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The Jones polynomial V (now commonly used with the convention of [J]) is a Laurent
polynomial in one variable t of oriented knots and links, and can be defined by being 1
on the unknot and the (skein) relation

t
� 1V

�
L ����� t V

�
L � ���	� � t � 1 
 2 � t1 
 2 � V � L0 ��� (1)

Herein L �� 0 are three links with diagrams differing only near a crossing.

L � L � L0

(2)

When
VK � a0tk � V1tk � 1 � ����� � adtk � d (3)
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with a0 �� 0 �� ad is the Jones polynomial of a knot or link K, we will use throughout
the paper the notation Vi � Vi

�
K ��� ai and V̄i � V̄i

�
K ��� ak � i for the the i-th or i-th last

coefficient of V , and will write for d the span spanVK of V , for k the minimal degree
mindegVK and for k � d the maximal degree maxdegVK .

For quite a while one is wondering what topological information the Jones polynomial
contains, and in connection with this, one posed the

Question 1 Does there exist a non-trivial knot with trivial Jones polynomial?

While the existence of non-trivial links with trivial polynomial is now settled for links
of two or more components by Eliahou-Kauffman-Thistlethwaite [EKT], the (most in-
teresting) knot case remains open. The question remains unanswered, though some
classes of knots have been excluded from having trivial Jones polynomial. These re-
sults are obtained in [Ka, Mu, Th2] for alternating knots, [LT] for adequate knots, [St2]
for positive knots, and also in [Th2] for the Kauffman polynomial of semiadequate
knots. Except for these (meanwhile classical) results, and despite considerable (includ-
ing electronic) efforts [Bi, Ro, DH, St5], even nicely defined general classes of knots
on which one can exclude trivial polynomial are scarce. (I came across some work of
Yamada who stated that he verified all knots up to 21 or 22 crossings, but I have no
reference to it.)

More recently some excitement is caused by the

Conjecture 1 (Volume conjecture [MM]) Some complicated colored Jones polyno-
mial values converge to the Gromov norm of the knot complement ( � hyperbolic vol-
ume of all hyperbolic parts in the JSJ decomposition � hyperbolic volume for hyper-
bolic knots).

This conjecture seems, unfortunately, little helpful to determine the volume. One would
require a convergence (error term) estimate, but even a proof of the limit seems so far
out of reach. On the other hand, at least numerically, we can do easier by computers1.
However, one still hopes to get some fundamental new insight in what is going on there.
For example:

Proposition 1 The Volume conjecture implies that no non-trivial knot has trivial col-
ored Jones polynomial.

So it relates to question 1, and also poses
1I must confess that by long and bad experience with several quantum topologists (outside Japan) made

me lose motivation to work on this subject. While later I had similar, sometimes even worse, experience with
other mathematicians (again outside Japan), this did not make me redeem quantum topology.
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Question 2 What are the relations between volume and V?

In other words, if we sacrifice ‘ � ’ for a ‘ � ’, are there more tangible and practical ways
to relate volume to V?

What are general ways to estimate hyperbolic volume?

Recent work of Lackenby-Agol-Thurston [La] has opened a way of estimating hyper-
bolic volume of knots by means of a diagrammatic feature called twist number. While
twist numbers occur naturally and were considered before, the relation to hyperbolic
volume added new interest in them.

Thurston’s1 hyperbolic surgery theorem considers volume under surgery, which for us
will be of the following particular type:

D∞

���
Dn

By fixing k circles, we have analogously diagrams D
�
n1 � ����� � nk � .

Theorem 1 (Thurston) vol
�
D
�
n1 � ����� � nk ��� ��� � vol

�
D∞ � � � � �∞ � when mink

i � 1 � ni � � ∞.

A further remark of Thurston that for any link K, we have vol
�
D ��� 4v0c

�
D � (where

v0 � vol
�
41 ��� 2 is the ideal tetrahedral volume and c

�
D � the crossing number), implies

vol
�
D � � C ! t � D �

where t
�
D � is the twist number. The merit of Agol-Thurston in (the appendix of) [La]

was to identify the best possible C, and that of Lackenby himself to prove a reverse
inequality for alternating diagrams:

Theorem 2 (Lackenby [La]) vol
�
D ��" C #$! t � D � for alternating knot diagrams D.

