating. It is also checked for knots K if g(K)≤ 4 [St3], and

for 2-bridge links L [St5, I]. Hoste’s conjecture is essentially independent from the Trapezoidal and log-concavity

conjectures [St4]. For some very recent updates on this conjecture, see [HIS].

Liechti proposed a meaningful analogue of Hoste’s conjecture for positive links. Here is a slightly modified statement

from Liechti’s original one, in particular not restricting to positive braid links.
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Conjecture 3.5 (Liechti’s conjecture [L]) If t ∈ C\ {0} is a root of the reduced Alexander polynomial

∆̃L(t) =
∆L(t)

(t1/2 − t−1/2)n−1

of a positive (non-split) link L of n components, then ℜe t < 1.

(The multiplicity of the root t = 1 of ∆ can be easily deduced from Hoste’s formulas for [∇]n−1 [Ht].)

Remark 3.1 It should be noted that the Hoste resp. Liechti conjectures are true for an alternating resp. positive link

whenever all roots of ∇(L)(
√

z) are real, or equivalently, all roots of ∆(L) are real or lie on S1 (the set of unit norm

complex numbers). This is because of our previous remarks that ∇(L) is positive when L is positive and ∆ is alternating

when L is alternating.

Furthermore, we draw attention also to the following fact discussed in [St2].

Lemma 3.1 If a positive polynomial is real-rooted, it is log-concave.

Thus, e.g., the real-rootedness of ∇(L)(
√

z) for a positive link implies log-concavity conjecture II.

Although the proof was only referenced in [St2], this lemma is not hard to see directly.

Lemma 3.2 If Q(t) is positive and log-concave, so is Q(t) · (t + 1).

Proof. Let a,b,c,d be four consecutive coefficients of Q. Then we check that ac ≤ b2 and bd ≤ c2 imply (a+b)(c+
d)≤ (b+ c)2. �

Lemma 3.1 follows mainly from lemma 3.2 by induction over the degree and rescaling (if λ,λ′ > 0, then with Q(t)
also λQ(λ′t) is log-concave), noting that all (real) roots must be negative. Obviously, Lemma 3.1 will hold then for an

alternating (real-rooted) polynomial as well (with the roots then being positive).

Remark 3.2 There seems to be another common notion of log-concavity of a, say positive, polynomial X , namely

that logX is a concave function on R+, i.e., (logX(t))′′ ≤ 0 for all t > 0. This alternative property is never meant here.

Although, for instance, real-rooted polynomials X are easily seen to satisfy that condition as well, one can easily find

examples that it neither implies nor follows from (7).

4 Tree plumbing and the independence polynomial

4.1 Construction of plumbing links

We consider a link L obtained by plumbing ordinary positive Hopf bands along a tree G. This means that the vertices

of G depict Hopf bands and an edge connects two vertices if the corresponding Hopf bands are plumbed. To formalize

this construction, and for later reference as well, we will follow (among multiple accounts) the framework of [HM,

§6].

Consider an oriented circle in the plane. Let A = {A1, . . . ,An} and B = {B1, . . . ,Bm} be collections of chords. We will

understand chords not necessarily as straight, but just as an identification of two (distinct) points on the circle. We will

assume, though, that all 2(m+ n) chord endpoints are distinct.

We say two chords C, D intersect if their endpoints are in cyclic order CDCD. (This corresponds under (8) to Hopf

bands which are plumbed into one another.) We assume none of Ai intersect, and similarly none of B j, but we do allow

some Ai to intersect with B j. However, for the purpose of building link diagrams, it will be better to think of chords in

B drawn outside the circle, so that no chords geometrically intersect in the plane.
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We build the intersection graph G(A,B) by vertices V (G(A,B)) = A∪B and an edge between intersecting chords.

Obviously, G(A,B) is bipartite, but many bipartite graphs do not arise this way. However, it is important to note that

every tree does. A tree can be built from a vertex by adding leaves (valence-1 vertices), and it is easy to see how to

install the corresponding chords.

