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Abstract. Introducing a way to modify knots using n-trivial rational tangles, we show that knots
with given values of Vassiliev invariants of bounded degree can have arbitrary unknotting num-
ber (extending a recent result of Ohyama, Taniyama and Yamada). The same result is shown for
4-genera and finite reductions of the homology group of the double branched cover. Closer con-
sideration is given to rational knots, where it is shown that the number of n-trivial rational knots
of at most k crossings is for any n asymptotically at least C

�
lnk � 2 for any C � 2 ln2

�
e.

1 Introduction

In [S], Stanford introduced a way to modify knots into alternating prime ones using 3 braids [BM],
not affecting (i. e., changing the values of) any finite number of Vassiliev invariants [Bi, BL, BN,
BN2, BS, Va, Vo]. The 3 braids were chosen to be iterated pure braid commutators and so they are
n-trivial in the sense of Gousarov [G], see [St].

In this paper, we give another such construction by means of rational tangles, which we describe
in section 2. It can be applied to any diagram of a knot, not only to closed braid diagrams. While
Stanford’s construction is useful not to augment the braid index (if it is � 3), our construction is
useful, when applied in an arborescent diagram, not to spoil arborescency of a knot. Hence, a similar
argument to Stanford’s allows us to prove an ‘arborescent’ version of his modification theorem:

Theorem 1.1 Let v1 ���	���
� vn be Vassiliev invariants. Then for any knot K there is some prime alter-
nating knot K � with vi � K �� vi � K �� for 1 � i � n. If K is arborescent, then K � can be chosen to be so
as well.

In Gousarov’s language two knots K1 and K2 having the same Vassiliev invariants of degree up to n
are called n-similar. We denote this by K1 � n K2.

Applied to the 1-crossing-diagram of the unknot, our method produces (infinite) series of n-trivial
2-bridge knots for given n � N. Hence we have�
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2 2 Rational tangles

Corollary 1.1 For any n there exist infinitely many n-trivial rational knots of genus 2n. Infinitely
many of them have unknotting number one.

The number of such knots will be (asymptotically) estimated more accurately in section 3. The
important feature of this estimate is that it is asymptotically independent on the degree of triviality.
Such an estimate does not appear to have been known before (see remark 3.2).

Our knots differ in several regards from previous constructions. Lin’s iterated Whitehead doubles
[L] have genus and unknotting number one, and are non-alternating, Ng’s knots [Ng] are slice and
of unknotting number at most two but their genus is difficult to control, the same being true for
Stanford’s alternating braid knots.

Ng’s construction offers an analogy to another outcome of our work. She showed that, beside the
Arf invariant, Vassiliev invariants give no information on knot cobordism. This helps completing a
picture, realized soon after Vassiliev invariants became popular, that all classical knot invariants (that
is, those known before the “polynomial fever” [Ro, Preface] broke out with [J]), are not, or stronger
(almost) unrelated to, Vassiliev invariants, see [Bi]. Our method exhibits the same picture for the
unknotting number.

Theorem 1.2 Let K be some knot and n, u positive integers. Then there exists a prime knot Kn � u of
unknotting number u having the same Vassiliev invariants of degree up to n as K. Moreover, for fixed
K and n, Kn � u can be chosen to be alternating (and prime) for almost all u.

We show this result in section 4. It extends the result of Ohyama-Taniyama-Yamada [OTY] (see
also [Oh]), which is the claim of the theorem for u � 1. Their result is used in the proof, together
with an application of our method, given K, how to construct Kn � u for any u � u � K  . The use of the
tangle calculus of [KL] allows to ensure primality in most cases, contrarily to Ng’s knots, which are
composite. Since we will use the signature for the proof of theorem 1.2, the same statement holds via
the Murasugi–Tristram inequality also for the 4-genus gs � 0 instead of the unknotting number, thus
extending the case gs � 0 studied by Ng.