Turning back to the Jones polynomial we can ask

Question 3 Are there upper estimates on vol from V ?
1Here the famous – Bill – Thurston, the father of the previously named – Dylan – Thurston, is meant.
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The situation is quite unclear. For example, the only way to show that such estimates
do not exist is to find knots (or links) Ki with equal Jones polynomial but vol � ∞.

% Kanenobu [K] found infinitely many knots with the same Jones polynomial, but
these knots have bounded twist number. Since bounded twist number implies
bounded volume, Kanenobu’s series can not be used.% Similarly fails the construction in [EKT], which yields non-hyperbolic links.

For lower bounds on vol from V it makes sense to seek an increasing function of some
feature of V .

For example, as candidates for such a feature consider

1) Mahler measure. If f
�
t � is a nonzero complex polynomial with (complex) zeros

ai,

f
�
t �&� b ! n

∏
i � 1

�
t � ai ��')(+* t , �

then its Mahler measure [Ma] is

M
�
f ��� exp - 1

0
log � f � e2πiθ � � dθ � � b � ! n

∏
i � 1

max . � ai � � 1 /0�
So one can ask:

Are there knots Ki with M
�
V
�
Ki ��� bounded (fixed?), but vol

�
Ki �&� ∞?

Are there knots Ki with bounded vol
�
Ki � but M

�
V
�
Ki ���&� ∞?

If we take knots as in theorem 1 (bounded twist number), then M
�
V � is bounded,

as we proved in joint work with Dan Silver and Susan Williams [SSW]. (Kofman
and Champanerkar also proved convergence [CK] in certain situations.) Twist-
ing more strands will not help either. Are there other constructions that yield
bounded volume knots and can one control V under such constructions? (As I’m
not a hyperbolic expert, I don’t know.)

2) 2-norm.

�1� f �2� 22 � - 1

0
� f � e2πiθ � � 2dθ � ∞

∑
i � � ∞

� * f , ti � 2 �
with * f , ti the coefficient of t i in f . (1-norm is similar.) To find knots with
bounded volume but �2�V �1� 2 � ∞ is easy, but are there knots with bounded �1�V �1� 2
and vol � ∞?

There exist knots with (distinct, i.e. not à la Kanenobu) polynomials with bounded�2�V �1� 2. For example
�
3 � q � -torus knots (use Jones’ formula for the polynomial of
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a torus knot [J, proposition 11.19]; maybe
�
p � q � -torus knots with any p " 3 fixed

will also do, but I did not check it). But all sequences of that sort that come to
my mind seem non-hyperbolic.

3) span. The span is the difference between minimal and maximal exponent of
non-trivial monomials, very famous in [Ka, Mu, Th2].

Is it at all possible that span
�
V � is bounded, but we have infinitely many different

Jones polynomials?

One should note that infinite families of 2-component links were indeed con-
structed by Traczyk [Tr], for polynomials that differ up to units. But, again,
these links are non-hyperbolic. For knots polynomials cannot differ by non-
trivial units (because of V

�
1 ��� 1 and V # � 1 �3� 0), and the answer is unknown.

The conclusion is:

For every family of knots or links with peculiar behaviour of the Jones
polynomial, the volume is zero or bounded.

A digression on the Alexander polynomial. For the Alexander polynomial most of these
questions are settled.

% Knots (even alternating) with M
�
∆ �4� ∞ but bounded volume are easy to find

(see [SSW]).

% There are (even alternating) knots with M
�
∆ �&� 1 but vol � ∞ [SSW].

% For general knots, if one drops the alternation assumption, there are knots with
arbitrarily large volume that have the same Alexander polynomial. For the trivial
polynomial see [Kf]; I have a different construction that applies to any (fixed)
Alexander polynomial. However,

% for alternating knots, the Euclidean Mahler measure Me
�
∆ � bounds volume from

below increasingly ([SSW]). Euclidean Mahler measure is the Mahler measure
of the polynomial made monic by rescaling.

% For alternating knots, a different volume bound is conjectured by Dunfield, and
proved by myself [St4]:

vol
�
K ��� logγ �∆ � � 1 � � � logγ �V � � 1 � � �

with γ 5 1 a constant.
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For the Jones polynomial of special types of knots, more is known.

In [DL] Dasbach-Lin gave a description of the twist numbers of alternating diagrams by
means of the second coefficient of their Jones polynomial. They considered Ti

�
K � : ��Vi � � � V̄i � and proved

Lemma 1 ([DL]) For an alternating knot diagram D, we have t
�
D �&� T1

�
D � .