Also, we will endow chords in C ∈ A∪B with a non-zero integer label lC.

The corresponding link L(A,B) and its diagram D(A,B) is obtained from A∪B by the replacement of a (labelled)

chord by a (generalized) Hopf band. (The solid line is a piece of the circle; the dotted line a chord.)

−2 −→ = −2

1 −→ = 1

(8)

The number of crossings 2|lC| of a Hopf band coming from chord C ∈ A∪B must be even. They should be right-

handed (positive) if lC > 0 and left-handed (negative) if lC < 0. (Some complete explicit examples appear in §5.3.)

We will call L a bipartite plumbing link. If G(A,B) is a tree, we will call L a tree plumbing link. This construction

is well-known; in some cases, e.g., [HL], one considers only lC = ±1 (giving ordinary Hopf bands); we will strive to

release ourselves from that constraint here.

If lC 6= 0 for all C ∈ A∪B, it is also well understood that for L = L(A,B) and G = G(A,B),

1−χ(L) = 2maxdeg∆(L) = maxdeg∇(L) = v(G) = |A∪B| (9)

is the number of Hopf bands plumbed.

We will call L(A,B) a positive plumbing link of lC > 0 for all C ∈ A∪B and an alternating plumbing link if lC > 0 for

C ∈ A and lC < 0 for C ∈ B (which is focused on in [HM]). It is obvious that D(A,B) is a positive resp. alternating

diagram under the stated conditions.

We will mostly consider the case that G = G(A,B) is a tree, and write L(G) = L(A,B). This begs the thought why

L(G) depends on G = G(A,B) only. In fact, it does not! This is because multiple leaves attached to the same vertex

have no a priori order in G, but this order does matter in L(G). There are ways to fix this problem, e.g., by considering

G to be a planar rooted tree. But we will see that our arguments apply for all possible L(G) coming from the same G

(these links are mutants, and all have equal polynomials), so that this point will not lead to a problem.

Note that in particular if G = G(A,B) is a labelled path, then L is a 2-bridge (rational) link. Conversely, it is well

known that all 2-bridge links arise in such a way. A general tree plumbing link is arborescent (though by far not all

arborescent links arise by such plumbing).

4.2 Polynomials of positive plumbing links

The line graph Λ = Λ(G) of the plumbing tree G of a link L = L(G) with labels +1 has independence polynomial

I(Λ,x). Then

∇(L) = I(Λ,1/z2) · zv(G) ,

with v(G) = 1−χ(L) from (9).

This observation, which I owe to S. Baader, is the fundamental connection between knot and graph theory in the paper.

With µ from (1), we can write thus:
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Lemma 4.1

∇(L)(z) = µ(G,1/z2)z1−χ(L) . (10)

Proof. The skein relation (4) gives

∇





 1






= ∇












+ z∇












; (11)

and if we apply this at a leaf v of G, we have with the terminology of [CS, 2.1]

∇(L(G)) = z∇(L(G\ {v}))+∇(L(G\N[v])) . (12)

Recall that, according to [CS], G\ {v} means the graph induced by V (G)\ {v}, and G\N[v] is the graph induced by

V (G)\ {v} \ {vertices adjacent to v}.

Now, there is a graph polynomial Î(G,x) satisfying for a tree G and leaf v the property

Î(G,x) = xÎ(G\ {v},x)+ Î(G\N[v],x) . (13)

Namely, this polynomial can be explicitly defined by

Î(G,x) = ∑
A matching

of G

x|V (G)\V (A)| , (14)

where V (A) is the set of vertices of edges in A. (We do not assume A is a perfect matching.) The recursion (13) comes

from distinguishing whether v ∈ V (A) (i.e., whether the matching A has an edge incident from v) or not, giving the

two terms on the right of the equation.

