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1 Introduction, motivation and main result

The notion of a Bennequin surface, so named by Birman-Menasco [BM], originates from Bennequin’s work [Be],

and refers to a braided Seifet surface of minimal genus. Rudolph [Ru4] has shown that every Seifert surface can be

made into a braided form, so that Bennequin surfaces exist for every link. These surfaces are closely related to (and

particularly important for) strongly quasipositive links.

Various notions of positivity of links have been studied also with motivation outside the field of knot theory. If

the zero set of a complex polynomial f : C2 → C intersects the unit sphere S3 = {(u,v) ∈ C2 : |u|2 + |v|2 = 1}
transversely, the intersection forms a link in S3. By work of Rudolph [Ru] and Boileau-Orevkov [BO] it was proved

that these links are precisely the quasipositive links.

A link is called quasipositive if it is the closure of a braid β of the form

β =
n

∏
j=1

w jσi j
w−1

j

where w j is any braid word and σi j
is a (positive) standard Artin generator of the braid group. (In [Ru3] there is

some overview of this topic.)

If the words w jσi j
w−1

j are of the form1

σi, j = σ−1
i . . .σ−1

j−2σ j−1σ j−2 . . .σi (1)

they can be regarded as embedded bands (see the l.h.s. of (19)). Links which arise this way are called strongly

quasipositive links, and it was proved that they contain the class of positive links, i.e., links with diagrams all of

whose crossings are positive (right-hand) [Ru2].

1Note that thus the bands are, from our perspective, behind the Seifert disks put into the braid strands to obtain a strongly quasipositive

Seifert surface. We will maintain this convention throughout.
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Positive links in turn (properly) contain the class of positive braid links, i.e., closures of braids which are positive

words in the σi [St].

In some recent papers, Bode and Dennis [B, BD] gave explicit constructions of a complex polynomial realizing

a quasipositive link, and generalized this construction to show that every link is a zero set of a semiholomorphic

polynomial (in u,v,v). They also notice that a zero set of a semiholomorphic polynomial can always be extended

to a zero set of a holomorphic polynomial. Their construction thus proves that every link L is the sublink of a

quasipositive link L′.

Among others, we are going to give here the most general possible result in terms of knot theory, even for strongly

quasipositive links. We will say that a link L is a composition of links L1 and L2, and write L= L1×L2, if both L1 and

L2 are sublinks of L, and if deleting from L the components of L1 gives L2 and vice versa. Of course, the operation

‘×’ is highly ambiguous, and we will show that we can always make the result to be strongly quasipositive.

Theorem 1.1 For any two links L1 and L2, there is a composition link L1 ×L2 which is strongly quasipositive.

This is equivalent to a version of Bode and Dennis’ result for strongly quasipositive links, with the restriction that

the components added (to obtain L′ from L) can form themselves any other given link. Nevertheless, it will be

technically easier to deal with the sublink property first (Theorem 3.1). We also give some complexity estimates of

L′. Generally, the complexity of the result L′ is linear in terms of the complexity of the input L, and can be reduced

if one allows for restrictions on what kind of components are added to L to obtain L′. (See Propositions 3.6 and

4.5.)

The theorem gives a stark contrast to many special and related cases. Positive links, positive braid links, k-almost

positive links, the successively k-almost positive links of [It2, IMT], all are closed under taking sublinks for obvious

reasons.

In §4.1 we introduce the concept of [St4] of banded diagrams, and use it to extend the construction of Theorem 1.1

by starting from arbitrary diagrams of Li. This gives a more general economic estimate of the quasipositive surface

of L1 ×L2 constructed. This paper was originally contained in [St4], and I am grateful to a referee for convincing

me that it pursues a separate idea to better stand on its own. Both concepts ultimately meet in §4.2, but I hope that

the connection is sufficiently clear yet smoothed out.
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2 Preliminaries

2.1 Generalities

The symbols Z, N and C denote the integer, natural and complex numbers, respectively.

The notation [P]i = [P]li = ai is used for a coefficient of a Laurent polynomial P = ∑i ail
i ∈ Z[l, l−1].

We say an inequality ‘a ≤ b’ is exact (or sharp) if a = b and strict (or unsharp) if a < b.

