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1. Introduction

Consider for a knot K and a complex number ξ of unit norm the Hermitian forms Mξ
� � 1 � ξ � A � � 1 � ξ̄ � AT , where A

is a Seifert matrix of K. The signatures of these forms Mξ are the generalized or so-called Tristram-Levine signatures
σξ [40, 23], of which the Murasugi [27] signature σ � σ � 1 is a special case. These invariants have a variety of
relations and applications, within and outside of knot theory. First, via the Tristram–Murasugi inequality [40, 27],
the signatures are related to the 4-genus, and hence unknotting number. More recently, they have been of some
interest because of their application to the classification of zero sets of algebraic functions on projective spaces [31].
Tristram-Levine signatures have also close relationship to the zeros of the Alexander polynomial, which have been
studied for a while and have importance for several subjects, including monodromy of fibered links [34], divisibility
[28] and orderability [32] of knot groups, and statistical mechanical models of the Alexander polynomial [26]. Also
some relations of these signatures to (a quantum version of) the Jones polynomial have become apparent [11].

Vassiliev invariants [5] have been introduced more recently, and their relations to more classical invariants have been
sought. In this paper, we shall treat the possible relations between Vassiliev invariants and generalized signatures σξ
with ξ ��� and 	 ξ 	 � 1. We extend the result on the Murasugi signature of [37] (and basically following also from
[29]) to them, constructing knots of any given possible value of σξ and Vassiliev invariants of bounded degree.

Theorem 1 For any n ��
 , any ξ � S1 �� 1 � , and any admissible value v of σξ, one has a prime knot with given
values of Vassiliev invariants up to degree n, realizing σξ

�
K � � v.

For the proof the notion of braiding sequences [39] is used. While for generic ξ (in particular if ξ is transcendental),
σξ admits – as the usual (Murasugi) signature – only even values on knots, the remaining cases (we describe them
exactly) require an additional argument which we provide using Gousarov’s result [14] on the existence of n-inverses.
The knots constructed in � 3 are composite. In order to find prime examples, some additional work is needed. It will be
done in � 4, using the construction of n-trivadjacent knots of Askitas and Kalfagianni [4]. It shows also the following
result, which may be independent interest.
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Theorem 2 If K is a knot and n � 0, then there exists a prime knot K � n-similar to K, such that ∆ K � � ∆ K .

We will have to show for this that a certain family of the knots arising in the construction of Askitas–Kalfagianni are
non-trivial (a suggestive fact, which, however, does not follow from their results). In doing so, we give a new proof,
using the Jones polynomial, that the (pure) braid groups are not nilpotent.

The result of theorem 1 on the σξ should be put in contrast to the fact that via the Alexander/Conway polynomial
Vassiliev invariants may well pose conditions to the Seifert pairing A. Also, Ng’s result [29] that any concordance
class contains a (possibly composite) knot with given Vassiliev invariants of bounded degree does not imply ours
(even for composite knots), since by work of Levine [24], the signatures may not be concordance invariants in the
zeros of the Alexander polynomial (see remark 4). Namely, there are slice knots with non-zero (singular) signatures.

Albeit Levine writes down only the Seifert forms of such knots, we will be able to find later many concrete examples:
any slice knot with zeros of ∆ on the unit circle, which has unknotting number one, turns out to be such. This
follows from work given in an appendix, where we obtain a condition on signed unknotting number by analyzing
the eigenvalues of Mξ. (This work should be differentiated from the rest of the paper, since it uses mainly the
same background on the signatures, but not the arguments in the main part.) In particular, we will also show for an
amphicheiral unknotting number one knot, no zeros of ∆ K lie on the complex unit circle (corollary 2).

It is a more challenging question (also pointed out by the referee) whether one can realize not just every individual
signature, but rather every signature function, using an n-trivial knot. Although the methods we apply clearly provide
a way to approach such a question, they do not put into perspective a rigorous, but elegant and short solution.

2. Preliminaries

We shall briefly introduce the main notions appearing in the sequel (and give a few additional references to those in
the introduction for further details).

Recall that if A is a Seifert matrix of size 2g � 2g corresponding to a genus g Seifert surface of a knot K, then for any
ξ ��� with 	 ξ 	 � 1 and ξ �� 1 we define

Mξ
�
K � : � �

1 � ξ � A � � 1 � ξ̄� AT �
where bar denotes conjugation and � T transposition. This is a Hermitian matrix, and all eigenvalues are real. By
σ
�
Mξ � and n

�
Mξ � we denote the signature (sum of signs of eigenvalues) and nullity (number of zero eigenvalues) of

Mξ. They turn out to be independent in the surface and Seifert matrix, and are thus invariants of K, denoted by σξ
�
K �

and nξ
�
K � respectively. σξ

�
K � is called a generalized or Tristram-Levine signature. It satisfies, as the usual signature

σ � σ � 1, the rules

σξ
�
L ����� σξ

�
L � ���  0 � 1 � 2 � � (1)

σξ
�
L ����� σξ

�
L0 ���  � 1 � 0 � 1 � �

σξ
�
!L � � � σξ

�
L � �

σξ
�
L#K � � σξ

�
L ��� σξ

�
K �! 

(Whether to have  0 � 1 � 2 � or  0 � � 1 � � 2 � in (1) is a matter of convention.) Here L � � L0
� L � form a skein triple

L � L � L0

�
and !L is the mirror image of L. K1#K2 denotes the connected sum of K1 and K2, and #nK denotes the connected sum
of n copies of K.