This should be illustrated by a very simple example. Let Pn be the path of n edges (and n+ 1 vertices). We have

Î(P2,x) = x3 + 2x by the formula (14). Similarly Î(P1,x) = x2 + 1 and Î(P0,x) = x. Then (13) gives

Î(P2,x) = xÎ(P1,x)+ Î(P0,x) = x(x2 + 1)+ x = x3 + 2x ,

agreeing with the above.

Now notice that comparing (12) and (13) we have

∇(L(G))(z) = Î(G,z) , (15)

and recall the relationship (1), and formula (10) follows. �

Now consider a link L with a plumbing tree G of Hopf bands with any positive number of full twists. Again, to indicate

the number of twists, we label each vertex v of G by a positive integer lv.

Theorem 4.1 If L is a positive tree plumbing link, then all roots of ∇(L)(
√

z) are real (and so ∇(L) is log-concave).

For ordinary (one positive full twist) Hopf bands, this is an old result of A’Campo [A]. L. Liechti has informed that he

obtained this generalization using A’Campo’s method in his Ph.D. thesis [L2].

Proof. We need to clarify how to modify (11) when vertices w have labels mw 6= 1. We have

∇







mw






= ∇












+mwz∇












. (16)

Thus for a leaf w of G

∇(L(G)) = mwz∇(L(G\ {w}))+∇(L(G\N[w])) .
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With (1) in mind, we see that the recursive property [CS, 2.1] becomes

Î(G,x) = mw x Î(G\ {w},x)+ Î(G\N[w],x) ,

which defines

Î(G,x) = ∑
A matching

of G

x|V (G)\V (A)| ∏
w∈V (G)\V (A)

mw .

To express Î(G,x) for a labelled graph G by an independence polynomial, do the following.

We defined the weighted independence polynomial of a labelled graph Λ (with vertices w labelled by mw > 0) by

I(Λ,x) = ∑
A⊂V (Λ)

x|A| ∏
w∈A

mw .

For a labelled graph G, define its line graph Λ(G) as a labelled graph, with the label of w ∈ V (Λ(G)) = E(G) being

mw = 1/(lvlv′), where w connects v and v′ in G.

Now we note that we have

x|V (G)| · I(Λ(G),1/x2) · ∏
v∈V (G)

lv = Î(G,x) ,

thus for a link L = L(G) with a labelled plumbing tree G, similarly to (15),

∇(L(G))(z) = Î(G,z) = ∏
v∈V (G)

lv · I(Λ(G),1/z2) · z1−χ(L) .

And now to prove that all roots of ∇(L)(
√

z) are real (and so ∇(L) is log-concave by remark 3.1), one just needs to

consult the explanation for theorem 2.2. �

Corollary 4.1 Both the log-concavity conjecture II and Liechti’s conjecture hold for positive tree plumbing links L.

�

We should perhaps stress that working at a leaf of G is what limits the graph-link connection to trees G. For general

bipartite plumbings it seems, unfortunately, not so clear how to exhibit a relation to a graph invariant. On the opposite

side, for trees G, some of the further-going study of I(G,x) also becomes applicable; for instance, one can use a

formula like [La, (1.7)] to gain lower estimates of |∇(L)(
√

z)| in terms of ℑmz, etc.

5 Alternating plumbing links

5.1 Links of alternating trees

Corresponding to a positive plumbing link L = L(A,B), there is the alternating plumbing link L′ = L(A,−B) (with

lC > 0 for C ∈ A∪B and the obvious meaning of −B). We will continue assuming throughout that vertex labels are

integers. The following consideration addresses these links, which were also treated by Hirasawa-Murasugi [HM].

Let first L′ = L(T ′) be the result of an alternatingly labelled plumbing tree T ′ (adjacent vertices have labels of opposite

sign). As noted, an alternating plumbing tree gives an alternating diagram, so that L′ is an (arborescent) alternating

link. Again, write L = L(T ) for the corresponding positive labelled tree T (switch in T ′ sign of all negative vertex

labels, so that all labels become positive). We will retain this notation throughout this section. Then we have the

following relationship.

