THE CANONICAL GENUS OF A CLASSICAL AND VIRTUAL
KNOT

ALEXANDER STOIMENOW, VLADIMIR TCHERNOV AND ALINA VDOVINA

ABSTRACT. A diagram D of a knot defines the corresponding Gauss Diagram
Gp. However, not all Gauss diagrams correspond to the ordinary knot dia-
grams.

From a Gauss diagram G we construct closed surfaces Fg and Sg in two
different ways, and we show that if the Gauss diagram corresponds to an
ordinary knot diagram D, then their genus is the genus of the canonical Seifert
surface associated to D. Using these constructions we introduce the virtual
canonical genus invariant of a virtual knot and find estimates on the number
of alternating knots of given genus and given crossing number.

1. INTRODUCTION

1.1. Knots (smooth embeddings of S! into R?®) are usually presented by knot dia-
grams that are generic immersions of S! into the R?-plane enhanced by information
on over-passes and under-passes at the double points. A knot diagram is said to be
alternating iff as one follows the knot diagram under-crossings and over-crossings
alternate. An alternating knot is one which has an alternating diagram.

A Seifert surface Fx of a knot K is an oriented surface embedded into R?® such
that O(Fk) has one connected component and this connected component equipped
with the natural orientation is the knot K. The genus g(K) of a knot K is the
classical knot invariant that is equal to the minimum of genus g(Fk) of Seifert
surfaces F for K.

For each planar diagram P(K) of a knot K equipped with the information about
over and under-passes there is a canonical Seifert surface Fpk) associated with
this diagram, i.e. the surface obtained by applying Seifert’s algorithm on P(K) (see
for example [12], p. 120). The minimal genus of all canonical Seifert surfaces for
K is called the canonical genus g.(K) for K. It was shown by Moriah [8] that the
difference between g(K) and g.(K) can be arbitrarily large. Namely for any n € N
there exist a knot K such that g.(K) — g(K) > n. (Results of similar spirit were
later obtained by Kawauchi [6] and one of the authors [14]. See also Kobayashi and
Kobayashi [7].)

But (see [11], [2]), the genus and the canonical genus are coincide for alternating
knots. This allows us to use the canonical genus to give estimates on the number
of alternating knots of given genus and given crossing number. In this paper we
prove

Theorem 1.2. The number of alternating genus g knots of n crossings is O, (n%9—*)
as n — 0o.
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The proof bases on associating to an alternating knot diagram a word in a
certain alphabet called Wicks form, and interpreting the (canonical) genus of the
alternating knot diagram as genus of its Wicks form. For this we will need to
introduce several ways of constructing surfaces out of Wicks forms and show their
equivalence. Then the theory for such forms (see [15], [1]) is combined with the
structure on the set of alternating knots of given genus studied in [13]. Using the
computations of [1], we show that the bound in theorem 1.2 is exact for genus 3
(extending the previous first author’s results for genus 1 and 2). Since not every
Wicks form gives rise to a knot diagram, we start with introducing an extension
of knot diagrams, the virtual knot diagrams, introduced in [5], and their associated
Gauf diagrams, studied in [4], as a combinatorial interpretation of Wicks forms.
We would like to remark, that Wicks forms are often called ”ideal triangulations”
in the literature (see, for example [9]).

2. VIRTUAL KNOT DIAGRAMS AND VIRTUAL KNOT GENUS

2.1. Diagrams of Knots and Gauss Diagrams. A Gauss diagram is a circle equipped
with some number n € N of oriented chords that connect n pairs of points on
the circle. (The 2n points are all distinct.) The chords of a Gauss diagram are
equipped with signs. Gauss diagrams are considered up to an orientation preserving
homeomorphism of the underlying circle.

Knots (smooth embeddings of S! into R?®) are usually presented by knot diagrams
that are generic immersions of S* into the R2-plane enhanced by information on
over-passes and under-passes at the double points. To correspond a Gauss diagram
to a knot diagram D one connects by a chord the preimages of each double point
of the immersion. The orientation of the chords is chosen from the over-passing
branch to the under-passing one. The sign of a chord is the sign of the corresponding
double point. The obtained Gauss diagram Gp is said to be the Gauss diagram of
the knot diagram D.

