Table of Kauffman polynomials
31: ({2} -2 -1) ({3} 1 1) ({2} 1 1)
41: ( -1 [-1] -1) ( -1 * -1) ( 1 [2] 1) ( 1 * 1)
51: ({4} 3 2) ({5} -2 -1 1) ({4} -4 -3 1) ({5} 1 1) ({4} 1 1)
52: ({2} -1 1 1) ({5} -2 -2) ({2} 1 -1 -2) ({3} 1 2 1) ({4} 1 1)
61: ( -1 [0] 1 1) ({1} 2 2) ( 1 [0] -4 -3) ( 1 * -2 -3) ( [1] 2 1) ({1} 1 1)
62: ( [2] 2 1) ({3} -1 -1) ( [-3] -6 -2 1) ({1} -2 0 2) ( [1] 3 2) ({1} 1 1)
63: ( 1 [3] 1) ( -1 -2 * -2 -1) ( -3 [-6] -3) ( 1 1 * 1 1) ( 2 [4] 2) ( 1 * 1)
71: ({6} -4 -3) ({7} 3 1 -1 1) ({6} 10 7 -2 1) ({7} -4 -3 1) ({6} -6 -5 1) ({7} 1 1) ({6} 1 1)
72: ({2} -1 0 -1 -1) ({7} 3 3) ({2} 1 0 3 4) ({3} 1 -1 -6 -4) ({4} 1 -3 -4) ({5} 1 2 1) ({6} 1 1)
73: ({4} 1 -2 -2) ({7} 3 1 -2) ({4} -3 4 6 -1) ({5} -2 -4 -1 1) ({4} 1 -3 -3 1) ({5} 1 2 1) ({6} 1 1)
74: ({4} 2 0 -1) ({7} 4 4) ({2} 1 -4 -3 2) ({3} 2 -2 -8 -4) ({4} 3 0 -3) ({5} 2 3 1) ({6} 1 1)
75: ({4} 2 0 -1) ({5} -1 1 1 -1) ({4} -3 0 1 -2) ({5} -1 -4 -2 1) ({4} 1 -1 0 2) ({5} 1 3 2) ({6} 1 1)
76: ( [1] 1 2 1) ({1} 1 2 0 -1) ( [-2] -4 -4 -2) ({1} -4 -6 -1 1) ( [1] 1 2 2) ({1} 2 4 2) ({2} 1 1)
77: ( 1 2 [2]) ( 2 3 * 1) ( -2 -6 [-7] -3) ( -4 -8 * -3 1) ( 1 2 [4] 3) ( 2 5 * 3) ( 1 [1])
81: ( -1 [0] 0 -1 -1) ({3} -3 -3) ( 1 [0] 0 7 6) ( 1 * -1 5 7) ( [1] -2 -8 -5) ({1} 1 -4 -5) ({2} 1 2 1) ({3} 1 1)
82: ({2} -3 -3 -1) ({3} 1 1 -1 -1) ({2} 7 12 3 -1 1) ({3} 3 -1 -2 2) ({2} -5 -12 -5 2) ({3} -4 -2 2) ({2} 1 3 2) ({3} 1 1)
83: ( 1 0 [-1] 0 1) ( -4 * -4) ( -3 1 [8] 1 -3) ( -2 8 * 8 -2) ( 1 -2 [-6] -2 1) ( 1 -4 * -4 1) ( 1 [2] 1) ( 1 * 1)
84: ( 1 0 [-2] -2) ( 2 1 * -1) ( 1 -3 -1 [10] 7) ( 2 -5 -3 * 4) ( 3 -3 [-11] -5) ( 3 -1 * -4) ( 2 [3] 1) ( 1 * 1)
85: ({2} -4 -5 -2) ({3} 3 7 4) ({2} 8 15 4 -2 1) ({5} -10 -8 2) ({2} -5 -15 -7 3) ({3} -3 1 4) ({2} 1 4 3) ({3} 1 1)