We use the abbreviations ‘w.l.o.g.’ for ‘without loss of generality’ and ‘r.h.s.’ (resp. ‘l.h.s.’) for ‘right hand-side’

(resp. ‘left hand-side’). ‘W.r.t.’ will stand for ‘with respect to’. Some further notations will be introduced at an

appropriate place in the text.
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2.2 Links and diagrams

All link diagrams and links are assumed oriented, even if orientation is not always displayed. Crossings in oriented

diagrams are called

positive negative smoothed out

(2)

Smoothing out is the replacement of a (positive or negative) crossing by a smoothed out crossing. A crossing

change is the replacement of a positive crossing to a negative or vice versa.

Here, and in the sequel, for a knot or link K, we write !K for its obverse, or mirror image. Similarly !D is the mirror

image of a link diagram D, obtained by changing all crossings in D. By K1#K2 we denote the connected sum of K1

and K2.

A crossing of a link diagram is called mixed, if both crossing strands belong to different components, otherwise it

is called a self-crossing.

The number of components of a link L will be written as n(L) (so n(K) = 1 if K is a knot). If D is a diagram of L,

set n(D) = n(L).

If L is obtained from L′ be deleting components, we call L a sublink of L′ and L′ a superlink of L.

A link diagram D is called split, or disconnected, if it can be non-trivially separated by a simple closed curve in the

plane. Otherwise we say the diagram is non-split, or connected. A split link is a link with a split diagram. Other

links are said to be non-split. In the split union of diagrams or links, the latters can be separated by a curve or

sphere. A non-split sublink L′ of L which can be separated by a sphere from L\L′ is a split component of L. A split

component is trivial if it is the unknot. (Note that a split component of L may contain several components of L.)

The trivial split link or unlink of n components is the one with all split components trivial and is written Un. For

simplicity, we set U1 =U for the unknot and Un(L) =UL for a link L.

A crossing in a non-split diagram is reducible, if its smoothing gives a split diagram. A diagram is reducible if it

has a reducible crossing, otherwise it is called reduced. To avoid confusion, unless otherwise stated, in the sequel

all diagrams are assumed reduced, that is, with no nugatory crossings, and links are non-split.

A diagram which is simultaneously alternating and, up to mirror image, positive is is called special alternating,

and so is called a link with such a diagram. Every alternating diagram of a special alternating link is positive or

negative (so special alternating; see [Na]). But not every positive or negative diagram of a special alternating link

is alternating. More generally, a diagram is special if no Seifert circle is separating, i.e., no Seifert circle contains

Seifert circles in both its interior or exterior (compare with [Cr]).

Let D be an oriented knot or link diagram. We denote by c(D) the crossing number of D. The crossing number

c(L) of a knot or link L is the minimal c(D) over all diagrams D of K. It is known, by Kauffman, Murasugi and

Thistlethwaite, that c(D) = c(L) if D is a reduced alternating diagram, i.e., that such a diagram is minimal.

Let c±(D) be the number of positive, respectively negative crossings of a diagram D, so that c(D) = c+(D)+c−(D)
and the writhe is w(D) = c+(D)− c−(D). A diagram D is positive if c−(D) = 0 and negative if c+(D) = 0; so is

called a link with such a diagram.

We call a reverse clasp to be ; and a parallel clasp . We call a clasp trivial if both its crossings

have opposite sign. Such a clasp can be eliminated by a Reidemeister II move.

We write s(D) for the number of Seifert circles of a diagram D, the loops obtained by smoothing out all crossings

of D.

2.3 Polynomial invariants

Let ∆ be the (1-variable) Alexander polynomial. We understand it here normalized to ∆(U) = 1 and with the skein

relation

∆(D+)−∆(D−) = (t1/2 − t−1/2)∆(D0) , (3)
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with D± and D0 being a (skein) triple of diagrams equal except near one crossing which is as in (2), from left to

right.

The skein polynomial P is understood here via the relation

l−1P(D+)+ lP(D−) = −mP(D0) , (4)

and the normalization P(U) = 1. The convention in (4) is similar to (and uses the same variables as) the one in

[LMi] but differs by the interchange of l and l−1.

2.4 Braids and braided surfaces

We need some preparations. We write Bn for the braid group on n strands or strings. The relations between the

Artin generators σi, i = 1, . . . ,n− 1 are given by σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2 and by σiσ j = σ jσi for

1 ≤ i < j− 1 ≤ n− 2. The trivial braid in Bn will be written Idn.