Gauss diagrams that are obtainable as Gauss diagrams of some knot diagrams are
said to be realizable. A knot diagram corresponding to a realizable Gauss diagram
can be recovered only up to a certain ambiguity. However the isotopy type of the
corresponding knot is recoverable in a unique way.

A wvirtual knot diagram is a generic immersion of a circle into the R?-plane with
the double points divided into real crossings and virtual crossings. The real cross-
ings are enhanced by information on over- and under-passes (as for the classical
knot diagrams). At a virtual crossing the crossing branches are not divided into
an over-pass and an under-pass. The Gauss diagram of a virtual knot diagram is
constructed in the same way as for a classical knot diagram, but all the virtual
crossings are disregarded. One can show that every Gauss diagram is a Gauss
diagram of a virtual knot diagram.

2.2. It is well-known that when a knot changes by a generic isotopy, its diagram
undergoes a sequence of Reidemeister moves shown in Figure 1. A virtual knot
diagram is allowed to undergo the same Reidemeister moves as well as the moves
shown in Figure 2. The additional moves are the virtual moves. A wvirtual knot
is a class of virtual knot diagrams consisting of diagrams that can be transformed
to each other by a sequence of Reidemeister and virtual moves. Such a sequence
of moves is called a virtual isotopy. (Observe that the moves shown in Figure 3
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are prohibited. If one allows these moves then the theory of virtual knots becomes
trivial and every virtual knot can be unknotted.)

- Q- -5

FiGURE 1

FIGURE 2

FIGURE 3

Theorem 2.3 (M. Goussarov, M. Polyak and O. Viro [4] and L. H. Kauffman [5]).
A Gauss diagram defines a virtual knot up to virtual moves.

2.4. Virtual canonical genus.

For a Gauss diagram G put F(, to be the orientable surface with boundary
obtained as follows. Take a thin annulus (that we can identify with a thickened
circle), and for each chord of G take a thin strip and glue its ends to the boundary
of the annulus in the places that correspond to the end points of the chord so that
the obtained surface is orientable.

Put Fg to be the closed orientable surface obtained by gluing all the boundary
components of F{, with the 2-disks, and put the genus g(G) of the Gauss diagram
to be the genus g(Fg) of Fg.

Theorem 2.5. Let P(K) be a planar diagram of a knot K, let G be the Gauss
diagram of P(K). Then g(Fg) = g(Fp(k))-
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2.6. Proof of Theorem 2.5. The Euler characteristic x(Fpk)) of Fp(x) is the
number of Seifert circles minus the number of crossings of P(K).

The Euler characteristic x(Fg) of Fg is the number of disks that were glued to
the boundary components of F; minus the number of chords in G. Or equivalently
X (Fg) is the number of boundary components of F{; minus the number of crossings
of P(K).

Geometrical considerations show that there is a natural bijection between the
boundary components of F{, different from the outer boundary of the annulus and
the Seifert circles appearing in the construction of the canonical Seifert surfaces for
P(K).

Thus x(Fg) = x(Fpx)) — 1 (Fp(k) has one boundary component) and hence
9(Fg) = g(FP(K))- O

Definition 2.7. For a virtual knot K put the virtual canonical genus g,.(K) of K
to be the minimum over all the Gauss diagrams G that realize K of g(Fg)

The following corollary follows immediately from Theorem 2.5.

Corollary 2.8. If a virtual knot K admits a planar diagram without virtual cross-

ings that realizes the isotopy class of an ordinary knot K, then g.(K) > g,.(K).

Theorem 2.9. Fg has minimal genus among all surfaces, on which G can be em-
bedded.

2.10. Proof of Theorem 2.9. If M is a surface of minimal genus, on which G can
be embedded, then all components of M \ G must be disks. But then, M can be
obtained by gluing disks into a band-thickening of G, and hence x(M) = x(Fg). O

We remark the following combinatorial description of g(Fg). If we denote by
Son € San the permutation of 2n elements sending ¢ € {1,...,2n} to i + 1 mod 2n,
then each Gauss diagram G of n chords defines a fix-point free involution sg € Sa,
up to a conjugating with a power of s2,. Then the number of discs to glue in to
obtain Fg is equal to the number of cycles ¢(say, 0 sg) of s2,, 0 G, and hence

n — c(s2, 08¢) + 1

9(Fg) = 5

There is yet another way of associating surfaces (and genera) to Gauss diagrams,
namely the following:

Definition 2.11. Let G be a Gauss diagram of n chords. We indicate the end
points of every chord of G by the same letter in some alphabet, but with the
opposite powers 1 and —1; different letters correspond to different chords. So, on
the circle we have a cyclic word W in some group alphabet.