86: ( [2] 1 -1 -1) ({1} -1 -3 -1 1) ( [-3] -2 6 3 -2) ({1} -1 5 2 -4) ( [1] 0 -6 -4 1) ({1} 1 -2 -1 2) ({2} 1 3 2) ({3} 1 1)
87: ( -2 -4 [-1]) ( -1 0 2 2 * 1) ( -2 4 12 [6]) ( 1 -1 -2 -3 * -3) ( 2 -3 -12 [-7]) ( 2 0 -1 * 1) ( 2 4 [2]) ({-3} 1 1)
88: ( -1 -1 [2] 1) ( 2 3 1 * -1 -1) ( 4 5 [-1] -2) ( -3 -5 -3 * 0 1) ( -6 -9 [-1] 2) ( 1 0 1 * 2) ( 2 4 [2]) ({-3} 1 1)
89: ( -2 [-3] -2) ( 1 1 * 1 1) ( -2 4 [12] 4 -2) ( -4 -1 * -1 -4) ( 1 -4 [-10] -4 1) ( 2 0 * 0 2) ( 2 [4] 2) ( 1 * 1)
810: ( -3 -6 [-2]) ( -1 2 6 5 * 2) ( -1 6 12 [5]) ( 1 -3 -9 -8 * -3) ( 2 -5 -13 [-6]) ( 3 3 1 * 1) ( 3 5 [2]) ({-3} 1 1)
811: ( [1] -1 -2 -1) ({3} 1 3 2) ( [-2] 0 6 2 -2) ({1} -3 -2 -3 -4) ( [1] -2 -7 -3 1) ({1} 2 1 1 2) ({2} 2 4 2) ({3} 1 1)
812: ( 1 1 [1] 1 1) ( 1 0 * 0 1) ( -2 -2 [0] -2 -2) ( -3 -3 * -3 -3) ( 1 -1 [-4] -1 1) ( 2 2 * 2 2) ( 2 [4] 2) ( 1 * 1)
813: ({-4} -1 -2) ( 2 4 3 * 1) ( 5 7 [0] -2) ( -3 -7 -9 * -4 1) ( -6 -11 [-2] 3) ( 1 1 4 * 4) ( 2 5 [3]) ({-3} 1 1)
814: ( [1]) ({1} 1 3 3 1) ( [-2] -1 3 1 -1) ({1} -3 -6 -8 -5) ( [1] -1 -7 -4 1) ({1} 2 3 4 3) ({2} 2 5 3) ({3} 1 1)
815: ({4} 1 -3 -4 -1) ({7} 6 8 2) ({4} -2 5 8 0 -1) ({5} -2 -11 -14 -5) ({4} 1 -5 -10 -3 1) ({5} 2 5 6 3) ({6} 3 6 3) ({7} 1 1)
816: ({-4} -1 -2) ( 2 4 3 * 1) ( -1 4 10 [5]) ( 1 -5 -10 -6 * -2) ( 3 -7 -18 [-8]) ( 5 3 -1 * 1) ( 5 8 [3]) ({-3} 2 2)
817: ( -1 [-1] -1) ( 1 2 * 2 1) ( -1 3 [8] 3 -1) ( -4 -6 * -6 -4) ( 1 -6 [-14] -6 1) ( 3 2 * 2 3) ( 4 [8] 4) ( 2 * 2)
818: ( 1 [3] 1) ( 1 * 1) ( 3 [6] 3) ( -4 -9 * -9 -4) ( 1 -9 [-20] -9 1) ( 4 3 * 3 4) ( 6 [12] 6) ( 3 * 3)
819: ({6} -5 -5 -1) ({7} 5 5) ({6} 10 10) ({7} -5 -5) ({6} -6 -6) ({7} 1 1) ({6} 1 1)
820: ( -2 -4 [-1]) ( 3 5 3 * 1) ( 4 6 [2]) ({-5} -4 -7 -3) ({-4} -4 -4) ({-5} 1 2 1) ({-4} 1 1)