Theorem 1.2 is a bit surprising, as the picture changes when considering other unknotting operations,
or, at least conjecturally, special classes of knots, see � 5. Also, the situation differs when considering
infinitely many Vassiliev invariants, because for example the Jones polynomial, which by [BL] is
equivalent to such a collection, does carry some (albeit modest) unknotting number information, see
[LM, St3, Tr].

Beside signatures or 4-ball genera, for the unknotting number results we use the estimate of Wendt
[We], the number of torsion coefficients of the homology H1 � DK � Z  of the double branched cover DK
of S3 over K. As a by-product, we obtain a similar result to the ones above regarding the homology
of DK over rings of positive characteristic (see theorem 4.2). It would be more interesting (but much
more difficult) to examine the situation with the whole Z-module H1 � DK � Z  .
Finally, in section 5, we conclude by summarizing some problems suggested by our results.

2 Rational tangles

In this section we introduce the type of (rational) tangles which will be applied in the subsequent
constructions.

Rational tangles were introduced by Conway [Co]. The Conway notation C � a1 ���	���
� an  of a rational
tangle is a sequence of integers, to which a canonical diagram of the tangle is associated, see [Ad,� 2.3]. Define the iterated fraction (IF) of a sequence of integers a � � a1 ���	���
� an  recursively by

IF � a1  : � a1 ���	���
� IF � a1 �����	�	� an � 1 � an  : � 1
IF � a1 �	���	�	� an � 1  � an �
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It will be helpful to extend the operations ‘ � ’ and ‘1 � � ’ to Q ��� ∞ � by 1 � 0 � ∞ � 1 � ∞ � 0 � k � ∞ � ∞
for any k � Q. The reader may think of ∞ as the fraction 1 � 0, to which one applies the usual rules
of fraction arithmetics and reducing. In particular reducing tells that � 1 � 0 � 1 � 0, so that for us� ∞ � ∞. This may appear at first glance strange, but has a natural interpretation in the rational tangle
context. A rigorous account on this may be found in Krebes’s paper [Kr].

In this sense, IF is a map �! n � N 
IF : Zn �#" Q �$� ∞ � �

It is known [Ad], that diagrams of sequences of integers with equal IF belong to the same tangle (up
to isotopy; where isotopy is defined by keeping the endpoints fixed). The correspondence is

C � a1 �	���	�	� an &%'" IF � an �����	��� a1  �
Using this fact, one can convince himself, that a rational tangle T has a diagram which closes (in
the way described in [Ad], see also figure 1) to an alternating reduced prime diagram of a link (the
only exception for reducedness being the tangle with notation � 1  ), which has 1 or 2 components (as
in our examples below). This diagram is obtained by taking a representation of IF � a �� IF � c  for a
Conway notation a of T , such that all numbers in c are of the same sign (it is easy to see that such a
sequence c always exists). In particular, ( c ( : � ∑i ( ci ( is the crossing number of the closure of T (see
[Ka, Mu, Th]), and so T is trivial, i. e., the 0-tangle, iff IF � a )� 0 (as for a the 0-tangle and IF � a +*� 0
we had ( c ( � 0 and c *� � 1  , and thereby a contradiction). We also see this way, that rational links are
prime (see [Me]; this result independently follows from the additivity of the bridge number proved
by Schubert [Ad, p. 67]).

Define for a finite sequence of integers a � � a1 ���	���
� an  its reversion a : � � an �	���	��� a1  and its negation
by � a : � � � a1 �����	��� � an  . For b � � b1 �	���	�	� bm  the term ab denotes the concatenation of both se-
quences � a1 ���	����� an � b1 ���	���	� bm  . We also write IF � a � an , 1  for IF � a1 ���	���
� an � an , 1  , and analogously
IF � a � an , 1 � b  etc.