Subdivide the circle into 2n arcs so that every arc contains exactly one end point
of a chord. Let Sg be the unique orientable surface obtained from the disk (whose
boundary is the circle of the Gauss diagram) by gluing together the arcs that are
connected by a chord.

Again this genus coincides with the previous one(s).

Theorem 2.12. x(Sg) = x(Fg). In particular, if G is realizable as a Gauss
diagram G(P(K)) of a knot diagram P(K) (of a knot K ), then g(Sg) = g(Fg) =
9(Fp(x))-
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2.13. Proof of Theorem 2.12. The boundary of the disk from definition 2.11 be-
comes a graph on the surface Sg. The number of edges is the same as the number
of chords of G. Geometric considerations show that the number of vertices is equal
to the number of boundary components of FY; in the proof of theorem 2.5, omitting
the outer one (or if G is realizable by P(K), the number of P(K)’s Seifert cycles).
So, we finish the proof by applying Euler’s formula. O

3. ON THE NUMBER OF ALTERNATING KNOTS OF GIVEN GENUS

It is well known (see [11], [2]), that the genus and the canonical genus are coincide
for alternating knots. This allows us to use the canonical genus to give estimates
on the number of alternating knots of given genus and given crossing number.

Definition 3.1. A chord a in a Gauss diagram G is called strongly isolated, if its
endpoints occur as

aa” L.

when denoting the endpoints of the chords of the diagram in cyclic order by a letter
and its inverse for each chord'. More generally, a is called isolated if there is no
other chord b such that the cyclic notation is of the type

ca. bt oa b

If G is realizable by a knot diagram D, then the crossing in D corresponding to a
is called nugatory. Two chords a and b in a Gauss diagram are called parallel, if
their endpoints occur as

cabt.bat .

in this cyclic order notation. Three chords a, b and c¢ are called parallel, if a and b,
and b and c are parallel, i.e. we have

cabe...c a7

or

The basic notion introduced in [13] was a weaker version of deleting parallel
chords, which does not spoil realizability. For its definition, which we rephrase here
slightly in more Gauss diagrammatic terms, we need the flype move of [10].

Definition 3.2. A knot diagram is called %, irreducible, if after any sequence of
flypes its Gauss diagram does not have a triple of parallel chords. A Gauss diagram
is t5 irreducible, if it corresponds to a s irreducible knot diagram.

1Here the use of the inverse is made only to conform to standard notation, but the choice for
which of the two occurrences to use the letter and for which the inverse is completely irrelevant.
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Theorem 3.3. ([13, theorem 3.1]) The set Dy of to irreducible alternating dia-
grams with no nugatory crossings and genus g is finite. We call elements of D,
‘generating diagrams’ of genus g.

This result allows to make the following definition.

Definition 3.4. For a knot diagram D, let ¢(D) be its crossing number. And let
d(D) be the number of ~-equivalence classes of crossings under the equivalence
relation a ~ b iff @ and b can be made to be parallel chords in the Gauss diagram
after some sequence of flypes on D.

Set
¢g = max{c(D) :D eD,},
dg,e = max{d(D) : D € Dy, ¢(D) even },
dg,o == max{d(D) : D € Dy, ¢(D) odd },
and

dg = max(dg,e,dg,0) -

We have that
dg <cy < 2d,.

The first inequality in obvious. For the second inequality one needs to note that if
for three chords a, b and ¢, a and b, and b and ¢ can be made parallel after flypes,
then a, b and ¢ be made parallel simultaneously, so that the diagram becomes t2
reducible. Namely, the property to be transformable into a parallel pair after flypes
means that the two chords intersect the same set of other chords. If this applies to
a, b and ¢, then in the Gauss diagram we have a situation like this:

a ¢
// N
AN \\)
\\\__,/

B Bo

(Here the dashed/shaded regions A and B, should symbolize collections of chords,
whose ends lie on the segments of the circle touched by the region.) Then by
applying flypes, which on the Gauss diagram look like

a_B B _ a

one obtains three parallel chords.