821: ({2} -3 -3 -1) ({3} 2 4 2) ({2} 3 5 0 -2) ({3} -1 -6 -5) ({4} -2 -1 1) ({3} 1 3 2) ({4} 1 1)
91: ({8} 5 4) ({9} -4 -1 1 -1 1) ({8} -20 -14 3 -2 1) ({9} 10 6 -3 1) ({8} 21 16 -4 1) ({9} -6 -5 1) ({8} -8 -7 1) ({9} 1 1) ({8} 1 1)
92: ({2} -1 0 0 1 1) ({9} -4 -4) ({2} 1 0 0 -6 -7) ({3} 1 -1 1 13 10) ({4} 1 -2 8 11) ({5} 1 -3 -10 -6) ({6} 1 -5 -6) ({7} 1 2 1) ({8} 1 1)
93: ({6} -1 3 3) ({9} -4 -1 1 -2) ({6} 6 -9 -11 3 -1) ({7} 3 9 4 -1 1) ({6} -5 9 11 -2 1) ({7} -4 -8 -3 1) ({6} 1 -5 -5 1) ({7} 1 2 1) ({8} 1 1)
94: ({4} 1 0 2 2) ({9} -4 -1 3) ({4} -3 1 -7 -10 1) ({5} -2 4 12 2 -4) ({4} 1 -2 11 11 -3) ({5} 1 -3 -8 -3 1) ({6} 1 -5 -5 1) ({7} 1 2 1) ({8} 1 1)
95: ({4} 1 -1 0 1) ({9} -6 -6) ({2} 1 -3 3 4 -3) ({3} 2 -4 1 18 11) ({4} 3 -7 -3 7) ({5} 3 -5 -14 -6) ({6} 3 -2 -5) ({7} 2 3 1) ({8} 1 1)
96: ({6} -3 -1 1) ({7} 2 -1 -2 0 -1) ({6} 7 1 -3 1 -2) ({9} 8 6 -1 1) ({6} -5 1 2 -2 2) ({7} -3 -10 -5 2) ({6} 1 -3 -2 2) ({7} 1 3 2) ({8} 1 1)
97: ({4} 2 1 1 1) ({5} -1 -1 -3 -2 1) ({4} -3 -2 -4 -2 3) ({5} -1 2 11 5 -3) ({4} 1 0 7 2 -6) ({5} 1 -1 -9 -6 1) ({6} 1 -3 -2 2) ({7} 1 3 2) ({8} 1 1)
98: ( -1 [-1] 0 2 1) ( -2 * -3 -1 -1 -1) ( 4 [7] 2 -3 -2) ( 8 * 11 2 0 1) ( -4 [-6] -4 0 2) ( -8 * -13 -3 2) ( 1 [-1] 0 2) ( 2 * 4 2) ( [1] 1)
99: ({6} -2 1 2) ({7} 1 -2 0 2 -1) ({6} 7 -3 -6 3 -1) ({7} 1 5 0 -3 1) ({6} -5 3 2 -4 2) ({7} -3 -8 -2 3) ({6} 1 -3 -1 3) ({7} 1 3 2) ({8} 1 1)
910: ({6} -2 1 2) ({9} -4 0 4) ({4} -2 7 -2 -11) ({5} -3 3 9 -1 -4) ({4} 1 -7 3 9 -2) ({5} 2 -3 -7 -1 1) ({6} 3 -1 -3 1) ({7} 2 3 1) ({8} 1 1)
911: ({-8} -2 -3 -1 -1) ({-11} -1 2 2 -2 -1) ({-10} -1 4 6 5 4) ({-11} 1 -3 -3 9 8) ({-10} 2 -4 -7 -5 -4) ({-9} 3 -1 -12 -8) ({-8} 3 1 -1 1) ({-7} 2 4 2) ({-6} 1 1)
