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1 Introduction, motivation and main results

The notion of a Bennequin surface, so named by Birman-Menasco [BM3], originates from Bennequin’s

work [Be], and refers to a braided Seifert surface of minimal genus. Rudolph [Ru4] has shown that every

Seifert surface can be made into a braided form, so that Bennequin surfaces exist for every link. These

surfaces are closely related to (and particularly important for) strongly quasipositive links.

Various notions of positivity of links have been studied also with motivation outside the field of knot

theory. If the zero set of a complex polynomial f : C2 → C intersects the unit sphere S3 = {(u,v) ∈
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C2 : |u|2 + |v|2 = 1} transversely, the intersection forms a link in S3. By work of Rudolph [Ru2] and

Boileau-Orevkov [BO] it was proved that these links are precisely the quasipositive links.

A link is called quasipositive if it is the closure of a braid β of the form

β =
l

∏
k=1

wkσikw−1
k

where wk is any braid word and σik is a (positive) standard Artin generator of the braid group. (In [Ru3]

there is some overview of this topic.)

If the words wkσikw−1
k are of the form1

σi, j = σ−1
i . . .σ−1

j−2σ j−1σ j−2 . . .σi , (1.1)

then they can be regarded as embedded bands

. (1.2)

Links which arise this way are called strongly quasipositive links, and it was proved that they contain the

class of positive links, i.e., links with diagrams all of whose crossings are positive (right-hand) [Ru, Na3].

We will re(dis)cover this fact in the context of obtaining explicit (upper) estimates on the string number of

Bennequin surfaces of links (see, e.g., [IK]). One such result is the following (for further generalizations,

see Proposition 4.6 and Corollary 4.24).

Theorem 1.1 If L is a positive non-trivial non-split link of crossing number c(L), Euler characteristic χ(L)
and braid index b(L), then it has a strongly quasipositive surface on at most

min

(
c(L)−χ(L)+1

2
, b(L)−χ(L)

)
(1.3)

strands.

Positive links in turn (properly) contain the class of positive braid links, i.e., closures of braids which are

positive words in the σi [St].

In relation, we obtain that (strong) quasipositivity is preserved under (zero framed) braid-pattern cabling

(§3.3.2). The applications to fibered alternating links (§3.3.3) follow as another outcome of our approach

(see Proposition 3.19).

1Note that thus the bands are, from our perspective, behind the Seifert disks put into the braid strands to obtain a strongly

quasipositive Seifert surface. We will maintain this convention throughout, except Remark 4.11.
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Proposition 1.2 Any fibered alternating link L has a minimal string Bennequin surface, i.e., a Bennequin

surface on braid index b(L) strings.

There is also an estimate on the string number for a general alternating link similar to Theorem 1.1; see

Theorem 4.2. This will result from some work to adapt to braided surfaces first Yamada’s braid diagram

algorithm (§3.2) and then the Seifert circle reduction process measured by the graph index (§4). As further

applications, we gain some estimates for the braid index of a homogeneous link (§4.4.1 and Corollary 4.18),

visual tests for strong quasipositivity (Corollary 4.24) and for minimality of canonical surfaces (Corollary

4.37).

In particular, we find an explicit quasipositive realization of a surface in the constructive direction of [FLL,

Theorem B]. For an extension of the other direction, see Lemma 4.30. (Several other main results of [FLL]

can be extended for multiple link components.) One fallout of it is the confirmation of Baker-Motegi’s

Question 2.2 for canonical surfaces (Corollary 4.33). This is then used to determine the strong quasiposi-

tivity of parallel Montesinos links in §5.2. (There are also applications to the 4-genus and quasipositivity

of links, however, this topic merits a longer separate discussion and for space reasons we move it out to

another place.)

We show that the strong quasipositivity test gives an easy condition (5.3) for parallel (odd-twist) pretzel

knots, which is in fact exact (Proposition 5.1). This suggests that the test is rather efficient. We complete

the class of pretzel knots in §5.3. The proof is far less evident than one may expect. The Ozsváth-Szabó τ
invariant, smooth 4-genera, plumbing, minimal genus Seifert surfaces and their uniqueness, the Alexander

polynomial and skein polynomial, all play their part.

The last section §6 compiles a number of questions in relation to our discussion.

There are two appendices. In the first appendix, we correct some errors from [Cr, St3] about the homogene-

ity of 10 crossing knots, and add information which ones are alternative. In the second one, we summarize

the decision process of strong quasipositivity for all tabulated knots (up to 16 crossings) using the methods

previously developed in this paper.
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G. Kim, S. Orevkov, and the referee.

I also thank the organizers of the Third Pan Pacific International Conference on Topology and Applications
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03071032 and 2023R1A2C1003749) and the International Research & Development Program of the Ko-

rean Ministry of Science and ICT (grant NRF-2016K1A3A7A03950702).

2 Preliminaries

2.1 Generalities

The symbols Z, N and C denote the integer, natural and complex numbers, respectively.
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We write ⌊x⌋ for the greatest integer, sgn(x) = x/|x| for its sign (when x 6= 0), and |S| for the cardinality of

a set.

The notation [P]i = [P]li = ai is used for a coefficient of a Laurent polynomial P = ∑i ail
i ∈ Z[l, l−1]. The

span spanP of a polynomial is the difference between its maximal degree maxdegP and its minimal degree

mindegP. (For multi-variable polynomials, we will indicate by a subscript the variable with respect to

which degrees are taken.)

We say that an inequality ‘a ≤ b’ is exact (or sharp) if a = b and strict (or unsharp) if a < b.

For notation from knot tables, see e.g. [St15, §2.3]; we will not (need to) take care of mirroring issues

for table knots. We follow Rolfsen’s numbering up to 10 crossings, except for the removal of the Perko

duplication.

We use the abbreviations ‘w.l.o.g.’ for ‘without loss of generality’ and ‘r.h.s.’ (resp. ‘l.h.s.’) for ‘right

hand-side’ (resp. ‘left hand-side’). ‘W.r.t.’ will stand for ‘with respect to’. Some further notations will be

introduced at an appropriate place in the text.

2.2 Properties of links and link diagrams

2.2.1 Crossings and Seifert circles

All link diagrams and links are assumed oriented, even if orientation is not always displayed. Crossings in

oriented diagrams are called

positive negative smoothed out
(2.1)

Smoothing out is the replacement of a (positive or negative) crossing by a smoothed out crossing. A

crossing change is the replacement of a positive crossing with a negative one or vice versa.

Let D be an oriented knot or link diagram. We denote by c(D) the crossing number of D. The crossing

number c(L) of a knot or link L is the minimal c(D) over all diagrams D of K. It is known, by Kauffman,

Murasugi and Thistlethwaite, that c(D) = c(L) if D is a reduced alternating diagram, i.e., that such a

diagram is minimal.

Let c±(D) be the number of positive, respectively negative crossings of a diagram D, so that c(D) =
c+(D) + c−(D) and the writhe is w(D) = c+(D)− c−(D). A diagram D is positive if c−(D) = 0 and

negative if c+(D) = 0; so is called a link with such a diagram.

We write s(D) for the number of Seifert circles of a diagram D, the loops obtained by smoothing out all

crossings of D.

A diagram which is simultaneously alternating and, up to mirror image, positive is is called special alter-

nating, and so is called a link with such a diagram. Every alternating diagram of a special alternating link

is positive or negative (so special alternating; see [Na]). But not every positive or negative diagram of a

special alternating link is alternating. More generally, a diagram is special if no Seifert circle is separating,

i.e., no Seifert circle contains Seifert circles in both its interior or exterior (compare with §3.2).
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A crossing of a link diagram is called mixed, if both crossing strands belong to different components,

otherwise it is called a self-crossing.

Here, and in the sequel, for a knot or link K, we write !K for its obverse, or mirror image. Similarly !D is

the mirror image of a link diagram D, obtained by changing all crossings in D.

The number of components of a link L will be written as n(L) (so n(K) = 1 if K is a knot). If D is a diagram

of L, set n(D) = n(L).

If L is obtained from L′ by deleting components, we call L a sublink of L′ and L′ a superlink of L.

We call a reverse clasp to be ; and a parallel clasp . We call a clasp trivial if both its

crossings have opposite sign. Such a clasp can be eliminated by a Reidemeister II move.

For space reasons, some knot diagrams below will not be drawn, but given instead in terms of their Dowker-

Thistlethwaite (DT) notation [DT]. It is preceded, as in the format in [HT], by the crossing number of the

diagram and an integer identifier.

2.2.2 Primeness and splitness

By K1#K2 we denote the connected sum of K1 and K2. Similarly denote D1#D2 the connected sum of link

diagrams D1 and D2, as in Figure 1(a).

A # B = A B

γ

A B

(a) (b)

Figure 1: (a) Diagram connected sum and (b) a split diagram, which is the split union of

diagrams A and B.

(The connected sum is uniquely defined for knots, and depends on the choice of components for links.)

If a link L is not a connected sum in a non-trivial way, i.e., with one of Li being an unknot, then L is

prime. A diagram D is prime, if it is not as on the right of the equality of Figure 1(a), i.e., if there is no

simple closed curve γ transversely intersecting it in two points, with something different from an unknotted

(crossing-less) arc in both interior and exterior of γ.

We say a class of link diagrams is visually prime if every prime diagram in this class represents a prime

knot or link. It was proved by Menasco [Me] that alternating diagrams are visually prime, and by Ozawa

[O] that positive diagrams are.

A link diagram D is called split, or disconnected, if it can be non-trivially separated by a simple closed

curve in the plane, as in Figure 1(b). Otherwise we say the diagram is non-split, or connected. A split link

is a link with a split diagram. Other links are said to be non-split. In the split union of diagrams or links,

the latters can be separated by a curve or sphere. A non-split sublink L′ of L which can be separated by a
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sphere from L \L′ is a split component of L. A split component is trivial if it is the unknot. (Note that a

split component of L may contain several components of L.)

The trivial split link or unlink of n components is the one with all split components trivial and is written

Un. For simplicity, we set U1 =U for the unknot and Un(L) =UL for a link L.

A crossing in a non-split diagram is reducible or nugatory, if its smoothing gives a split diagram; see

crossing p in Figure 2. A diagram is reducible if it has a reducible crossing, otherwise it is called reduced.

(As the figure shows, reducible crossings can always be eliminated.) To avoid confusion, unless otherwise

stated, in the sequel all diagrams are assumed reduced, that is, with no nugatory crossings, and links are

non-split.

p

P
Q −→ P Q

Figure 2: A reducible crossing p and its elimination. (Here P and Q are also allowed to be trivial arcs.)

2.2.3 Genera

The (Seifert) genus g(L) resp. Euler characteristic χ(L) of a knot or link L is said to be the minimal genus

resp. maximal Euler characteristic of a Seifert surface of L. We have

2g(L) = 2−n(L)−χ(L) .

Similarly write χ4(L) for the smooth 4-ball (maximal) Euler characteristic and

χc(L) = max{χ(D) : D is a diagram of L}

for the canonical Euler characteristic resp.

gc(L) = (2−n(L)−χc(L))/2 (2.2)

for the canonical genus (which will be mostly used for knots L).

For a diagram D of L, we define g(D) to be the genus of the canonical Seifert surface (obtained by Seifert’s

algorithm) on D, and χ(D) its Euler characteristic. We have χ(D) = s(D)− c(D) and 2g(D) = 2−n(L)−
χ(D). We say that D is of minimal genus, or a minimal genus diagram, if

g(D) = g(L) , or equivalently χ(D) = χ(L) . (2.3)

Since we will need this property so often, we say that L is canonically minimal if it has a diagram D with

(2.3). Positive ([St]) and alternating diagrams ([Cw, Mu2]) are of minimal genus, so that the corresponding

links are canonically minimal.
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2.2.4 Murasugi atoms and Seifert graphs

For Murasugi atoms, see [QW, St11]; these are the minimal pieces under which one can decompose a

diagram under (diagrammatic) connected and Murasugi sum (∗-product). Note that all these atoms are

special prime diagrams. In [Cr] their Seifert graphs (see below) are called blocks. We will write a(D) for

the (Murasugi) atom number of a diagram D. The inequalities

a(D)≤ 1−χ(D) (2.4)

and

a(D)≤ c(D)/2 (2.5)

are easily observed. For later reference, set

a′(D) = min(1−χ(D),c(D)/2) . (2.6)

A diagram is alternative if all crossings in a connected component of the complement of the Seifert circles

have the same sign. A diagram is homogeneous [Cr] if all Murasugi atoms are special alternating. The

difference to ‘alternative’ is minimal: only if a connected component of the

complement of the Seifert circles is a diagrammatic connected sum, its dif-

ferent summands in a homogeneous diagram need not be special alternating

of the same sign. The properties are extended to knots and links defined by

admitting the corresponding type of diagram.

All properties of homogeneous diagrams (and links) apply to alternative as

well. In particular, an alternative diagram of a positive link is positive. One

difference is that homogeneity of a diagram is preserved by flypes, while al-

ternativeness in general is not. Above on the side is an example of a homoge-

neous knot diagram which is not alternative.

Example 2.1 Simplest examples of knots which are homogeneous but not alternative are 10150, 10151,

10156, 10158, 10160, and 10163 (the third last knot in Rolfsen’s table, according to our handling of the Perko

pair). They are fibered knots of genus 3 and to exclude alternativeness, it is enough to test alternative

diagrams up to 12 crossings (by the same argument as Cromwell’s for homogeneous ones).

Kauffman had conjectured that alternative links are equivalent to pseudo-alternating ones, which by [Cr,

§1] would imply also equivalence to homogeneous ones. Kauffman’s conjecture was disproved in [Si], by

finding a pseudo-alternating knot 10145 which is non-homogeneous. The above examples show that the

inclusion of homogeneous links in alternative ones is also proper.

See also the appendix to this paper. In particular, keep in mind throughout that ‘semi-homogeneous’

in [St11, St12] is what should be ‘homogeneous’, while ‘homogeneous’ there refers to what is properly

called ‘alternative’.

Let Γ(D) be the Seifert graph of D. A vertex is made for every Seifert circle of D, and an edge for every

crossing connecting two (distinct) Seifert circles. Keep in mind that Γ(D) is always bipartite and planar

(but not mandatorily simple).
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We write D = D1 ∗ · · · ∗Dl for the Murasugi atoms Di of D, with Cromwell blocks Γ(Di), so that

Γ(D) = Γ(D1)∗ · · · ∗Γ(Dl) ,

and Γ(Di) have no cut vertex. Note that, while the planar embedding of Γ(D) is not unique, the Di deter-

mine the planar embedding of Γ(Di), which we call canonical planar embedding.

An extensive account on related further standard facts (which we would not like to repeat here in full) is

given in [IS, §2].

2.2.5 Chart of classes of links

For reference and orientation, we include already here the following hierarchy diagram between various

classes of links, whose definition (and explanation) will be completed in §4.4.4, 4.4.5.

canonically

minimal

pseudo-

homo-

geneous

homo-

geneous

alter-

native

alter-

nating

special

alternating

quasi-

positive

strongly

q.p.

pseudo-

positive
positive

positive

braid

⊂⊂ ⊂ ⊂

⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ⊂

Inclusions are meant up to mirror image. No other inclusions except those given (and their composition)

exist, and all inclusions are checked to be proper.

2.3 Polynomials and invariants

Let ∆ be the (1-variable) Alexander polynomial. We understand it here normalized to ∆(U) = 1 and with

the skein relation

∆(D+)−∆(D−) = (t1/2 − t−1/2)∆(D0) , (2.7)

with D± and D0 being a (skein) triple of diagrams equal except near one crossing which is as in (2.1), from

left to right. When ∆(L) 6= 0, we have

2maxdeg∆(L)≤ 1−χ(L) . (2.8)

For a knot L, this inequality is more commonly written as

maxdeg∆(L) ≤ g(L) . (2.9)

This inequality is exact (i.e., an equality) when L is, among others, a non-split positive, alternating (see

[Cr]), almost positive link [St7], or a fibered link, for example. We say L is almost positive if it is not

positive but has a diagram D with c−(D) = 1.
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The skein (HOMFLY) polynomial P is understood here via the relation

l−1P(D+)+ lP(D−) = −mP(D0) , (2.10)

and the normalization P(U) = 1. The convention in (2.10) is similar to (and uses the same variables as)

the one in [LMi] but differs by the interchange of l and l−1. A few basic properties of P we will need are

Morton’s inequalities [Mo] stating that

1−χ(D) ≥ maxdegm P(L) (2.11)

for every diagram D of a link L, and

mindegl P(D)≥ 1− s(D)+w(D) . (2.12)

as well as

maxdegl P(D)≤ s(D)−1+w(D) . (2.13)

Also

mindegl P(D)≤ maxdegm P(D) , (2.14)

from [LMi, Proposition 21]

1 = P(
√
−1l,

√
−1(l−1 − l)) (2.15)

The Kauffman polynomial F = F(a,z), and its special case, the BLMH polynomial Q(z) = F(1,z), will

only be tenuously required, in relation to Fact 4.45 and Theorem 4.46, and is used with the convention of

[St5, St20].

We will also need the Ozsváth-Szabó τ invariant, defined for knots (the Rasmussen invariant instead would

do as well). We require only few of its properties. It satisfies under crossing change

τ(D+)−1 ≤ τ(D−) ≤ τ(D+) , (2.16)

(with the convention below (2.7)).

An obstruction of Livingston2 (see [He, Theorem 1.1] and the explanation below it) is that when K is

strongly quasipositive, then

τ(K) = g4(K) = g(K) , (2.17)

with g4(K) being the smooth 4-genus. The connection of τ to the signature σ for an alternating knot,

2τ(K) = σ(K) (2.18)

implies that

τ(K)≤ g(K) ,

and equality holds if and only if K is (positively) special alternating.

Also τ satisfies the inequality, analogous to (2.12),

2τ(K) ≥ w(D)− s(D)+1 (2.19)

for any diagram D of K. (Under (2.16) this is more or less equivalent to (2.17).)

2found in various versions by others as well, e.g., Rasmussen has observed it for his invariant and so on. . .
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2.4 Braids and braided surfaces

We write Bn for the braid group on n strands or strings. The relations between the Artin generators σi,

i = 1, . . . ,n−1 are given by σiσi+1σi = σi+1σiσi+1 for 1 ≤ i≤ n−2 and by σiσ j = σ jσi for 1 ≤ i< j−1 ≤
n−2. The trivial braid in Bn will be written Idn.

Let us first fix a convention. In diagrams drawn we number braid strands by 1,2,3, . . . from left to right

and compose words in σ±1
i from bottom to top. Consequently, the orientation of braid strands is assumed

to be upward, even if usually we don’t explicitly display arrows. See (2.24) for an example.

Braid closure β̂ is defined in planar diagrams with

β −→ β = β̂ (2.20)

A braid β whose closure β̂ is a given link L is called a braid representative of L. The minimal number

of strands for a braid representative of a link L is called the braid index of the link, and will be denoted

by b(L). (See, e.g., [DHL, Mo, Mu].) A braid representative β ∈ Bb(L) with β̂ = L, i.e., with the fewest

strands, is called a minimal braid.

With the Morton-Franks-Williams bound

MFW(L) = 1+
1

2
span lP(L) , (2.21)

the Morton-Franks-Williams inequality [Mo, FW] states that

b(L)≥ MFW(L) . (2.22)

Alternatively to the standard Artin generators, one considers also a presentation of the braid groups by

means of an extended set of generators (1.1) and their inverses

σ±1
i, j = σ−1

i . . .σ−1
j−2σ±1

j−1σ j−2 . . .σi (2.23)

for 1 ≤ i < j ≤ n. Note that

σi = σi,i+1 .

We will call σi, j positive bands and σ−1
i, j negative bands. For example, (1.2) depicts σ2,7 ∈B8, and σ2,5 ∈B7

can be drawn (by using braid relations for cosmetic’s sake) thus:

(2.24)

A representation of a braid β, and its closure link L = β̂, as word in σ±1
i, j is called a band representation

[BKL]. A band representation of β spans naturally a Seifert surface S of the link L: one glues disks into
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the strands, and connects them by half-twisted bands along the σi, j. The resulting surface is called braided

Seifert surface of L. (See, e.g., [St2].) In fact, a result of Rudolph [Ru4] (later rediscovered independently

by M. Hirasawa) says that any Seifert surface is of this form.

A minimal genus braided Seifert surface is called a Bennequin surface (see [HS, St15]). Bennequin’s work

[Be] implies that any strongly quasipositive Seifert surface, a braided Seifert surface with only positive

bands, is a Bennequin surface; thus if a link L has a strongly quasipositive Seifert surface S on s strands

with l bands, then χ(L) = χ(S) = s− l. The converse is an open question we will return to. (Our discussion

will lead to a more general version of this problem, given in Question 6.6.)

Question 2.2 (Baker and Motegi; see [Kp]) Is every minimal genus surface of a strongly quasipositive

link strongly quasipositive?

Our contribution towards this question is its resolution for (minimal) canonical surfaces in Corollary 4.33.

For an application, see §5.2.

It is important to remark here that the answer is affirmative if a minimal genus surface is unique, in partic-

ular for a fibered link. This will enable us to use plumbing and Murasugi sum operations to discern about

strong quasipositivity. We will extensively (and implicitly) invoke Rudolph’s characterization [Ru5]:

Theorem 2.3 ([Ru5]) For two Seifert surfaces S1,2, a Murasugi sum S1 ∗S2 is strongly quasipositive if and

only if both S1,2 are strongly quasipositive.

As explained there, Gabai’s work showed this relationship for ‘strongly quasipositive’ replaced by ‘mini-

mal genus’.

One can define the Bennequin braid index by

bb(L) := min{n : L has a Bennequin surface on n strands} . (2.25)

If β gives a Bennequin surface S for L = β̂ and β is a minimal braid for L, so S is a Bennequin surface on

b(L) strings, we call S a minimal string Bennequin surface. Then

bb(L) = b(L) . (2.26)

It is known, for instance, that (2.26) holds when b(L) ≤ 3. This is a result Birman-Menasco attribute to

Bennequin, which becomes very explicit in Xu’s 3-braid normal form [Xu].