Let us first fix a convention. In diagrams drawn we number braid strands by 1,2,3, . . . from left to right and compose

words in σ±1
i from bottom to top. Consequently, the orientation of braid strands is assumed to be upward, even if

usually we don’t explicitly display arrows. See (7) for an example.

Braid closure β̂ is defined in planar diagrams with

β −→ β = β̂ (5)

A braid β whose closure β̂ is a given link L is called a braid representative of L. The minimal number of strands

for a braid representative of a link L is called the braid index of the link, and will be denoted by b(L). (See, e.g.,

[DHL, Mo, Mu].) A braid representative β ∈ Bb(L) with β̂ = L, i.e., with the fewest strands, is called a minimal

braid.

Alternatively to the standard Artin generators, one considers also a presentation of the braid groups by means of an

extended set of generators (1) and their inverses

σ±1
i, j = σ−1

i . . .σ−1
j−2σ±1

j−1σ j−2 . . .σi (6)

for 1 ≤ i < j ≤ n. Note that

σi = σi,i+1 .

We will call σi, j positive bands and σ−1
i, j negative bands. For example, σ2,5 ∈ B7 can be drawn (by using braid

relations for cosmetic’s sake) thus:

(7)

A representation of a braid β, and its closure link L = β̂, as word in σ±1
i, j is called a band representation [BKL].

A band representation of β spans naturally a Seifert surface S of the link L: one glues disks into the strands, and

connects them by half-twisted bands along the σi, j. The resulting surface is called braided Seifert surface of L.

(See, e.g., [St2].) In fact, a result of Rudolph [Ru4] (later rediscovered independently by M. Hirasawa) says that

any Seifert surface is of this form.

A minimal genus braided Seifert surface is called a Bennequin surface (see [HS, St3]). Bennequin’s work [Be]

implies that any strongly quasipositive Seifert surface, a braided Seifert surface with only positive bands, is a
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Bennequin surface; thus if a link L has a strongly quasipositive Seifert surface S on s strands with l bands, then

χ(L) = χ(S) = s− l.

We need the half-twist (braid) element

δn =
n

∏
j=2

j−1

∏
l=1

σl . (8)

Let us also set notation for the index shift map

[σi]k = σi+k , (9)

whenever the right hand-side has admissible index. We will also below in (10) and (11) assume notation extended

to inverses by taking the inverse of the r.h.s. and then extend to braid words under multiplication of letters. (These

operations give homomorphisms of braid groups, but this aspect will be less relevant here.)

We call β ∈ Bk non-split if for each i = 1, . . . ,k− 1, some letter σi or σ−1
i occurs in β. (It is not assumed that more

than one letter of such type occurs, i.e., we do not require that β̂ is a reduced diagram.)

We call β ∈ Bk homogeneous if for each i = 1, . . . ,k− 1, only one type of letters σi or σ−1
i occurs in β. If for each

i only σi occurs, we call β positive; if only σ−1
i occurs for all i, we call β negative. If σi occurs for even i and σ−1

i

occurs for odd i, or vice versa, then we call β alternating. For any of these four types, β has such type if and only

if the closed braid diagram β̂ has (see [Cr]).

2.5 Cabling

Let k ∈ N, β ∈ Bk and K be a knot. Define the β-k-cable Kβ of K to be the satellite link with companion K and

pattern given by the k-string braid β in the complement of its axis, with 0 framing. (See [Sn] for example.) In

particular, if β is a torus braid, i.e., a power of σ1 · · ·σk−1, we obtain classical cables. When β = Idk, the cable

KIdk
= Kk is the 0-framed disconnected parallel.

The notion of cabling extends in a natural way to braids: the k-cable of β ∈ Bn, denoted by {β}k, is a braid on n · k
strings, obtained by replacing σi in β by

{σi}k =
2k−1

∏
j=1

min( j−1,2k−1− j)

∏
l=0

σki−min( j−1,2k−1− j)+2l . (10)

Then if β̂ = K is a knot, we have {̂β}k = K
δ

2w(β)
k

, where δk is the half-twist (8). (See below (15) for the sample case

k = 2.)

To correct for the framing, one has to full-twist the left or right k strings (using the notation (9))2:

(σi)
l
k = [δ2

k ](i−1)k{σi}k = {σi}k[δ
2
k ]ik or (σi)

r
k = [δ2

k ]ik{σi}k = {σi}k[δ
2
k](i−1)k . (11)

These braids are not equal, but conjugate by [δ2k](i−1)k (from (8)). Then (̂β)l
k = (̂β)r

k = Kk. In fact, one can choose

a superscript ‘l’ or ‘r’ for each letter of β separately and multiply the resulting braids. All these possible product

braids are conjugate braid representatives of Kk.