P Q
P

Q P

∞ 0 4 sum P� Q product PQ closing P up

Figure 1: Operations with rational tangles

Proposition 2.1 Fix some even a1 �����	�	� an � Z and build inductively the integer sequences wn by

w1 : � � a1  �-�	��� wn : � wn � 1 � an  � wn � 1 � (1)

Then the rational tangles with Conway notation wn are n-trivial, and, if all ai *� 0, non-trivial, i. e.,
not (isotopic to) the 0-tangle.

Proof. For given n consider the braiding polynomial P [St] of some Vassiliev invariants (which may
be assumed to be zero on the 0-tangle), on the wn-tangle as polynomial in a1 �	���	�	� an. By the discussion
of Stanford’s examples in [St] and the previous remarks, we need to show that IF � ���	�	� 0 ���	��� /. 0, and
so P 00 ai 1 0 . 0  i � n, and IF � a1 ���	���
� an 2*� 0, if all ai *� 0.

Do this by the inductive assumption over n. For n � 1 the claim is evident. For fixed n by induction
assumption IF 00 ai 1 0 . 0  i 3 n, as IF � a � an � � a  is independent of an if IF � a 4� 0, and IF � a � 0 � � a 4�
0 for any integer sequence a. But therefore also IF 00 an 1 0 . 0.



4 3 Modifying knots

To see that for a1 *� 0 ���	���
� an *� 0 the tangle is non-trivial, use that by induction for a1 ���	���
� an � 1 *� 0
we have IF � wn � 1 2*� 0 and that therefore the map

an 5 �4" IF
6

an
� 1

IF � wn � 1  � � wn � 1 7
is a bijection of Q �'� ∞ � , so an � 0 can only be a unique zero. 8
Example 2.1 For a1 � 2 � a2 �9� 4 and a3 � 2 we have w1 � � 2  , w2 � � 2 � � 4 � � 2  and w3 �� 2 � � 4 � � 2 � 2 � 2 � 4 � � 2  .
3 Modifying knots

Prepared with the above tangles, we can now describe our modification technique.

Proposition 2.1 already allows to prove the special case of theorem 1.1 given in the introduction as
corollary 1.1. We first give this proof, before going to prove theorem 1.1 itself.

Proof of corollary 1.1. Corollary 1.1 follows directly from the proposition 2.1 by replacing the
0-tangle in the unknot diagram C � 0 � c  for any c � Z by some of the tangles in question. To see
that indeed infinitely many examples arise this way, take c even and use the well-known fact that the
expression of a rational knot with all Conway coefficients even is unique. The number of even entries
is known to be equal to twice the genus, hence the genus is as asserted. We obtain the unknotting
number property by taking an �;: 2. 8
We can now prove the arborescent refinement of Stanford’s result from our setting.

Proof of theorem 1.1. Given a knot K, take some reduced non-composite diagram of K (which
exists even if K is composite) and choose a set S of crossings, which need to be switched to obtain
from it an alternating diagram. Then near each such crossing p plug in an n-trivial rational tangle
T (in a diagram with alternating closure), so that the right-most crossing of T cancels with p by a
Reidemeister 2 move (see fig. 2).

p
T

Figure 2: Plugging in T

By applying this modification at all crossings in S, we are done. 8
Remark 3.1 More generally, this construction shows that one can preserve the Conway basic poly-
hedron.

We conclude this section with the announced more specific enumeration result concerning the knots
in corollary 1.1.

Corollary 3.1 For any no � N the number of no-trivial rational knots of at most k crossings is asymp-
totically at least C < lnk = 2 for any constant C 3 2 ln2

>
e.



5

Proof. First note, that the freedom to vary C allows us to replace for convenience k by k � 2, or
equivalently to consider at most 2k crossing diagrams (instead of at most k crossings).

A diagram of the kind constructed in the proof of proposition 2.1 with 2k crossings in the groups of
twists except the first one corresponds to writing

k � n

∑
i 1 0

2i (wi (
for some wi � Z and n � N. For n � no the number of such representations in polynomially bounded
in k, hence, assuming we can show the lower bound for the diagrams including these with n � no, it
is possible to neglect them and assume n � no, so that all diagrams are no-trivial.