Obviously in general b(L) ≤ bb(L), but sometimes this inequality is strict (see below Question 6.2). We

will make substantial effort to either establish (2.26) or at least obtain good upper estimates on bb(L).

The case of strongly quasipositive links was considered previously by Rudolph. If S is a strongly quasipos-

itive surface of a (strongly quasipositive) link L, define b(S) to be the minimal number of strings on which

S is spun as a strongly quasipositive surface. By definition, b(S)< ∞. Set

bq(L) := min{b(S) : S is a strongly quasipositive surface of L} .

Then, since a positive band representation gives a Bennequin surface, we have

b(L)≤ bb(L)≤ bq(L) . (2.27)
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Question 2.4 (Rudolph; see [St15, Remark 8.3.3]) If L is strongly quasipositive, does L have a strongly

quasipositive braid representative on b(L) strands, i.e., is bq(L) = b(L)?

Obviously, because of (2.27), bq(L) = b(L) implies bb(L) = b(L). But the converse is also true, as we will

soon remark. However, it does not seem to have been considered whether bq(L) = bb(L) holds in general,

i.e., that if a strongly quasipositive surface of L is realized as a Bennequin surface, then one is realized on a

positive band representation with no more strings. This does not seem entirely trivial, as long as Question

2.4 is not settled.

Many geometric methods for strong quasipositivity have an inherent deficiency of telling little about string

numbers of a strongly quasipositive surface. Indeed, as Example B.2 cautions, b(S) does not appear to

behave in an easy manner.

For a way to address Rudolph’s question, see Corollary 4.35. Further evidence is discussed in the appendix

§B.1; certainly no knot up to 16 crossings can answer the question negatively (Proposition B.1). The

method in [IS2] mentioned below Example 4.25 will also behave economically w.r.t. string numbers.

To account for the situation bb(L) > b(L), and in accordance with Question 2.4, in [IK, Stronger form of

Conjecture 1] a related bound was conjectured. For a link L, define the Thurston-Bennequin self-linking

number SL(L) by

SL(L) = max{w(D)− s(D) : D a diagram of L} , (2.28)

and the Bennequin defect of L by

δ(L) =
−χ(L)

2
− SL(L)

2
.

Then Bennequin’s inequality states that

δ(L)≥ 0 , (2.29)

and also δ is an integer. We call L Bennequin-sharp if δ(L) = 0. The slice Bennequin inequality states that

SL(L)≤−χ4(L) . (2.30)

Note the inequalities

2δ(L) ≥ 1−χ(L)−mindegl P(L) (2.31)

and for knots K,

δ(K) ≥ g(K)− τ(K) , (2.32)

that follow from (2.12) and (2.19).

Also note that

SL(L1#L2)≥ SL(L1)+SL(L2)+1 , (2.33)

whence δ(L1#L2) ≤ δ(L1)+δ(L2). (It would interesting to know if always equality occurs.) In particular,

the connected sum of Bennequin-sharp links is Bennequin-sharp.

Obviously, for a strongly quasipositive link K, we have δ(K) = 0. It has been asked whether the converse

is true (see introduction of [FLL]):
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Conjecture 2.5 Every Bennequin-sharp link is strongly quasipositive.

For our contribution to this problem, see Corollary 4.31. Also, the conjecture was verified for prime knots

up to 16 crossings; see Appendix B. For a very general construction of knots with large δ, see Corollary

4.44.

Ito-Kawamuro made the following (rather optimistic) conjecture.

Conjecture 2.6 (Ito-Kawamuro) bb(K)≤ b(K)+δ(K).

The conjecture, for δ(K) = 0, is equivalent to a positive answer to Question 2.4 plus the resolution of

Conjecture 2.5.

We remind that because of the proof of the Jones-Kawamuro conjecture (see Theorem 2.7 below) every

minimal string (band representation of a) Bennequin surface of a strongly quasipositive link L must be

strongly quasipositive, i.e., that bb(L) = b(L) implies bq(L) = b(L).

We will come back to the Ito-Kawamuro conjectured inequality after Theorem 4.2.

When β is considered as a word in σi, then β̂ gives a braid diagram of the closure link. (It will be more

useful here to disregard braid relations in braid representatives.) Note that the number of Seifert circles of

β̂ is the number of strands of β. The number of crossings c(β̂) of β̂ is the word length of β in the σ±1
i , and

the writhe w(β̂) is the exponent sum of β, which we will also write as w(β).

We will use a few times the notion of minimal writhe from the proof of the (strong version of the) Jones-

Kawamuro conjecture [DP, LM]. Let us say that a (s,w)-representative is a braid representative of L on s

strands of exponent sum (writhe) w.

Theorem 2.7 ([DP, LM]) For every link L there is a number w(L) such that every (b(L),w)-representative

of L satisfies w = w(L). (weak version)

Every (s,w)-representative of L satisfies |w−w(L)| ≤ s−b(L). (strong version)

Using Yamada-Vogel (see §3.1) we can straightforwardly extend the theorem from (s,w)-representatives

to (s,w)-diagrams, latter meaning diagrams of L having s Seifert circles and writhe w. We can in particular

use the weak version to define the minimal writhe wm(L) of a link L by wm(L) = w(D) whenever we have

diagram D of L with s(D) = b(L).

Theorem 2.7, together with Bennequin’s inequality (2.29), implies that when L is strongly quasipositive,

then

wm(L) = b(L)−χ(L) , (2.34)

and then more generally

w(D)≥ 2b(L)− s(D)−χ(L) , (2.35)

for any diagram D of a strongly quasipositive link L.

We need the half-twist (braid) element

δn =
n

∏
j=2

j−1

∏
l=1

σl . (2.36)
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Let us also set notation for the index shift map

[σi]k = σi+k , (2.37)

whenever the right hand-side has admissible index. We will also below in (2.38) and (2.39) assume notation

extended to inverses by taking the inverse of the r.h.s. and then extend to braid words under multiplication

of letters. (These operations give homomorphisms of braid groups, but this aspect will be less relevant

here.)

We call β ∈ Bk non-split if for each i = 1, . . . ,k−1, some letter σi or σ−1
i occurs in β. (It is not assumed

that more than one letter of such type occurs, i.e., we do not require that β̂ is a reduced diagram.)

We call β ∈ Bk homogeneous if for each i = 1, . . . ,k−1, only one type of letters σi or σ−1
i occurs in β. If

for each i only σi occurs, we call β positive; if only σ−1
i occurs for all i, we call β negative. If σi occurs

for even i and σ−1
i occurs for odd i, or vice versa, then we call β alternating. For any of these four types,

β has such type if and only if the closed braid diagram β̂ has (see [Cr]).

2.5 Cabling

Let k ∈ N, β ∈ Bk and K be a knot. Define the β-k-cable Kβ of K to be the satellite link with companion K

and pattern given by the k-string braid β in the complement of its axis, with 0 framing. (See [Sn] or below

Example 3.14.) In particular, if β is a torus braid, i.e., a power of σ1 · · ·σk−1, we obtain classical cables.

When β = Idk, the cable KIdk
= Kk is the 0-framed disconnected parallel.

The notion of cabling extends in a natural way to braids: the k-cable of β ∈ Bn, denoted by {β}k, is a braid

on n · k strings, obtained by replacing σi in β by

{σi}k =
2k−1

∏
j=1

min( j−1,2k−1− j)

∏
l=0

σki−min( j−1,2k−1− j)+2l . (2.38)

Then if β̂ = K is a knot, we have {̂β}k = K
δ

2w(β)
k

, where δk is the half-twist (2.36). See the crossing

replacement for the sample case k = 2:

−→

To correct for the framing, one has to full-twist the left or right k strings (using the notation (2.37))3:

(σi)
l
k = [δ2

k ](i−1)k{σi}k = {σi}k[δ
2
k ]ik or (σi)

r
k = [δ2

k]ik{σi}k = {σi}k[δ
2
k](i−1)k . (2.39)

These braids are not equal, but conjugate by [δ2k](i−1)k (from (2.36)). Then (̂β)l
k = (̂β)r

k = Kk. In fact, one

can choose a superscript ‘l’ or ‘r’ for each letter of β separately and multiply the resulting braids. All these

possible product braids are conjugate braid representatives of Kk.

For obtaining a braid whose closure gives an unframed cabling of a link β̂, one has to use (σi)
l
k or (σi)

r
k for

σi corresponding to self-crossings of β̂, and {σi}k in mixed crossings.

3The superscripts ‘l’ and ‘r’ for ‘left’ and ’right’ are used only symbolically as literals and not as exponents.
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2.6 Montesinos and pretzel links

For the following, we must clarify a few basic facts about Montesinos links. A Montesinos link has the

presentation

L = M(e, p1/q1, . . . , pn/qn) . (2.40)

We use (without repeating much of) the (standard) explanation, e.g., in [St5, §2.7]. The convention should

be explained with the below diagram. (For the moment ignore strand orientation.)

M(4,3/11,−1/4,2/5)

This notation determines the diagram as an unoriented diagram, up to mirroring.

We call e integer part, and pi/qi fractional parts. Their number n is the length. If n ≤ 2, the Montesinos

link is rational, so we assume (5.1).

Here orientation issues near the integer part become essential:

e
p1

q1

p2

q2

pn

qn

reverse link

e
p1

q1

p2

q2

pn

qn

parallel link

(2.41)

Note that for a parallel link qi are necessarily odd. For this to be a knot, ∑ pi + e is odd. Otherwise, it is a

2-component link.

When an orientation is given, we fix the mirroring in (2.40) so that e > 0 corresponds to integer twists

which are positive crossings. For e = 0, take in the previous mirroring convention e = 2 (for a reverse link

in (2.41) one needs even e to keep orientation coherent) and then resolve the clasp of these two crossings.

For example

M(2/3,−1/2) = , (2.42)
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even although the crossings in the 2/3-tangle are negative and those in the −1/2 positive, because when

adding two integer crossings to alternate with the 2/3-tangle,

M(2,2/3,−1/2) = ,

these two new crossings orient to be positive.

Note, though, that this convention still leaves an ambiguity of orientation of components not involved in

the integer twists. This will not create major problems, in particular for knot diagrams.

When all pi =±1, we have a pretzel link diagram

D = L(a1, . . . ,an) (2.43)

(cf. [KL, Fig. 1]) with

ai = ±qi

and

L = L(±q1, . . . ,±qn) = M

(
± 1

q1

, . . . ,± 1

qn

)
. (2.44)

We will call the group of crossings counted by qi a twist. The twist for qi > 1 can be distinguished between

parallel or reverse depending on the type of clasps of its crossings.

Some important remarks are necessary regarding how we will handle the signs in the conversion (2.44).

The sign of qi on the left will generally not match the one of
1

qi

on the right. For pretzel links, we will

constantly assume all components to be oriented, and we will sign ai according to the sign of the crossings

it its twist. See (5.35) and above it for comparison. Thus if all ai > 0 in (2.44), then the diagram (2.43) is

positive, but not necessarily alternating.

There again remains an ambiguity, in that for various ai one would have to specify whether the twist is

parallel or reverse. We will have to carry this caveat along. However, we will mostly consider the case

of a knot diagram or of an alternating diagram, and under any of these assumptions the ambiguity will

disappear.

Furthermore, when D is special, in particular always when the pretzel link is parallel, the discrepancy of

signs in (2.44) also disappears.

3 General link diagrams and banded diagrams

3.1 Braid diagram algorithms

For the constructions described below, it is necessary to review the (now likely most common) algorithms

that transform a general link diagram into a (closed) braid diagram.
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The Vogel move [Vo] is a Reidemeister II move of a special type. It affects two edges in the boundary of

a region R, which have the same orientation as seen from inside R, and belong to distinct Seifert circles.

‘Same orientation’ should be henceforth understood so that none or both of them coincides with the induced

orientation on the boundary of R. Let us call their Seifert circles Vogel incoherent. The Vogel move then

creates a reverse trivial clasp inside R (while preserving the number of Seifert circles).

Vogel explains that D is a closed braid diagram if and only if D has no pair of Vogel incoherent Seifert

circles. He proves that a sequence of such moves always transforms any link diagram into a closed braid

diagram (of the same number of Seifert circles).

Another algorithm previously found by Yamada [Y] will be introduced and discussed below. For its treatise

it is useful to define a related condition. Let us call two distinct Seifert circles of a diagram D to be

incoherent, if they bound a common region R in the complement of the union of the Seifert circles of D and

if their orientation is the same w.r.t. R.

There is a subtlety here: Vogel incoherent Seifert circles are incoherent, but if two Seifert circles are

incoherent, they may not be Vogel incoherent, since they may not bound a common region of D. An

example is:

But it is very easy to see (the argument is similar to the proof of the below Lemma 3.6) that the existence

of either type of ‘incoherent’ pairs of Seifert circles is equivalent.

3.2 Braiding banded diagrams

Consider a collection of oriented Seifert circles in the plane.

Definition 3.1 We call a band to be a dashed line with a +/− label. The dashed line should start and end

on a Seifert circle, do not intersect itself, intersect Seifert circles transversely, and with the orientation of

Seifert circles being

a0 a1 . . . an

+

Note that in particular because of the orientation, no band can intersect or connect the same Seifert circle

twice.
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We say two Seifert circles a,b are coherent, if they bound a common region R and are oriented oppositely

w.r.t. R’s boundary. (Region is again understood in the complement of the Seifert circles.)

Then a band is a dashed line going from Seifert circle a0, over intermediate Seifert circles ai to Seifert

circle an, so that ai,ai+1, for all 0 ≤ i < n, are coherent.

A band should be understood for standing for a fragment like

+ −→ − −→ (3.1)

Of course, an ordinary crossing is a band in this sense (which does not pass through intermediate Seifert

circles).

Definition 3.2 A banded diagram is a collection of Seifert circles in the plane with a collection of bands,

none two of which intersect.

We will implicitly understand a banded diagram to stand for a link diagram in which all replacements (3.1)

have been made. Usual link diagrams can obviously be regarded as banded diagrams, with each crossing

turned into a band. If a banded diagram is a (closed) braid diagram, it will give a band representation of a

closed braid, and the bands become the σ±1
i, j in (2.23).

Remark 3.3 A banded diagram also yields a Seifert surface for its link. But there is an ambiguity we have

to fix. Whenever Seifert circle s′ is inside s, we assume the disk of s′ to lies below that of s. This convention

applies in particular to canonical Seifert surfaces of diagrams as well. Thus, when we talk of the canonical

Seifert surface of a link diagram D, then this particular one is meant.

This is relevant for Remark 3.11 and Remark 4.11. It should be noticed, though, that the minimal genus

property of all canonical Seifert surfaces of a diagram is equivalent. Also, they are equivalent under

Murasugi sum and desum, thus by Theorem 2.3, their strong quasipositivity is equivalent also.

Most of what follows will center around the following lemma.

Lemma 3.4 Let L have a banded diagram D with s Seifert circles and l bands. Then L has a braid repre-

sentative on s strands with l bands (and the same number of positive and negative ones as D).

Definition 3.5 We say that a pair of Seifert circles in a banded diagram is admissible if it is incoherent, and

some two points on the Seifert circles can be connected by an arc α not intersecting other Seifert circles

and disjoint from bands. We will call α also an admissible arc.

Note that when all bands are crossings, this is exactly what we explained above as ‘Vogel incoherent’.
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Let (a,b) be an admissible pair, with an admissible arc α in a region R of the Seifert circle picture. We

now use a special instance of the Yamada move [Y], after threading inside R a small piece of a along α to

become close to b:

b a

R

α −→

a

b

(3.2)

We call this an admissible Yamada move or shortly a Y move. Note that this move depends on the arc α
chosen between a and b. It also depends, unlike the notion of being an incoherent pair, on the order of

these two Seifert circles. While the arc will not be so relevant, except for its existence, we must distinguish

the order of (a,b), and will write Y (a,b) for the Yamada move.

It is obvious that the Y move does not change the number of Seifert circles. (In fact, it does not change

any Seifert circle except the Seifert circle a.) This was fundamentally used by Yamada in his paper.

However, it does not either change the number of bands under the equivalence (3.1), once we meet the

crucial convention that from now on the newly created arc of a should lie on top of all crossings it passes.

To prove Lemma 3.4, our goal is thus to prove that there is a sequence of Y moves turning any diagram D

into a braid diagram.

It will be helpful from now on to fix the infinite region of D. Accordingly, every Seifert circle has an

interior and exterior. We say that b,b′ lie on the same side of a, if both b,b′ lie in the interior of a or both

b,b′ lie in the exterior of a.

Lemma 3.6 Let (a,b) be incoherent. Then there is a Seifert circle b′ on the same side of a as b, so that

(a,b′) is admissible.

Proof. Let α be an arc in a region R of the complement of the Seifert circles connecting inside R with no

self-intersection a point A ∈ a and B ∈ b.

If α meets no band, then α is coherent, and we can take b′ = b. Otherwise follow α starting from A until

before its intersection with a band e. Then follow the band on either side until it intersects or ends on a

Seifert circle b′ at a point B′. In exactly one of the two directions one meets a Seifert circle b′ incoherent
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with a. One obtains an arc α′ in R with no self-intersection and disjoint from bands.

AB

ab
e

α
A

b′

e

α′

If b′ 6= a, then α′ is an admissible arc. Otherwise start off at the other side of e at b′ = a, and continue as in

the below figure.
B

A

A

B′
α′e

R

Assuming all previous arcs connect a with itself, each next arc starts at a. Since we assumed b 6= a

(incoherent Seifert circles are by definition distinct), one of the arcs α′ cannot connect a with itself, and so

it is an admissible arc between a and some Seifert circle b′ 6= a. Obviously b′ bounds R as a and b do, so

b,b′ are on the same side of a. �

Definition 3.7 1. When b lies in the interior of a, we say a contains b. When b lies in the exterior of a,

we say b is outside a.

2. We say that a Seifert circle is empty or innermost if it contains no other Seifert circle.
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3. We say it is outermost no other Seifert circle contains it.

4. We say that a immediately contains b if a contains b and there is no Seifert circle c such that a

contains c and c contains b.

5. We say that a is braid-like if the following is true. Let b be contained in a or b = a. Then either b

is empty, or b immediately contains exactly one Seifert circle c, and this Seifert circle c is coherent

with b.

6. We say that a is maximal braid-like if it is braid-like and it is not contained in a braid-like Seifert

circle.

For example the outermost Seifert circles a in the diagrams on both hand sides of (3.3) are maximal braid-

like. Note that a diagram is a (closed) braid diagram if and only if all Seifert circles are braid-like, and

there is one outermost (or maximal braid-like) Seifert circle, or two outermost Seifert circles, which are

coherent. Compare with the diagrams below: only the second (banded) diagram is a closed braid (banded)

diagram.

β1 β2 β1 β2

Lemma 3.8 Let a be braid-like and a immediately contain a′. Let b be outside a so that (a,b) is admissible.

Then after a Y (a,b) move, (a′,b) is admissible.

Proof. This is essentially because an admissible arc between a point A ∈ a and B ∈ b can be joined by an

admissible arc α′ between A and some A′ ∈ a′. The arc α′ exists, because no two bands intersect, and no

band can intersect a twice. �

This means that one can successively move b through all Seifert circles contained in a. We will call this

process that a swallows b.

a

b

−→
b

a

(3.3)

If b is braid-like, then after this process a, with b and its interior sitting inside, will remain braid-like.

The proof of Lemma 3.4 is now accomplished by the following two lemmas.
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Lemma 3.9 One can perform Y moves on D so that all Seifert circles become braid-like.

Proof. We proceed by induction on the number of non-braid-like Seifert circles. Take a non-braid-like

Seifert circle a which is innermost, i.e., not containing another non-braid-like Seifert circle.

1. If a (immediately) contains an incoherent Seifert circle (with a), by Lemma 3.6 a must be admissible

with one such Seifert circle b. The move Y (a,b) then moves b out of a (and b remains braid-like).

Repeat this process until a immediately contains no incoherent Seifert circle.

2. Now if a immediately contains at least 2 Seifert circles a′i, which must be coherent with a, they are

all incoherent among themselves in pairs. By Lemma 3.6 there is an admissible pair (a′i,a
′
j) (since

(a′i,a) is coherent for every i). Now we assumed that a′i are braid-like. Then letting one of a′i and

a′j swallow the other, we have still that all Seifert circles immediately contained in a are braid-like,

but there is one fewer such now. Repeat this process until a immediately contains only one, coherent

with a, Seifert circle. Then a becomes braid-like. �

Lemma 3.10 Assume in D all Seifert circles are braid-like. One can perform Y moves on D so that it

becomes a braid diagram.

Proof. Modify the part 2 of the previous proof. As long as there is a pair of incoherent outermost Seifert

circles, there is an admissible pair, and swallowing one Seifert circle in such a pair by the other decreases

the number of pairs of incoherent outermost Seifert circles (and all they remain braid-like).

In the end, one remains with outermost Seifert circles all which are coherent. But if a is coherent with b

and c, then (b,c) are incoherent, thus there are at most two outermost Seifert circles. Then D is a braid

diagram, as in the remark below Definition 3.7. �

Remark 3.11 Since the Y moves only alter the shape of the Seifert circles but do not affect the bands, one

can see that the isotopy in Lemma 3.4 in fact gives an isotopy of the banded Seifert surface itself (not only

of its boundary). For an independent proof of this fact, see [HIK, Theorem 6.4]. But it is important to

see that the condition of Remark 3.3 is preserved by Y moves so chosen. In particular, we do not claim in

Lemma 3.4 that all possible canonical surfaces of D are isotopic to braided surfaces on s strands.

3.3 Some other applications

3.3.1 Positive links

For example, if we start with a positive diagram D, regarding its positive crossings as positive bands, the

algorithm in the proof of Lemma 3.4 will give a band representation with positive bands. The below is thus

a direct consequence of Lemma 3.4 and recovers, as announced, Rudolph’s result [Ru] (also reproved by

Nakamura [Na3]).