912: ( [1] 0 -1 -2 -1) ({3} -2 -4 -1 1) ( [-2] -2 3 7 4) ({1} -3 4 13 3 -3) ( [1] -1 -1 -5 -6) ({1} 2 -3 -11 -5 1) ({2} 2 0 0 2) ({3} 2 4 2) ({4} 1 1)
913: ({6} -3 -1 1) ({7} 1 -3 -2 2) ({4} -2 8 6 -2 2) ({5} -3 1 9 2 -3) ({4} 1 -7 -4 -1 -5) ({5} 2 -2 -9 -4 1) ({6} 3 1 0 2) ({7} 2 4 2) ({8} 1 1)
914: ( -1 -2 -1 [1]) ({-5} -3 -5 -2) ( 4 10 8 [0] -2) ( 9 15 2 * -3 1) ( -4 -9 -12 [-4] 3) ( -8 -16 -4 * 4) ( 1 0 3 [4]) ({-5} 2 5 3) ({-4} 1 1)
915: ( -1 -1 1 1 [1]) ({-9} 2 1 -1 1 1) ( 3 2 -2 -3 [-2]) ({-9} -3 -1 5 0 -3) ( -5 -4 0 0 [1]) ({-9} 1 -3 -7 -1 2) ({-8} 2 1 1 2) ({-7} 2 4 2) ({-6} 1 1)
916: ({6} -4 -3) ({7} 4 4 2 2) ({6} 8 6 1 2 -1) ({7} -2 -1 -5 -5 1) ({6} -5 -4 -8 -6 3) ({7} -2 -8 -1 5) ({6} 1 -1 3 5) ({7} 1 4 3) ({8} 1 1)
917: ( -2 [-3] -2) ( -1 * 1 3 1) ( 5 [13] 9 -1 -2) ( 6 * 6 -4 -3 1) ( -4 [-12] -14 -3 3) ( -7 * -13 -2 4) ( 1 [1] 4 4) ( 2 * 5 3) ( [1] 1)
918: ({4} 1 -1 0 1) ({7} 2 0 0 2) ({4} -2 3 0 -2 3) ({5} -2 -4 1 0 -3) ({4} 1 -4 -2 -2 -5) ({5} 2 1 -5 -3 1) ({6} 3 2 1 2) ({7} 2 4 2) ({8} 1 1)
919: ( 1 1 [0] -1) ( 1 -1 * -3 -1) ( -2 -3 [3] 8 4) ( -3 1 * 10 4 -2) ( 1 0 [-4] -11 -8) ( 2 -1 * -11 -7 1) ( 2 [2] 3 3) ( 2 * 5 3) ( [1] 1)
920: ({2} -2 -2 -2 -1) ({7} 2 2) ({2} 5 11 10 3 -1) ({3} 6 5 -7 -5 1) ({2} -4 -11 -16 -6 3) ({3} -7 -12 0 5) ({2} 1 1 5 5) ({3} 2 5 3) ({4} 1 1)
921: ({-8} -1 -1 0 -1) ({-9} 2 0 -3 -1) ( 3 5 6 3 [-1]) ({-9} -3 0 9 2 -4) ( -5 -7 -9 -6 [1]) ({-9} 1 -3 -10 -3 3) ({-8} 2 2 4 4) ({-7} 2 5 3) ({-6} 1 1)
922: ( -2 [-4] -4 -1) ( -2 * -2 1 1) ( 5 [16] 17 5 -1) ( 7 * 10 -2 -4 1) ( -4 [-15] -23 -9 3) ( -7 * -16 -4 5) ( 1 [2] 7 6) ( 2 * 6 4) ( [1] 1)
923: ({4} 1 -2 -2) ({7} 4 4 1 1) ({4} -2 4 6 3 3) ({5} -2 -6 -2 0 -2) ({4} 1 -4 -8 -10 -7) ({5} 2 2 -6 -5 1) ({6} 3 4 4 3) ({7} 2 5 3) ({8} 1 1)