Let

Dk : �@? � w0 ���	���
� wn  : k � n

∑
i 1 0

2i (wi ( � wi *� 0 � n � 0 A
and dk : � #Dk. Then d1 � 2 and

dk � 2 B k C 2 D∑
i 1 1

di for k � 2.

To prove the corollary it suffices to show that

ck : � C < lnk = 2 3 � 2 � ε +B k C 2 D∑
i 1 1

C < ln i = 2 � D (2)

for some D � R, ε � 0 and sufficiently large k, as then (for possibly larger k) D 3 C < lnk = 2 E ε
2 , so

C < lnk = 2 3 2 B k C 2 D∑
i 1 1

C < ln i = 2 �
and hence dk � C � E ck

� C � � (for some C � � C � �F� R, C � � 0), but C � and C � � can be eliminated by varying
C.

To show (2), first use that i 5" C < ln i = 2 is monotonously growing for i � 1, soG < k � 1 =!C 2
1

C < lnt = 2 dt 3 B k C 2 D∑
i 1 1

C < ln i = 2 � (3)

Now for (2) it suffices to show the inequality for the derivations of the left hand-sides of (2) and (3)
for sufficiently large k.

But putting C � ep with p 3 1
2ln2 , we have that

d
dk H ep < lnk = 2 I 3 � 2 � ε  d

dk

6 G < k � 1 =!C 2
1

ep < lnt = 2dt 7
is equivalent to

ep < lnk = 2 2lnk
k

p 3 2 � ε
2

ep < ln < k � 1 =J� ln2 = 2 �
and logarithming we get

p � lnk  2 � ln2 � lnlnk � lnk � ln p 3 ln � 2 � ε #� ln2 � p � ln � k � 1 	 2 � 2p ln2ln � k � 1  � p � ln2  2 �
This is for some D �K� R the inequality

p L � lnk  2 � � ln � k � 1 � 2 M � lnlnk 3 � 1 � 2p ln2  ln � k � 1  � D � �
Now as k " ∞, the first term on the left goes to 0, and then the claim is obvious from the condition
on p. 8
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Remark 3.2 It should be remarked that the asymptotical estimate itself does not depend on n. Such
an unconditional statement does not seem to have been known before. For example, the number of
Lin’s iterated n-fold Whitehead doubles for fixed n grows exponentially in k, because of the result
of [W] and the uniqueness of the companion, but the base of this exponential heavily depends on n–
roughly augmenting n by 1 requires to take the fourth root of the base. On the other hand, the depen-
dence on n in our estimate is present, namely in how quickly the numbers attain their asymptotical
behaviour. Thus our result does not imply the existence of knots which are n-trivial for all n. In fact,
as our knots are alternating, no one of them can have this property.

4 Unknotting numbers and n-triviality

Here we record some consequences of the preceding results concerning unknotting numbers. The
first one is rather easy, and will be later refined to give a proof of theorem 1.2.

Proposition 4.1 Let K be some knot. Then for any n � N and u0 � u � K  there exists a knot Kn � u0

with u � Kn � u0 N� u0 and v � Kn � u0 O� v � K  for any Vassiliev invariant v of degree up to n.

Proof. Consider the knots K < i = : � K# L #iK � M with K � being an n � 1-trivial rational knot of unknotting
number one (provided by corollary 1.1). Then the Vassiliev invariants of degree up to n of all K < i =
are the same as those of K, and that any u0 � u � K  is the unknotting number of some K < i = follows
from the obvious inequality u � K < i , 1 = +� u � K < i =  � 1 and the reverse estimate u � K < i = P� dK Q i R � dK

� i,
where dK � rankH1 � DK � Z  is the number of torsion coefficients of H1 � DK � Z  and DK is the double
cover of S3 branched along K, see [We]. 8
Now we indicate how to modify the proof of proposition 4.1 to signatures and 4-genera. (This can
also be deduced from Ng’s work, but the proof is now brief, so we can give it in passing by.)