Corollary 3.12 A link is strongly quasipositive if and only if it has a positive banded diagram. �
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One can easily see a little bit more: by estimating

s(D)≤ c(L)

from [St5, Corollary 3.2] (see the proof of Theorem 1.1, specifically (4.3) without the ‘−1’ at the end), one

can get a strongly quasipositive representative on at most c(L) strings. However, comparing this estimate

with Ohyama’s [Oh]

b(L)≤ c(L)

2
+1 , (3.4)

for a general braid representative, clearly reveals this bound to be somewhat crude. This provides motiva-

tion to us to make a non-trivial step forward toward an improvement of Lemma 3.4 when one starts with a

regular (and not banded) link diagram. The result, formulated in Theorem 4.1, requires some independent

toolkit to open up, and is moved to §4. Ultimately, the obvious question arises: if L is positive, then does

it always have a strongly quasipositive braid on minimum (= b(L)) strings? It seems even very legitimate

to ask this for strongly quasipositive L as well. See Question 2.4. Several of Ito’s papers have studied the

(more general or related) version of this question in general open books [IK, HIK].

3.3.2 Preservation of strong quasipositivity under cabling

Another small application is as follows. We resume the notation and conventions of §2.5.

Proposition 3.13 If K is a strongly quasipositive knot and β ∈ Bk is strongly quasipositive, then the β-k-

cable Kβ of K is strongly quasipositive, and

χ(Kβ) = kχ(K)−w(β) . (3.5)

Proof. Let first k = 2 and K be positive. When β = Id2, one notes that Kβ is obtained from K when

replacing each (positive) crossing of a (positive) diagram of K by

(3.6)

which gives a band diagram of K0 with 2 positive bands for each crossing of D. (Note that for a knot K we

can move half-twists between the left and right pair of strands, and we do need this here.) By induction on

k generalize (3.6) to give the (positive) band representation

(σ1)
l
k = σ1,k+1σ2,k+2 · · ·σk,2k ∈ B2k . (3.7)

If β is non trivial (and strongly quasipositive), add its extra bands.
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The positive diagram D of K and the positive band surface of Kβ is of minimal genus (see §2.4). Thus

the Euler characteristic is obtained by counting Seifert circles and bands. Notice that when D has s Seifert

circles, then any k-parallel diagram of D will have ks. (From here one also sees estimates on the number

of strings, which are k times those for L in Theorem 1.1.)

Now to prove this when K is strongly quasipositive, the only difference is that one has to start with a

diagram with positive bands rather than positive crossings and generalize (3.7).

(σ1,m)
l
k = σ1,(m−1)k+1σ2,(m−1)k+2 · · ·σk,mk ∈ Bmk . (3.8)

The rest of the argument then works the same. �

Example 3.14 Since we start with 0-framing, for a positive braid β and positive knot K, for many of these

links Kβ one can easily prove that they are not positive. For example, when k = 2, β = σ1 and K is the

positive (right-hand) trefoil, the above proposition4 shows that the knot Kβ, with the 4-braid representative

(σ2σ1σ3σ2)
3σ−5

1 ,

has genus 2. But by calculation of the (Alexander variable) degree maxdegm P in the skein polynomial of

Kβ, the inequality of Morton (2.11) shows that all its canonical Seifert surfaces have genus at least 3, i.e.,

for every diagram D of Kβ

g(D)≥ 3 > 2 = g(Kβ) , (3.9)

in particular Kβ cannot have a positive diagram D.

This same example has occurred in [Ba]. Based on its discussion there, a different argument here would be

to use the fact (which is an exercise5) that the fiber surface of every positive link is a Hopf plumbing. See,

though, Question 6.5. Yet another proof of (3.9) follows from the result of [St10].

Remark 3.15 Similarly, if L is a link of components 1, . . . ,n, there is a satellite link Lβ̄ for a braid tuple

β̄ = (β1, . . . ,βn) ∈ Bn
k . In a generalization of Proposition 3.13, we have for a strongly quasipositive link L

and strongly quasipositive braids βi (for all 1, . . . ,n) the version of (3.5)

χ(Lβ̄) = kχ(L)−2k(k−1)lk(L)−
n

∑
i=1

w(βi) .

Here lk(L) is the total linking number of L (sum of all linking numbers between pairs of components of

L). The term arises because in the generalized proof the reduction to two bands in (3.6) occurs only in

self-crossings of a positive diagram of L.

Remark 3.16 Proposition 3.13 also holds for ‘strongly quasipositive’ replaced by ‘quasipositive’ with a

very similar proof, but in (3.5) one would have to use instead of χ the smooth slice Euler characteristic.

The converses are more interesting (see Question 6.1).

4although, of course, if K is a positive braid knot, like in this instance, the capacity of Lemma 3.4 is not really needed
5I have no exact reference, but the best related account I know for is [St8].
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Another topic is whether something can be said when strands in satellite links have reverse orientation; for

this see Example 4.27 and Theorem 3.17.

Similarly, one could ask if the observations of §3.3.2 can be extended when strand orientation in satellite

links is incoherent (i.e., algebraic and geometric intersection number are not the same). Whitehead doubles

would be the archetype of such links, and Bennequin’s example of the trefoil Whitehead double (see

Example 4.27) suggests that some result may be possible in this direction.

We are dealing with this question in a project with G.-T. Jin and H. Lee. This follows from work of

Rudolph, where T B is the Thurston-Bennequin number (related to (2.28), but the difference being a rotation

term; compare also with [LN, Tu]). We will further discuss the relation to arc index.

Theorem 3.17 For every knot K, the Whitehead doubles of K with negative clasp are not strongly quasi-

positive. But the k-twisted Whitehead double of K with positive clasp is strongly quasipositive if and only

if k ≥−T B(K).

Thus there emerges a (strange) dichotomy between incoherent and cable patterns. For instance, one can

easily check that no 2-cable of the figure-8-knot is strongly quasipositive. For cable patterns, some condi-

tion on the companion is thus necessary for the satellite to be strongly quasipositive. We expect (Question

6.1) that this condition is strong quasipositivity. But for incoherent patters of every type (i.e., fixed unequal

algebraic and geometric intersection number), for every companion knot one can find a pattern making the

satellite link strongly quasipositive. We have to move out further discussion to a separate paper.

3.3.3 Stably alternating links

Before we apply Lemma 3.4 further to strong quasipositivity, let us make the first outlined application to

alternating links.

Start with a diagram D of a link L whose canonical Seifert surface is of minimal genus (we regard the

crossings as bands, as we noticed above) and whose number of Seifert circles gives the braid index of L.

Then the proof of the lemma gives a braided Seifert surface with the same number of strands and bands,

which is of the same genus.

There are a few such diagrams D. Let us restrict ourselves to alternating diagram D. It is known, by

Crowell-Murasugi that the canonical Seifert surface of such alternating diagram is of minimal genus, i.e.,

(2.3) holds. In some cases D also has the minimal number of Seifert circles s(D) = b(L). In fact, these

cases have been recently classified [DHL].

Let us call6 a link to be stably alternating, if it has an alternating diagram D, in which no crossing connects

as single crossing its two Seifert circles. (That is, for any pair of Seifert circles, there is either no crossing

connecting them, or at least two.) We call D also stably alternating. It is very well known that any fibered

alternating link is stably alternating.

Combining (2.22) and (4.16), let us say (as in [St12]) that a diagram D of a link L is ind -optimal if the

inequalities become exact:

MFW(L) = b(L) = s(D)− ind(D) . (3.10)

6After choosing this terminology, I became aware of [It], where the term ‘DHL link’ is used.
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The following is a way to state the result of Diao et al., incl. how it is proved.

Theorem 3.18 ([DHL]) For an alternating diagram D of a link L the following are equivalent:

1. s(D) = b(L), i.e., D has the minimal number of Seifert circles,

2. D is stably alternating,

3. D is ind-optimal.

The partial case of

‘stably alternating=⇒ ind-optimal (=⇒ s(D) = b(L))’

for fibered alternating links was long before proved by Murasugi [Mu]. The implication ‘not stably

alternating=⇒ b(L)< s(D)’ (which is not relevant here) is a consequence of the Murasugi-Przytycki move

(see §4).

From the theorem and the preceding observations we immediately obtain

Proposition 3.19 Any stably alternating link L has a minimal string Bennequin surface. �

This is among several classes of links for which we have (2.26). See the remarks below Question 6.2 for a

summary. Whether any alternating link has a minimal string Bennequin surface remains an open problem

(see Question 6.2).

As one last further notice in this subsection, we have the following. Let us call β ∈ Bk to be ∆-sharp if β
can be written as a product on c bands and

2maxdeg∆(β̂) = 1− k+ c .

This means, these are exactly the braids giving a Bennequin surface of a link making (2.8) exact. Examples

of such braids are non-split homogeneous braids (in particular non-split positive, negative, or alternating

braids), for which the bands are just crossings, or any strongly quasipositive braid β whose closure is a non-

split positive or almost positive link (see below (2.9)), or which is fibered. (See [Ba] for some construction

of fibered strongly quasipositive links, and [FLL] for the almost positive ones; cf. the end of §4.4.5.)

Proposition 3.20 Let K be a stably alternating knot and take β ∈ Bk which is ∆-sharp. Then Kβ has a

minimal string Bennequin surface and χ(Kβ) = kχ(K)− c(β).

Proof. With the idea explained, only some hints are given. Combine the proofs of the Propositions 3.13

and 3.19 by finding a decomposition into bands of the mirror image of (3.6) (and its generalization to k > 2)

when the framing half-twists are moved to the other cabled strand, i.e., use (σ−1
i )r

k from (2.39) instead of

(σ−1
i )l

k, when cabling the negative letters in β. (Cf . the remark below (2.39).)
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The braid index b(Ks) = kb(K) follows7 by Corollary 3 of [BM]. The minimality of the braided surface

follows from (2.8) and the cabling formula for the Alexander polynomial

∆(Kβ)(t) = ∆(K)(tk) ·∆(β̂) .

Since β was assumed so, ∆(β̂) 6= 0 and (2.8) is exact for L = β̂, as well as for L = K. �

This result then includes again all classical cables of K, except the 0-framed one.

3.4 More complexity estimates for strongly quasipositive composition links

This application is only outlined, since it is related to the construction of [St17], and details are given there.

Using a separate construction we achieved that any two given links can be combined to give a strongly

quasipositive link. This in particular implies that any link is a sublink of a strongly quasipositive link.

We will say that a link L is a composition of links L1 and L2, and write L = L1 ×L2, if both L1 and L2 are

sublinks of L, and if deleting from L the components of L1 gives L2 and vice versa. Of course, the operation

‘×’ is highly ambiguous, and we showed that we can always make the result to be strongly quasipositive.

We also discussed some complexity issues of the strongly quasipositive link constructed and proved the

following. (Complexity can be further reduced if one allows for restrictions on what links to combine, but

details are left to [St17].)

Conforming to [St17], let in the sequel D′
i = β̂i be (closed) braid diagrams of Li and for each letter d ∈

{c,s,w,n} set di = d(D′
i) and d = d1 +d2. We will also continuously stipulate n1 ≥ n2 , and that D′

1 is not

a split diagram.

Proposition 3.21 ([St17]) Let Li have a braid representatives βi on si strands with word length c(βi) = ci.

Then there is a link L= L1×L2 with a positive band representation on 2s strands with at most 4c−n1+3n2

bands.

To relax ourselves from using braids, we developed Lemma 3.4 to give some complexity estimates of

strongly quasipositive links L1 ×L2 constructed in terms of an arbitrary diagram D′
i of Li. This gives then

the generalization of Proposition 3.21:

Proposition 3.22 If Li have diagrams D′
i with si Seifert circles and ci crossings, then there is a positive

band representation of a link L1 ×L2 of 2s strands and at most 4c−n1 +3n2 bands.

This follows first by applying Yamada’s algorithm on D′
i and then a generalization of the construction of

L1 ×L2 from braids. Every Yamada move (when applied carefully, as we developed in §3.2) adds no new

bands, but makes crossings into non-crossing bands. Details were given in [St17].

7for discussion of another, incorrect, proof see [St6]
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4 Reducing banded Seifert circles

4.1 Outline

We return to the problem that transpires below Corollary 3.12: If one starts in Lemma 3.4 with an ordinary

link diagram D (rather than a banded diagram), can one find a braided surface S with χ(S) = χ(D) on how

many fewer strands than s(D)? Specifically, for a minimal genus diagram, with (2.3), one can obtain upper

estimates on bb(L) defined in (2.25).

Ohyama’s quoted bound (3.4), for an arbitrary braid representative, relies on Murasugi-Przytycki’s move,

and there are ways to make this move work for bands, discussed in [St15], but they carry many subtle

caveats. The current investigation means to do away with many of these technical problems. The following

outcome will already bear its price of proof and explanation. It is not necessary to restrict oneself to positive

diagrams, also in order to go beyond Question 2.4.

Theorem 4.1 If L has a connected link diagram D with c crossings and s Seifert circles, then it has a

braided Seifert surface S with χ(S) = χ(D) = s− c on s′ strands with (4.1), with at most c+(D) positive

and at most c−(D) negative bands.

In fact, we have the estimate (which we owe proof of)

s′ ≤ s(D)− ind(D) . (4.1)

The term ind(D) will be explained in §4.2. Ohyama obtains (3.4) by proving

s(D)− ind(D) ≤ c(D)

2
+1 , (4.2)

and using (4.16) discussed below.

What this gives for positive links was presented in the introduction.

Proof of Theorem 1.1. Take a positive reduced diagram D. Use that by [St5, Corollary 3.2] (unless L is

alternating, where one could take an alternating diagram D with c(D) = c(L)) we have

c(D)≤ c(L)−χ(L)−1 . (4.3)

Substitute this into the combination of (4.1) and (4.2). This gives the first alternative in the minimum (1.3).

For the second alternative, see the proof of Proposition 4.6 and its statement. The second alternative in

(4.13) does readily adapt to (1.3) for a positive link, and because of the use of Theorem 4.1, ‘Bennequin

surface’ can be replaced by ‘strongly quasipositive surface’. The increase by 1 in (1.3) is due to the possible

failure of the argument that (4.37) is strict. (The r.h.s. of (4.43) goes up by 2.) �

It should be warned that the quantity c(L), even for a positive link L, is less tangible than one may expect:

not only are (obviously) positive diagrams not always minimal, but some positive links have no minimal

positive diagrams at all (see [St4]). Similar caution applies to ‘homogeneous’ in Proposition 4.6. (Recall

the remark in §2.2 that a homogeneous diagram of a positive link is positive.)
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Moreover, (4.3) has its roots in Thistlethwaite’s work on the Kauffman polynomial, which is very different

from the approach in [St12] drawn upon in the proof of Lemma 4.12 and Proposition 4.6. This Kauffman

polynomial estimate does somewhat better than the analogue c(L) of the first choice in (4.13) for a positive

(or negative) link. (See the proof of Corollary 4.15.) For strongly quasipositive links, it would be interesting

to have c(L) serving any geometric purpose whatsoever.

Theorem 4.2 If L is a non-special alternating, resp. special alternating, non-trivial non-split link, then it

has a Bennequin, resp. strongly quasipositive/-negative, surface on at most

min

(
1

2
c(L)+1, 2b(L)−3, b(L)− 1

2
− χ(L)

2

)
, (4.4)

resp.

min

(
1

2
c(L)+1, 2b(L)−2, b(L)− χ(L)

2

)
(4.5)

strands.

For an alternating link, the third estimate may improve the second one in (4.4) and (4.5) (which relates to

the Jones polynomial), and with the factor in front of b(L) gone, it looks more natural and closer, certainly

for small −χ.

Proof. One could take an alternating diagram D with c(D) = c(L), on the inequality of (4.2).

For the second alternative of the minimum, use [St2, Theorem 6.1]:

2b(L)−2 ≥ 2MFW(L)−2 ≥ s(D) . (4.6)

The minor improvement for non-special alternating links comes from the extra unsharpness property stated

in the theorem.

For the third alternative, use (4.41) in Lemma 4.17 on the second alternative.

And for a special alternating link L, the diagram D would be (up to mirroring) positive, thus so will be the

band representation. �

Remark 4.3 For a special alternating link L, [St15, Conjecture 7.5.1] predicts an improvement of (3.4),

b(L)≤ c(L)−g(L)

2
+1 =

c(L)+1

2
+

n(L)+χ(L)

4
.

This was verified, using (4.16), for a (special) alternating arborescent link8, in particular for a (special)

alternating Montesinos link. Thus we have an improvement of the first alternative in (4.5) in these cases.

We can relate now Theorem 4.2 to Conjecture 2.6, beyond the numerous links (to be) established with

(2.26) (as summarized below Question 6.2). Many meaningful classes of links do satisfy lower bounds on

the Bennequin defect making them applicable to our method. One can also use the subsequent estimates

for some (more crude) statements about homogeneous links, etc. As an example, see Corollary 4.19.

8in the sense that its arborescent diagram is alternating; we did not consider the links with Menasco’s hidden Conway spheres
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Proposition 4.4 Conjecture 2.6 holds for alternating links L which satisfy one of the following conditions:

1) of minimal writhe wm(L)≤ 7 (in particular achiral knots),

2) with mindegl P(L)≤ 3 (in particular negatively special alternating links),

3) knots K with τ(K)≤ 1 (among others further, slice knots, knots of unknotting number one, etc.), and

with τ(K) = 2 when c(K) is odd.

Proof. We assume throughout that D is a reduced alternating diagram of L. Set g′(L) = (1−χ(L))/2.

1) When wm(L)≤ 7, then

δ(L)≥ g′(L)− 7

2
+

b(L)−1

2
= g′(L)+

b(L)

2
−4 . (4.7)

By the last alternative of (4.4) in Theorem 4.2, we have when L is not special alternating,

bb(L)−b(L) ≤ g′(L)−1 . (4.8)

When b(L)≤ 4, then it is known from [St2] that (2.26) holds. (See Remark 4.5.) Setting b(L)≥ 5 in

(4.7), we have

δ(L)≥ bb(L)−b(L)− 1

2
,

which is enough because of integrality.

There remains the case that L is special alternating. If L is positive special alternating, then from

(4.7)

0 = δ(L) ≥ g′(L)+
b(L)

2
−4 , (4.9)

which leads to a few low-crossing links that can be checked directly for (2.26). Since b(L) ≤ 4 are

known from [St2], there remain up to connected sums,

• for g′(L) = 1/2 only reverse (2,n)-torus links, and

• for g′(L) = 1 the pretzel links L(p,q,r) with p,q,r > 0 all even or all odd. They can be handled

as described below (5.35).

• For g′(L) = 3/2, we need b(L) = 5 from (4.9). Assuming s′ > b(L) in (4.1), we have that

c(D)

2
+1 ≥ s(D)− ind(D)≥ 6 ,

so that c(D)≥ 10. Using χ(D) =−2 and b(L) = 5, from (4.6) we have that c(D) = 2+ s(D)≤
10, so there remains c(L) = c(D) = 10. A few explicit checks (which are extended below) can

finish the argument.
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If L is negatively special alternating, then from (2.31),

δ(L)≥ 2g′(L) .

(Compare with (4.44).) Then the claim follows from the modification of (4.8),

bb(L)−b(L) ≤ g′(L)− 1

2
.

according to (4.5).

2) If mindegl P(L) ≤ 2, the claim follows like point 3), just using (2.12) instead of (2.19) and g′(L)
instead of g(K). If L has even number of components, use that mindegl P(L) ≤ 1 by parity. (This

would reinstate the constant ‘1/2’ in the generalization of (4.12).)

It is worth focusing a little more when mindegl P(L) = 3. Point 2) can be proved by an extra (parity-

integrality) argument.

We need to prove the first inequality in

bb(L)−b(L)≤ g′(L)− 3

2
≤ δ(L) ,

keeping in mind that g′(L) is a half-integer (and n(L) is even). It is enough to confirm the second

inequality in

bb(L)≤
c(L)

2
+1 ≤ b(L)+g′(L)− 3

2
, (4.10)

which is equivalent to
s(D)

2
≤ b(L)−2, or s(D)≤ 2b(L)−4.

Assume c(L) is even. Now if L is not positively special alternating, then the strict (4.6) gives

s(D)≤ 2b(L)−3, (4.11)

and now use that when n(L) and c(L) = c(D) are even, so is s(D). (Negatively special alternating

links have maxdegl P(L) = χ(L)−1 ≤ 0.)

If c(L) = c(D) is odd, then by integrality (4.10) can be changed to

bb(L)≤
c(L)+1

2
≤ b(L)+g′(L)− 3

2
,

leading directly to (4.11). This shows point 2) if mindegl P(L) = 3 when L is not (positively) special

alternating.

Assume finally L is special alternating. Then mindegl P(L) = 2g′(L) = 3. We have to compile the

series of such (special alternating) diagrams D and ascertain that they are ind-optimal (3.10). This is

a (minorly tedious but very) manageable hand check with the tools explained for Proposition 5.11,

and the description of MFW(L) = 3 (special) alternating links in [St16]. Composite diagrams are

handled like in point 1).
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3) From (2.32), for τ(K)≤ 1 we have δ(K)≥ g(K)−1. So it is enough to prove by integrality

bb(K)≤ b(K)+g(K)− 1

2
. (4.12)

Use the last alternative in (4.5).

For τ(K) = 2 and c(K) odd use the first. We have to see the second inequality in

bb(K)−b(K)≤ c(D)+1

2
−b(K)≤ g(D)−2 ≤ δ(K) .

This second inequality can be reorganized as

b(K)≥ s(D)

2
+2 ,

or s(D)≤ 2b(K)−4, which follows for K not special alternating from the strict version of the right

inequality in (4.6) using that s(D) is even (since K is a knot and c(K) = c(D) is assumed odd). If K

is special alternating, then τ(K) = g(K) = 2, which have been checked in [St3] for (2.26). �

Remark 4.5 a) In the statement of point 1), wm(L) (is not always equal to but) can be replaced by

1/2(mindegl P(L)+maxdegl P(L)) ,

even if (2.22) is not exact. We can apply the result in [St2] that MFW(L) ≤ 4 for an alternating link

implies (3.10) and thus (2.26). Based on it, either the argument can be modified by using that b(L)
can be replaced by MFW(L) in (4.4) and (4.5), or use point 2).

b) Of course point 3) can be formulated in terms of the signature σ, because of (2.18) when K is

alternating. But the property (2.19) underlying the proof is lacking for σ in general. We do not know

for example if a proof is possible if σ(L) ≤ 2 for an alternating link L. On the other hand one can,

for knots, replace τ also by the Rasmussen invariant.