The main difference to the usual signature is that σξ may be odd even on knots, and that nice combinatorial formulas,
as for alternating links (see [27, 18, 13]), are lacking.
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The (normalized) Alexander polynomial [3] can be defined from a Seifert matrix A by

∆ K
�
t � � t � g det

�
A � tAT �! 

∆ satisfies the skein relation

∆
" # � ∆

" # � �
t1 $ 2 � t � 1 $ 2 � ∆ " # � (2)

which defines it alternatively (up to a factor, fixed by demanding ∆
�&% � � 1).

We will sometimes modify ∆ up to units in ')( t � t � 1* , as in the original definition of Alexander.

Let ∇K denote the Conway polynomial [8], given by

∇K
�
t1 $ 2 � t � 1 $ 2 � � ∆ K

�
t �! 

Consequently, ∇ also satisfies a skein relation, namely

∇
" # � ∇

" # � z∇
" #  (3)

A knot invariant is called Vassiliev invariant of degree n, if, when linearly extended to linear combinations of knots,
it vanishes of the subspace of

�
n � 1 � -singular knots, in which each singular knot is mapped to a linear combination

of knots by the rule � �  
See [5]. We consider Vassiliev invariants valued in ' , + , , or � .

‘R.h.s’ (resp. ‘l.h.s’) will abbreviate ‘right hand-side’ (resp. ‘left hand-side’). In the sequel the symbol ’ - ’ denotes
a not necessarily proper inclusion. Finally, let ℜe and ℑm denote the real and imaginary part, respectively. We will
also write i �/. � 1 for the imaginary unit, in situations where no confusion (with the usage as index) arises.

3. Vassiliev invariants and generalized signatures

3.1. Outline of results

Here we consider the generalized signatures (see [23]) and show that they are all as independent from any finite
number of Vassiliev invariants as the classical signature is.

First we determine the value range of σξ on knots. This result, albeit possibly known, was never stated explicitly in
previous publications. We will give a proof of it, both because it involves some subtleties which are worth remarking,
and because it demonstrates some facts used to prove the result on Vassiliev invariants stated below.

Proposition 1 The value range Vξ -0' of σξ ( 	 ξ 	 � 1, ξ �� 1) on knots is given by

Vξ
�21 ' if 3 2ℜe ξ � 14

ξ � 1
465 � 2

is an algebraic integer
2 ' else

 (4)

(An algebraic integer is the root of a polynomial in '7( x * with leading coefficient 1.)

The main result we prove in this section is a weaker version of theorem 1, without the primeness property.

Theorem 3 Any s � Vξ is realizable as the value of σξ
�
K � of some (possibly composite) knot K which is n-similar

to any fixed knot K � for any fixed n.

Here we call a knot K n-similar to K � in Gousarov’s [14] sense if the Vassiliev invariants of degree 8 n of K and
K � coincide. We will sometimes write K 9 n K � . For the proof of theorem 3 we will need the construction of [37]
recalled below.
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3.2. n-trivial rational tangles

Rational tangles were introduced by Conway [8]. The Conway notation of a rational tangle is a sequence of integers,
to which a canonical diagram of the tangle is associated. (The order of the numbers is a matter of convention, so
that some authors use the reverse sequences.) In the tangle notation of Conway, shown on figure 1, this diagram
corresponds to the expression

a1 �:�;� an
� �;�

a1a2 � a3  ; : <� an

(that is, the ‘product’, which is not associative, is written as if it is left-associative); see [1, � 2.3]. A rational knot is
the closure of a rational tangle.

∞ 0 1 � 1 4

P Q

P
Q P

sum P� Q product PQ closure P
� � 2 � 3 4 2 �

Figure 1: Conway’s tangles and operations with them. (The designation ‘product’ is very
unlucky, as this operation is neither commutative, nor associative, nor is it distributive with
‘sum’. Also, ‘sum’ is associative, but not commutative.)

Define the iterated fraction (IF) of a sequence of integers a � � a1
�  ; ; � an � recursively by

IF
�
a1 � : � a1

�  : ; IF
�
a1
�  : ; � an � 1

� an � : � 1
IF
�
a1
�  : ; � an � 1 � � an  

It will be helpful to extend the operations ‘ � ’ and ‘1 =! ’ to +?>  ∞ � by 1 = 0 � ∞ � 1 = ∞ � 0 � k � ∞ � ∞ for any
k �@+ . The reader may think of ∞ as the fraction 1 = 0, to which one applies the usual rules of fraction arithmetics
and reducing. In particular reducing tells that � 1 = 0 � 1 = 0, so that for us � ∞ � ∞. This may appear at first glance
strange, but has a natural interpretation in the rational tangle context. A rigorous account on this may be found in
Krebes’s paper [22].

In this sense, IF is a map
�BA

n ��
C�
IF : ' n ��DE+@>  ∞ �F 

It is known [1], that diagrams of sequences of integers with equal IF belong to the same tangle (up to isotopy; where
isotopy is defined by keeping the endpoints fixed). The correspondence is

a1  : ; an G D IF
�
a1
�  ; : � an �! (5)

If IF
�
a1
�  : ; � an � � p= q with

�
p � q � � 1, we call p the numerator of the tangle

�
a1  ; ; an � and q the denominator.