Let as an example k = 2 and K be positive. When β = Id, one notes that Kβ is obtained from K when replacing

each (positive) crossing of a (positive) diagram of K by

(12)

2The superscripts ‘l’ and ‘’r’ for ‘left’ and ’right’ are used only symbolically as literals and not as exponents.
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By induction on k one extends (12) to give for σ1 ∈ B2 the (positive) band representation

(σ1)
l
k = σ1,k+1σ2,k+2 · · ·σk,2k ∈ B2k , (13)

and then more generally for σ1,m ∈ Bm,

(σ1,m)
l
k = σ1,(m−1)k+1σ2,(m−1)k+2 · · ·σk,mk ∈ Bmk . (14)

3 Realization of strongly quasipositive composition links

3.1 Construction from braid diagrams

We start first with the special case of realizing a link as a sublink of a strongly quasipositive link. We will refine

later this construction, and become more specific about complexity.

Theorem 3.1 Let L have a braid representative β on s strands with word length c(β) = l and exponent sum w(β) =
w.

a) Let L1 have a braid representative β1 differing from β by exchange of σ±1
i to σ∓1

i (for some letters σ±1
i in β

and possibly different i). Then there is a link L′ = L×L1 with a positive band representative on 2s strands

with 4l bands. (In particular one can choose L1 =UL to be an unlink3 or L1 =!L.)

b) Let L1 have a braid representative β1 differing from β by exchange of some σ−1
i (in β) to σ+1

i (in β1). Then

there is a link L′ = L×L1 with a positive band representative on 2s strands with 3l −w bands. (In particular

one can choose L1 = L or L1 to be a positive braid link.)

Proof.

a) We consider the (blackboard framed) 2-parallel D2 of the diagram D = β̂. It is obtained by doubling every

strand and replacing

−→ (15)

On the level of braids D2 = β̂2 with β2 = {β}2 ∈B2n obtained from β by replacing σ±1
i by (σ2iσ2i−1σ2i+1σ2i)

±1

(see (10)). Note that the subbraid of β2 on even strands gives β, and so does the one on odd strands.

Now our goal is to find a braid β′ ∈ B2n whose subbraid on even strands gives β1 (and on odd strands β). This

is done by locally modifying β′. Obviously, when a crossing in positive in β and β1, the right of (15) gives

a group of positive crossings, which are (four) positive bands, so in that case no modification is needed. But

we must take care of the cases then in β and β1 some letter is negative.

In the below scheme, and later as well, we adopt the notation ‘A+B →C’ to mean that for a crossing A in β
and a corresponding crossing B in β1, the right of (15) has to be modified to C.

+ −→ , + −→ (16)

3However, for the unlink see better Proposition 3.6 to follow.
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To see that these modifications are fine, consider the subbraids made of strings 1 and 3, and of strings 2 and

4. They must give the two crossings on the left. (The case + can be obtained by 180◦ rotation

from the left modification, and reversing strand orientation.)

After all these modifications are done, we obtain from β2 the desired braid β′. Note that in (16), as in (15),

all braids ‘C’ on the right decompose into 4 (positive) bands, which proves the statement.

b) Here every positive crossing in β remains in β′, and then one can modify the right of (15) to

+ −→ (17)

This economizes two bands for each positive crossing in β, so for D = β̂, we have

4c(D)− 2c+(D) = 4c−(D)+ 2c+(D) = 3c(D)−w(D)

bands in β1. �

Remark 3.2 In the constructions of Bode and Dennis [BD], the quasipositive link L′ is a satellite of the Hopf link.

It also appears, but is not yet confirmed, that the components added (in L′ \L) are unknotted.

To prove the full version of Theorem 1.1, we must include the case that n(L1) 6= n(L2), so that crossing changes are

not sufficient. We thus now prepare the following lemma, which uses smoothings.

Lemma 3.3 Let n(L1)≥ n(L2). Then there is a diagram D1 of L1 which gives a diagram D2 of L2 under crossing

changes and smoothings.

Proof. We will construct a link diagram D such that D1 is obtained from D by crossing changes, and D2 is obtained

from D by crossing changes and smoothings.