Theorem 4.1 Let n � N and K be some knot. Then

i) for any s � 2Z there is a knot Kn � s � n K with σ � Kn � s �� s.

ii) for any integer g � 0 there is a knot Kn � g � n K with gs � Kn � g �� g, except if Ar f � K P� 1, g � 0
(and n � 1).

Proof sketch. By the result of Ohyama, Taniyama and Yamada, Ng’s work for gs � 0 (which we
cite, but do not cover with our arguments) and the previous arguments, together with the standard
inequalities (σ � 2 (S� gs � u (see [Mu2, Ts]), we are basically left with showing that the n-trivial
rational knot of corollary 1.1 can be chosen to be of signature : 2. For this we remark that the
determinant shows that the signature of a rational knot S � p � q  with p � q � 0 (in Schubert’s notation
[Sh]) is divisible by 4 exactly if p . 1 mod 4. Violating this property reduces to making the number
c in the proof of corollary 1.1 small or large enough in order to adjust the desired sign of IF � wn � c  .8
Next, we state and prove the result for the homology of the double branched cover.

Theorem 4.2 Let p � 2 be an odd integer, H be a finite Zp-module, n � 0 be a natural number and K
be any knot. Then there is a knot K � , which can be chosen to be prime and alternating, with K � � n K,
such that H1 � DK T � Zp �� H.

We start the proof by two lemmas, lemma 4.1 and 4.3. Then we prove theorem 4.2 by taking the
connected sum of the knots constructed in the lemmas.

Lemma 4.1 Let p � 1 be an odd integer. Then for any k � Zp and any n there is an n-trivial rational
knot K with det � K N. k mod p and u � K O� 1.
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Proof. Let wn be the sequences of integers as in (1) with all ai �U�V: 2 � . Then, by the calculation
used in [KM, proof of theorem 1, (ii) W (iii)] we find

00 IF � wn )00 � 22n � 1

∑n
i 1 1 : 22n � 2i

for certain signs in the sum depending on the signs of the ai.

Then for the rational tangle with Conway notation � wn � s  for a natural (not necessarily even) number
s we have

det L � wn � s  M � n

∑
i 1 1
: 22n � 2i � s

E
22n � 1 �

and the existence of proper choice of s follows from the fact that 22n � 1 and p are relatively prime. 8
Lemma 4.2 The (tautological) homomorphism hp � q : Z Xp " Z Xq for any q ( p is onto (where Z Xp is the
group of units of Zp or the relatively prime to p rest classes modulo p).

Proof. This surjectivity follows because (Z Xp (K� φ � p  , Z Xab � Z Xa Y Z Xb for � a � b Z� 1 and because
obviously 00 ker � hpu � pu [ 1  00 � p � φ � pu 	� φ � pu � 1  for any prime p and u � 1. 8
Lemma 4.3 Let p � 1 be an odd integer and K be an unknotting number one knot. Then for any n
there is a knot K � � n K with det � K �� relatively prime to p.

Proof. We use the tangle calculus of Krebes (see [Kr] for details). He showed that the pair of
determinants of the closures of a tangle T and its flipped version T 0 (the product of T with the
0 tangle in the notation of figure 1) can be viewed as the numerator and denominator of a certain
generalized rational number, denoted here by R � T  , lying in Q̃ : � Z Y Z \ � a � b  �]� � a � � b  , which
(up to signs) is additive under tangle sum (as in figure 1), and generalizes IF for rational tangles.

The fact that u � K ^� 1 shows that K can be presented as the closure T of a tangle T such that the
closure T � 2 of the tangle sum of T with the 2-tangle (clasp) is the unknot. Krebes’s calculus then
shows that R � T N� � : 2k : 1 	� k � Q̃ for certain signs and a natural number k.

Then consider the tangle sum of T with the rational tangle S � � wn � s � 0  for a (not necessarily even)
integer s.