Proposition 4.6 If L is a homogeneous non-trivial non-split link, which is not positive or negative, then it

has a Bennequin surface on at most

min(c(L)−1 , b(L)−1−χ(L)) (4.13)

strands.

This proof does require a bit of extra work, and thus it will be better to postpone it to §4.4.2, after we

familiarized ourselves more with the graph index machinery. The case χ = 0 gives only reverse (2,n)-torus

links (n even), and they have minimal string Bennequin surfaces by rather obvious arguments (or see for

example [Hi]). They are automatically excluded since they are positive or negative.

The rest of this section will mainly deal with the proof of Theorem 4.1. Basically, what we will accomplish

is to show that one can apply a maximum of Murasugi-Przytycki moves, while still keeping bands intact,

so that the banded diagram of the canonical surface of a diagram can be modified into a braided surface.

In particular we will be justified using Ohyama’s bound (4.2) then. This requires some detailed technical

explanation in the following subsection, where we have to roll out various variants of the graph index. This

dust will settle later with Theorem 4.9, but will need to get to that point first.
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4.2 Graph index relations

Proof of Theorem 4.1. The following discussion will center around a move (first) found by Murasugi-

Przytycki, which serves the reduction of the number of Seifert circles of a link diagram.

Call, in analogy to the terminology from §3.3.3, a crossing p unstable if it is the unique crossing connecting

its two Seifert circles. Let these Seifert circles be a and b. The Murasugi-Przytycki move then relays one

of the crossing strands around Seifert circles adjacent to one of a or b.

ւ ց (4.14)

The move was rediscovered by several people, e.g., [Ch]. It is important to note (while we will not repeat

this detail later) that both the overpass (as in (4.14)) and the underpass can be laid around either of these

Seifert circles. For similar reasons as in the case of Yamada’s move (see below (3.2)) we will always choose

the overpass.

Obviously when starting with a link diagram D of s(D) Seifert circles and can successively apply n

Murasugi-Przytycki moves, we have

b(L)≤ s(D)−n . (4.15)

Here D is a diagram of a link L with braid index b(L). One is thus interested in the maximal possible n.

Murasugi-Przytycki’s definition of graph index bases on a transformation of graphs, which is to model

their diagram move on the level of Seifert graphs.

Recall the Seifert graph Γ(D) of D from §2.2. When D′ arises from D by a Murasugi-Przytycki move,

there is a corresponding transformation of Γ(D′) in terms of Γ(D). Then ind(D) = ind(Γ(D)) measures

the maximal possible number of such transformations. We will recall the definition of ind in its exact form

in §4.3 (or see [St15, §7]), but its role is now important in understanding what follows.

Then we have the inequality

b(L)≤ s(D)− ind(D) , (4.16)

which has some important applications, notably [Oh]. (There is now an improvement of (4.16) in gen-

eral diagrams; see (4.46).) In relation, Murasugi-Przytycki made the following optimality conjecture for

alternating diagrams.

Conjecture 4.7 (Murasugi-Przytycki conjecture) For an alternating diagram D we have equality in (4.16).

Unfortunately, there was a flaw in Murasugi-Przytycki’s work: the move Murasugi-Przytycki introduced

on Γ(D) did not correspond exactly to the effect of their move on D. The problem was treated in [St15, §7]

and later a bit more detailedly in [St9]. Roughly, Murasugi-Przytycki’s graph move contracts more edges

than it should.
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Correcting this error results in a new, but far more technical, definition of index, called ind0, explained in

the aforementioned references. (This definition requires bipartacy.) Thus (4.16) must be corrected to

b(L)≤ s(D)− ind0(D) . (4.17)

However, it is easy to prove by induction (see Lemma 4.1 in [St9]) that contractions do not augment the

index, so that

ind 0(D)≥ ind(D) , (4.18)

and thus (4.17) implies (4.16). Later Traczyk [Tr] proved the fact (which I suspected based on extensive

computations) that actually

ind 0(D) = ind(D) , (4.19)

so that the Murasugi-Przytycki index, although wrongly defined, gives the right value. Then, indeed,

working with ind instead of ind0 is better, since it is less technical. But one loses the correspondence

between graphs and diagrams, and proofs using ind must live in their own (graph-theoretic) setting.

In [St15, §8.2] then the question was tackled how to use Murasugi-Przytycki’s move with (braided or

Bennequin) surfaces. There a problem arises. With the above convention relaying a strand along a Seifert

circle by the move will preserve the structure of bands. But once an unstable crossing is turned into a band,

Murasugi-Przytycki moves at this band will destroy it and hence can no longer be allowed.

This then requires the definition of a more restrictive version of index, the band index ind b, with

indb(D)≤ ind0(D) . (4.20)

Let the Bennequin braid index be as in (2.25). Then we have

bb(L)≤ s(D)− indb(D) . (4.21)

Now if we prove

s(D)− indb(D) = MFW(L) ,

then the chain of inequalities

MFW(L)≤ b(L)≤ bb(L)≤ s(D)− indb(D)

all become exact. (This then also implies the exactness of (2.22), a significant problem on its own, and with

(4.19) and (4.20) confirms Murasugi-Przytycki’s Conjecture 4.7.) It was proved using such an approach,

for example, in [St15, §8.2] that any alternating knot of genus at most 4 has a minimal string Bennequin

surface. These extensive tests then also raised the conjectured possibility that always

indb(D) = ind0(D) . (4.22)

We will soon return to this equality.

Before we continue, a remark is in place. The Murasugi-Przytycki moves, even in the restricted band form,

leave us with what we described above as a banded diagram. To turn it into a braided surface, one has to

use Lemma 3.4. Now, the clear concept of a banded diagram and Lemma 3.4 were missing in [St15]. But
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the proof of Lemma 3.4 shows that more detail is required than what one may originally expect. The work

in §3.2 here thus in fact also fills this gap, which is needed to complete the proofs in [St15, §8].

Returning to the treatise of indices, we designed ind b so that it of course incorporates the fix of Murasugi-

Przytycki’s error. Unfortunately, this fix carries its corresponding complication. For computer calculations,

as in [St15], one would have to pay only with time (although, as was observed, it was not an insignificant

factor in comparison between ind0 and ind), but for a theoretical account, it is useful to seek simplifications.

In this spirit, we will work below with a modified version of ind b, which we call ind∗, the false band index.

Essentially, we will take a benefit from the discovery of the error of Murasugi-Przytycki, and intentionally

repeat this error, in the context of banded diagrams.

The justification of making this false definition is that again

ind∗(D)≤ indb(D) (4.23)

so that (4.21) implies

bb(L)≤ s(D)− ind∗(D) , (4.24)

which is what we will use. The proof of (4.23) is analogous to that of (4.18). Again ind∗ marks and

contracts more edges than ind b does, and one has to repeat Lemma 4.1 in [St9] in this context. Similarly

one proves that when G′ is G with an edge marked, then ind∗(G′)≤ ind∗(G).

With this justification, we – finally – give in the next subsection the definition of the index ind∗ we will

actually work with. We should also note that, while the Murasugi-Przytycki moves counted by indb, and

estimated by ind∗, turn crossings into and preserve bands, each removes one crossing (and one Seifert

circle) of these banded diagrams, so that the number of positive and negative bands cannot increase in

comparison with D. This was part of the statement of Theorem 4.1. To prove (4.1), we will relate it to

(4.24).

In an attempt at clarification, we summarize the types of index (of bipartite graphs or diagrams) that we

explained above (compare [St15, (8.4)], with the same notation):

ind b(D) ≥ ind∗(D)

≤ ≤

s(D)−b(L) ≥ ind 0(D) = ind(D) .

(4.25)

The indices of the first, respectively second, line take, respectively do not take, into account keeping the

bands. Thus, these indices can, respectively cannot (yet), be used to estimate Bennequin surface string

numbers. The indices of the left, respectively right, side take, respectively do not take, into account the fix

of Murasugi-Przytycki’s error. The added inequality between ind∗(D) and ind(D) follows from the (above

discussed) others.

It is possible, like in (4.22), that all inequalities between indices are in fact always equalities. We will prove

this below (Theorem 4.9).

This long explanation was inevitable for clarifying the correctness of the following arguments.



36 4 Reducing banded Seifert circles

4.3 The ordinary and the false band index

The graph terminology we use is fairly standard; see [St15, §7] and [St9]. We write E(G) for the set of

edges of G.

We assume for the rest of the paper that G is bipartite, which avoids some technical difficulties. In particular

G has no loop edges. But it may have multiple (parallel) edges (between the same vertices).

We define a distance function d between edges of G by the following procedure. For every edge e set

d(e,e) = 0. Then if for two edges e,e′, the distance d(e,e′) is not yet defined, but there is an edge e′′

sharing a common vertex with e, such that d(e′′,e) is defined, set d(e′,e) = d(e,e′) = d(e′′,e)+1. (In this

way, for example, distance between parallel edges is 1, although we will not need this special case.)

Similarly, define a distance d(v,e) between a vertex and an edge, by saying d(v,e) = 0 if e is incident

from v, and if d(v,e) is not yet defined, but there is a vertex v′ adjacent to v with d(v′,e) defined, set

d(v,e) = d(v′,e)+1. For a vertex v, set

starv = {e ∈ E(G) : d(v,e) = 0} .

In the Murasugi-Przytycki operation, we choose a simple edge e between vertices v and v′ and one of the

two vertices v of e. (Note that a simple edge in Γ(D) corresponds to an unstable crossing in D, as defined

above.) Then the transformation they use is

G′ = G/v := G/starv . (4.26)

Note that this decreases the number of vertices (to correspond to Seifert circles) by more than one. But in

fact all vertices adjacent to v different from v′ become stumps, and we can tacitly remove them.

Now we use graphs in which we mark edges. Each edge has a Z2-grading: it is either marked or not. The

marking of an edge is its marking status. In below diagrams we indicate marked edges by an asterisk. In

the initial graph G = Γ(D), all edges are unmarked. A marked edge is to be understood as one that cannot

be chosen as an edge e. It corresponds to a multiple edge. I point out again that the marking of edges is

thus completely unrelated to the +/− marking of the sign of crossings/bands. What happens to the signs

was explained above, so these signs will be henceforth completely ignored.

We describe now our version of the Murasugi-Przytycki graph operation, which we call ∗-operation, and

we write analogously to (4.26)

G′ = G/∗e . (4.27)

We choose a non-marked simple edge e and a vertex v of e. While (4.26) really depends only on the vertex

v (as long as there is a simple edge incident from it), now our operation will depend on the edge. Also, it

will of course depend as well on which v of the two vertices of e is chosen. Instead of carrying the pair

(e,v) along, we will accommodate for it by saying that e is a directed edge (towards v). Let v′ again be the

other vertex of e. Since we need this designation a few times, let us write

v′ = o(e,v)

for the vertex of e which is not (i.e., which is opposite to) v.
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In (4.27), as a graph, G′ = G/starv, but we need to explain the markings on G′. Let e′ ∈ E(G′). Obviously

there is an edge e′ ∈ E(G)\ starv corresponding to it, written with the same letter, and the below cases are

given assuming d(v,e′)> 0 in G.

Case 1. If d(v,e′)≥ 2, or d(v,e′) = 1 and d(v′,e′) = 0, then in G′, the edge e′ retains its marking.

Case 2. If d(v,e′) = 1 and d(v′,e′)> 0, then e′ is marked in G′.

v2

v3

v1

v

v5

v4

v6

v7

v8

e

∗

∗

retain









mark −→ ∗ v6

∗ v5∗
v4

∗
v1

v2

v3

∗
v8

∗
v7

Note that both cases are disjoint, because G has no cycles of length 3.

We say that a sequence of directed edges e1, . . . ,en (towards their vertices v1, . . . ,vn) in G is ∗-independent

if for G = G0, the ∗-operations Gi = Gi−1/∗ei are all admissible; in particular in G,

ei 6∈
i−1⋃

j=1

starv j ,

and when Gi−1 is built, the edge ei therein has not received a marking.

Obviously in a ∗-independent sequence orientation and order of edges matters, but no edge (with whatever

orientation) is included twice. We say that a set of edges {e1, . . . ,en} in G is ∗-independent if it admits

an ordering and each edge admits an orientation so that e1, . . . ,en is a ∗-independent sequence. Then we

define ind∗(G) to be the maximal size |E| of a ∗-independent set E of G, and for a link diagram again set

ind∗(D) = ind∗(Γ(D)).

With our definition of ind∗(D), we explained why (4.24) and (4.25) holds. We should also emphasize from

what we said about (4.23) that a ∗-independent set is then admissible in terms of sets whose maximal size

is counted by indb(D). This means that a ∗-independent set indeed gives a set of crossings of D at which

successively Murasugi-Przytycki moves can be applied, in the proper order and way, so as to preserve

bands.

The original Murasugi-Przytycki operation has only the difference that markings are ignored, and leads

to the definition of independent set/sequence of edges and of the index ind(D). Again, the property to

be independent assumes the tacit designation of a vertex for each edge. We will need to recall Traczyk’s

alternative characterization of an independent set of edges which, though, turns out not to depend on the

choice of these vertices.

Theorem 4.8 (Traczyk [Tr2]) A set E of edges of G is independent if and only if each cycle C of length

2n of G contains |C∩E| ≤ n−1 edges in E.
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We remind that G is a bipartite graph, so all cycles are even. Also, we can and do regard two copies of a

multiple edge as a cycle of length 2. Traczyk’s condition for n = 1 then just says that all edges in E are

simple.

The rest of the work here is devoted to the following fact.

Theorem 4.9 For every bipartite planar graph G, we have ind∗(G) = ind(G). So all inequalities between

indices in (4.25) are in fact always equalities.

Combining this with (4.24) gives (4.1) and completes the argument for Theorem 4.1. �

Proof of Theorem 4.9. Fix a graph G. We will prove, by contraposition, that every independent set E

of edges in G is ∗-independent; the converse is trivial. (The statement that every independent sequence of

edges is ∗-independent is easily seen to be false.) This is essentially accomplished by the following lemma.

Lemma 4.10 Let E in G be independent. Then there is an edge e ∈ E and a vertex v of e, so that no edge

e′ with

d(v,e′)≤ 1 and d(o(e,v),e′)> 0 (4.28)

is contained in E.

Another way of saying the specified condition (4.28) on e′ is that e′ 6= e and e′ is either contracted (if

d(v,e′) = 0) or marked (if d(v,e′) = 1) during the ∗-operation turning G into G/∗e.

Assume this lemma is proved. Notice that, while the markings are relevant in choosing what is a ∗-

independent sequence of edges, once a sequence is chosen, its property to be ∗-independent does not

depend on the markings of the edges outside this sequence. Thus the same holds for a ∗-independent set.

Now work by induction on |E|. By applying the lemma, consider G′ = G/∗e. The edge set E \{e} survives

in G′, and by Traczyk’s condition is independent there. Thus it is ∗-independent by induction assumption.

Now, by the lemma an edge in E \ {e} was not contracted, and did not receive a marking G′ = G/∗e.

Then one can first perform a ∗-operation on (e,v) in G, and then on the edges E \ {e} as from their ∗-

independence in G′. This gives an ordering as a ∗-independent sequence of the edges in E, and thus proves

that E is ∗-independent in G as well. �

It remains now to prove the lemma.

Proof of Lemma 4.10. We will assume that for every edge e ∈ E and vertex v of e, there is an e′ ∈ E with

(4.28). We will use this property to prove that in fact E is not independent, giving a contradiction.

Now we construct for every n ∈ N a sequence e1, . . . ,ek(n) of directed edges in G with the following

properties:

• k(1) = 1 and

k(n+1)− k(n) ∈ {1,2} , (4.29)

• ek(n) ∈ E and ek(n) 6= ek(n−1),
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• For i > 1, the edges ei and ei−1 share a common vertex vi, and ei−1 is oriented towards vi, while ei is

oriented away from vi, towards o(ei,vi).

We proceed by induction on n. For n = 1 take k(1) = 1 and any edge e1 ∈ E with any orientation, towards

a vertex v = v2. Set v1 = o(e1,v). (Clearly E =∅ is no problem.)

Now assume e1, . . . ,ek(n) is constructed. Since ek(n) ∈ E, by assumption, some edge e′ in E \ {ek(n)} was,

in creating G/∗ek(n), either contracted or marked.

vk(n+1)

ek(n)

vk(n) ek(n+1) = e′

vk(n+1)

e′′ek(n)
vk(n)

ek(n+1) = e′

Case 1 Case 2

Case 1. e′ is contracted. This means e′ ∈ staro(ek(n),vk(n)). Set k(n+1)= k(n)+1, vk(n)+1 = o(ek(n),vk(n)),
and ek(n+1) = e′, and direct e′ away from vk(n)+1, towards o(e′,vk(n)+1).

Case 2. e′ is marked. This means that there is an edge

e′′ ∈ staro(ek(n),vk(n))\{ek(n)}

with d(e′′,e′) = 1. Then set

• k(n+1) = k(n)+2,

• vk(n)+1 = o(ek(n),vk(n)),

• ek(n)+1 = e′′,

• vk(n)+2 = o(e′′,vk(n)+1),

• ek(n)+2 = e′,

and direct ei away from vi towards o(ei,vi) for i ∈ {k(n)+1,k(n)+2}.
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This completes the construction of the sequence (ei). Now this sequence is by assumption extendable

in(de)finitely, but E has only finitely many edges.

Thus ek(m) = ek(n) for some m 6= n. This means that C = {ek(m)+1, . . . ,ek(n)} forms a cycle in G. But

because of (4.29), at least half of the edges in C belong to E, violating Traczyk’s condition of Theorem 4.8.

Thus E is not independent, giving the desired contradiction. �

Remark 4.11 It is useful to notice that the canonical surface of D in Theorem 4.1 can itself be deformed

into a braided surface. See Remark 3.11 for the Y move (and keep in mind the condition of Remark 3.3).

The Murasugi-Przytycki move’s affect on surfaces will be discussed in more detail in [IS2]. To illustrate

the argument, I reproduce here (with my coauthor’s consent) in Figure 3 a figure from that paper (although

there the mirrored convention for the bands is used).

Figure 3: Murasugi-Przytycki’s move viewed as an isotopy of the canonical Seifert surface;

the Seifert surface inherits a disk-and-twisted-band decomposition.

4.4 Applications and relations

4.4.1 The braid index of a homogeneous link

As a preparation for proving Proposition 4.6, we need to discuss some estimates on the braid index of a

homogeneous link. Due to the general difficulties to give good lower bounds on the braid index of links,

this discussion has a merit in its own right, completely apart from Bennequin surfaces. Starting with some

diagram D of a link L, obviously some regularity is needed to have a chance at a meaningful estimate. We

will assume D is homogeneous (and reduced). We will refer to the bound

b(L)≥ c(D)+1

2
+2χ(D) , (4.30)

which was stated in [St12, Theorem 1.1].
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For ∼-equivalence, t̄ ′2-moves (or t̄ ′2-twists), generators and series, see [St15] or [St12, §3], for example.

We will write t1(D) for the number of odd ∼-equivalence classes of D.

We will often need below the maximal m-term of P in Morton’s sense. We restrict ourselves to diagrams,

and using brackets to denote a coefficient, we define

Pmax(D) = [P(D)]m1−χ(D) . (4.31)

This is a Laurent polynomial in l. One should pay attention to let Pmax depend on D, since we must

keep track of χ(D). An important result of Murasugi-Przytycki [MP] is that if a diagram D = D1 ∗D2

decomposes along a separating Seifert circle as a diagrammatic Murasugi sum of diagrams D1 and D2,

then

Pmax(D1 ∗D2) = Pmax(D1) ·Pmax(D2) . (4.32)

At first, we improve [St12, Theorem 5.6].

Lemma 4.12 Let D be prime reduced homogeneous diagram of a link L. Then with (2.6)

span lPmax(D) ≥ s(D)−1−a′(D) (4.33)

and

span lP(D) ≥ s(D)+1−a′(D) . (4.34)

In particular, because of (2.22),

b(L) ≥ MFW(L) ≥ s(D)+3

2
− a′(D)

2
. (4.35)

Also, (4.34) (and hence the right inequality of (4.35)) is exact only if D is positive or negative.

By using (2.4) in (4.35), it is very easy to see that (4.30) holds. Thus the outcome is non-trivial, even

although the recursive proof of (4.36) may well go over estimates which are negative.

Also, compare (4.34) with (4.6). They are very similar, and (4.34) is slightly weaker, but if for a special

alternating prime diagram we replace a′(D) with a(D) = 1 in (4.34), we obtain exactly (4.6), as far as

MFW(L) is concerned. Nevertheless, (4.6) emerges in [St2] from a totally different perspective. This also

accords with the fact that the replacement a′ to a is not possible in (4.33), as shows Example 4.13.

Proof. When substituting the minimum alternatives of (2.6) into the right of (4.33), the one result is exactly

twice the other. We will stick for the double, because the single is only better when it is negative, but then

the inequality is trivially true. So we have to show

span lPmax(D)≥ 2s(D)− c(D)−2 . (4.36)

We work by induction on c(D). If D is a Hopf link diagram, then the claim is true. Otherwise, we use the

skein polynomial.
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Because of (4.32), for (4.33) it is enough to assume D is prime. It is enough also to assume D special and

has no nugatory crossings.

It is better, for this proof, to switch to Morton’s variables of the skein polynomial P(v,z), used in [Cr],

where (2.10) becomes

v−1P(D+)− vP(D−) = zP(D0) .