Take the split union of diagrams β̂1 of L1 and β̂2 of L2 as a split braid.

β1 β2

1 2 4 1 3 2 3 1 2

Assume further w.l.o.g. that β1 is not split (i.e., for each 1 ≤ i < s1, at least one of σi or σ−1
i occurs in β1).

Now mark on the outgoing strands of β1 which component of L1 they correspond to and similarly for β2. Setting

ni = n(Li) and with n2 ≤ n1, choose for each j = 1, . . . ,n2 a pair of one braid strand on top of β1 corresponding

to component j in L1 and a braid strand on top of β2 corresponding to component j in L2. Add a positive band
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between these two braid strands,

β1 β2

2 2

· · · · · · · · ·

· · · · · · · · ·

−→ β1 β2

· · · · · · · · ·

· · · · · · · · ·

and stack the resulting bands from bottom to top above βi. These bands will be called extra bands, and will be

designated for special treatment later. There are exactly n2 extra bands.

We claim now that the (braid) diagram D thus obtained satisfies the claim of the lemma.

To see that one can obtain a diagram D1 of L1 from D, switch crossings in β̂2 so that all self-crossings are switched

so that the components are unknots and a mixed crossing between components j1 < j2 of β̂2 is switched so that the

overpass belongs to component j1. Then the extra bands connect split unknots, and can be removed together with

these unknots, giving the diagram β̂1 of L1.

To obtain a diagram D2 of L2 from D, first observe that since β̂1 is connected, one can smooth n1 − n2 crossings in

β̂1 to obtain a diagram in which components 1, . . . ,n2 remain.

Namely, consider a graph G made up of vertices labeled 1, . . . ,n1 and an edge connecting vertices j1, j2 if compo-

nents j1, j2 have a mixed crossing. This graph G is connected. As long as there are edges not labeled 1, . . . ,n2,

smooth out a crossing between component j1 ≤ n2 and j2 > n2. This corresponds to contracting an edge in G.

Label the new vertex j1. By repeating this process, one sees the above property.

After these smoothings, crossing changes in the smoothed β̂1 will give a diagram of D2 as above. �

Proof of Theorem 1.1. Assume again w.l.o.g. n(L1)≥ n(L2). Take the diagram D1 from the lemma. Modify the

proof of Theorem 3.1 by taking the doubled closed braids β1, β2 and complementing the rules in (16) by

+ −→ , + −→ (18)

This should already suffice to prove the theorem, but let us, for economy’s sake, note that there is a better way to

treat the extra bands in D1, which can be doubled

−→ (19)

instead of dealing with all their crossings one by one as in the proof of Theorem 3.1. None of the switches or

smoothings transforming D1 into D2 affects these extra bands. (We will make use of this economization of bands

in the below complexity estimates.) �

The Y -polynomial is sometimes defined as

Y (L) = [P(L)]
m1−n(L) .

It is a Laurent polynomial in l. Rudolph has proved that every Alexander polynomial is realized by a strongly

quasipositive link (see [Ru3, 88 Corollary]). The below corollary gives a similar result for the Y polynomial, which
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is one consequence of the theorem proved above. The corollary directly follows from the property expressing the

Y -polynomial of a link by the one of its components and linking numbers. (For the skein polynomial P, there are

conditions like that all powers of l are positive, see [St4], so the unit (−l2)k below is needed.)

Corollary 3.4 Let n = n(L)> 1 and there be a link L with Y (L) = Y . Then there is a strongly quasipositive link L′

with n(L′) = n and Y (L′) = (−l2)kY for some k ∈ Z. �

3.2 Complexity

To save notation, let in the sequel D′
i = β̂i be diagrams of braid representatives βi of Li and for each letter d ∈

{c,s,w,n} set di = d(D′
i) and d = d1 +d2. (We will use Di to refer to the diagrams from Lemma 3.3.) We will also

below continuously stipulate

n1 ≥ n2 , (20)

and that D′
1 is not a split diagram.

Proposition 3.5 Let Li have a braid representatives βi on si strands with word length c(βi) = ci and c = c1 + c2.

Then there is a link L = L1 ×L2 with a positive band representation on 2s strands with at most

4c− n1+ 3n2 (21)

bands.