Lemma 5.1

∇L′(z) = ∇L(iz) · (−i)v(T ′) · (−1)v−(T ′) , (17)

with v(T ′) the number of vertices of T ′, and v−(T ′) the number of negative labelled vertices.
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This says that every second coefficient turns its sign around, while we know what should be the sign of the leading

coefficient. Compare also with remark 2.1.

Proof. It is easy to see recursively using the skein relation (16) that all terms adding have coefficients of the same sign

in the same degree. For L these coefficients will be all positive, and for L′ they will alternate. Then one propagates

(17) through skein induction. �

This argument works again for Hopf bands with any number of full twists (not just ±1; see further §5.3).

Corollary 5.1 If L′ be an alternating tree plumbing link, then all roots of ∇L′(
√

z) are real. Thus Hoste’s conjecture

holds for L′.

Proof. It follows from (17) and theorem 4.1. �

Corollary 5.2 Let L′ be an alternating tree plumbing link. Then ∇L′(
√

z) is an alternating log-concave polynomial.

Thus ∆L′(t) is triangular, with the stronger property that for M = ⌊maxdeg∆⌋ and κ = ⌊k⌋ (denoting greatest integer),

|[∆]k−1|
|[∆]k|

>
M+κ

M−κ+ 1
(18)

in all admissible degrees k with 2 ≤ 2k ≤ 1−χ(L).

Proof. The property of ∇L′ follows because ∇L(
√

z) is known to be a positive polynomial for a positive link L (see

[St]). Regarding ∆L′ , use the conversion (3), and observe the contribution to ∆L′ of each monomial of ∇L′ is triangular.

(Note also that the alternation of ∆L′ follows from that of ∇L′ , without needing to invoke Crowell-Murasugi.)

By looking more carefully at the mentioned contributions, we can obtain the stronger stated inequality. The top degree

z-term in ∇ gives the lowest ratio, which is

(

2M

M−κ+1

)

(

2M

M−κ

) . �

We remind that usual trapezoidality of ∆L′(t) is known from [Mu2] for a larger class of arborescent alternating links.

For ordinary (±1 full twist) Hopf bands, see also Hironaka and Liechti [HL]. We can now work out a little more. (See

also remark 5.3 below.)

Corollary 5.3 Let L′ be an alternating tree plumbing link. Then the polynomial ∆L′(t) is real-rooted, and log-concave.

Proof. It follows from corollary 5.1 also for ∆L′(t) that every root t must have t + t−1 − 2 to be (real) non-negative,

whence t is (real) positive. From here one can obtain log-concavity using lemma 3.1. �

Remark 5.1 It is possible that log-concavity of ∆ follows from that of ∇ directly, without looking at roots. Modulo

lemma 3.2, this is the question: if P(z) is positive and log-concave, is then Q(t) = P(t−1 + 2+ t) also?

Corollary 5.4 Let L′ be an alternating tree plumbing link of n components. Then the signature σ(L′) satisfies |σ(L′)| ≤
n− 1 (in particular, σ(K′) = 0 if K′ is a knot).

Proof. It follows from the argument in the proof of corollary 5.3 (for an excessive link, as discussed below, also from

proposition 5.1) that ∆ has no root on S1\{1}. The rest follows from the jump behavior of the signature. (For example

see [GL] or the appendix of [L].) �

This corollary and corollary 5.2 conform also to the slight addition to the Trapezoidal conjecture made in [St3, §9]

that, for knots K, the number m in (6) satisfies 2m ≤ |σ(K)|. (This prediction was rediscovered in [HM, Conjecture

5.11]. The triangular property in the case σ(K) = 0, which occurs here, was independently conjectured by Murasugi

in private communication.)
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5.2 Excessive alternating trees

For some alternating tree plumbing links one can show a little bit more.