Using the correspondence (5), one can convince himself, that a rational tangle T has a representation with all num-
bers of the same sign, or a different representation with all numbers even (and both signs), if one of numerator or
denominator is even.

Define for a finite sequence of integers a � �
a1  : ; an � its reversion a : � �

an  ; : a1 � and its negation by � a : �� � a1  ; ; H� an � . For b � � b1  ; : bm � the term ab denotes the concatenation of both sequences
�
a1  : ; an b1  ; ; bm � .

We call a tangle n-trivial, if all its Vassiliev invariants (defined analogously to the knot case) of degree 8 n are the
same as for the 0-tangle. The following construction of such tangles was introduced in [37].
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Proposition 2 ([37]) Fix some even a1
�  ; ; � an ��' and build inductively the integer sequences wk

� wk
�
a1
�  ; : � ak �

by
w1 : � � a1 � �  : ; wk : � wk � 1

�
ak � � wk � 1  (6)

Then the rational tangles with Conway notation wn are n-trivial, and, if all ak �� 0, non-trivial, i. e., not (isotopic to)
the 0-tangle.

Example 1 For a1
� 2 � a2

� � 4 and a3
� 2 we have w1

� � 2 � , w2
� � 2 � 4 � 2 � and w3

� � 2 � 4 � 2 2 2 4 � 2 � .
The tangle w3 is shown below:

In other words, the replacement of a 0-tangle by a wn-tangle in some diagram (possibly) changes the knot type, but
preserves the values of Vassiliev (knot) invariants of degree 8 n.

3.3. Proof of theorem 3

We start by a proof of a part of proposition 1. Even although there are more direct arguments (coming from pertur-
bation theory of linear forms [19]), we prefer not to be minimalistic, as we need to set up notations and tools needed
in the following.

Lemma 1 If for ξ �I� with 	 ξ 	 � 1, z0
�KJξ1 $ 2 � Jξ � 1 $ 2 is a simple zero of ∇K along the line between 0 and 2i, where

Jξ : � �ML 1 � ξ̄	 1 � ξ̄ 	ON 2 � ξ̄ � 1
1 � ξ

� ξ � 1 � (7)

then σξ
�
K � is odd.

Proof. Let
Aξ
� �

1 � ξ � A � � 1 � ξ̄� AT

and ξ � ξ
�
t � � e2πit (note that A � ĀT so that all eigenvalues of Aξ are real). We have

det
�
Aξ � � �

1 � ξ � 2g det L A � ξ̄ � 1
1 � ξ

AT N� �
1 � ξ � 2g L ξ̄ � 1

1 � ξ N g

∆ K L ξ̄ � 1
1 � ξ N� � � 1 � g 	 1 � ξ 	 2g ∆ K P ξ � 1 Q� � � 1 � g 	 1 � ξ 	 2g∇K

"
2iℑm R ξ � 1

#
� � � 1 � g 	 1 � ξ 	 2g∇K

"
2iℜe

ξ � 1	 ξ � 1 	 #  
As both maps t SDT	 1 � ξ

�
t �U	 and

t SD z
�
t � : � 2iℜe

ξ
�
t ��� 1	 ξ � t ��� 1 	
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have non-zero derivatives for t � � 0 � 1= 2 � (ξ � � 1 corresponds to the determinant which is never zero), t0
� z � 1 � z0 �

is a simple zero of
t SD det Aξ V t W  

This shows that
∂
∂t

detAξ V t WYXXXX t Z t0

�� 0  
Consider χ

�
x � t � � χAξ [ t \ � x � to be the characteristic polynomial of Aξ V t W (whose absolute term is det Aξ V t W ). We have

χ
�
0 � t0 � � 0 and

∂
∂t

χ
�
0 � t0 �7�� 0  

Then, by the Implicit Function Theorem there is an ε � 0 and a function t̂ : (6� ε � ε * D], with t̂
�
0 � � t0, such that

χ
�
x � t � � 0 ^I_ t � t̂

�
x �

for x �?(6� ε � ε * and t close to t0. This means that, for t close to t0, each eigenvalue αi
� αi

�
ξ
�
t �:� of Aξ V t W (with

i � 1 �  : ; � 2g) in (`� ε � ε * is attained for only one value of t. Thus there is a unique eigenvalue of Aξ V t W in a neighborhood
of 0 for t around t0, and that eigenvalue indeed changes sign as t̂ exists for both positive and negative arguments.
Finally, the eigenvalue may be multiple, but it must have odd multiplicity because ∇K changes sign around z0 (and
this multiplicity is locally constant because the dependence of the eigenvalues of Aξ V t W on t is at least continuous).
Thus Aξ V t0 W has odd nullity, and hence also odd signature. a
Remark 1 We will later show that in fact the multiplicity of the eigenvalue is indeed 1.

The fact that for a simple zero ζ of ∆ on S1, σξ changes by b 2 near ξ �KJζ implies that the signature cannot vanish on
both sides of Jζ. Thus we have

Corollary 1 If K is achiral, then ∆ K has no simple zero on S1. a
The argument clearly shows the corollary also for slice knots, but in this case it easily follows from the Milnor-Fox
condition ∆

�
t � � f

�
t � f � 1 = t � [9]. It shows that in fact all the zeros of ∆ on S1 are of even order. It is tempting

to conjecture that this is also true for achiral knots. It follows from [15] for strongly (positively or negatively)
amphicheiral knots. It is also true for all the amphicheiral knots of up to 16 crossings. I have no proof in general,
though.