Proof. We found a diagram β̂ of s = s1 + s2 strands and n1 components, so that L1 is obtained from β̂ by switching

crossings and L2 is obtained from β̂ by switching crossings and n1 − n2 smoothings. The diagram β̂ has c1 + c2

crossings and n2 extra bands, which are positive. By doubling to obtain a banded diagram D of L1 ×L2, every

crossing in β′
1 or β′

2 not smoothed out gives at most 4 bands, but a crossing smoothed to obtain D2 each economizing

one band, so totally economizing n1 − n2 bands.

So the number of bands coming from β′
1 or β′

2 is 4c−n1 +n2. We treated the extra bands in (18) as in double (19),

adding 2n2 doubled extra bands. �

For the more special sublink result, one can save installing extra bands, and the estimates can be simplified. The

following is an amplification of Theorem 3.1.

Proposition 3.6 Let L have a braid representative β as a word with s strands and c crossings and writhe (exponent

sum) w. Then

(a) there is a strongly quasipositive link L′ = L×M with a positive band representation with 2s strands and at

most 4c bands. M can be chosen to be any link with a diagram differing from β̂ by crossing changes, in

particular, M =!L.

(b) If M =UL, then at most
7c−w

2

bands suffice.

(c) One can choose M = L or M a positive braid link, when using at most 3c−w bands.

(d) Also assuming that β is not a split braid word, and m < n = n(L), one can realize L×Um with 2s strands and

at most

min

(
7c−w

2
,4c+m− n

)

(positive) bands.
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Proof.

(a) See Theorem 3.1.

(b) Switch at most half of the positive crossings in D = β̂ to obtain an unlink. (An unlink is amphicheiral, so one

can choose the complementary set of crossings.) This economizes at least c+(β̂) bands by (17). So we have

at most

4c(β)− c+(β) =
7c−w

2

bands.

(c) See Theorem 3.1.

(d) One needs n−m smoothings to obtain an m-component link diagram from β̂, before unlinking by crossing

changes. This will economize one band for each smoothed crossing, giving at most 4c+m− n bands.

Now there are at least c++m− n positive crossings. Again by changing to the complementary set of cross-

ings, at most half of them need to be switched. So we can economize at least

2 ·
c++m− n

2

bands (and if this number is negative at least 0). So we have at most

4c+m− n− 2 ·
c++m− n

2
=

7c−w

2

bands. �

4 General link diagrams and banded diagrams

4.1 Banded diagrams

To extend the construction to general link diagrams, it is necessary to use the (now likely most common) algorithms

that transform a general link diagram into a (closed) braid diagram. This is quoted from (and will be considered in

much more detail in) [St4].

Consider a collection of oriented Seifert circles in the plane.

Definition 4.1 We call a band to ba a dashed line with a +/− label. The dashed line should start and end on a

Seifert circle, do not intersect itself, intersect Seifert circles transversely, and with the orientation of Seifert circles

being

a0 a1 . . . an

+

Note that in particular because of the orientation, no band can intersect or connect the same Seifert circle twice.

We say two Seifert circles a,b are coherent, if they bound a common region R and are oriented oppositely w.r.t. R’s

boundary. (Region is again understood in the complement of the Seifert circles.)

Then a band is a dashed line going from Seifert circle a0, over intermediate Seifert circles ai to Seifert circle an, so

that ai,ai+1, for all 0 ≤ i < n, are coherent.
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A band should be understood for standing for a fragment like

+
−→ − −→ (22)

Of course, an ordinary crossing is a band in this sense (which does not pass through intermediate Seifert circles).

Definition 4.2 A banded diagram is a collection of Seifert circles in the plane with a collection of bands, none two

of which intersect.

We will implicitly understand a banded diagram to stand for a link diagram in which all replacements (22) have

been made. Usual link diagrams can obviously be regarded as band diagrams, with each crossing turned into a

band. If a banded diagram is a (closed) braid diagram, it will give a band representation of a closed braid, and the

bands become the σ±1
i, j in (6).

We will need the following lemma, proved in [St4] using a careful analysis of the Yamada [Y] algorithm.

Lemma 4.3 Let L have a banded diagram D with s Seifert circles and l bands. Then L has a braid representative

on s strands with l bands (and the same number of positive and negative ones as D).

4.2 More complexity estimates for strongly quasipositive composition links

To turn back to strongly quasipositive links, we developed Lemma 4.3 to give some complexity estimates of strongly

quasipositive links L1 ×L2 constructed in terms of an arbitrary diagram of Li.