During the skein calculation it is important to avoid that crossings become nugatory. Whenever we choose

a crossing p in D, we let D′ be D with p switched, and D0 be D with p smoothed out. It should be kept in

mind that mindegv Pmax(D) = 1−χ(D) when D is positive.

If there are two crossings connecting the same two Seifert circles, by a flype, they can be made to form

a parallel clasp (as D is special). Let p be one of them. If D0 has a nugatory crossing, then D has a

Hopf link factor, and we could proceed with D by induction. Thus D0 has no nugatory crossing, and then

Pmax(D) = v2Pmax(D0), and s(D) = s(D0), so the result follows by induction.

So now assume in D there are no two crossings connecting the same two Seifert circles, i.e., the Seifert

graph Γ(D) is simple. If Γ(D) has a valence-2 vertex, then D has a reverse clasp. Then we can proceed as

in the proof of [St12, Theorem 5.6]. Note that in a special diagram D, no reverse clasp is bad, unless D

has a Hopf link factor. Then D′ depicts a positive link L′ with χ(L′) = χ(D′), so Pmax(D
′) will enter with a

factor v2 in Pmax(D). Also L′ has a special reduced diagram with c(D)−2 crossings and s(D)−2 Seifert

circles. The claim the follows by induction. (Note that L′ may be composite despite that D is prime.)

There remains the case that no vertex of the Seifert graph has valence 2. By a counting argument, there

must be one of valence 3. Choose p to be one of the crossings adjacent to this Seifert circle. Under

exclusion of reverse clasps in D, we have that D0 has no nugatory crossings.

By [Cr, Corollary 2.2] an almost positive diagram D′ has a positive based diagram resolution (as in [Cr,

Corollary 2.1]). Then, by a remark of Traczyk [Cr, Corollary 4.3], Pmax(D
′)(z) is a positive polynomial in

z. We must in general allow this polynomial to be zero, but this situation creates no harm. In fact in our

case the polynomial is not zero; see the remark on the case n = 1 below Corollary 4.37. But in any case its

contribution to Pmax(D) is not cancelled in any v-degree with the one of Pmax(D0), and hence it is enough

study Pmax(D0) only.

But the Seifert graph of D0 has a valence 2 Seifert circle, and the claim follows by induction. This estab-

lishes (4.36), and hence (4.33).

For (4.34) (and (4.35)) it remains to see why

span lP(D) ≥ span lPmax(D)+2 , (4.37)

i.e., span lP(D) > span lPmax(D). Assume that both were equal. Then under the trivializing substitution

from (2.15), the contribution of both the leading and trailing l-term of Pmax(D) will not be cancelled, and at

least one will contribute in non-zero l-degree, unless 1−χ(D) = 0. Also, both will contribute in non-zero

l-degree, unless ±mindegl P(D) = 1−χ(D), which is the case of positive or negative D (see [Cr, Theorem

4]). Thus if D is neither positive nor negative, then (4.37) is strict. �

Example 4.13 The estimate (4.33) does not hold when a′(D) is replaced by a(D). An example is the

alternating diagram of 121097 (known from [St3]). We understood this blunder after noting, in the valence-

2 Seifert circle argument above, that L′ may be composite despite that D is prime.
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On the positive side, the recursion in the proof is sufficiently explicit to allow, or a least suggest, more

successful modifications. For example, term t1(D)/3 may be added on the right of (4.36). Unfortunately, I

was not able to further profit from this improvement.

Another quantity that may be put through the induction for special alternating diagrams D is

span lPmax(D)≥ c(D)− t1(D)+2−2n(D) , (4.38)

for the number of components n(D) of D (and L). This works well except that in the parallel clasp scenario,

one must look at Dp, not D0, and except for the ∗-product (which is not a connected sum, thus restricting

to special alternating diagrams). It then gives, using (4.37),

b(L)≥ MFW(L) ≥ c(D)− t1(D)

2
+3−n(D) . (4.39)

However, it is interesting to find that in fact (4.39) (but, of course, not (4.38)) is subsumed by the partial

case of (4.6) for a special alternating link. This is a matter of some exercise, which is too long to discuss

here, and is left to an interested reader.

In some attempt to more formalize and generalize the proof of Lemma 4.12 to facilitate the search for other

estimates, we include the following formulation in terms of the Seifert graph Γ(D) (defined below (4.15)).

Denote by ∗ the (cut-)vertex join of graphs, so that Γ(D1 ∗D2) = Γ(D1)∗Γ(D2). (Compare with (4.32).)

Proposition 4.14 Let G be the class of planar bipartite connected graphs with no valence-1 vertices. Let

f : G → Z be a function with the following properties.

• f
( )

≤ 0

• f (G1 ∗G2)≤ f (G1)+ f (G2).

• If G has no cut vertex, and e is an edge of G, then f (G\e)≥ f (G). (It is enough that e has a parallel

edge or e is incident from a valence-3 vertex.)

• If G has no cut vertex, and v is a vertex of valence 2, then f (G/starv)≥ f (G)−2.

Then for a homogeneous diagram D of a link L,

b(L) ≥ 1

2
f (Γ(D))+2 .

And ‘+2’ can be replaced by ‘+3’ if L (or D) is not positive or negative. �

As a consequence, we can also improve upon [St12, Corollary 5.14].

Corollary 4.15 Let L be a non-trivial homogeneous link, and not positive or negative, and D a reduced

homogeneous diagram of L. Then

c(D)≤ 2c(L)−4 . (4.40)
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Proof. There is a well-known inequality, which is mostly the combination of (2.11) and (2.22),

c(L)≥ maxdegm P(L)+
1

2
span lP(L) ,

and using D with (4.36) and the unsharpness of (4.37) gives

c(L)≥ 1−χ(D)+
2s(D)− c(D)+2

2
.

This is equivalent to (4.40). (Obviously also c(D) ≤ 2c(L)− 2 for L positive or negative, but this is

subsumed by (4.3).) �

Another easy consequence of the proof of Lemma 4.12 is useful for Conjecture 2.6.

Corollary 4.16 Let L be a non-trivial homogeneous link, and D a non-positive homogeneous reduced

diagram of L. Then δ(L)≥ c−(D)/2+1.

Proof. Let D1 be a positive Murasugi atom of D and D2 a negative one. Then

mindegl Pmax(D1) = c(D1)− s(D1)+1

and using (4.36) and mirroring

mindegl Pmax(D2) ≤ 1− s(D2) .

By iterating (4.32), we obtain

mindegl Pmax(D) ≤ c+(D)+1− s(D) ,

and since D is not positive,

mindegl P(D)≤ mindegl Pmax(D)−2 ≤ c+(D)−1− s(D) ,

whence the claim follows easily from (2.12). �

4.4.2 Another graph index estimate

Lemma 4.17 Let D be a connected diagram. Then

s(D)− ind(D)≤ s(D)

2
− χ(D)

2
+1 . (4.41)

Proof. Rewrite Ohyama’s inequality (4.2) by

c(D)

2
=

s(D)

2
− χ(D)

2
. �
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Proof of Proposition 4.6. Use (4.40) for a homogeneous diagram D. This, together with (4.2), gives the

first alternative in the minimum (4.13). For the second one, use (4.34) and (2.4), and the argument that for

non-positive, and non-negative D, (4.37) is strict, giving

2(b(L)−1)≥ span lP(D)≥ s(D)+3−a′(D)≥ s(D)+χ(D)+2 , (4.42)

so

s(D)≤ 2b(L)−4−χ(L) . (4.43)

Using (4.43) in (4.41) gives the assertion. �

Corollary 4.18 The defect of the Morton-Franks-Williams inequality (2.22) is linearly bounded in the

Euler characteristic: we have

b(L)−MFW(L)≤−µχ(L) ,

with µ = 1 for L homogeneous and µ = 1/2 for L alternating.

Proof. Observe that in all estimates involving b(L), in particular on the left of (4.42), it can actually be

replaced by MFW(L) from (2.21). The same applies to the proof of Theorem 4.2; note that (4.6) is in fact

stated in this form. �

The existence of (even alternating) examples with strict (2.22) together with iterated connected sums shows

that a better than linear bound is not possible. Also, there is no estimate in general: a result of Birman-

Menasco [BM2] implies that for the Kanenobu series [K] b(L)−MFW(L)→ ∞ while χ(L) is bounded.

As a sequel to Proposition 4.4 and to emphasize that neither knots nor alternation are needed, we have the

following special case of the Ito-Kawamuro conjecture.

Corollary 4.19 Conjecture 2.6 holds for any homogeneous link L

1) with mindegl P(L)≤ χ(L)+3, in particular for a negative link L,

2) with a reduced homogeneous diagram D which is not positive, and has c+(D) ≤ 2b(L) or c−(D) ≥
−4−2χ(L).

Proof.

1) Let L not be negative. Thus from (2.31),

δ(L) ≥ (1−χ(L))− (3+χ(L))

2
=−1−χ(L) .

Now use (4.13).

Let L be negative. Then mindegl P(L)≤ maxdegl P(L) = χ(L)−1. Thus from (2.31),

δ(L) ≥ 1−χ(L) . (4.44)

Then the right alternative in (1.3) will apply.
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2) It follows rather easily from Corollary 4.16,

bb(L)≤
c(D)

2
+1 ,

and the second alternative in (4.13). (Note that the conclusion also holds when D is positive and

c+(D) = c(D)≤ 2b(L)−2, i.e., (4.2) and (4.16) are exact.) �

The following are some easy consequences not of Proposition 4.6, but of Theorem 4.1 directly.

Corollary 4.20 If D is a diagram for which (4.16) is exact and (2.3) holds (in particular an alternating

diagram for which Conjecture 4.7 is true), then its link L has a minimal string Bennequin surface. �

This happens among others in these situations.

• Theorem 3.18 discussed above covers precisely the special case of ind(D) = 0 in this conjecture;

thus Proposition 3.19.

• By [St12, Lemma 5.19] ([St15, Corollary 7.4.5]) it follows for every alternating link in the series of

a special stably alternating generator. This is enough to cover, as an application, all alternating pure

pretzel links (2.43); see Proposition 5.11.

• It can be also verified with not too much effort that an alternating diagram D of a 2-bridge link L is

ind-optimal (see (3.10)), leading to another derivation of the result in [Hi].

4.4.3 A digression on the Jones-Kawamuro conjecture

A slight (and not very practical, but at least worth noticing here) improvement of (4.16) follows from the

proof of the (strong version of the) Jones-Kawamuro conjecture (Theorem 2.7). Another way of writing

the theorem is this:

Proposition 4.21 If L admits (si,wi)-representatives (or -diagrams), i = 1,2, then L also admits a

(−w1 +w2 + s1 + s2

2
,

w1 +w2 + s2 − s1

2

)
− representative . (4.45)

Proof. By Theorem 2.7, L admits (s1 − l,w1 + l)-representatives for every l ∈ Z and (s2 −m,w2 −m)-
representatives for every m ∈ Z such that s2 −m = s1 − l and w2 −m ≥ w1 + l. The statement is obtained

by setting

(s2 −m,w2 −m) = (s1− l,w1 + l) .

(Note that if the number s2 −m = s1 − l greater than b(L), then the weak version of the conjecture is

contradicted.) �
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Define the superindex of an oriented diagram D as

s-ind(D) = ind+(D)+ ind−(D) ,

where signed indices count maximal independent sets of positive resp. negative crossings/edges only. It is

obvious that

s-ind(D)≥ ind(D) ,

and equality holds if D is homogeneous (because of the observation below Corollary 4.37). Also, unlike

its predecessor, the superindex does depend on how edges in Γ(D) are signed, i.e., how crossings in D are

switched.

Then (4.16) generally improves as follows. (The first part (4.46) was independently observed by Ito in [It,

Theorem 5].)

Proposition 4.22

b(L)≤ s(D)− s-ind(D) . (4.46)

If L is strongly quasipositive and (2.3) holds, then we would have even

b(L)≤ s(D)− ind+(D)− c−(D) . (4.47)

Proof. Use proposition 4.21 with

s2 = s(D)− ind+(D) , s1 = s(D)− ind−(D) ,
w2 = w(D)− ind+(D) , w1 = s(D)+ ind−(D) .

(4.48)

The first component of the pair (4.45) gives (4.46).

The improvement (4.47) follows from (2.35) applied on some diagram D′ with w(D′) = w(D)− ind+(D)
and s(D′) = s(D)− ind+(D), and using χ(L) = s(D)− c(D). Alternatively, modify s1,w1 in (4.48) by

(leaving s1 arbitrary and) setting w1 = s1 + c(D)− s(D). �

This can be used in some instances (see Example 5.4) for sharp upper braid index estimates without actually

obtaining braid representatives. But the below example shows limitations of this method beyond its non-

constructiveness. They seem more common than I expected, and thus we shift attention away from this

approach.

Example 4.23 The knot L= 949 is the first one where neither (4.16) nor (4.46) becomes exact on a minimal

crossing diagram D. Let us write

ι(D) = s(D)− ind(D)−b(L)

for the ‘defect’. There are two minimal crossing diagrams of 949, which are positive, so ind(D) = s-ind(D)
and also (4.47) does the same as (4.46). For both diagrams ind(D) = 1 and s(D) = 6, but b(L) = 4, so

ι(D) = 1. The mutants 121376 and 121421 have only positive minimal diagrams, all with ι(D) = 2.
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4.4.4 Pseudo-positive and strongly quasipositive links

Let us call a set of crossings in a diagram D independent, if their corresponding edges in Γ(D) are inde-

pendent.

Corollary 4.24 (and definition) Let L have a diagram D in which all negative crossings are independent.

We call D and L pseudo-positive. Then L is strongly quasipositive on (at most) bq(L) ≤ s(D)− c−(D)
strands, and (2.3) holds. �

Example 4.25 An almost positive diagram is pseudo-positive (exactly) when it is what is called in [FLL]

of type I. The corollary thus recovers the result in their title in this case.

In [IS2] we will give a different construction that covers (and extends) the main result of [FLL] for type

II, but still relies on the work here. In combination, we have the following, which refines Feller-Lewark-

Lobb’s answer to [St8, Question 3].

Theorem 4.26 ([IS2]) Let a link L have an almost positive diagram D of s Seifert circles. Then L has a

positive band representation on (at most)

bq(L)≤
{

s−1 if D is of type I

s if D is of type II

}

strands.

Example 4.27 A strongly quasipositive link need not be pseudo-positive, and the converse of Corollary

4.24 is not true. A few examples are listed below:

• The counterexamples to Morton’s conjecture

mindegl P ≤ 2g (4.49)

in [St4, §5.1] (see below (5.4)) are strongly quasipositive, and using (2.14) we see that they satisfy

maxdegm P(L)> 1−χ(L) . (4.50)

Thus because of (2.11) they have no diagram D with (2.3).

• Two of the examples where (2.3) was disproved using the method in [St3] for genus-2 knots are

strongly quasipositive. (See §B.2.)

• Another example without such D is a Whitehead double of the trefoil, given in [Be]. (This exam-

ple should be combined with the explanation in [Mo], or see the main result in [St10].) We will

generalize this example in work in progress with G.-T. Jin as announced in Theorem 3.17.

• Example 3.14 provides another instance.
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Remark 4.28 Note that in Corollary 4.24, c(D)− l can be replaced by c(D)− l′, where l′ is the maximal

size of an independent set of edges of Γ(D) containing all negative ones. This is not (further) useful for

exhibiting L as strongly quasipositive, but can be useful for string estimates of a strongly quasipositive

surface of L. See for this Corollary 4.35.

The following result was originally proved by Przytycki-Taniyama for positive knots.

Corollary 4.29 A pseudo-positive unknotting number u(K) = 1 knot K is a positive twist knot.

Proof. Since K is strongly quasipositive, we need 0 < g(K) = g4(K) ≤ u(K), so that g(K) = 1. But we

also have bt Corollary 4.24 that the canonical genus gc(K) = 1. Now u(K) = g(K) = 1 implies that K is a

doubled knot [Ko], and gc(K) = 1 that the companion must be trivial [St10], so that K is a twist knot. The

twist knots are alternating, so to be strongly quasipositive, they need to be positive. �

Corollary 4.24 provides a rapid test for strong quasipositivity. There has been some interest [IK, FLL]

in determining which low-crossing knots are strongly quasipositive. Since, as mentioned in [FLL], many

knots are canonically minimal, it templed us to extend the compilation of lists of strongly quasipositive

knots. For this see Appendix B.

Under Theorem 4.8, Corollary 4.24 turns out to be one direction of [FLL, Theorem B], except for the

explicit realization of the strongly quasipositive Seifert surface, and the string number estimate. The au-

thors of [FLL] prove a converse; in particular they know that ‘pseudo-positive’ is equivalent to ‘strongly

quasipositive and canonically minimal’ for knots, or if Question 2.2 has an affirmative answer.

The below Lemma 4.30 will extend these conclusions and remove the need of their restrictions (Corollary

4.32), by allowing us to look at the link, not at its surface. This argument has then a few other new

ramifications.

In the setting of [FLL] (but with our notation), let C be a cycle in Γ(D). We emphasize here that we will

continuously regard two parallel edges, such between the same two vertices in Γ(D), to form a cycle of

length 2. Since Γ(D) is bipartite, cycles have always even length. We write λC for the sum of the sign of

the edges in C (this is en even number). We call this the weight of C. Then the condition of the negative

crossings in D being independent is equivalent to

λC > 0 , (4.51)

for every cycle C. We will occasionally refer to (4.51) as Traczyk’s cycle condition.

It should be noted that (4.51) cannot be easily restricted to check on a subset of the cycles C. For example,

one can easily find diagrams D where (in some rather obvious planar embedding) all face cycles C of Γ(D)
satisfy (4.51), but other cycles do not.

We say (following [IS], in particular Section 2) that SD is the canonical Seifert surface of D and that D is

strongly quasipositive, if SD is so. We say that D is χ4-maximal if χ4(D) = χ(D), and χ4(D) = χ4(L) when

D represents the link L. We remark that the argument behind Corollary 4.24 can be easily modified to

show that D is strongly quasipositive, as explained in Remark 4.11. For Bennequin-sharpness recall below

Question 2.4.
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Lemma 4.30 Assume L is a Bennequin-sharp link and D is a minimal genus diagram of L, i.e., χ(D) =
χ(L). Then all the negative crossings in D are independent.

Proof. We assume χ(D) = χ(L) and L is strongly quasipositive, so χ4(D) := χ4(L) = χ(L) = χ(D). Thus

D is χ4-maximal. We assume further (by Traczyk’s condition) that there is a cycle C in Γ(D) whose edge

sign sum λC is λC ≤ 0. We will derive a contradiction.

Let first λC = 0. When D0 is obtained from D by smoothing one crossing (positive or negative), then by

a standard fact χ4(D0) ≤ χ4(D)+1. It follows that when D is a minimal genus diagram of a Bennequin-

sharp link, and D′ is obtained from D by smoothing out some crossings, then D′ is χ4-maximal. But one can

smooth out crossings in D (and remove nugatory crossings) so that Γ(D′) =C. Then SD′ is a(n untwisted)

annulus bounding the 2-component unlink. So D′ is not χ4-maximal, a contradiction.

To adapt the case λC < 0, use connected sum. Consider the connected sum L′ = L#T2,−λC
for the reverse

(2,−λC)-torus link (which is Bennequin-sharp). For the usual minimal crossing diagram D2,−λC
of T2,−λC

,

the diagram D′ = D#D2,−λC
is a minimal genus diagram of a Bennequin-sharp link L′. By modifying the

procedure for λC = 0, we can obtain from D′ by crossing smoothings a diagram D′
2 = D′

1#D2,−λC
, where

χ(D′
1) = 0 and D′

1 depicts T2,λC
. Then χ(D′

2) =−1 while it depicts L′
2 = T2,λC

#T2,−λC
. That (3-component)

link L′
2 bounds a ribbon surface of an annulus and a disk, so χ4(L

′
2)≥ 1. Thus D′

2 is not χ4-maximal. Then

D′ is not χ4-maximal either, which is again a contradiction. �

Corollary 4.31 Every canonically minimal Bennequin-sharp link is strongly quasipositive. �

Corollary 4.32 Every link L is pseudo-positive if and only if L is canonically minimal and strongly quasi-

positive (and if and only if it is canonically minimal and Bennequin-sharp). �

Also, the answer to Baker-Motegi’s Question 2.2 is affirmative for minimal canonical surfaces (of strongly

quasipositive links). Keep in mind Remark 3.3.

Corollary 4.33 If a link L is strongly quasipositive, they every canonical surface S of L with χ(S) = χ(L)
is strongly quasipositive. �

For a demonstration of how to use this, see §5.2. (It will be also very evident there that the link extension

in Corollary 4.33 is essential.)

Also notice (from the λC = 0 case argument in the preceding proof) that for D being χ4-maximal, λC 6= 0

for all C, but of course λC < 0 is possible.

The above corollaries allow us to lift the restriction to knots in all of the main results of [FLL], excluding

those (bound to knots because) dealing with the τ invariant. Our proposed argument behind Lemma 4.30

cannot be readily used for τ (unless some proper link extension of τ is invoked). But it turns out to work for

the signature, and more generally Tristram-Levine signatures σω. (Since we do not treat them extensively

here, see [IS, §2] for definition and conventions.)
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Corollary 4.34 If

σ(ω)(D) = 1−χ(D) (for some |ω|= 1) (4.52)

and D is connected, then all negative crossings are independent. In particular, D is strongly quasipositive.

Proof. We repeat and slightly modify the argument for the case λC = 0 in the proof of Lemma 4.30. We

would need for D′ with Γ(D′) =C that σ(ω)(D
′) = 1, which would imply that λC > 0. �

Of course (4.52) is somewhat too strong an assumption for a converse to hold in general. Also, the knot

1445575 from [IS, Remark 2.21] (an example admitting systematic extension using Theorem 3.17) shows

that the restriction to canonical surfaces is necessary. But many knots are canonically minimal. For in-

stance, the corollary implies that every homogeneous knot K with σ(K) = 2g(K) is strongly quasipositive,

and hence (as observed in [It]) positive.

In the opposite direction, if a link is strongly quasipositive, we can use our tools to address Question 2.4.