Let T ′ be an alternatingly labelled tree. If in each vertex v of valence ψv, the label lv ∈ Z satisfies |2lv| ≥ ψv, then call

T ′ excessive. (This notion leans on, but is slightly different from, the definition in [Mu2].) Note that in particular this

property always holds if T ′ is a labelled path, i.e., L′ = L(T ′) is a 2-bridge link. (However, keep in mind that a general

2-bridge link arises from an arbitrarily integer labelled path, not just an alternatingly labelled one.)

Proposition 5.1 If L′ = L(T ′) is an excessive alternating tree plumbing link, then all roots of ∇L′(
√

z) are in [0,4].
Followingly, all roots of ∆L′ are (real and) in [3−

√
8,3+

√
8].

Proof. One can show that the positive plumbing link L is alternating, by arguing with the Conway notation. This is

a standard procedure (it appears, inter alia, in some form in [Mu2]), and we do not like to elaborate on the details,

beyond the below brief explanation. (Conway notation and changing it for arborescent tangles is well treated, e.g., in

Adams’ book [Ad].)

Fix a root w of T , which is a leaf (valence ψw = 1). Order the vertices w.r.t. distance from the root. Then each

v ∈ V (T ) \ {w} has φv = ψv − 1 edges to a higher distance vertex. This ordering gives a Conway notation of L.

Manipulate the tangles from vertices in top-down distance order. Since |2lv| > φv, at least one half-twist of the |2lv|
will always remain after the tangle corresponding to v and all of higher distance that hangs on it is made alternating.

At the very last stage we will need |2lv|> ψv for v = w, but this is no problem either when ψw = 1.

Thus L is alternating. A positive link which is alternating is special alternating, and all roots of ∆L lie on S1 (see [St2]).

Thus all roots of ∇L(
√

z) are on [−4,0]. It follows that all roots of ∇L′(
√

z) are in [0,4], so all roots t of ∆L′ satisfy

t−1 − 2+ t ∈ [0,4]. �

5.3 Weakly positive/alternating plumbing

Our last piece of work is a generalization of the relationship (17). This leads into a more knot-theoretical area, but it

seems appropriate to accomodate here this short digression.

There is no obstacle to define L(A,B) when some C ∈ A∪B has lC = 0. We avoided such trivial bands, because

they are exceptional in many ways. (Among others, (9) does no longer hold.) However, we will need zero-labelled

chords here, so let us say that if lC ≥ 0 for C ∈ A∪B we call the plumbing link L = L(A,B) weakly positive and

L′ = L(A,−B) weakly alternating. For these links, all equalities in (9) still hold, except for ‘maxdeg∇(L) = v(G)’,
which becomes ‘maxdeg∇(L) ≤ v(G)’. (We will see, though, with remark 5.2 how to express maxdeg∇(L) exactly.)

Also, the diagrams D(A,B) and D(A,−B) are still positive resp. alternating.

A link diagram is connected if it is a connected set in R2, otherwise it is disconnected. A crossing p in a diagram

is nugatory or reducible, if there is a closed curve in R2 intersecting the diagram only in p. A diagram is reducible

if it has a reducible crossing, otherwise it is called reduced. Reducible crossings can always be removed, to make a

diagram reduced. (These are standard facts well explained in [Ad], for instance.) The simplest pattern of nugatory

crossings in D(A,B), and its removal, is

lC
0 = . (19)

However, there are more complicated ways in which nugatory crossings can appear in D(A,B). The general rule

would be rather to replace the label lC by 0 and retain the dashed chord.

We will also need to use the connected sum D1#D2 of diagrams, and the well-known behavior

∇(D1#D2) = ∇(D1) ·∇(D2) . (20)
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For a treatise of Murasugi atoms, see [QW, St7]. We introduced and studied extensively the notion of ∼-equivalence

of crossings; e.g., it was used over the length of almost the entire book [St3]. (We thus prefer not to take space and get

into these details again here.)