Lemma 2 If 3 2ℜe ξ � 14
ξ � 1
4 5 � 2

is an algebraic integer, then Vξ contains some odd integer.

Proof. If 	 ζ 	 � 1, then ∆ K
�
ζ � � ∇K

�
2iℑm

�:c
ζ �;� . Now, the polynomial ∇̃K

�
x � : � ∇K

�
ix ��� 1 � x2 '7( x2* , and, as well-

known, any polynomial in this affine ideal is ∇K , and hence ∇̃K , for some knot K. Therefore, x is a zero of ∇̃K for

some K ^d_ 1= x2 is an algebraic integer. (Note, that here x � 2ℑm
c

ξ e 1 � 2ℜe
"

ξ f 1g
ξ f 1

g # is non-zero.) Moreover,

in this case we can choose ∇̃ so as x to be a simple zero – as extensions of + are separable, simply take the minimal
polynomial of x. Then apply lemma 1. a
Remark 2 Since for 	 ξ 	 � 1 we have Jξ � 1 = ξ, which is holomorphic and of non-zero derivative for ξ �� 1, andJξ SD z

� Jξ � �hJξ1 $ 2 � Jξ � 1 $ 2
is holomorphic and of non-zero derivative for Jξ �� � 1, we have for ξ �� b 1 by Cauchy-Riemann that

z
� Jξ � is a simple zero of ∇K along line between 0 and 2i ^d_ Jξ is a simple zero of ∆ K along S1 ^d_

z
� Jξ � is a simple zero of ∇K ^d_ Jξ is a simple zero of ∆ K .
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Proof of proposition 1. We prove in (4) only the inclusion ‘ - ’. The reverse inclusion will follow from theorem 3,
when taking the r.h.s. of (4) as a definition of Vξ.

The case ξ � 1 is trivial, so we need to examine for which other ξ the matrix
�
1 � ξ � A � � 1 � ξ̄ � AT can be made

singular (of odd nullity) for a Seifert matrix A of a knot K. This happens only if ∆ K P ξ e 1 Q � 0 for some K (the zero

being of odd order). But from the proof of lemma 2, this is equivalent to 3 2ℜe ξ � 14
ξ � 1
4 5 � 2

being an algebraic integer.a
Remark 3 The map ξ SD "

2ℜe
ξ � 1	 ξ � 1 	 # � 2

for ξ � S1 �� 1 � is 2-1, the preimages of an element being conjugate and

(up to this conjugacy) the dependence of the one quantity on the other is algebraic (in fact even quadratically radical,
and the construction can be performed using ruler and compasses) so that the transcendency of the one is equivalent
to the transcendency of the other. Therefore, in particular, as remarked in the introduction, for transcendent ξ, σξ
admits only even values on knots. (See [36] for more details on the algebraicity arguments.)

Remark 4 It is known that if ∆ K1

� Jξ �H�� 0 �� ∆ K2

� Jξ � , and K1 is concordant to K2, then σξ
�
K1 � � σξ

�
K2 � . However, by

the examples of [24], there are slice knots with σξ �� 0 for ∆
� Jξ � � 0. Ng showed in [29] that any concordance class

of knots contains one n-similar to a given knot K (modulo Arf invariant). This result implies ours for values of ξ,
for which ∆

� Jξ � is never zero (on knots), e.g. for ξ � � 1 or ξ transcendental, but not for general ξ. Also, since Ng’s
knots are composite, her result does not imply any of the statements about prime knots we will make below.

Now we prove theorem 3.

Proof of theorem 3. We split the proof into three lemmas. For simplicity we consider only the cases where3 2ℜe ξ � 14
ξ � 1
4 5 � 2

is an algebraic integer. The other cases are simpler and the argument for them is obtained by omitting
irrelevant parts of the argument we describe for the Vξ

� ' case. (As said, these cases can also be obtained from
[29] using the results of [23].) Theorem 3 then follows by taking K to be the connected sum of K � with the knots
constructed in the lemmas.

Lemma 3 There is for any n an n-trivial knot Kn of odd σξ.

Proof. As we already saw in the proof of lemma 2, there is a knot K with σξ
�
K � odd. Let K � be an n-inverse of

K, that is, a knot such that K � #K is n-trivial (n-similar to the unknot). The existence of such n-inverses was proved
by Gousarov [14]. Note, that a knot n-similar to an n-inverse as also an n-inverse. Thus we would be through
(considering Kn

� K#K � ), if we show that K � can be chosen so that ∆ K � P ξ � 1 Q �� 0. This follows from the lemma
below. a
Lemma 4 For any knot K � , any n � 0 and any ξ � S1 �i 1 � there is a knot K n-similar to K � such that ∆ K P ξ e 1 Q �� 0.

Proof. By [30], we can assume up to n-similarity without loss of generality, that K � has unknotting number u
�
K �j� � 1.

Assume that ∆ K � P ξ e 1 Q � 0. Consider an unknotting number one diagram D of K � and a crossing p in D whose switch
unknots K � .

p

(The sign choice of p here is irrelevant; the argument goes through also with the mirrored diagrams.)