Corollary 4.35 Assume L is a strongly quasipositive link and has a diagram D with χ(L) = χ(D) and

b(L) = s(D)− ind(D). Then L is strongly quasipositive on the minimal bq(L) = b(L) number of strands.

Proof. The construction of Theorem 4.1 would yield from D a minimal string Bennequin surface of L. By

the remark following Conjecture 4.19, the surface (and its band representation) must be strongly quasipos-

itive. �

Let us, for the sake of some brief discussion, call the diagrams D in Corollary 4.35 optimal (pseudo-

positive) diagrams. (That is, only the right equality in (3.10) is exact.)

For instance, since Conjecture 4.7 is known for many special alternating knot diagrams (including those of

at most 18 crossings or genus at most 4; see remarks following Question 6.2), they are all optimal, and the

corollary immediately settles Rudolph’s question for their knots.

But the (−3,5,5)- and (−3,5,7)-pretzel knots show that for non-alternating (strongly quasipositive canon-

ically minimal) knots, the converse of the corollary is not true (i.e., minimal string strongly quasipositive

surfaces may exist beyond the provision by such a diagram D). See Example 5.4.

Such examples exist in higher genus as well, and can be determined. The following lemma is a simple

counting exercise but helpful in restricting possible diagrams.

Lemma 4.36 Every (reduced) pseudo-positive diagram of a knot of genus g has writhe w(D)≥ 2g+1. If

D is a (reduced) optimal diagram of a genus g braid index b knot, then D can have at most 2(g+ b)− 3

crossings. �

As a result of our test (using such insights), we found that nearly 30% of the non-alternating strongly

quasipositive prime knots to 16 crossings have optimal diagrams. (This figure does not discount for the

non-canonically minimal knots.) Again, six 16 crossing knots caution that knots may have such diagrams

only of non-minimal crossing number.
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4.4.5 Pseudo-homogeneous links

The following widens Cromwell’s notion of a homogeneous diagram, giving a more general (but still

fully combinatorial) condition under which the canonical surface is minimal genus. (See the end of this

subsection for a slight further extension.)

For Murasugi atoms, see §2.2. Dealternators are the crossings needed to switch in a diagram to obtain an

alternating diagram. The (complete) dealternator set is determined up to complement; in a special diagram

it is the set of (all) crossings of one of either sign.

Corollary 4.37 (and definition) Let L have a diagram D in which in every Murasugi atom Di one can

choose an independent dealternator set Ei. We call D and L pseudo-homogeneous. Then (2.3) holds and L

has a Bennequin surface on at most s(D)−n strands, with n=∑ |Ei| being the total number of dealternators

in all Di.

Note that Γ(D) is a join of Γ(Di), and so every cycle in Γ(D) splits into cycles in Γ(Di). Thus a set

E ⊂ E(Γ(D)) is independent if and only if E ∩E(Γ(Di)) is independent in Γ(Di) for all i. But the union

of dealternator sets in all Di is not necessarily a dealternator set in D. The corollary offers thus a greater

freedom in choosing a proper set of crossings in D: for k atoms Di, one among 2k different possibilities

should do. (But also obviously not more than one can.)

Proof. If one looks at a Di separately, the condition on dealternators implies that the canonical surface of

Di is strongly quasipositive or strongly quasinegative, and so (2.3) holds for Di. Note that Di are special, so

the dealternators are precisely the positive crossings in Di or precisely the negative crossings in Di. Since

they are independent, they can be removed by Murasugi-Przytycki moves. Minimal genus is preserved

under connected sum and Murasugi sum, so that (2.3) holds. Once we have this property, one can apply the

Murasugi-Przytycki moves on D to remove all dealternators in Di as well (while making the other crossings

into bands), and obtains a Bennequin surface. �

For n = 0 in Corollary 4.37 one has precisely the homogeneous diagrams D in [Cr] (for which the property

(2.3) was observed by Cromwell based on (4.32)). For n = 1, the pseudo-homogeneity condition simply

says that the dealternator is unstable. In that case it is known that this condition stands in equivalence to

(2.3). Unfortunately, for n> 1 it is less easy to find a combinatorial condition on dealternators equivalent to

(2.3). Note also that in general pseudo-homogeneity may apply even if (2.8) fails to establish (2.3). (This

failure does not occur if n = 0, or n = 1; see9 [St8, corollary 5].) Every pseudo-homogeneous diagram in

which the (−3,5,7)-pretzel diagram is a Murasugi atom is an example. (So for n = 3 we do have a new

tool as compared to (2.8).)

Example 4.38 The knot 10145 is pseudo-homogeneous (and pseudo-positive) but not homogeneous (see

Appendix A). The knot 948 is an example of a pseudo-homogeneous knot which is not pseudo-positive or

homogeneous. (It, though, only has a 10 crossing pseudo-homogeneous diagram.)

9but beware that ‘mindeg∆’ is a misprint of ‘maxdeg∆’ there, and that the normalization is different
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Corollary 4.39 If D is a connected pseudo-homogeneous diagram, then for Pmax(D) defined in (4.31), we

have

Pmax(D) 6= 0 . (4.53)

In particular, a pseudo-homogeneous non-split link L satisfies maxdegm P(L) = 1−χc(L) = 1−χ(L).

Proof. If a link L has a diagram D that makes the chain (5.5) exact, then we need for Pmax(D), that

mindegl P(L) = mindegl Pmax(D) = 1−χ(D) (4.54)

because of the sequel to (2.14). In particular, Pmax(D) 6= 0 when D is pseudo-positive. Using (4.32),

we see that Pmax(D) 6= 0 when D is pseudo-homogeneous. Morton’s inequality (2.11) then implies that

χ(D) = χc(L). �

Example 4.40 The examples of knots L in [St3] with 2gc(L)> maxdegm P(L) = 4 are not pseudo-homo-

geneous. These examples turn out to be all genus 2, so that gc(L)> g(L). But there also exist knots L [St4,

Fig. 14] with g(L) = gc(L), that is, where a diagram D with (2.3) exists, but for which (and then every

other such diagram) Pmax(D) = 0.

Thus canonically minimal does not imply pseudo-homogeneous, which refutes a possible (partial) converse

of Corollary 4.37. See Question 6.6 for a more difficult geometric version. For another class of links

whose genus is detected by the HOMFLY polynomial, but not necessarily by the Alexander polynomial,

see [St16].

Remark 4.41 Since the genus of a diagram D and the HOMFLY polynomial are mutation invariant, Corol-

lary 4.39 also gives a simple argument to see that ind(D) is diagram mutation invariant. (Gabai’s work has

long shown that many mutant knots have different genus; see e.g. Example 5.9.)

The following example briefly returns to the visual primeness account in §2.2.

Example 4.42 Given in DT notation (see end of §2.2), the diagram 9 74 6 10 -14 18 4 16 2 8 12

shows that even special pseudo-positive (and almost positive), and hence pseudo-homogeneous, diagrams

are not visually prime. That is, a prime such diagram may represent a composite knot or link. Another

example is given in [IS] for what is defined there as a good s.a.p. diagram. (Such a diagram is always

pseudo-positive, but usually not special.) Compare also with [St3, Figure 15] for minimal genus diagrams,

and with Question 6.9 below.

The argument in the above corollary has a few other implications, which are worth recording.

Proposition 4.43 When Di are reduced pseudo-homogeneous diagrams of fixed χ = χ(Di), then, up to

simultaneously mirroring all Di,

maxdegl P(Di)→ ∞ , (4.55)

or all Di have only finitely many HOMFLY polynomials.
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Proof. First, let us assume the number of components n(Di) of Di is bounded. An unbounded number

of components for fixed χ, will require the addition of an unbounded number of unknotted or annular

connected components of Di, which will lead to (4.55).

When n(Di) and χ(Di) is fixed, the number of split components of Di is bounded, thus we may w.l.o.g.

assume that Di are connected.

Then (4.55) is an easy consequence of the fact that when χ(D) is fixed, every coefficient D 7→ [P(D)]lsmp of

P (in previously fixed degree s, p in l,m) can take only finitely many values on such D, as proved in [St20].

�

‘Pseudo-homogeneous’ can also be replaced by ‘pseudo-positive’, in which case the mirroring is unneces-

sary.

One can also extend the result of [St19]. For example, we have the following. (For notation recall §2.2 and

(2.28).)

Corollary 4.44 For any sequence of pseudo-positive knots Ki with distinct HOMFLY polynomials, we

have

SL(!Ki)→−∞ .

For any sequence of pseudo-homogeneous knots Ki with distinct HOMFLY polynomials, we have

max(δ(Ki),δ(!Ki))→ ∞ . �

We cannot exclude the possiblily even among pseudo-positive knots, that infinitely many have the same

HOMFLY polynomial, i.e., that they contain a Kanenobu series (see above Corollary 4.19). As pretzel

knots (§5.1) readily caution, this property definitely occurs for the Alexander polynomial (already for

pseudo-positive diagrams).

Also, control over pseudo-homogeneous diagrams of a knot is far more difficult than over homogeneous

ones. Using (4.32), and a t̄ ′2-twisting argument in positive diagrams, it is rather straightforward that finitely

many homogeneous diagrams have the same P (in fact, Pmax). This is used in Appendix A (with a few

added explanations and also, for positive knots, in [St3]).

When we talk about finitely many (reduced) diagrams, there is one obvious (and easy to remove) re-

dundancy: we can add ∼-equivalent crossings of opposite sign by Reidemeister II moves, and then dis-

perse them by possible flypes. Thus we must exclude these operations – which also preserve pseudo-

homogeneity.

Let us say a diagram is ∼-reduced if it is reduced and no ∼-equivalent crossings have opposite sign. This

property is often implicit in many related arguments, like the notion of a twist vector, but was not always

clearly emphasized.

Fact 4.45 A pseudo-homogeneous knot of genus up to 2 has only finitely many ∼-reduced pseudo-homo-

geneous diagrams.
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Proof outline. We were able to bring this into knowledge using a variant of pattern stabilization [St10].

The calculation revealed that, when we regard a ∼-equivalence class of 1,2 crossings as fixed and for 3,4

crossings as t̄ ′2-twistable, pseudo-homogeneous diagrams occur in about every fourth pattern. Let us call

such patterns also pseudo-homogeneous. To identify them, we had to switch from the Murasugi-Przytycki

vertex star-contraction method to Traczyk’s cycle condition (4.51). It is much better suited for twisting,

but as noted in the context of (4.51), it does require determining all cycles in the Seifert graph Γ(D̂) of a

generator D̂.

Pseudo-homogeneous diagrams thus appear nearly as general as minimal genus diagrams (2.3). This ex-

plains why beyond (4.54) we have failed to say much about the HOMFLY polynomial. We succeeded in

stabilizing P only for about a quarter of the pseudo-homogeneous patterns.

Rather, to ensure stability we shifted attention to the Kauffman polynomial F . Its special case, the BLMH

polynomial Q, worked much faster and left over less than 2%, but it, too, seriously failed on some of

the remaining patterns. Even for F , a few patterns had to be broken up into subpatterns. The method

(described in quite a detail in [St10], up to some minor adaptations needed here) is highly involved, and it

is not reasonable to attempt it on genus 3. �

We asked in [St3, Question 14.2] a finiteness property more generally for minimal genus diagrams. This

is one place where ∼-reducedness was bourne in mind, for otherwise the question would not make much

sense. However, investigating genus 2 diagrams (recall (2.2)), we now found out that more subtle cancel-

lation phenomena occur than ∼-reduction. Thus Fact 4.45 is quite far from the truth for canonical genus 2

knots. We were able, though, to extend the F-finiteness result, which can be stated thus.

Theorem 4.46 At most O((maxdegz F)8) knots K with gc(K) = 2 (and in particular pseudo-homogeneous

knots of genus 2) have the same Kauffman polynomial z-degree maxdegz F .

Proof outline. This was established by making stabilization work for (most of) the remaining patterns

(slightly enhanced by using some result of Gabai), and then identifying completely the cancellation in

cases of failure. (The Q polynomial leaves over about 7% of the patterns here.) A more precise property,

coming out of stabilization, is that there is a constant d so that for every knot K with gc(K) = 2,

maxdegz F(K)≥ min{c(D) : g(D) = 2 ,D is a diagram of K }−d . �

An account (incl. of how d is obtained) may be given separately, also possibly further details regarding Fact

4.45. Note that Kanenobu’s knots [K] have canonical genus 2, and he also asked ([Ki, Problem 1.91(3)])

if there are infinitely many knots with the same Kauffman polynomial, a question which is still open. It

appears now tempting to refine his question: are there only finitely many with given maxdegz F?

The complexity of genus 2 leaves little hope to control minimal genus diagrams of a knot. Whether pseudo-

homogeneity restricts these ways of cancellation to ∼-reducedness (beyond genus 2) is a potential direction

of further investigation (Question 6.8). For whatever reasons, we failed (so far, even partially checking

genus 3 generators) to observe these more complicated cancellation phenomena in pseudo-homogeneous

diagrams.

One can introduce an even slightly larger class of diagrams with (4.53). Say D is weakly pseudo-homogeneous,

if in the Seifert graph Γ(D) no parallel edges have opposite sign, and in the reduced Seifert graph Γ′(D)
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(obtained from Γ(D) by reducing multiple edges to single ones) each Cromwell block (recall §2.2.4) has in-

dependent positive or independent negative edges. Then Corollary 4.39 and Proposition 4.43 hold even for

this more general class. However, the string number of the Bennequin surface in Corollary 4.37 changes.

Example 4.47 The simplest knot diagram which is weakly pseudo-homogeneous but not pseudo-homo-

geneous is the (reduced) 5-crossing diagram of the figure-8-knot. The diagram M(1/3,−2/3,−2/3) of 948

(see §2.6) is another example. But we saw 948 is pseudo-homogeneous. For the reasons related to the

explanation on Fact 4.45, we do not know what is a weakly pseudo-homogeneous knot that is not pseudo-

homogeneous (and verifying such an example is beyond feasability).

5 Classifying strongly quasipositive pretzel knots

5.1 Strong quasipositivity of the parallel pretzel links

As an instance of how to gain a quick visual test for strong quasipositivity from Corollary 4.24, together

with Traczyk’s cycle condition of Theorem 4.8, consider the link L with a pretzel diagram (2.43). To avoid

trivial (or easy) cases, we assume no ai = 0, and

n > 2 . (5.1)

Sometimes one regards pretzel links only to have all |ai| ≥ 2, in which case we call them pure (as referred

to in §4.4.5 below Corollary 4.20), but here we will allow for |ai|= 1.

With ai 6= 0, we sign ai according to the sign of the twist crossings. We say ai 6=±1 are parallel or reverse

if the twist crossings form parallel or reverse clasps (§2.2). We assume there is an |ai|> 1, and all such are

reverse, and that D is special (so χ(D) = 2−n); in particular all ai are even or all are odd. Also, in the case

of odd ai, which in accordance with (2.41) we will call the parallel case, we can obviously assume that

{−1,+1} 6⊂ {ai : i = 1, . . . ,n} . (5.2)

Then one observes easily from Corollary 4.24 that L is strongly quasipositive (with χ(L) = 2−n) if

at most one ai is negative, say a1 < 0, and for every other ai we have ai >−a1. (5.3)

For the parallel case (all ai odd), the condition (5.3) is in fact exact. Even if the proof is slightly non-trivial,

I decided to afford its inclusion below, as a testimony to the efficiency of our test. See also Example 4.27

above.

Let L(a1, . . . ,an) be a knot. If some ai is even, then all other ai are odd. If all ai are odd, then n is also odd,

and this is the case we consider here. We will continuously assume (5.1) and (5.2).

The below statement was discussed also, for |ai|> 1 and n odd, in [FLL, Corollary F], and it was mentioned

that the case n = 3 was previously treated by Rudolph.
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Proposition 5.1 The parallel pretzel link L(a1, . . . ,an) with all ai odd and n > 2 is strongly quasipositive

if and only if (5.3) holds.

We have also an algorithm for parallel Montesinos links, given in §5.2.

To prepare the argument, we need to review a few properties of the skein polynomial.

If a link is strongly quasipositive, then (2.12) shows

mindegl P(L)≥ 1−χ(L) . (5.4)

This inequality can be strict (whose revelation refuted a long-standing problem of Morton; see [St4]).

However, if a link L is canonically minimal, then

mindegl P(L)≤ maxdegm P(D)≤ 1−χ(D) = 1−χ(L) , (5.5)

so that if L is also strongly quasipositive, then we have equality in (5.4).

We will often need the maximal m-term of P in Morton’s sense. We restrict ourselves to diagrams, and

using brackets to denote a coefficient, we recall the definition (4.31) of Pmax(D) and its property (4.32).

For a positive special alternating diagram it follows (essentially) from (2.14) that

mindegl Pmax(D) = 1−χ(D) , (5.6)

so that for a negative diagram

mindegl Pmax(D)< 1−χ(D) . (5.7)

It then follows from (4.32) that

an alternating diagram is positive if and only if (5.6) holds. (5.8)

(This was observed in [Cr].) In particular an alternating link is strongly quasipositive iff it is positive (and

its alternating diagrams are positive).

Now we argue that the pretzel surface has minimal genus; this will enable us to compare with the 4-genus.

Lemma 5.2 We assume that D is in (2.43), and (5.2) holds. Then we have (2.3). Thus χ(L) = 2−n. Also,

if

{−1,+1}∩{ai : i = 1, . . . ,n} 6=∅ ,

then

maxdegm P(D) = 1−χ(D) . (5.9)

Proof. If no a1 is ±1, then it follows from the work of Gabai (see [KL]).
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Otherwise, let w.l.o.g. a1 = −1, so that no ai = 1. Assume that some ai > 1. Flype the negative integer

half-twist close to ai and consider the Seifert circle picture of the tangle isotopy

(5.10)

The right diagram has one crossing and one Seifert circle less, and the ai twist becomes a diagrammatic

Murasugi sum (plumbing) with a reverse (2,ai −1) torus link. Deplumbing it, one is left with the original

diagram in which the ai twist is gone. In this way the a1 = −1 can successively “gobble up” all ai > 0,

leaving us either with a one-crossing unknot diagram, if a1 =−1 is the only negative ai, or with a negative

special alternating pretzel diagram otherwise. We will refer to the iterated desuming procedure also after

this proof.

In [Cr], homogeneous diagrams D were used so that one can successively Murasugi desum all Murasugi

atoms Di in the same diagram, and with them being special alternating, we have

2maxdeg∆(Di) = maxdegm P(Di) = 1−χ(Di) .

With (4.32), the corresponding result for ∆ (which follows from (4.32) by substitution, but was long before

known from Murasugi’s work for general geometric Murasugi sums), and (2.8), one has (2.3) and (5.9).

Here after every diagrammatic desum one has to apply an isotopy like (5.10), but since it does not change

χ(D), we have Pmax remaining the same, and the same argument still works. �

It will be useful to set

ãi = |ai|−1 , (5.11)

since it will be constantly needed later.

Proof of Proposition 5.1. We argue that the condition is necessary, so assume L is from now on strongly

quasipositive. We will assume at least one ai is negative, say a1 < 0, and at least one is positive; otherwise

it is trivial.

Case 1. If some ai = 1, say a2 = 1, then a1 <−1. Using a2 = +1, by the mirrored version of the iterated

diagrammatic deplumbing in the proof of Lemma 5.2, deplumb all reverse (2, ãi) torus links for ai < 0.

At least one such occurs, for a1 < 0. Then by Cromwell’s argument for (5.8), we have (5.7), so L is not

strongly quasipositive.

Case 2. If some ai =−1, we have to prove that for strongly quasipositive L, this is the only negative ai. If

some other ai < 0, say a2 < 0, then after the iterated diagrammatic deplumbing in the proof of Lemma 5.2,

remove all (2,ai −1) torus links for ai > 0. It remains a non-trivial negative link, so (5.7) holds and L is

not strongly quasipositive.

We will need the following
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Lemma 5.3 Let

D = L(−1,−1, . . . ,−1︸ ︷︷ ︸
k

,ak+1, . . . ,an) ai > 1, i > k .

Then

maxdegm P(D) = 1−χ(D) = 2−n and mindegl Pmax(D) = 3−χ(D)−2k . (5.12)

Proof. The first part of (5.12) is (5.9). The second part follows from (4.32). After the iterated deplumbing

argument of positive Hopf bands, one remains with the negative (2,−k) parallel torus link diagram D; its

mindegl Pmax(D) is found by direct calculation. �

Case 3. Assume from now on no ai =±1. We will prove it two steps.

• that if more than one ai is negative, then L is not strongly quasipositive.

• that if there are ai < 0, a j > 0 with |ai| ≥ |a j|, then L is not strongly quasipositive.

step 3.1. To prove only one ai is negative, consider

D = L(a1,a2, . . . ,ak︸ ︷︷ ︸
< 0

,ak+1, . . . ,an︸ ︷︷ ︸
> 0

) |ai|< |a j| , 1 ≤ i ≤ k < j ≤ n .

Note that exchanging ai accounts for mutations which do not change the below formula. Then for k > 1

the non-strong quasipositivity of L follows from (5.6) and proving that, with (5.11),

mindegl Pmax(D) =





1−χ(D) k = 1 ,

3−χ(D)−2k−
k

∑
i=1

ãi k > 1
(5.13)

The case k = 1 in (5.13) follows from (2.3) of Lemma 5.2 and (5.6) because L is strongly quasipositive.

For k ≥ 2, use induction. From (2.10), we have

Pmax(D−) =−l−2Pmax(D+)− l−1Pmax(D0)

and applying this to pretzel diagrams, we get identities like

Pmax(L(a1 −2,a2, . . .)) =−l−2Pmax(L(a1, . . .))− l−1Pmax(L(a2, . . .)) ,

and similarly can be done with any ai. The induction should go over ak and consists in showing that the

minimal l-degree term of Pmax comes from the first term on the right. For k = 2 use induction on a2 for

a1 =−1 first, and then induction on a1.

step 3.2. So finally it remains to prove that (2.43) is not strongly quasipositive if a negative a1 satisfies

|a1| ≥ |ai| for some i > 1.