T � S � _ `a
b

s

T

wn

Then T � S � n K and by Krebes’s calculus

det � T � S N� k22n � 1 � � : 2k : 1 dc n

∑
i 1 1
: 22n � 2i � s

E
22n � 1 e �
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Changing s by : 1 causes the expression to change by � : 2k : 1  22n � 1. Thus we could finish the proof
as in the case of lemma 4.1 unless 2k : 1 and p are not relatively prime. In this case let l � � 2k : 1 � p 
be their greatest common divisor. Clearly � l � k22n � 1 N� 1 and so � l � k �!N� 1 for

k � � k22n � 1 � � : 2k : 1  n

∑
i 1 1
: 22n � 2i �

We would be done if we can find an s �f� Z with � k � � l
E
s � � p N� 1. Then set

s : � s � E 1
22n � 1

E l
2k : 1

in Zp. Here the meaning of the second factor is clear, as 22n � 1 is invertible in Zp. The third factor
means some (fixed) preimage under hp � p C l of the (multiplicative) inverse of � 2k : 1 
� l � Z Xp C l . The
existence of this preimage follows from lemma 4.2. In turn, the existence of s � is equivalent to the
surjectivity of the homomorphism hp � l, which again follows from lemma 4.2. 8
Proof of theorem 4.2. We can write

H � lg
i 1 1

Zpi

with pi ( p. Let K̂ be the knot found to K in lemma 4.3, and Ki be the knots from lemma 4.1 for
k � p � pi. Then H1 � DK̂ � Zp �� 1, and H1 � DKi � Zp N� Zpi , since Ki are rational by construction. Thus

K � � � K̂ #
l
#

i 1 1
Ki

is a knot with the desired values of Vassiliev invariants and homology group. It remains to make K � �
into a prime alternating knot K � , which will be the knot we sought.

To obtain K � from K � � , take a prime diagram of K � � , and apply the plugging technique in the proof
of theorem 1.1 with a tangle wn of the form (1) with an � 2p. Then by the work of Gordon and
Litherland [GL] on the Goeritz matrix, this plugging preserves the structure of H1 � DK T T � Zp  , since
wn turns into the 0-tangle by changing some of its Conway coefficients by a multiple of p. 8
Remark 4.1 It is uninteresting to consider p to be even, because for any knot (although not link) K,
H1 � DK � Z  has no 2-torsion, so its reduction modulo 2p is equivalent to its reduction modulo p.

Remark 4.2 Instead of making K � in theorem 4.2 alternating and prime, we can also achieve, setting
K �F� K � � , that it has u � K ��^� rankH1 � DK T � Zp  � 2, as the knot in lemma 4.1 had unknotting number
1, and this constructed in lemma 4.3 has unknotting number 1 or 2.

We conclude this section with the proof of theorem 1.2. For this we use the prime tangle calculus of
[KL]. Recall that a tangle is called prime if it contains no properly embedded separating disk, and no
one of the strands has a connected summand (i.e. a sphere intersecting it in a knotted arc). First we
need a simple lemma.

Lemma 4.4 There are prime tangles with unknotted closure.
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Proof. Consider the knot 934, which has unknotting number 1, and the encircled crossing, whose
switch unknots it.

α

β

Switching the crossing, and cutting the edges α and β we obtain (up to change of the unbounded
region) a tangle U with unknotted closure. To show primeness, we need to show first that it has no
connected summand. However, this is clear since the closure is unknotted. Then, we need to ensure
that it is not rational. For this consider the other closure U

E
0 of U . It has an alternating diagram

with Conway polyhedron [Co] 6 X , and hence it is not rational. Thus U is not a rational tangle, and is
therefore prime. 8
Proof of theorem 1.2. Fix K and n. Let Kn � 1 be the knot constructed in [Oh]. Since u � Kn � 1 N� 1, by
[Sc, Zh], Kn � 1 is prime, and thus by [KL], Kn � 1 � Tn � 1, with Tn � 1 being a prime tangle. We can without
loss of generality assume that the orientation of Tn � 1 is like

Tn � 1 �
Otherwise, we can replace Tn � 1 by its sum with a one-crossing tangle. This sum is again a prime
tangle (see [V]). Let wn , 1 be a � n � 1  -trivial rational tangle, and T �n � wn , 1

E
cn. Let U be a prime

tangle with unknotted closure and set T � �n � U
E
T �n. Then T � �n is also prime.