Let D0 be the diagram obtained from D by smoothing out p, and K0 the 2 component link represented by D0. As

∆ K � P ξ e 1 Q � 0 �� 1 � ∆ k P ξ e 1 Ql�
the skein relation (2) shows that

∆ K0 P ξ e 1 Q �� 0  
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Then consider the diagram

Dw
�

p w (8)

belonging to a knot K �w, where w � wn
� wn

�
a1
�  ; ; � an � is the n-trivial rational tangle considered before, depending

on the even integers a1
�  ; : � an. The new knot K �w is n-equivalent to K � . Thus we need to show that for some choice

of the ai the resulting K �w has ∆ K �w P ξ � 1 Q �� 0.

If we draw the tangle diagram of a rational tangle with all coefficients in the Conway notation even, it is easy to
see that the half-twists counted by these coefficients are all reverse. Then the skein relation (2) for ∆ shows that, in
analogy to the braiding polynomials considered in [39], any value of the Alexander polynomial of a rational knot
depends polynomially on the coefficients in the Conway notation in the form with all coefficients even, and the
dependence is linear in each single (even) coefficient.

Thus �
a1
�  : ; � an �mSD P

�
a1
�  ; ; � an � � ∆ K �wn [ a1 n o o o n an \ P ξ e 1 Q �0,l( a1

�  : ; � an
*

depends polynomially on the ai’s, and the degree of ai in this polynomial is less than or equal to the number of
occurrences of ai in the Conway notation of wn, that is, 2n � i. The top degree coefficient of P

�
a1
�  ; : � an � , that is, the

coefficient of the monomial
n

∏
i Z 1

a2n p i

i , is (up to a sign) equal to the product of a power of the (non-zero) number

P t1 $ 2 � t � 1 $ 2 Q XXX t Z ξ p 1

with ∆ D̃w P ξ e 1 Q . Here the link diagram D̃w
� Dw V ∞ q r r r q∞ W arises from Dw by replacing wn by w∞, and w∞ is obtained

in the same way as wn, but formally setting all ai
� ∞, meaning composition with the ∞-tangle in the tangle calculus

of figure 1.

Then w∞ is just the ∞-tangle, and thus D̃w depicts K0, for which, as observed, we have ∆ K0 P ξ e 1 Q �� 0. Thus the top
degree coefficient of P

�
a1
�  ; : � an � is non-zero, so that for some choice of the ai’s, P

�
a1
�  : ; � an � will be non-zero, as

desired. a
Lemma 5 There exists an n-trivial (rational) knot K̂n of σξ �  b 2 � .
Proof. Consider for s � 2 ' the knots Ks q wn

� � wn
� s � . They unknot only switching crossings in a group of reverse

twists (those counted by an) and hence have 	σξ 	ts 2 (such a move alters only a single diagonal entry in the Seifert
matrix). We need to show that for some s and wn, σξ

�
Ks q wn �u�� 0.

The definitions of σξ and ∆ in terms of Seifert matrices show (see the proof of lemma 1), analogously to the classical
case ξ � � 1 that, provided ∆ K P ξ e 1 Q �� 0, σξ

�
K � is even, and 4 	 σξ

�
K � exactly if the (real) number ∆ K P ξ e 1 Q is

positive, when ∆ is normalized so that ∆
�
t � � ∆

�
1 = t � and ∆

�
1 � � 1. Thus we would be through if for some s and wn

we could make ∆ Ks n wn P ξ � 1 Q 8 0. Again this value depends polynomially on s and all ai in wn, and the top degree
coefficient of this polynomial P is obtained, up to some non-zero multiple, by replacing s and all ai by ∞. But
the resulting diagram is an unknot diagram, so that the top degree coefficient of P is non-zero. As the top degree
monomial of P, in which the ai and s occur with the same multiplicities as in the notation

�
wn
� s � , is linear in s and an,

so is P itself. But any non-trivial polynomial in k variables admitting only non-negative values on the whole
�
2 'v� k

has even degree in all variables. This shows the lemma. a
To finish the proof of theorem 3, now consider the families of knots

F1
�  K � #Kn ##lK̂n � l wyx � F2

�  K � ##lK̂n � l wyx � F3
�  K � #Kn ##l!K̂n � l wYx � and F4

�  K � ##l!K̂n � l wyx  (9)

Here Kn is the knot of lemma 3, and K̂n the one of lemma 5. Since any σξ ��' is realized by some of the knots, one
of the families contains the knot K we sought. a



9

4. Constructing prime knots

The knots in the previous construction are composite. That we can modify them into prime knots we prove now.
This is related to the proof of theorem 2.

Proof of theorem 2. We proceed as in [20]. Let K be a composite knot with prime factors K1 and K2 (more
prime factors are dealt with inductively). Then we represent K1 and K2 as closures of prime tangles M1 and M2. We
consider a knot K � � � M1

� M2 � Xn for a suitable tangle Xn.

Xn

M2

M1

We need the following 3 properties of Xn:

1. Xn is prime,

2. Xn is n-trivial, and

3. replacing Xn for the 0-tangle preserves ∆ .

We recall from [20] that a tangle X - B3 is called prime, if it has no connected summand (a ball intersecting it in
a knotted arc), and has no separating disk, i.e. a properly embedded disk D - B3, with both components of B3 � D
containing parts of X . The rational tangles are exactly those with no connected summand, but with a separating disk.