A consequence of the result of [10] is an asymptotical bound for the number
an,g of alternating knots of n crossings and genus g. For two sequences of positive
integers (an)p>; and (b,)p>; we write a, = Op(by,) iff lim » < oo, and a,, <, b,

n—oo ’n

(ay, is asymptotically proportional to b,) iff a, = O, (b,) and b, = Oy (ay).
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Corollary 3.5. a, , = O,(n% ). More exactly, a, 4 <, n%<"1 for n even and

An,g =<n ne~1 for n odd.

Proof. To see that a,, = O,(n% 1), it suffices to prove that the number of dia-
grams D' of crossing number n in a series generated by a t» irreducible alternating
diagram D of genus g is O, (n% ). But if D has d ~-equivalence classes, then
each D' corresponds to writing a composition n = nj + ...ng, with the i-th ~-
equivalence class in D' having n; crossings (n; must be even or odd depending on
whether the i-th ~-equivalence class in D has one or two crossings). But the total
number of compositions of n into d parts is ("1, ") <, n?~'. Since d < dj, the
claim follows.

The same argument shows a,,,, = Oy, (n%<~1) for n even and a,, 3 = O, (n%->"1)
for n odd. To see that also liminf ay g/n%-<~1 > 0, consider the series of a generat-
ing diagram D of genus g with d, . ~-equivalence classes, and therein diagrams D’
of n crossings giving compositions with all n;’s (1 <14 < dg ) pairwise distinct and
increasingly ordered (n;+1 > n;). Since flypes descend to ~-equivalence classes, the
result of [10] assures that each alternating knot has at most one such diagram. It re-
mains to note that the number of such compositions is asymptotically proportional
to ndae—L, O

The last corollary motivates the quest for some good upper bound on d,. The
bound on d4 given in [13] was obtained by estimating c,, and this estimate was ex-
ponential in g. Here we improve the bound on d, (and hence ¢,) to the conjecturally
best possible.

Theorem 3.6. At irreducible Gauss diagram of genus g has at most 6g—3 classes
of ~-equivalent chords.

For the proof we need a small graph-theoretical definition.

Definition 3.7. An anticontraction is an operation on a graph of the following
type

It makes a vertex of valence v > 4 into two vertices p; » with valences v 2 < v with
v1 +v2 = v + 2, such that p; » are connected by an edge.

3.8. Proof of Theorem 3.6. Consider the Gauss diagram of a generating diagram
D of genus g and remove a chord in each pair of ~-equivalent chords, obtaining
a (not necessarily realizable) Gauss diagram G of dg chords. As D is generating,
de < dy. In this Gauss diagram there is no pair of parallel chords. We can also
assume that in this Gauss diagram there is no isolated chord.

If you consider a 2dg-gon with chords indicating how to glue its edges according
to definition 2.11, you obtain by Theorem 2.12 a surface S¢ of genus g with a graph
Gonit. As G has no pair of parallel chords and no isolated chord, the graph G has
no vertices of valence 1 or 2. Moreover, the number of edges of G is the number of
chords of G.

If now G has a vertex of valence n > 4, then it can be made into n — 2 vertices
of valence 3 by anticontractions, each one of which inserts one edge. Repeat this
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procedure until you obtain a trivalent graph G on Sg. (Neither G needs to be
unique, nor coming from a realizable Gauss diagram, but both points are relevant
here.)

It suffices to see that G has 6g — 3 edges. As each edge has valence 3, for the
number of edges e and the number of vertices v in G we must have e = 3k and
v = 2k = 2e/3 for some k € N. The Euler characteristic of the surface Sg is then
v — e+ 1, because of the one face of the triangulation given by G, and on the other
hand 2 — 2g, so that

U—e+1=—§+1 =2-12g,
whence e = 6g — 3, as desired. O

A diagram is prime iff the intersection graph of its Gaufl diagram is connected.
(The intersection graph of a Gauf} diagram is a graph with vertices corresponding to
arrows in the Gauf} diagram and edges connecting vertices or intersecting arrows.)