If ai =−a1 for some i > 1, then the ribbon genus of L is less than its genus. The diagram exhibits a Seifert

ribbon of smaller genus than the pretzel surface. So L is not strongly quasipositive.
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If some 0 < ai <−a1, use the argument in the proof of Lemma 4.30, as follows.

Assume L is strongly quasipositive. Then L#T (2,−a1 − ai) is also, and the diagram D′ = L(a1, . . . ,an)#
T2,−a1−ai

is χ4-maximal; compare above Lemma 4.30. Then by crossing smoothings so is the diagram

D2 = L(a1,ai)#T2,−a1−ai
= T2,a1+ai

#T2,−a1−ai
,

which is not the case. �

Example 5.4 If one takes the (−3,5,7)-pretzel knot K = 15199038 and its (−3,5,7)-pretzel diagram D

(having s(D) = 14), one easily sees from (4.46), together with (2.22), that K has braid index 6. But

s-ind(D) = 8 does not measure a set of Murasugi-Przytycki moves actually performable, so from (4.16)

(with ind(D) = 6) it is not obvious how to gain a braid representative of K on less than 8 strands. (One can

get from (4.16) at least the estimate b(K)≤ 7 from other minimal crossing diagrams of K.) Also, since the

largest independent set of D containing all negative crossings has size 4, the method behind Theorem 4.1

cannot yield a strongly quasipositive surface on less than 10 strands.

5.2 Strong quasipositivity of the parallel Montesinos links

Below follows an algorithm to decide if a parallel Montesinos link is strongly quasipositive, each step with

a few explanations what happens and why. We must point out in advance that if we just use the behavior

of ‘strongly quasipositive’ under Murasugi sum and work with a minimal genus surface, this algorithm

depends on the positive answer to Question 2.2. To circumvent this problem, we emphasize that we work

with canonical surfaces and Corollary 4.33, and use (4.32) to meet the obstruction (5.7).

We refer to §2.6 for explanation about Montesinos links we use below.

step 1. Bring the Montesinos link to minimal crossing diagram D. If the diagram is alternating, then L is

strongly quasipositive iff D is positive.

step 2. So now we assume L is not alternating. Thus there are no integer twists, e = 0. Assume by

convention qi > 0 (and odd) and pi are signed. Arrange that there are no fractional parts

1

2
<

∣∣∣∣
pi

qi

∣∣∣∣< 1

of opposite sign, using transformations like in the example

M(1/3,5/7,−11/19,6/11) = M(1/3,−2/7,8/19,6/11) . (5.14)

This diagram is minimal genus (see [KL] or below in step 4).

step 3. Now we will need the numbers

ãi = sgn(pi) ·
⌊∣∣∣∣

qi

pi

∣∣∣∣
⌋
,
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with ⌊ .⌋ being integer part. These numbers manifest themselves as the integer twists

pi

qi
= ...





ãi

in the alternating form of the pi/qi tangle, and in the box on the right we accommodate the non-integer

twists.

If some non-integer twist of a pi/qi tangle is negative, then L is not strongly quasipositive.

To see this, find the plumbing form of pi/qi. Expand

qi

pi
− sgn(pi) =

q̄i

pi
for q̄i = qi −|pi| ,

as a continued even fraction
q̄i

pi
= bi,1 +

1

bi,2 +
1

bi,3 +
1

. . .

with bi, j ∈ Z even. Also bi, j 6= 0 unless j = 1 and |qi| < 2|pi|. Since qi is odd, at least one of q̄i and pi is

even, so there is such an even continued fraction. The correction −sgn(pi) above is needed to get strand

orientations right when closing up the tangle, because we need the strand orientation in the bi, j twists to be

reverse.

The even continued fraction will give then within the q̄i/pi-tangle (with the right strand orientation) some

plumbing picture of generalized Hopf bands, i.e., reverse (2,±bi, j)-torus links (bi, j even). Note that the

sign of these torus links alternates for positive bi, j, so it does not coincide with the one of bi, j in general;

this is why ‘±’ was written. Also bi, j 6= 0; the case j = 1 and |qi|< 2|pi| experiences extra handling below

(5.15).

Let first qi > 2|pi|. If some non-integer twist in the alternating form is negative, then not all generalized

Hopf bands in the even continued fraction form will be positive, because the left tangle closure of

pi

q̄i

pi

q̄i
(5.15)
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has a non-positive reduced alternating (2-bridge) link diagram.

The argument needs a little modification when qi < 2|pi|, because then bi,1 = 0, and in the left closure of

(5.15) there is an integer twist which becomes nugatory crossings. But one can easily argue with the right

closure. Thus this extra case makes no harm.

step 4. After deplumbing all (positive) generalized Hopf bands, one is left with a pretzel diagram (2.43)

with

ai = sgn(pi)+bi,1 =

{
ãi + sgn(ãi) ãi even

ãi ãi odd
(5.16)

Note that because of step 2, we have (5.2), which implies the minimal genus property. (Thus we also see

minimal genus for the diagram in step 2 after (5.14) by Gabai’s work.)

Then L is strongly quasipositive if and only if this pretzel surface is strongly quasipositive, which is decided

as in Proposition 5.1. This completes the decision algorithm.

5.3 Strong quasipositivity of the reverse pretzel knots

We will complete at least the classification of strongly quasipositive pretzel knots, by studying the reverse

ones. As for the link case, in its completeness, (it will transpire very soon why) we have no capacity

to discuss it here. (There may be different component orientations and arbitrarily many components.)

However, some of the arguments below can be adapted to some types of reverse links (in particular see

Corollary 5.8), and we only make brief hints.

‘Reverse’ should refer to the orientation of strands at the integer twist when regarding a pretzel knot as a

Montesinos knot. In that case exactly one ai is even, and we write (2.43) as

L(a1, . . . ,an−1,a0) (5.17)

with a0 even. Note that cyclically permuting the ai is an isotopy, exchanging an ai =±1 with its neighbor

is a flype, and otherwise permuting the ai is a mutation. We will, of course, continue assuming (5.1) and

(5.2).

Theorem 5.5 Let L be a reverse pretzel knot. Then the following are equivalent.

1) L is strongly quasipositive.

2) L is positive.

3) In (2.43),

all negative ai are −1 and there are at most
⌊

n

2

⌋
of them. (5.18)

Proof. 3)=⇒2) Bring by flypes ai = −1 before some odd ai = qi > 0 (for i 6= 0) and use repeatedly the

moves of Montesinos diagrams

M(. . . ,−1,1/qi
, . . .) → M(. . . ,

1−qi

qi

, . . .) ,
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which with orientation look like

−→ . (5.19)

The negative crossings of the −1 twists disappear.

1)=⇒3) This will occupy the rest of the proof.

Case 1. n is odd. The a0 twist is reverse and all odd ai, i > 0, are parallel.

Keep in mind that our signing convention for all ai, incl. a0, is that sign is given by the sign of crossings in

the twist. In the case here, thus now (5.17) for a0,ai > 0 will be a non-alternating diagram. Also under the

transfer (2.44), a0 should be turned into −1/a0, not 1/a0. For example, L(1,1,1,1,−2) = M(4,1/2) is the

6-crossing diagram of 61 with writhe 4, while L(1,1,1,1,2) is a diagram of 52.

Let

n+ = |{ i : i > 0 < ai }| n− = |{ i : i > 0 > ai }| . (5.20)

Case 1.1. If n+ 6= n−, then the pretzel surface is minimal genus, as one can inspect by deplumbing. After

plumbing Hopf bands by smoothing out crossings in parallel clasps, one is left with a plumbing of a reverse

(2,n+−n−) and (2,a0) torus links.

Assume L is a strongly quasipositive knot. Then by Livingston, and (2.16),

Obstruction 5.6 every sequence of crossing changes of length g(L)−ν will give a knot with τ ≥ ν, and if

it gives a knot with τ = ν, then the sequence must involve only positive crossing changes.

Our understanding of such sequence will be to remove parallel clasps decreasing the genus of the diagram

(by 1), so the length of the sequence can be inferred by looking at the genus of the final diagram.

If there is an ai ≤−3, then use g(D)−1 crossing changes to make L into

L(sgn(a1), . . . ,sgn(an),a0) (5.21)

which is a genus-one (alternating) 2-bridge knot, with τ ≤ 1. But not all crossing changes were positive,

so by Obstruction 5.6 for ν = 1 we are done.

If a0 < 0, then (5.21) is a non-positive genus-one 2-bridge knot, so τ ≤ 0, and again by Obstruction 5.6 for

ν = 0 we are done.

Now it remains to see that

n− ≤ n−1

2
.

If n− > n+, then again (5.21) is a non-positive genus-one 2-bridge knot, and the rest is clear. Thus we have

n+ ≥ n− , ai < 0 =⇒ ai =−1 , a0 > 0 ,
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which conforms with (5.18).

Case 1.2. Let now

n+ = n− . (5.22)

By [KL], we get a minimal genus surface by using (n+ of the) Montesinos link transformations

M

(
. . . ,

1

q1

, . . . ,
−1

q2

, . . .

)
= M

(
. . . ,

1−q1

q1

, . . . ,
q2 −1

q2

, . . .

)
(5.23)

for q1 = ai > 0 and q2 = −a j > 0 and i, j > 0. These changes are done n+ times to remove all pi = ±1;

the a0 twist is not affected (compare [KL, Figure 6]).

Case 1.2.1. Assume first no ai = ±1. Then after resolving crossings in parallel clasps, one plumbs down

up to mutations to a

L(

k︷ ︸︸ ︷
−2, . . . ,−2,

k︷ ︸︸ ︷
2, . . . ,2,a0) (5.24)

pretzel surface, with all clasps reverse. (Since this surface is planar, one can prove minimality by showing

∆ 6= 0 using Hoste-Hosokawa’s formula for the minimal coefficient of the Conway polynomial [Ho, Hs],

which now is a monomial. This then shows that the canonical surface of the right of (5.23) is minimal

genus, in accordance with [KL].)

The diagram on the right of (5.23) unknots by removing the parallel clasps in the tangles (excluding

−1/a0), which gives a diagram of genus 0. (Keep in mind that |qi|−1 is even. By resolving (|qi|−1)/2

parallel clasps, in each tangle on the right of (5.23) one is left with one nugatory crossing.) If one of these

parallel twists is negative (i.e., some ai <−1), then not all crossing changes were positive. The Obstruction

5.6 applies for ν = 0.

It remains to see why a0 > 0. Assume a0 < 0. As n+ = n− = (n−1)/2 > 0, there is some positive tangle

on the right of (5.23). By g(D)−1 crossing changes, one leaves one parallel clasp in one positive tangle,

and can get M(−2/3,−1/a0). For a0 =−2 it gives an unknot (this is the mirror image of (2.42)), so τ = 0,

and then τ ≤ 0 for all a0 < 0 by (2.16). The Obstruction 5.6 applies for ν = 1, so we are done.

Case 1.2.2. Now if there is an ai =+1 or −1 (but not both), a −2 is missing in (5.24) for each ai =−1 and

a 2 is missing in (5.24) for each ai =+1.

One can again show that the pretzel surface is minimal genus by showing ∆ 6= 0 by Hoste-Hosokawa’s

formula, unless we have for a0 =+2

L(

k︷ ︸︸ ︷
−2, . . . ,−2,

k−1︷ ︸︸ ︷
2, . . . ,2,2) ,

or for a0 =−2 its mirror image

L(

k︷ ︸︸ ︷
2, . . . ,2,

k−1︷ ︸︸ ︷
−2, . . . ,−2,−2) .

The first originates from an L where we have L(, . . . ,1,2), which simplifies to L(. . . ,2) with a parallel

clasp. Then we go to case 2. (The condition (5.18) behaves well under this transition.) Similarly is done

with L(. . . ,−1,−2)→ L(. . . ,−2).
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So assume now the diagram on the right of (5.23) is minimal genus. Resolving parallel clasps brings it

to a genus 0 diagram, so again all clasps must be positive (by Obstruction 5.6 for ν = 0). Thus all the

fractional parts on the right of (5.23) must be positive, and we have all ai < 0 are −1 and we have at most

n− = (n−1)/2 of them because of (5.22). It remains to see why a0 > 0.

Assume a0 < 0. As n+ = n− = (n−1)/2 > 0, there is some negative ai, which is −1. As some ai =−1,

there is a positive tangle on the right of (5.23). Repeat the argument at the end of case 1.2.1 for a sequence

of length g(D)−1 and Obstruction 5.6 for ν = 1.

This finishes the case n odd.

Case 2. n is even. Then the a0 twist is parallel (and sign discrepancies disappear). We modify (5.20) to

n+ = |{ i : i ≥ 0 < ai }| n− = |{ i : i ≥ 0 > ai }| .

Case 2.1. n+ 6= n−

This case is easy. The canonical Seifert surface is minimal, and it is a plumbing of Hopf bands into a

twisted annulus. By a result of Kobayashi [Ko], this minimal Seifert surface is unique, so we can apply the

remark below Question 2.2, and then by Rudolph it is enough to inspect the positivity of the Hopf bands

and annulus. This leads to (5.18) quite easily.

Case 2.2. We assume now

n+ = n− . (5.25)

This is the most difficult case.

Here working with the genus turns out extremely complicated (see Example 5.9 below), thus we will resort

to (2.8) and a calculation of the Alexander polynomial.

We say a pretzel link is twist-parallel if all ai twists are parallel. Note that then n is even and the pretzel

link is reverse.

If ∆a denotes the polynomial of a diagram with a positive twist of a parallel crossings (a−1 parallel clasps),

then

∆a =

√
t
a − (−

√
t)−a

√
t +

√
t
−1

∆1 +

√
t
a−1 − (−

√
t)1−a

√
t +

√
t
−1

∆0 ,

which is easy to prove by induction using the skein relation (2.7). Similarly under mirroring,

∆−a =

(√
t
a − (−

√
t)−a

√
t +

√
t
−1

∆−1 −
√

t
a−1 − (−

√
t)1−a

√
t +

√
t
−1

∆0

)
· (−1)a−1

This can be iterated to gain a formula of (2.43) for a twist-parallel link in terms of the polynomials of

the links L(a′1, . . . ,a
′
n) with a′i ∈ {0,sgn(ai)}. Now note that under the assumption (5.25), we have for

L(a′1, . . . ,a
′
n)

∆(L(a′1, . . . ,a
′
n)) =

{
1 |{ i : ai = 0}|= 1

0 otherwise
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This gives, using (5.11),

∆(L(a1, . . . ,an)) = (−1)σ
n

∏
i=1

√
t
|ai|− (−

√
t)−|ai|

√
t +

√
t
−1

n

∑
i=1

sgn(ai)

√
t
|ai|−1 − (−

√
t)1−|ai|

√
t
|ai|− (−

√
t)−|ai|

, σ = ∑
ai<0

ãi .

(5.26)

The list of coefficients, from the top degree downward, of

√
t
a − (−

√
t)−a

√
t +

√
t
−1

is 1 −1 1 −1 etc. The maximal degree of the polynomials (with the common factor) summed in (5.26) is

n

∑
i=1

ãi

2
− 1

2
= g(D)−1 . (5.27)

One can infer from the formula (5.26) about maxdeg∆ as follows.

If some |ai|= 1, then the corresponding summand in (5.26) vanishes, and since no both ai =±1 occur,

∑
|ai|>1

sgn(ai) 6= 0 ,

so by (5.27),

maxdeg∆ = g(D)−1 .

Now assume |ai|> 1 for all i. The span of

W|ai| =

√
t
ãi − (−

√
t)−ãi

√
t +

√
t
−1

is |ai|−2. In (5.26) all top coefficients will cancel in the first spanW|ai|+1 degrees for all a= |ai| satisfying

|{ i : ai = a}| = |{ i : ai =−a}| . (5.28)

Thus

maxdeg∆ = g(D)−1− spanW|ai0
|−1 = g(D)−|ai0| , (5.29)

so that |ai0| is the smallest a = |ai| for which (5.28) fails:

|{ i : ai = a}| 6= |{ i : ai =−a}| . (5.30)

To summarize this argument, write

maxdeg∆(D) = g(D)−α , (5.31)

where

α = α(a1, . . . ,an) =

{
1 some ai =±1

min{a > 0 : (5.30) holds} otherwise

}
. (5.32)
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For example,

α(3,−3,3,5,−7,−3) = 5 , α(2,−3,3,5,−7,2) = 2 . (5.33)

The formula (5.31), of course, does not restrict to knots, except g(D) must be changed to (1−χ(D))/2 for

links, and if (5.28) holds for all a, then ∆ = 0.

Now focus on knots, so exactly one ai is even, say an = a0. We modify the Obstruction 5.6 as follows.

It follows from (2.8) together with (2.16) and Livingston’s result below it that if a knot L is strongly

quasipositive,

Obstruction 5.7 any unknotting or more generally slicing sequence (i.e., sequence of crossing changes

giving a smoothly slice knot) has at least maxdeg∆(L) crossing changes. Moreover, if it has length

maxdeg∆(L), then all crossing changes are positive (to negative).

We will again only use crossing changes through removing parallel clasps in D, so it is enough to reach a

slice knot diagram D′ with g(D′)> α, or g(D′) = α but not all crossing changes are positive. Also, to keep

notation at bounds, we will afford permutations of the entries. Mutations will not change an unknot, and

the sliceness of the particular knots we arrive at. We add at a few places concrete examples with permuted

entries to illustrate the crossing changes10.

Case 2.2.1. Some ai = 1. In particular all negative ai ≤−2.

Case 2.2.1.1. All positive ai are 1. Then the mirrored changes (5.19) will give a negative link, which is not

strongly quasipositive.

Case 2.2.1.2. Not all positive ai are 1, but all are 1 or 2. By g(D)−2 crossing changes, one gets the (genus

2) diagram

L(

k︷ ︸︸ ︷
1,1, . . . ,1,−3,

k︷ ︸︸ ︷
−1, . . . ,−1,2) ,

which is an unknot. Obstruction 5.7 applies for α = 1 in (5.32).

Case 2.2.1.3. Some positive ai is at least 3.

Case 2.2.1.3.1. a0 > 0. By g(D)−3 crossing changes, one gets the (genus 3) diagram

L(

k︷ ︸︸ ︷
1,1, . . . ,1,3,−3,

k+1︷ ︸︸ ︷
−1, . . . ,−1,2) = L(3,−3,−1,2) , (5.34)

which is the slice knot 820. Obstruction 5.7 applies again.

Case 2.2.1.3.2. a0 < 0. Get similarly to (5.34)

L(

k+1︷ ︸︸ ︷
1,1, . . . ,1,3,−3,

k︷ ︸︸ ︷
−1, . . . ,−1,−2) = L(3,−3,1,−2) ,

and mirror the argument.

10It is likely that one can slightly simplify this argument by using the part of [FLL, Theorem B] we discussed in Lemma 4.30.

But we leave this only as a hint, since the simplification is not significant.
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Case 2.2.2. Some ai =−1.

Case 2.2.2.1. All negative ai are −1. Since there are n− = n/2 of them, we have condition (5.18), as

claimed.

Case 2.2.2.2. Not all negative ai are −1, but all are −1 or −2. Mirror the crossing changes in case 2.2.1.2.

Case 2.2.2.3. Some negative ai is at most −3. Mirror the crossing changes in case 2.2.1.3.

Case 2.2.3. No ai =±1. Fix some i0 with |ai0|= α. Then note the following two properties, which we will

use below.

• There is always an |ai′0
| > α and sgn(ai′0

) = −sgn(ai0). Let us assume up to permutations that

i′0 = n−1 or i′0 = 0.

• All ai with |ai|< α pair up (−a,a) (pairing property).

Case 2.2.3.1. α is even, so i0 = 0. Change crossings to

D′′ = L(−3,3,1, . . . ,1,−1, . . . ,−1,−a0 − sgn(a0),a0)

with equally many 1 and −1, with g(D′′) = α+2. Then change two crossings to

D′ = L(−1,1,1, . . . ,1,−1, . . . ,−1,−a0 − sgn(a0),a0) ,

with g(D′) = α, which is an unknot, but not all crossing changes were positive. As an example,

D = L(7,−5,5,−2)→ D′′ = L(3,−3,3,−2)→ D′ = L(1,−1,3,−2) , i′0 = 3 .

Case 2.2.3.2. α is odd. Since only one ai is even, namely for i = 0, because of the pairing property we have

|a0|> α. So let i′0 = 0.

Case 2.2.3.2.1. If sgn(a0) =−sgn(ai0), then change crossings to

D′′ = L(−3,3,1, . . . ,1,−1, . . . ,−1,ai0,−ai0 − sgn(ai0))

with equally many 1 and −1, with g(D′′) = α+2. Then change two crossings to

D′ = L(−1,1,1, . . . ,1,−1, . . . ,−1,ai0,−ai0 − sgn(ai0)) ,

with g(D′) = α, which is an unknot, but not all crossing changes were positive. For example,

L(3,5,−5,−6)→ L(3,3,−3,−4)→ L(3,1,−1,−4), i0 = 1 .

Case 2.2.3.2.2. If sgn(a0) = sgn(ai0), then there is an odd |ai′′0
|> α and

sgn(ai′′0
) =−sgn(ai0) =−sgn(a0)
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(and i′′0 6= 0). Examples are

L(3,−9,−7,6), L(3,−9,−7,10), i0 = 1, i′0 = 0, i′′0 = 2 .

Case 2.2.3.2.2.1. |ai′′0
|> |a0|. Proceed as in case 2.2.3.1. For example,

D = L(3,−9,−7,6)→ L(3,−7,−3,6)→ L(1,−7,−1,6) = D′ , i0 = 1, i′0 = 0, i′′0 = 2 ,

and here even g(D′)> α.

Case 2.2.3.2.2.2. |ai′′0
|< |a0|. Proceed as in case 2.2.3.2.1, with i0 replaced by i′′0 . For example,

D = L(3,−9,−7,10)→ L(3,−3,−7,8)→ L(1,−1,−7,8) = D′ , i0 = 1, i′0 = 0, i′′0 = 3 ,

and again g(D′)> α. �

5.4 Further properties and examples

We remark a few useful consequences that can be inferred from formula (5.26) and its discussed implication

(5.31) on the degree of the Alexander polynomial of twist-parallel links (as defined below (5.25)).