When Xn satisfies the above 3 conditions, then K � is prime from condition 1 by [20], and has the same Vassiliev
invariants and Alexander polynomial by conditions 2 and 3.

To find Xn, we turn to a (special case of a) construction of n-trivadjacent knots due to Askitas and Kalfagianni [4].

Let Bn be the n-strand braid group and σi the Artin generators. Define a sequence of (pure) braids βn � Bn by
β2
� σ � 2

1 and inductively βn
� ( βn � 1

� σ � 2
n � 1
* , where (α � β * � αβα � 1β � 1 is the commutator and βn � 1 � Bn is meant

with respect to the canonical inclusion Bn � 1 z D Bn. (All the signs ‘ b ’ can be chosen independently.) It is easy to see
that βn is “Brunnian”, that is, the removal of any strand(s) from βn gives a trivial braid on the remaining strands.

For βn � Bn let β �n � B2n be the doubled braid. (Each letter σ � 1
i in βn is turned into σ � 1

2i σ � 1
2i � 1σ � 1

2i � 1σ � 1
2i .) Consider the

knot Kn built up from β �n in the following obvious way (depicted for n � 4):

Kn
�

β {n
c

 (10)

(Note, that here n of the strands of β �n are reversely oriented.)

Such knots are constructed in [4]. Kn is n-trivadjacent, i.e. for the set of n encircled crossings in (10) the switch of
any non-empty set of these crossings gives an unknot diagram. Thus by [4, theorem 5.2], ∆ Kn

� 1 for n | 3.
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Let

Yn � 1

be the complementary tangle to the rightmost encircled crossing c in (10). Let

Xn � 1
�

Yn � 1

 
Since

Yn � 1

c
and Yn � 1

c

have unit Alexander polynomial, by a simple skein argument (see [6]) one sees that replacing Yn � 1 for the 0-tangle
preserves the Alexander polynomial, and hence the same is true for Xn � 1. Also, one easily sees that Yn � 1, and hence
Xn � 1, are

�
n � 1 � -trivial. Finally, we must show that Xn � 1, or equivalently Yn � 1, is prime.

For this we must show that Yn � 1 has no connected summand and is not rational. The first property is clear since

Yn � 1

is the unknot. The second property would follow from the fact that

Kn
� Yn � 1

has unit Alexander polynomial, provided one can show that Kn is non-trivial, since no non-trivial rational knot has
∆ � 1. Thus the proof is concluded with the below lemma. a
Lemma 6 Kn is non-trivial.

Proof. We prove by contradiction. Assume Kn is trivial.

We know from [35] that if in a skein triple L � � L0
� L � the links L � are l-component unlinks, then L0 is the

�
l � 1 � -
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component unlink. By iterating this argument, we conclude that

K �n � β �n
is the

�
n � 1 � -component unlink. Now, K �n is the boundary of a disk D with n bands attached to it (corresponding to

the doubled strands of βn). The disk is obtained by removing the bands, i.e. replacing . . . for β �n:

Un
� β {n  

Let Un be the unknot bounding this disk. By [10] we know that if a link L is obtained from two (split) components L1
and L2 by band connecting, L has a minimal genus Seifert surface containing the band. Since the n bands attached
to D can be viewed as connecting the

�
n � 1 � components of K �n to build an unknot, the assumption Kn is the unlink

means that one must find a disk bounding Un containing each band. As this disk D is unique up to isotopy, for each
single band, D must be isotopable so as to contain it without intersecting the rest of the link K �n. In particular, if one
shrinks the bands into strands (i.e., ignores the framing), and connects their endpoints by arcs in D, one finds that the
usual braid closure β̂n of βn must be the n-component unlink.

To show that β̂n is non-trivial (and hance to have the contradiction we wish), consider the Jones polynomial valueXX V P eπi $ 3 Q XX (or alternatively the number of torsion numbers of the double branched cover homology group divisible
by 3) [25, 12]. Since this is invariant under the insertion of σ � 3

i , the assumption that

β̂n
�~} P (6 ; ; �( σ � 2

1
� σ � 2

2
* �  ; : � σ � 2

n � 1
* Q

is trivial means for
β̃n
� (6 ; ; �( σ � 1

1
� σ � 1

2
* �  ; : � σ � 1

n � 1
*

that we have XXX V�β̃n
3 eπi $ 3 5 XXX � . 3

n � 1  
In particular, by [17, proposition 15.3], b

� }̃
βn � � n, with b denoting the braid index.

Thus it suffices to show that β̃n is not a minimal strand number representation for
}̃
βn. β̃n contains as braid word two

copies of σ � 1
n � 1 (of opposite sign). Let wn � 1 be the subword of wn

� β̃n between (and not including) these two letters.
wn � 1 in turn has two copies of σ � 1

n � 2 (again of opposite sign) and so on. By induction one finds subwords wk of β̃n
for 2 s k s n containing only letters σi with i 8 k, with σk � 1 occurring twice (and with opposite sign), unless k � 2,

in which case w2
� σ � 1

1 is a single letter. Let c be the crossing in the diagram
}̃
βn corresponding to this letter.