This way they obtained, and then further empirically speculated about, certain relations
between coefficients of the Jones polynomial and hyperbolic volume.

In fact, we have a qualitative improvement of the Dasbach-Lin result, stating that

Theorem 3 Every coefficient Vi of the Jones polynomial gives rise to a(n increasing)
lower bound for the volume of alternating knots.

The previous occurrence of the second coefficient of the Jones polynomial in a different
situation in [St] motivated the quest for understanding V1, V̄1 in a broader context.

We consider the bracket [Ka] (rather than Tutte, as Dasbach-Lin) polynomial.

The concept of an adequate link was introduced by Lickorish and Thistlethwaite in
[LT] to help determining the crossing number of certain links. Adequacy consists of the
combination of two weaker properties called jointly semiadequacy. They are defined
as follows.

Below are depicted the A- and B-corners of a crossing, and its both splittings. The
corner A (resp. B) is the one passed by the overcrossing strand when rotated coun-
terclockwise (resp. clockwise) towards the undercrossing strand. A type A (resp. B)
splitting is obtained by connecting the A (resp. B) corners of the crossing.

AA
B

B
AA

B

B
(4)

One says a diagram D is A-adequate if the number of loops obtained after A-splicing all
crossings of D is more than the number of loops obtained after A-splicing all crossings
except one. Similarly one defines the property B-adequate. Then we set

adequate � A-adequate and B-adequate �
semiadequate � A-adequate or B-adequate �

We call a link adequate resp. (A/B/semi)-adequate if it has an adequate resp. (A/B/semi)-
adequate diagram.
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Note that semiadequate links are a much wider extension of the class of alternating
links than adequate links. For example, only 3 non-alternating knots in Rolfsen’s tables
[Ro2, appendix] are adequate, while all 55 are semiadequate.

An alternative way to understand A-adequacy is to keep the trace of the crossings after
each splitting. Then we have each of the traces of the crossings joining two loops,
obtained after the splittings. The property A-adequate means that, in the set of loops
obtained by A-splitting all crossings, each crossing connects two different loops. We
call this set of loops the A-state of the diagram.

In the following, we shall explain the second coefficient of the Jones polynomial in
semiadequate diagrams. Bae and Morton [BMo] and Manchon [Mn] have done work
in a different direction, and studied the extreme coefficients of the bracket (which are6

1 in semiadequate diagrams) in more general situations.

Let v
�
G � and e

�
G � be the number of vertices and edges of a graph G. Let G be G with

multiple edges removed (so that a simple edge remains).

�7� �
We call G the reduction of G. Let A

�
D � be the A-graph of D, a graph with vertices

given by loops in the A-state of D, and edges given by crossings of D. (The trace of
each crossing connects two loops.)

So a link diagram D is A-adequate, if A
�
D � has no edges connecting the same vertex.

(Anything with B is analogous.)

Theorem 4 ([LT]) If D is A-adequate then V0 � 6 1. If D is B-adequate then V̄0 � 6 1.
If D is adequate then V

�
D � �� 1.

Now we have

Theorem 5 If D is A-adequate then �V1 � � b1
�
A
�
D ��� is the first Betti number (number

of cells) of the reduced A-graph. Similarly if D is B-adequate then � V̄1 � � b1
�
B
�
D ��� .

Key observation: If b1
�
A
�
D ���8� 0, then D admits a positive orientation, i.e., can be

oriented so that all crossings become as L � in (2).

Corollary 1 No (non-trivial) semiadequate knot has V � 1.
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Proof. If V � 1 then V1 � 0, so the knot must be positive, but no non-trivial positive
knot has V � 1. 9
Actually: There is no non-trivial semiadequate link with trivial Jones polynomial (i.e.,
polynomial of the same component number unlink), even up to units

6
tk.

Some applications:

Whitehead doubles. Untwisted Whitehead doubles have trivial Alexander polynomial,
and are one suggestive class of knots to look for trivial Jones polynomial. (Practical
calculations have shown that the coefficients of the Jones polynomial of Whitehead
doubles are absolutely very small compared to their crossing number.)

Proposition 2 Let K be a semiadequate non-trivial knot. Then the untwisted White-
head doubles Wh  � K � of K (with either clasp) have non-trivial Jones polynomial.

(Because V and ∆ determine the degree-2-Vassiliev invariant v2 simultaneously, among
Whitehead doubles only untwisted ones may have trivial Jones polynomial.)