The following corollary, as well Theorem 1.2, is a consequence from the work
of [13] described above (note, that g and the number of ~-equivalence classes of
crossings are additive under connected sum of diagrams, so that considering prime
diagrams suffices), Theorem 2.6 and the proof of corollary 3.5.

Corollary 3.9. d, < 6g— 3 and c¢g <129 — 6.
The work done in [1] can be used to calculate the explicit values for ¢z and ds.

Proposition 3.10. ¢3 = 23 and ds = 15. In particular, the number of alternating

genus 3 knots of n crossings grows not faster than n'4.

3.11. Proof of Proposition 3.10. Consider the Gauss diagram G of a generating
diagram of genus 3, realizing c3 or dz, and remove in it from each pair of parallel
chords one of them, obtaining a diagram G'. (This preserves the genus, even if it
spoils realizability).

We say that a word W' of a free group on a set X' is a orientable word if each
element of X' that occurs in W' exactly twice, once with exponent +1 once with
exponent —1.

A quadratic word W is irredundant if there is no pair of distinct, noninverse
letters z,y which appear in W only in subwords (zy) and (zy)~!. A quadratic
word W is eyclically reduced if there are no subwords of the form zz—! or 2!z for
a letter x.

It is known (see, for example [3]), that the maximal length of a genus g cycli-
cally reduced orientable irredundant word is 12g — 6, and every (cyclically reduced
orientable irredundant) genus g word can be obtained from a (cyclically reduced
orientable irredundant) word of maximal length by substituting some letters (and
their inverses) by unit.

In the language of chord diagrams it means that each Gauss diagram of genus g
with no pair of parallel chords and no strongly isolated chord (that is, in particular
with no isolated chord) can be obtained by deleting chords from the subset of such
diagrams that correspond to the words of maximal length.

Such words were explicitly enumerated in [1] and the explicit list £, was gener-
ated by computer for g < 3. On the level of Gauss diagrams they are the diagrams
such that the endpoints of each chord a participate in a cycle of the type

ccab Yo toecat.. or .bat.oiebllact. ..



THE CANONICAL GENUS OF A CLASSICAL AND VIRTUAL KNOT 9

for (the endpoints of) some other chords b and ¢, when denoting the endpoints of
the chords of the diagram in cyclic order. These diagrams all have 6g — 3 chords.

To calculate c3 and ds we proceeded as follows. First we factored out the elements
in L3 by inversion. Then we considered diagrams obtained by just retaining or
doubling chords in diagrams in £3. We generated by computer all such diagrams
with decreasing crossing number (from 30 downward), and tested realizability.

The first crossing number where we found realizable diagrams was 23. The
existence of such a diagram already shows that d3 = ds, = 15. (As in [1] flypes
were not considered, some of the diagrams obtained may contain chords at different
positions, which can be made parallel after flypes, and so the realizable diagrams
had again to be subjected to a test for #, irreducibility.) Then we found such
diagrams also for crossing number 22, ensuring also d3 . = 15.

FIGURE 4. Two %, irreducible diagrams of genus 3 of maximal even
and odd crossing number.

Then we needed to check that, with the additional option for each chord to
be deleted from a diagram in L3, there are no realizable diagrams of more than
23 crossings. This establishes that indeed ¢3 = 23. (There were, in fact, some
realizable 24 crossing diagrams, but they all were not #; irreducible.) O

4. QUESTIONS

We conclude by several questions. (Here we say that a diagram D realizes ¢,
resp. d, if D € D, and ¢(D) = ¢, resp. d(D) =d,.)

Question 4.1. Is always dy = 69 — 3 and ¢, = 10g — 77

Question 4.2. Is for any g > 1, d, attained by both even and odd crossing number

diagrams? Do the maximal even and odd crossing numbers of such diagrams differ
by +17

Question 4.3. Are for any g > 1 some (any?) alternating genus g diagrams
realizing ¢, special (i.e., they are also positive)?

Question 4.4. Is some (any?) knot attaining c, also attaining d, (which does not
happen for g =1)?
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