Numbering generators from left to right, and composing words from bottom to top (i.e. orienting strands upward),

consider the segment of the knot strand in the diagram
}̃
βn between the right outgoing arc of c until the right incoming
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arc of this same crossing. Here is an example for n � 5 (rotated by � π= 2 to save space):

 
All crossings this arc passes correspond to a pair of (oppositely signed) σ � 1

i for 2 s i s n � 1. Thus in
}̃
βn this arc can

be shrunk and eliminated, giving a smaller strand number braid representation. a
Note that the construction of theorem 2 applied on the example in theorem 3 does not immediately prove theorem 1,
because σξ may be changed. Also, we cannot control the behaviour of σξ if Jξ is a zero of the Alexander polynomial
of order � 1. Thus a bit more care is needed.

Proof of theorem 1. We start with the knots occurring in the proof of theorem 3, built for given K � . Now look at
which family in (9) contained the knot K found in the proof of theorem 3 (or one of these knots, which we fix in the
following). Apply a certain number of times the construction of theorem 2 to make K � #Kn or K � (dependingly on
whether K was in family F1 > F3 or F2 > F4) into a prime knot P, and by [20] represent P as the closure of a prime
tangle P � . Let Tn

� � wn
� s � be the rational tangle whose closure is K̂n. Note that we have chosen the ai in wn so that

σξ
�
K̂n ���� 0. Also ∆ K̂n

� Jξ �u�� 0.

Then consider the tangles Sl
� � P � � !Tn

�  : ; � !Tn ��� Xn (with l copies of !Tn) if K is the l-th knot in family F3 or F4,
or S � l

� � P � � Tn
�  ; : � Tn ��� Xn, if K is in family F1 or F2, with Xn being the tangle found in the proof of theorem 2.

The tangle Sl is built up as sum of two prime tangles (see [33]). Thus its closure knot Sl is prime. It has the same
Vassiliev invariants of order 8 n as K � and K, and the same Alexander polynomial as K.

Assume Jξ is a zero of ∆ K of order nξ
�
K � mod 2 �  0 � 1 � . Then by lemma 1 if σξ

�
K � is even, so is σξ

�
Sl � , and if

σξ
�
K � is odd, so is σξ

�
Sl � . Now let l ��' vary. Then Sl 9 n K. In general ∆ Sl

�� ∆ K , but ∆ K̂n

� Jξ ���� 0 implies that Jξ is
zero of all ∆ Sl

of the same order. Hence still σξ
�
K �!� σξ

�
Sl � is even for all l. Also by the fact that Tn turns by undoing

2an positive reverse half-twists into the 0-tangle, we have 0 s σξ
�
Sl � 1 ��� σξ

�
Sl ��s 2 (see proof of lemma 5). Thus it

suffices only to show that by adjusting l �d' one can make σξ
�
Sl � arbitrary large or small. But this is clear since by a

crossing change one turns Xn into the 0-tangle, and hence Sl into #l!K̂n#P (resp. # � lK̂n#P for l 8 0), and σξ
�
K̂n �H�� 0.

What remains is to justify our assumption that Jξ is zero of ∆ K of order 0 or 1. As ∆ K̂n

� Jξ �H�� 0, this is equivalent under
replacing ∆ K by ∆ P. That is, we must show that we can modify P up to n-similarity so as Jξ to be a zero of order
nξ
�
K � mod 2 of ∆ P. This is proved in the below lemma. The knot found there may be composite, but applying the

construction of theorem 2 gives again a prime knot. a
Lemma 7 Let K be a knot, ξ � S1

�H 1 � and n � 0. Then there is a knot K � 9 n K with ∆ K � � Jξ �l�� 0. Also there is a
knot K ��9 n K with Jξ being a zero of ∆ K � of order one, provided ∆ K

� Jξ � � 0.

Proof. That we can achieve ∆ K � � Jξ ���� 0 follows from the proof of lemma 4.

Assume now ∆ K
� Jξ � � 0. We would like to find K � such that Jξ is a simple zero of ∆ K � and K ��9 n K.

Let K1 be a knot such that Jξ is a simple zero of ∆ K1 . That such K1 exists follows from the separable extension
argument in the proof of lemma 2, and the remark after this proof. Let K �1 be an n-inverse of K1, chosen by the proof
of lemma 4 to have ∆ K1

� Jξ �u�� 0. Finally, let K̃ be a knot n-similar to K such that ∆ K̃
� Jξ �u�� 0, also found by lemma 4.

Then take K � � K̃#K1#K �1. a
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Appendix A. Unknotting numbers

We would like to note here an application of Tristram-Levine signatures independent from our previous constructions.
It seems useful, and builds on some of the background we introduced, but is possibly too short to deserve a stand-
alone exposition.

Let u
�
K � be the unknotting number of a knot K, the minimal number of crossing changes needed to make the unknot

out of K. We call K � K0 D K1 DT ; : �D Kn
� % (

%
denoting the unknot) an unknotting sequence of K, if Ki and

Ki � 1 differ by a crossing change. Thus the unknotting number of K is the minimal length n of an unknotting sequence
of K.

We say that K has positive unknotting number n (denoted by u � � K � � n) if it unknots by switching n, but not
less than n, positive crossings to negative. Similarly u � � K � � n denotes the negative unknotting number. These
concepts were introduced in [7]. Trivially u � � K � � n ^d_ u � � !K � � n, !K being the mirror image of K, and
u
�
K � � 1 ^I_ u � � K � � 1 or u � � K � � 1. If in the unknotting sequence K � K0 D K1 D� ; : yD Kn

� % we have that
Ki � 1 differs from Ki by a change of a positive crossing, then we call the unknotting sequence positive. In case K has
no positive unknotting sequence, we set u � � K � � ∞.