This generalizes a result for adequate knots in [LT] and positive knots in [St2] and con-
siderably simplifies the quest for trivial polynomial knots among Whitehead doubles.
One can combine this condition with the previous ones, the vanishing of the Vassiliev
invariants of degree 2 and 3 on K (see [St2, St5]), to extend the verification of [St5] and
establish that no non-trivial knot of � 16 crossings has untwisted Whitehead doubles
with trivial Jones polynomial.

Montesinos links

Corollary 2 Montesinos links are semiadequate. So no Montesinos link has trivial
Jones polynomial up to units.

Strongly n-trivial knots

The next application concerns strongly n-trivial knots. They were considered first
around 1990 by Ohyama, and studied more closely recently [To, HL, AK]. While
one can easily verify by calculating the Jones polynomial that a given example is non-
trivial, the proof of non-triviality for a family of knots with arbitrarily large n remained
open for a while. (For n 5 2 the Alexander polynomial is trivial [AK].) A proof that
partially features the Jones polynomial value V

�
eπi 
 3 � was given in [St6], but nothing

about the Jones polynomial of the examples directly could be said. How to evaluate
the Jones polynomial was also asked by Kalfagianni [Kf]. Now we can deal with a
different class of examples, proving the polynomial non-trivial.

Proposition 3 There exist for any n strongly n-trivial knots with non-trivial Jones
polynomial.
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Apply the construction K
�
G � of [AK] on the Suzuki graph G obtained by gluing into a

circle the ends of the following family of tangle diagrams (shown for n � 5):

(5)

(The signs of the clasps at the arrow hooks are irrelevant.)

�7�
3-braids

We call a braid word semiadequate (A-, B-adequate, adequate � etc.) if the closure
diagram is semiadequate (etc.). A braid is semiadequate (etc.) if it has a semiadequate
(etc.) word.

Thistlethwaite’s work [Th] implies that if β is a semiadequate (etc.) braid then its semi-
adequate (etc.) words are of minimal (Artin generator) length in the conjugacy class of
β (i.e. also for all braids conjugate to β). The interesting feature of 3-braids is that the
converse holds for semiadequacy:

Theorem 6 A minimal length word in any 3-braid conjugacy class is semiadequate.

(One can also explicitly describe such words algebraicly.)

Corollary 3 3-braid links are semiadequate, and so have non-trivial Jones polynomial
up to units.

It has been speculated for a while that no non-trivial 3-braid knot has trivial Jones
polynomial, but a proof was never given (see [B, St3]). It was known that the Burau
representation determines the Jones polynomial for 3 and 4-braids [J]. Then, somehow
one believes that if the Burau representation is faithful (as known for 3-braids), no knot
has trivial polynomial. Bigelow [Bi] is hoping(?) that 4-strand Burau many not be
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faithful, and is challenging the computers with this idea to find a V � 1 knot among
closed 4-braids. The closed 4-braid

�
σ2σ1σ3σ2 � 2σ3

1σ � 3
3 (which is among the links

given in [EKT]), however, has trivial polynomial up to units. So it cautions about
attempts to understand the (possible) non-existence of trivial polynomial knots among
3- or 4-braids in terms of the (possible) faithfulness of the Burau representation. Our
proof for 3-braids has indeed little to do with Burau. By the above example, our result
also fails for 4-braids.

Combining braid semiadequacy with work in [St3, BM, Xu], we can actually classify
all 3-braid links with given Jones polynomial. In particular, we know that

Corollary 4 There are only finitely many closed 3-braids with the same Jones polyno-
mial.

This was known to be true for the skein polynomial [St3]. The links of Traczyk [Tr]
show that this is not true for Jones polynomials up to units, and by connected sum for
fixed polynomials on 5-braids. (The status of 4-braids here remains unclear.) Also
Kanenobu [K2] constructed finite families of 3-braids of any arbitrary size, so that our
result is the maximal possible.

The corollary implies the existence of some upper bound on the volume in terms of the
Jones polynomial. We can make an estimate more concrete:

Corollary 5 If K is a 3-braid link, which is not a closed positive or negative 3-braid,
then vol

�
K ��� C #:! T1 as in Dasbach-Lin.

Also the following is true:

Proposition 4 There exists an upper bound on the volume of a Montesinos link in
terms of the Jones polynomial.

For an explicit bound, however, I must involve T2, and prove a formula similar to
theorem 5 for V2. It depends on more than just A

�
D �;# , and even A

�
D � .
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