Since smoothing out a crossing in the group of cn gives the link wn , 1, which has non-zero deter-
minant, as in the proof of theorem 4.1, by choosing cn large or small enough, we can achieve that
σ � T � �n h*� 0. Also, by choosing an , 1 �;: 2, we can achieve that u � T � �n N� 1.

Now consider
Tn � k � Tn � 1 � T � �n

E
0 � T � �n

E
0 ���	����� T � �n

E
0i jlk m

k � 1 times

�

Tn � 2 � n opq cnTn � 1
U

wn
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We have that
u � Tn � k , 1 P� u � Tn � k  � 1 � (4)

Then, because of the above choice of orientation of Tn � 1, the tangle Tn � k differs from Tn � k � ∞ by a
band connecting (plumbing of a Hopf band). But the closure of Tn � k � ∞ is Tn � 1 E 0# � #k � 1T � �n  , and since
σ � T � �n h*� 0, we have

2u � Tn � k r�s( σ � Tn � k t()� 00 σ L Tn � 1 E 0# � #k � 1T � �n  M 00 � 1 � � k � 1 u( σ � T � �n t(
�v( σ � Tn � 1 E 0 t(
� 1 �#" ∞ �
as k " ∞. This, together with (4) and u � Kn � 1 ^� 1, shows that each natural number u is realized as
the unknotting number of some Tn � k, with k � u. Since

T � �n
E
0 � T � �n

E
0 �����	��� T � �n

E
0i jwk m

k times

is prime for k � 1 by [V], Tn � k is a prime knot for k � 2, and also for k � 1 by [Sc].

To show the claim for prime alternating knots, it suffices to replace in the above argument Tn � 1 by an
alternating tangle T̂n � 1, obtained from Tn � 1 by the operation described in the proof of theorem 1.1 (and
on figure 2), and to take instead of T � �n the alternating tangles T �n , mirrored in such a way so as Tn � k to
remain alternating. 8
5 Odds & Ends

There are a lot of questions and problems suggested by the above results. Here we give an extensive
summary of what one could think about to improve and push further.

We start by a problem concerning the construction itself.

Question 5.1 Although they easily achieve alternation, both our and Stanford’s constructions live
at the cost of exponential (in n) crossing number augmentation (at least in the diagrams where n-
triviality is achieved). Contrarily, the series of examples of n-trivial knots by Ng [Ng] have crossing
number which is linearly bounded in n. There knots are, however, not (a priori) alternating or pos-
itive, slice (so all have zero signature), and so not to distinguish among each other by such ad hoc
arguments as [Ka, Mu, Th]. Is it possible to combine the advantages of both series of examples in a
new one?

As for the applications of our construction, the results of the section 4 suggest two more problems.

Question 5.2 Does an alternating prime knot Kn � u0 exist for any choice of n and u0 in theorem 4.1?

Theorem 1.2 can be interpreted as saying that any finite number of Vassiliev invariants does not
obstruct to any (non-zero) value of the unknotting number. On the other hand, it is remarkable that
such obstructions do exist for other unknotting operations, as the ∆ move of Murakami and Nakanishi
[MN]. Moreover, certain properties of Vassiliev invariants with respect to the ordinary unknotting
operation can be suspected in special cases.