Theorem 4 If there is a ξ ��� with 	 ξ 	 � 1 and σξ
�
K � � 0 and ∆ K

� Jξ � � 0 (with Jξ given as in (7)), then u � � K � � ∞.
In particular, u

�
K ��| 2.

Proof. Assume that u � � K � � n 8 ∞. Since if K � and K � differ by a crossing which is positive resp. negative,
we have Aξ

�
K � ��� Aξ

�
K �F� � diag

�
2 � 2ℜeξ � 0 �  ; : � 0 � . Then we know that if we order the eigenvalues of Aξ

�
K � �

non-increasingly α1 q � | α2 q � |? : ; �| α2g q � , we have αi q � | αi q � . This follows from a theorem attributed to Courant-
Fischer and Weyl [42], and is now known as a special case of the complete description of inequalities for the eigen-
values of sums of Hermitian matrices due to Helmke-Rosenthal [16] and Klyachko [21]. Set e.g. j � 1 in formula
(3) of [2].

Then
σξ
�
K ��� � ∑

i
sgn

�
αi q ����| ∑

i
sgn

�
αi q � � � σξ

�
K � �! 

Thus σξ
�
K � � � σξ

�
K ��� only if sgn

�
αi q � � � sgn

�
αi q ��� for all i � 1 �  ; : � 2g. If ∆ K � � Jξ � � 0, then some of the αi q � ,

and hence αi q � vanishes, so that also ∆ K p � Jξ � � 0. If now K � K0 D K1 D� ; : �D Kn
� % is a positive unknotting

sequence, we have σξ
�
Ki � 1 �Cs σξ

�
Ki � with strict inequality at least once, as the zero Jξ of ∆ K must disappear under

some of the crossing changes. But then σξ
�&% ��8 σξ

�
K � � 0, a contradiction.

The argument for u � � K � � ∞ is analogous. a
Since all Tristram-Levine signatures vanish on achiral knots, we have

Corollary 2 If K is achiral and ∆ K
�
S1 ��� 0, then u

�
K ��� 1. a

Unfortunately, this is not necessarily true for slice knots, as by the examples of [24], we may have ξ with σξ �� 0
and ∆

� Jξ � � 0. In fact, corollary 2 gives an easy way of finding such examples, without examining the Seifert form.
(Note, that in [24], Levine just writes down Seifert forms, and claims they come from knots without giving the knots
explicitly, though.)

Example 2 Consider, for example, 820, which is slice and of unknotting number one, and ξ � eπi $ 3. As 820 has the
Alexander polynomial of the square (and granny) knot, ∆

� Jξ � � 0, and one can in fact calculate that σξ
�
820 � � � 1

and nξ
�
820 � � 1.

The signed unknotting number information of the theorem can be combined with other conditions.

Proposition 3 Assume K satisfies the premise of theorem 4. If additionally (a) VK P eπi $ 3 Q � � 3 or (b) there is some
ξ � with σξ � � K � � b 4, then u

�
K ��� 2.
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Proof. If u
�
K � � 2, the additional conditions imply u � � K � � 2, contradicting theorem 4. (For condition (a) this

follows from the inequality σξ � � K ����s σξ � � K � ��� 2, analogous to Murasugi’s inequality for ξ � � � 1, and for condition
(b) from the argument of Traczyk [41].) a
To obtain some interesting examples, we consider twist knots. It is easy to see that for those of even crossing number,
the Alexander polynomial has no zeros on the unit circle, while for those of odd crossing number, there in one pair
of conjugate zeros, moving towards 1 when the crossing number increases.

Example 3 u
�
31#31#!72 � � 3. (Here the factor knots are so mirrored so as the knot to have signature 2.)

In particular, we have

Corollary 3 If K is achiral and 0 � ∆ K
�
S1 � and VK P eπi $ 3 Q � � 3, then u

�
K ��| 3. a

Example 4 u
�
31#!31#41 � � 3.

This solves one of the undecided numbers in the tables of [38]. No previous method seems to give this result.

Remark 5 As we proved above, ∆
� Jξ � � 0 and σξ

� 0 imply that Jξ is (at least) a double zero of ∆ . Already the
existence of such a double zero, unfortunately, limits the space of applicable examples, and makes it most likely to
obtain new information for composite knots, as we saw above.

The argument in the proof of theorem 4 works in fact assuming a more general condition on the nullity nξ
�
K � .

Theorem 5 Assume K is a knot for which there is a ξ ��� with 	 ξ 	 � 1 and ξ �� 1 with nξ
�
K �l� σξ

�
K � . Then

u � � K � � ∞.

Proof. Assume the contrary. By the argument in the proof of theorem 4, we obtain that the nξ
�
K � zero eigenvalues

must become negative in Kn
� % , in order ∆ Kn

� Jξ �u�� 0, but then 0 � σξ
�
Kn ��s σξ

�
K ��� nξ

�
K �C8 0, a contradiction.a

The condition of this theorem is unfortunately seldom satisfied. For example, if K � 31#31#!31 and ξ � eπi $ 3, then
nξ
� 3 � 1 � σξ. However, for the really interesting example K � 810 (with the same Alexander polynomial), we

have only nξ
� 1 (a single eigenvalue changes sign cubically), so that the desired conclusion u � � K ��� 1 fails.
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