Theorem 5.1 For an arbitrary weakly positive bipartite plumbing link L = L(A,B) and its corresponding weakly

alternating plumbing link L′ = L(A,−B), We assume that the diagram D(A,B) is reduced. We then have

∇L′(z) = ∇L(iz) · (−i)1−χ(L) · (−1)m− , (21)

where χ(L) = χ(L′) is the Euler characteristic, and m− is the number of negative Murasugi atoms of an even number

of components of the diagram D(A,−B).

It is not necessary that G(A,B) is a tree, as illustrates the following example (with χ =−5 and m− = 3):

1 1

1

±1
±1

±1

∇(z) =−4z2 + 7z4 − z6 ∇(z) = 4z2 + 7z4 + z6

Proof. The proof of lemma 5.1 can be adapted thus. We again do recursive skein resolution of non-trivial bands. Note

that, if w is not a leaf, the middle term in (16) leads to a diagram which cannot be obviously simplified to be a positive

bipartite plumbing L(A,B) as we defined before. Thus we must work recursively over diagrams L(A,B) in which we

allow labels lC = 0, leading to weakly positive or weakly alternating plumbing links L.

This recursion does work well, though, and in fact shows the relationship (21) for this even larger class of dia-

grams/links, but with the proper modification. Below, we mention several caveats.

In some diagrams in the recursive skein calculation by successively applying (16), twists coming from different Hopf

bands will join.

1

1

0 =

2

0

0

To formalize what crossings ‘join’, we can use ∼-equivalence. It is important to remark that when starting with a

positive diagram, all diagrams obtained in the skein resolution will be positive, and similarly with alternating. This

ascertains that when ∼-equivalent crossings join, all have the same sign, so that none ever cancel.
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Thus, use induction over the number of positive ∼-equivalence classes. If this number is zero, we have a negative

alternating link bounding a planar surface, so its ∇ is a monomial (or ∇ = 0, which does not cause any problem,

though). Its Murasugi atoms are connected sum factors. Mirroring changes the sign as stated. Then check (it does

require some thought) that signs fit in (16).

If D(A,B) is disconnected, then ∇ = 0. While this causes no problem in (21), one should see why neither it does in

applying (16). Assume that the left diagram in (16) is not disconnected. If the second term on the right of (16) is

disconnected, then the crossings are nugatory, thus remove them, and use (16) on some other crossings. If the first

term on the right of (16) is disconnected, then D(A,B) has a connected sum factor, which is a (generalized reverse)

Hopf link (i.e., L(A′,B′) for |A′∪B′|= 1). This case can also be handled directly by (20). �

Thus we see:

Corollary 5.5 If L′ is a weakly alternating bipartite plumbing link, then ∇L′ is alternating and inequality (18) holds.

�

Remark 5.2 The proof of theorem 5.1 also shows a modification of (9) when lC = 0 is allowed. If D(A,B) is con-

nected, then 1−χ(L) is the number of ∼-equivalence classes that remain in D(A,B) after all nugatory crossings are

removed via (19) or the more general remark below it.

Remark 5.3 A result of Hirasawa-Murasugi [HM, Theorem 6.4] asserts that ∆L′ is real-rooted for a (non-weakly)

alternating bipartite plumbing link L′. Of course, we recovered and complemented this result for the restricted class

of alternating tree plumbing links. On the opposite side, one can start from Hirasawa-Murasugi’s result and use our

arguments unrelated to independence polynomials to recover and generalize most results in the last two sections. (For

instance, one can then see that ∇L′ in corollary 5.5 is also log-concave – in the non-weak case.) Related work has

been done by Liechti in his thesis [L2, Theorem 5.4 and Corollary 5.5]. In such an approach, the connection to graphs

remains unclear, though.

This circumstance vaguely raises motivation to seek extensions of Hirasawa-Murasugi’s result to weakly alternating

bipartite plumbing links. This may be the topic of a separate (longer and, as noted at the end of §4.2, hardly graph

theory related) study.
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