Conjecture 5.1 Let � Ki  be a sequence of (pairwise distinct) positive knots of given unknotting num-
ber, and v2 �x� 1� 6V � � � 1 O� 1� 2 ∆ � � � 1  and v3 �y� 1� 12V � � � 1 4� 1� 36V � � � � 1  be the (standardly normal-
ized) Vassiliev invariants of degree 2 and 3, where V is the Jones [J] and ∆ the Alexander polynomial
[Al]. Then the numbers logv2 < Ki = v3 � Ki  (which are well-defined for Ki *� !31) converge to 2 as i " ∞.

This conjecture is related to some results of [St2], but it would take us too far from the spirit of this
paper to describe the relation closer here.
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Question 5.3 Can any finite number of Vassiliev invariants be realized by a quasipositive (or strongly
quasipositive) knot?

Remark 5.1 Rudolph showed that any Seifert pairing can be realized by a quasipositive knot, so
there are no constraints to quasipositivity from Vassiliev invariants via the Alexander polynomial.

The consideration of the homology of the double branched cover suggests several questions about
further generalizations and modifications, basically coming from the desire to remove the reduction
modulo some number. We should remark that n-similarity poses via the Alexander polynomial a
congruence condition on the determinant, and ask whether this is the only one.

Question 5.4 Is there for any n � N and any knot K a knot K � with K � � n K (or weaker, an n-trivial
knot K � ) with

i) any (finite) abelian group of order det � K ��N.z: det � K  mod 4 B < n , 1 =!C 2 D as homology of the dou-
ble branched cover, or weaker

ii) any odd positive integer det � K ��O.;: det � K  mod 4 B < n , 1 =!C 2 D as determinant?

As a weaker version of part i), is any (non-constant) knot invariant depending (only) on the homology
of the double branched cover not a Vassiliev invariant?

Remark 5.2 Note, that there is no chance to get K � with some of the above properties in general to
be alternating, as for K alternating det � K ^� c � K  .
Remark 5.3 The weaker statement that any non-constant knot invariant depending on finite reduc-
tions of the homology of the double branched cover is not a Vassiliev invariant is, as seen, true, and
beside from its stronger versions proved above, originally follows from the results on k-moves in [St].

At least for part ii) the strategy followed in � 4 appears promising – use Krebes calculus and construct
arborescent tangles by properly inserting n-trivial rational tangles. This leads to a question on the
image of Krebes’s invariant R on the set of n-trivial arborescent tangles, whose first part is a special-
ization of ii) of the question above, and whose second part addresses another unrelated by appealing
property.

Question 5.5 Let Tn be the set of n-trivial arborescent tangles (of the homotopy type of the 0-tangle).

i) Can for any n and any odd c (or weaker c � 1) some � d � c {� Q̃ be realized as R � T  for some
T � Tn?

ii) Is the image of R � Tn  under the (tautological) homomorphism Q̃ " Q �|� ∞ � dense in R �|� ∞ � ?
Is it even the whole Q �$� ∞ � ?

Remark 5.4 Note, that Krebes in his paper (basically) answers positively both questions in part ii)
for n � 0.

In view of the desire to consider the detection of orientation (which is a much more relevant problem
than just the detection of knottedness), the constructions of n-similar knots suggest one more general
and final problem.
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Question 5.6 In [St], I gave a generalization of Gousarov’s concept of n-triviality, called n-invertibi-
lity, which, inter alia, led by use of [BM] to an elementary construction of a 14 crossing (closed) 3-
braid knot, whose orientation cannot be detected in degree � 11, the argument being provided without
any computer calculation. The argument applied there does not seem (at least straightforwardly) to
be recoverable from n-triviality alone (in particular, because the knot is not 11-trivial). However, yet,
I have no series of examples of arbitrary degree (as those here), where this generalized argumentation
shows indeed more powerful, that is, where the failure of Vassiliev invariants of degree � n to detect
orientation can be explained via n-invertibility, but not via n-similarity to some invertible knot. Do
such examples exist?
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remarks on unknotting numbers, and to P. Traczyk for sending me a copy of [Be].
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