This gives then the generalization of Proposition 3.5 to arbitrary diagrams. Again, let in the sequel D′
i be diagrams

of Li and for each letter d ∈ {c,s,w,n} set di = d(D′
i) and d = d1 +d2. We will use Di to refer to the diagrams from

the proof of Lemma 3.3. We will also continuously stipulate (20) and that D′
1 is not a split diagram. The number

4c− n1+ 3n2 repeats (21).

Proposition 4.4 If Li have diagrams D′
i with si Seifert circles and ci crossings, then there is a positive band repre-

sentation of a link L1 ×L2 of 2s strands and at most 4c− n1+ 3n2 bands.

Proof. This follows first by applying Yamada’s algorithm on D′
i and then a generalization of the construction of

§3. Every Yamada move adds no new bands, but makes crossings into non-crossing bands.

Note that Lemma 3.3 can be applied to ordinary diagrams D′
i as well. (The braid shape of D′

i was not needed in the

proof.)

Let us thus proceed as follows, to be precise.

(a) Double (with blackboard framing) the diagrams D′
i.

(b) Apply the doubled Yamada moves giving braid diagrams with doubled bands.

(c) One needs to generalize the modifications (16) and (17) to doubled bands. If one has a doubled band σ1,m,

instead of a doubled crossing σ1 = σ1,2, one adds 2(m− 2) strands to the 4-braids on the right of (16) and

(17) and conjugates with

σ−1
4 σ−1

5 . . .σ−1
2m−1σ−1

3 σ−1
4 . . .σ−1

2m−2 ,

which still gives the same number of bands, where σi, j becomes σi,2m−4+ j. For the right of (17), the result of

this modification is given, with k = 2, in (14) (and in (13) for m = 2). This gives banded braid diagrams D′′
i .

Each crossing in D′
i gives at most 4 bands in D′′

i . But in D′
1 there are n1 − n2 smoothings, each economizing

one band. (We can decide before installing extra bands which crossings in D′
i we switch or smooth after

installing bands in D.)
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(d) If a Seifert circle bounding the infinite region of D′′
1 is incoherent with a Seifert circle bounding the infinite

region of D′′
2 , flip one of the two D′′

i by starting with the flipped diagram D′
i.

(e) Add doubled extra bands, as on the right of (19), obtaining the final banded braid diagram D. (Use that we

made the Seifert circles of D′′
i coherent.)

(f) Use regular isotopy to make the innermost Seifert circle of D′′
1 contain D′′

2 and D′′
1 lie in the infinite region of

D′′
2 .

β1 β2 −→ (23)

β1 β2 −→ β1 β2

(For the last diagram, we stipulate the braid closure as in (5).) This can be done without creating new

crossings, except at the extra bands, but their band structure is not spoiled when we fix that the added strands

pass on top of the bands. So now the union of D′′
1 and D′′

2 , with the extra bands added, is a closed braid

diagram. �

The simplification for estimating complexity of a strongly quasipositive link L′ with a given sublink L in terms of an

arbitrary diagram of L follows along the same lines, and is paraphrased below so as not to repeat the whole wording

of Proposition 3.6.

Proposition 4.5 Let a link L have a diagram D with s Seifert circles, c crossings and writhe w. Then all the

assertions of Proposition 3.6 hold for L, when replacing

• in part (a) β̂ by D,

• in part (c) ‘positive braid link’ by ‘positive link’ and

• in part (d) demanding that D instead of β is non-split. �

Remark 4.6 The construction can be modified to show that for a link L, the composition L× L can be made an

alternating link. In the doubled diagram D of L change the crossings on the right of (15) not belonging to the

two copies of D to have an alternating tangle, and for every non-alternating edge of D (between two under- or

overpasses) add a half-twist (with proper sign) into the doubled strands. This will give from a (braid) diagram D of

L of c crossings an alternating (braid) diagram of L×L of at most 6c crossings.

There are further constructions available to realize composition links as an alternating link, alternating braid link,

etc., but they require slightly less straightforward modifications, and we may present them at a separate place if

they become very relevant.

As a final remark in this context, although complexity results like Proposition 3.6 are linear, one could still consider

improvements. For example, every (2,n)-torus link is a sublink of a closed strongly quasipositive braid on 3 (and

not only 4) strands. Perhaps generalizing such an observation to a meaningful extent could have worthwhile proofs.
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