Corollary 5.8

1) Let L be a twist-parallel pretzel knot (5.17) with (5.2). Then (2.8) is an equality if maxdeg∆ < n/2.

(In particular the Alexander polynomial detects the unknot among such knots.)

2) Let L be a twist-parallel pretzel link. Then ∆ = 0 if and only if all the ai can be paired up (ki,−ki).

Proof.

1) The case n+ 6= n− is easy to settle extra, and leads to (5.31) with α = 0; it is also treated in [KL].

Now let n+ = n−. Assume n and exactly one ai is even. (See the notes below (5.25) resp. (5.33).)

For suggestive reasons, further assume (5.2) and that n ≥ 4.

Order ai so that |ai| ≤ |ai+1| and |ai0+1| > |ai0| = α, with i0 set as below (5.29). By looking at the

place of the (only) even ai, one sees that i0 < n. Now use (5.27) and (5.31), setting (5.11), in the

form

maxdeg∆ =
ã1 + ã2 + . . .+ ãi0−1 −α+ ãi0+1 + . . .+ ãn

2

All +/− terms in the numerator are non-decreasing, and there is at least one after −α.

If α > 1, then all terms before −α are at least 2. Thus maxdeg∆ ≥ n−2 ≥ n/2.

If α = 1, then i0 ≤ n/2 because of (5.2), and if i0 = n/2, then L is alternating. Thus assume that

i0 < n/2, and then maxdeg∆ ≥ n/2.
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2) This was noted below (5.33). The links specified in the second part are up to mutations amphicheiral

even-component links, which is another explanation why the Alexander polynomial vanishes. �

The below example shows that the first part is not true if maxdeg∆ = n/2.

Example 5.9 The knot L(−3,3,3,−4) = 137279 (for notation, see [St5, §2]) has genus 4, according to the

tabulation [St13], but its mutant, the knot L(3,−3,3,−4) = 137278, has genus 2. We have maxdegm P = 8,

so by (2.11) both knots have canonical genus 4. Thus even among pretzel knots there are not canonically

minimal ones and genus may be mutation variant.

Example 5.9 hints to major problems in using (minimal genus) surfaces in any attempts to extend to the

case of reverse Montesinos links. Similarly, explicit calculation of the Alexander polynomial is hardly

possible, which explains why we expect no adequately long proof (at the least, even if a result is adequate)

in this case.

Corollary 5.10 Every strongly quasipositive pretzel knot is pseudo-positive.

Proof. Our results on pretzel knots show what the only pretzel diagrams (2.43) where the condition there

fails to correctly detect strong quasipositivity are the reverse pretzel diagrams with negative ai being only

ai = −1 and exactly (but not less than) ⌊n/2⌋ of them (compare in (5.18)). But we also saw that these

examples are in fact positive, so that going over to a different diagram, we can make the pseudo-positivity

condition apply again. �

Thus knots of the type in Example 4.27 do not occur among pretzel knots, at least.

Another (promised) statement, again without restriction to knots, is this. (Compare above Theorem 3.18

and the list below Corollary 4.20.)

Proposition 5.11 Let D be an alternating parallel or pure pretzel link diagram. Then it is ind-optimal. In

particular, its link has a minimal string Bennequin surface.

It should be stressed again that at least the property to be pure does not really depend on component

orientation, while genus and braid index of course do. The statement is then to be understood for any

possible orientations.

Proof. We use the generators and series, as in the proof of Proposition 4.6.

Case 1. Assume first D is parallel. Then it lies in the series of a (2,n)-torus link generator. The generator

is ind-optimal by Theorem 3.18 (or direct inspection), and its maximal independent set is empty. Thus by

[St12, Lemma 5.19], all diagrams in the series are ind-optimal.

Case 2. Next assume D is reverse and pure.

Then as D is alternating, the sign of ai is determined by whether the twist is parallel or reverse. Let us

mirror the diagram w.l.o.g. so that parallel ai are negative and the reverse are positive. (Note that positive
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ai are thus even, as is the number of negative ai.) As a reference, below is the Seifert circle picture (with

crossings marked as dashed lines) of L(2,4,4,4,−3,−2,2) in this convention.

(5.35)

Case 2.1. Assume first there are negative ai (i.e., parallel twists). When each positive ai is either set to 2 or

removed (by smoothing out), the diagram D is stably alternating. (We assumed that the pretzel diagram is

pure, thus all negative ai ≤−2, which are not changed.) Since by Theorem 3.18, D is ind-optimal, one can

determine mindegl P(D) and maxdegl P(D), since with (2.22), also (2.12) and (2.13) become exact. Then

show that on the right of

P(D+) =−l2P(D−)−mlP(D0) (5.36)

(which follows from (2.10)), minimal and maximal l-degree terms do not cancel. Then one works by

induction over the positive (even) ai.

Case 2.2. There remains one case, where all ai > 0 (and even). This is again a series of a special alternating

generator, the (2,2, . . . ,2)-pretzel diagram (with all clasps reverse). This is a link, but the argument behind

[St12, Lemma 5.19] does not require to restrict oneself to knots. To apply the lemma, one is only left to

check that D = L(2, . . . ,2) is ind-optimal (with ind(D) = 1). This is again a matter of a simple recursive

skein calculation using (5.36). �

If the reverse link is non-pure, the needed verification is more technical (and lengthy), and we prefer not to

get into it here. Note, though, that the argument does readily work for (at most) two negative (i.e., parallel)

ai, even if some is −1.

6 Problems

In conclusion, we briefly review several questions upon which we came touching in the discussion. We

return to Question 2.4.

The following lists information about this problem known (to me).

• Conditions on minimality of positive braids β ∈ Bn, i.e., when n = b(L) for L = β̂, have been studied

(see [Na2] and Nakamura’s theorem [St2, Theorem 5.2]). It is known for positive braids β with a

full twist, i.e., β = δ2
nα with α positive (likely first observed in [FW]). T. Ito pointed out that this is
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generalized in [IK, Corollary 1.13]. Another example11 are words

β = ∏
j

σ
k j

i j
(6.1)

with all k j > 1. There are further constructions possible; see, though, the last point in this list.

• It is true for the positive links among the classes for which Question 6.2 is resolved (see below). In

particular it is true for (positively) special alternating links among the 2-bridge links, parallel or pure

pretzel links (see below Corollary 4.20 and Proposition 5.11), or knots of genus at most 4.

• The additivity of genus and braid index under connected sum implies that if the property holds for

links L1,L2, it holds also for L1#L2 (regardless of which components the connected sum is performed

at).

• It follows from the proofs of Propositions 3.13 and 3.20 that if K is a strongly quasipositive knot on a

minimal braid, and β is strongly quasipositive, then Kβ is strongly quasipositive on a minimal braid.

• The result is known for ‘strongly quasipositive’ replaced by ‘quasipositive’ [Ha], but it is false for

‘positive (braids)’ [St4, Example 7].

Next we return to the problem outlined in Remark 3.16. (The answer is trivial if K =U is the unknot.) For

the related discussion of connected sums, see [Or]. Contrast also with Theorem 3.17.

Question 6.1 If Kβ is strongly quasipositive (resp. quasipositive), with K 6=U , are both K and β strongly

quasipositive (resp. quasipositive)? At least one of both?

An analogous class of problems arose for the more general Bennequin surfaces.

Question 6.2 (see [St15, Question 8.3.4]) If L is an alternating link, does L have a minimal string Ben-

nequin surface? What other type of link? Perhaps even a canonically minimal link (i.e., one which has a

diagram D with (2.3))?

It was proved for example in [St15] that any alternating knot of genus at most 4 has. In the proof of

Proposition 4.4 we did as well the special alternating links L with χ(L) ≥ −2, and in Proposition 5.11

alternating pure pretzel links. In Proposition 3.19 we discussed stably alternating links (including the

fibered ones). It was also checked for all alternating knots of at most 18 crossings (using the method

rolled out again in §4). This is further true for an alternating link of braid index at most 4, every (also

non-alternating) 3-braid link (see [St2]), and every 2-bridge link [Hi]. On the other hand, some other

(non-alternating) knots (failing (2.3)) have no minimal string Bennequin surface [HS]. By Corollary 4.20,

Conjecture 4.7 implies the positive answer for an alternating link. This topological outlook may lend new

motivation to the study of the graph index.

11These examples are disjoint; in fact it follows from Thistlethwaite’s work on adequacy that none of (6.1) is Markov equiv-

alent to a positive word in Bn containing even a [δ3]l for some 0 ≤ l < n− 1.
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As mentioned below Conjecture 2.6, it follows from Theorem 2.7, that a minimal string Bennequin sur-

face of a strongly quasipositive link is strongly quasipositive. (This is very closely related to the reason

for (2.34) and (4.47).) Thus Question 6.2 for strongly quasipositive links is equivalent to Question 2.4.

Example 5.4 and its likes leave Question 2.4 open for pretzel knots even after the description achieved in

§5.

Question 6.3 If L1#L2 has a minimal string Bennequin surface, do L1,L2 have?

The converse is true as per the remark on connected sums below Question 2.4.

Proposition 3.20 prompts also the following version of Question 6.1. (Exclusion of the case K =U is now

imperative, by means of the aforementioned examples in [HS].)

Question 6.4 Is the following true (or at least some direction of it, and at least in what special cases)? The

cable link Kβ (for K 6= U ) has a minimal string Bennequin surface if and only if K has a minimal string

Bennequin surface and β can be written in bands so as to give a Bennequin surface of β̂.

At least the ‘if’ direction is very much suggested by the proof of Proposition 3.20. This implication is true

if (2.8) is exact for both K and β̂, and the Alexander polynomial is in general a very efficient algebraic

means in estimating genus. The ‘if’ part is also true for strongly quasipositive K and β, as we noted above.

Another question pops up in relation to Example 3.14: the Hopf plumbing argument there can certainly

exclude a positive diagram; the same argument would work for a homogeneous diagram, etc., but can it

recover an inequality like (3.9) for any diagram D? Extensive computer experiments [St14] have shown

that fiber surfaces coming from Seifert’s algorithm, already for knots of genus 2, may be very difficult to

describe. Nevertheless, even in the below formulated most simple form of the problem, counterexamples

do not seem to be known.

Question 6.5 Is every canonical fiber surface a Hopf plumbing?

After Example 4.40 falsified the diagrammatic style of converse to Corollary 4.37, the proof of the corollary

suggests a geometric alternative question. The appended remarks clarify why large χ do not fit well, but

the essence of the question is to understand better what is the effect of a Murasugi sum.

Question 6.6 Is at least one minimal genus surface for χ< 0 of a general link L a Murasugi sum of strongly

quasipositive and strongly quasinegative surfaces? Every minimal genus surface when χ is small? At least

a stable Murasugi sum?

It is obviously true for ‘one minimal genus surface’ for pseudo-homogeneous links. For ‘one minimal

genus surface’ it is also true for a strongly quasipositive link. By Rudolph’s work [Ru5], the ques-

tion for ‘every minimal genus surface’ of a strongly quasipositive link is equivalent to Question 2.2 (as

strongly quasinegative surfaces will not occur as Murasugi summands). It the case χ = 0, no Murasugi
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sum is possible, and the answer is negative by arguments closely related

to Theorem 3.17. (This needs to be explained separately elsewhere.)

This provides some intuition against the case χ < 0 as well. However,

there is little control over what a Murasugi sum can yield, in particular

if we consider small χ.

Example 6.7 The following example for χ=−1 shows that the answer

is negative for ‘every’. This is a Brittenham [Br] free genus 1 knot, its

HOMFLY polynomial shows that it is not strongly quasipositive or -

negative. Now assume its free genus 1 surface is a Murasugi sum. A

free Murasugi sum must have free summands, and since the Alexander

polynomial is monic, by observation the surface must be a Murasugi sum of Hopf bands, thus a fiber

surface. But the knot is not a trefoil or a figure-8 knot.

We add here the question which was motivated and discussed in relation to Fact 4.45. (For ∼-reduced

recall the definition there.)

Question 6.8 Are there only infinitely many pseudo-homogeneous (or pseudo-positive) links with the

same P (or Jones) polynomial? Does a link have only finitely many ∼-reduced pseudo-homogeneous

diagrams?

A final problem is highlighted due to its apparent lack of previous record.

Question 6.9 Are homogeneous diagrams visually prime?

This fits well with the special cases of alternating and positive diagrams (proved by Menasco and Ozawa,

resp., as discussed in §2.2). It is interesting that Cromwell [Cr], who initiated the homogeneity concept,

asks the question not for homogeneous diagrams, but for minimal genus ones. (Perhaps a reason was, as

outlined at the start of §4.4.5, that he designed homogeneity rather as a vehicle to show minimal genus.)

But in this generality the question was answered negatively in [St3]. In Example 4.42 above (and in another

similar example in [IS]), it is possible to improve the “quality” of such counterexample in the hierarchy of

§2.2, but these same checks have insistently confirmed all homogeneous diagrams encountered.

A Appendix: table of alternative and homogeneous prime knots

Cromwell [Cr, Appendix] lists a table of homogeneity of the (non-alternating) Rolfsen knots, which is

easily found to contradict Example 2.1. But there is additional confusion.

Without attempts to check the table, some effort to resolve (negatively) the open cases therein was made

in [St3]. But there I mistook the definition of homogeneous for alternative, as e.g. correctly reflected in
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[Si, Theorem 3.6]. (This mixup also led to the relabeling of the true property ‘homogeneous’ as ‘semi-

homogeneous’ in [St11, St12].) The exclusion of Cromwell’s knots in [St3] is thus, as recorded, only from

being alternative.

Below we aim to settle all this disarray. We have not investigated what exactly went wrong where in

Cromwell’s tests. To be on the reliable side, as in Example 2.1, we used only two tools. First, if D is

homogeneous, and D′ obtained from D by crossing changes making it alternating, then the Alexander

polynomials ∆(D) and ∆(D′) have the same degree with the same leading coefficient up to sign. Then we

applied the generator-twisting method that was largely deployed in [St3] (and [St12], etc.)

For verification reference, it is best to give the table in terms of a list of alternative diagrams, written for

compactness in the Dowker-Thistlethwaite notation (see end of §2.2).

8 19 4 8 -12 2 -14 -16 -6 -10

9 43 4 8 10 14 2 -16 6 -18 -12

9 47 6 -16 -14 12 -4 -2 18 -10 -8

9 49 6 -10 -14 12 -16 -2 18 -4 -8

10 124 4 8 -14 2 -16 -18 -20 -6 -10 -12

10 128 4 10 -14 -18 2 -16 -20 -8 -12 -6

10 134 4 10 12 -16 2 8 18 20 -6 14

10 138 4 8 10 16 2 -14 -18 6 -20 -12

10 139 4 10 -14 -16 2 -18 -20 -6 -8 -12

10 142 4 10 -14 -16 2 -18 -20 -8 -6 -12

10 152 6 8 12 2 -16 4 -18 -20 -10 -14

10 154 4 8 12 2 -16 6 -18 -10 -20 -14

10 161 4 12 -16 14 -18 2 8 -20 -10 -6

Below follow the homogeneous (non-alternative) ones for the knots in Example 2.1; keep in mind our

disposal over (and of) the Perko duplication.

10 150 4 12 -16 14 18 2 8 -20 10 -6

10 151 4 12 16 14 -18 2 8 20 -10 6

10 156 4 12 16 -14 18 2 -8 20 10 6

10 158 6 -10 -16 20 -14 -2 -18 -4 -8 -12

10 160 4 12 -16 -14 -18 2 -8 -20 -10 -6

10 163 6 -10 14 16 -4 18 2 20 12 8

The remaining knots are non-homogeneous (and non-alternative).

The Cromwell table thus reports 8 and 9 crossing non-alternating prime knots correctly; all those homo-

geneous knots are also alternative. The entries for 10150 and 10163 (his 10164) must be positivized. For the

five question-marked Cromwell knots, none is alternative (as in the corrected statement of [St3, Corollary

4.1 and Proposition 13.1]), but 10151, 10158 and 10160 are homogeneous (with its correct definition).

The remaining two knots 10144 and 10165 (Cromwell’s 10166) are indeed non-homogeneous. More gener-

ally, [Si, Theorem 3.6] still holds for ‘homogeneous’, as stated in [St3, Theorem 4.1]. The proof only needs
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to add the check that the only genus 2 generators with at least 3 Murasugi atoms are 76, 77, 812, and 1058,

they all admit only type B flypes (see [St3, Figure 2]), and any homogeneous diagram in their series can

be flyped to an alternative one. (This upgrade can then also reduce to non-positivity the non-homogeneity

proof for 20 more non-alternating genus 2 Rolfsen knots, but was not used in the above check.)

As known from [St4], in general knots may realize the properties alternative and homogeneous only in

non-minimal diagrams. (Both questions in [Cr, §5] are answered negatively.)

B Appendix: Strongly quasipositive prime knots up to 16 crossings

B.1 Band representations

The following determines which (so far availably) tabulated knots are strongly quasipositive. We have not

considered alternating knots, for reasons explained above (and recalled in §B.2).

Since Morton’s conjecture (4.49) was known to be true up to 16 crossings [St18, §2], for compiling candi-

dates we tested

2τ = 2g = mindegl P .

This rendered a list of 22,009 knots. All knots are Bennequin sharp, thus this is the complete list of such

knots up to 16 crossings.

The following division into genera has some impact on how knots were (further) handled. The (−3,5,5)-
and (−3,5,7)-pretzel knots are the (only) examples of genus 1.

genus 1 2 3 4 5 6 7

# knots 2 282 4149 10440 6143 957 36

We checked a systematic list of band representations, which confirmed all knots to be strongly quasipositive

(in accordance with Conjecture 2.5). However, for many of the knots, we knew strong quasipositivity from

diagrams far sooner, and more efficiently, than finding a band representation. The larger the genus and

braid index, the more words it is necessary to check, but the more likely it is to find a diagram showing

strong quasipositivity by the methods of §B.2. They worked flawlessly for genus 5 or higher.

Showing all the knots as strongly quasipositive settles Conjecture 2.5 for them. We can also resolve, for all

these knots, Question 2.4.

Proposition B.1 For all prime strongly quasipositive knots up to 16 crossings, there is a minimal string

positive band representation.

Proof. This was established by explicitly compiling positive band representations for the non-alternating

knots, and then determining that they have minimal strand number. (For the alternating ones, see below

Corollary 4.35.)
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The braid index of some of the knots is extraordinarily difficult to resolve. The hardest cases could not

avoid a multiple-week calculation per entry. Among them by far stands out 161057125, which required its

separate technological development. Further information is moved out to [St13]. �

For the related discussion of composite knots, see [Or].

The list of band representations allowed us also to easily obtain a series of the following type of examples

(which seem more common than expected).

Example B.2 Consider the two knots with positive 4-band representations (using the definitions in §2.4):

121393 σ3σ1,4σ1,3σ2,4σ1σ2σ5
1

1439299 σ3σ1,4σ1,3σ2,4σ2
1σ2σ6

1

Both knots are fibered, and the (strongly quasipositive genus 5 fiber) surface S of K = 1439299 is a (repeated)

positive Hopf plumbing of the (strongly quasipositive genus 4 fiber) surface S′ of K′ = 121393. But while

K′ has braid index 4, K has an almost positive 3-braid representative. Thus (b(K) =)bq(K) = b(S) = 3

while (b(K′) =)bq(K
′) = b(S′) = 4. This means that bq can decrease under (positive) Hopf plumbing of

strongly quasipositive surfaces, even for fiber (and in particular unique minimal) surfaces. Another such

(fibered) pair of genus 5 and 6 are K′ = 136169, K = 1446970.

B.2 Diagrammatic tests

The methods of [FLL] and §4.4.4 here are sufficient (and efficient) to show strong quasipositivity without

the need to explicitly find a positive band representation, for all but less than 100 of the knots.

Obviously, (special) alternating diagrams are pseudo-positive, so Corollary 4.24 is infallible for alternating

knots. And they were excluded from any further computation.

For non-alternating knots, it turned out that > 90% of prime strongly quasipositive nom-alternating knots

up to 16 crossings are pseudo-positive or almost-positive in minimal crossing diagrams.

Among knots without minimal crossing almost positive diagrams, extensive test of minimal genus diagrams

(of higher crossing number) left at most 65 (only genus 3,4) undecided for pseudo-positivity. (We did not

test for almost positivity of non-minimal crossing diagrams; this test seems not very restrictive.)

Further 19 knots (all of genus 2) are ruled out from being pseudo-positive (17 by Morton’s inequality (2.11)

and two more in the list of genus 2 knots where (2.11) was proved unsharp in [St3]). All these mentioned

knots are 15,16 crossing, thus in particular until 14 crossings, all strongly quasipositive knots are pseudo-

positive or almost positive. (Until 13 crossings, it was mentioned in the introduction of [FLL] that all are

pseudo-positive, by reference to previous calculations of ours.)

Beware again that knots may have pseudo-positive diagrams only of far higher crossing number. An

example is 1438473, where only a 19 crossing (genus 3) diagram occurs. It is included here for illustrative

purposes:

19 38473 6 12 20 38 28 4 -18 34 26 2 -10 32 14 22 8 -36 16 24 -30
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As usual, a small number of such “difficult” cases remain, where complicated diagrams have to be searched

and come out rather slowly. This should illustrate that, while all diagrammatic strong quasipositivity tests

were ran on a modest laptop within 3-4 days, proper management is crucial for making this a tractable task.

Yet, the pseudo-positivity approach turned out far more efficient for large genus and/or braid index, where

the number of band representations to process grows disproportionally. While we knew from Corollary

4.24 much sooner that the knots are strongly quasipositive, we still tried to test positive band representa-

tions, also to address Question 2.4. But this was a very time consuming process, and not feasible for some

portions of the list. Corollary 4.35 remained the only viable help.
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