924: ( -1 [-3] -5 -2) ( 1 2 * 2 3 2) ( -1 2 [9] 10 4) ( -4 -3 * 1 -3 -3) ( 1 -5 [-11] -10 -5) ( 3 -1 * -7 -2 1) ( 4 [5] 3 2) ( 3 * 5 2) ( [1] 1)
925: ( [1] -1 -3 -3 -1) ({3} -1 -1 1 1) ( [-2] 2 13 13 4) ({1} -2 3 5 -2 -2) ( [1] -3 -15 -18 -7) ({1} 2 -3 -10 -4 1) ({2} 3 6 6 3) ({3} 3 6 3) ({4} 1 1)
926: ({-6} -1 -3 -3) ({-7} 1 1 -1 -1) ( -1 2 11 13 [5]) ( -4 -2 7 3 * -2) ( 1 -5 -14 -16 [-8]) ( 3 -1 -11 -6 * 1) ( 4 6 5 [3]) ({-5} 3 6 3) ({-4} 1 1)
927: ( -1 [-2] -3 -1) ( 1 2 * 2 2 1) ( -1 3 [12] 12 4) ( -4 -4 * 0 -2 -2) ( 1 -5 [-16] -17 -7) ( 3 0 * -8 -4 1) ( 4 [7] 6 3) ( 3 * 6 3) ( [1] 1)
928: ( [-1] -5 -4 -1) ( 1 * 3 6 6 2) ( [5] 14 12 2 -1) ( -2 * -4 -7 -9 -4) ( [-7] -19 -17 -4 1) ( 1 * -3 -5 2 3) ( [3] 7 8 4) ({1} 3 6 3) ({2} 1 1)
929: ( -2 -5 [-3] -1) ( 2 2 -1 * -1) ( 8 17 [12] 3) ( 1 -5 -1 14 * 9) ( 3 -13 -24 [-11] -3) ( 6 -8 -24 * -10) ( 8 6 [-1] 1) ( 6 9 * 3) ( 2 [2])
930: ( -1 -4 [-4] -2) ( 1 2 1 * 1 1) ( 5 16 [17] 5 -1) ( -2 -3 0 * -2 -3) ( -7 -22 [-23] -7 1) ( 1 -3 -9 * -2 3) ( 3 8 [10] 5) ( 3 7 * 4) ( 1 [1])
931: ( [-1] -4 -2) ( 1 * 3 5 3) ( [5] 15 13 3) ( -2 * -3 -5 -8 -4) ( [-7] -21 -23 -8 1) ( 1 * -3 -7 1 4) ( [3] 8 11 6) ({1} 3 7 4) ({2} 1 1)
932: ( -1 -2 -1 [1]) ({-7} 1 0 -2 -1) ( -1 4 12 10 [3]) ( -3 2 9 3 * -1) ( 1 -6 -18 -19 [-8]) ( 3 -5 -18 -9 * 1) ( 5 7 6 [4]) ({-5} 5 10 5) ({-4} 2 2)
933: ({-4} -1 -2) ({-5} 1 1) ( 4 10 [9] 3) ( -2 1 5 * -1 -3) ( -6 -16 [-20] -9 1) ( 1 -6 -16 * -5 4) ( 3 5 [9] 7) ( 4 10 * 6) ( 2 [2])
934: ( -1 [-1] -1) ( -1 * -1) ( 3 10 [11] 4) ( -1 5 12 * 4 -2) ( -7 -19 [-23] -10 1) ( 1 -11 -26 * -10 4) ( 4 5 [9] 8) ( 6 14 * 8) ( 3 [3])
935: ({6} -3 -1 1) ({7} -1 -9 -8) ({2} 1 -2 12 16 1) ({3} 2 -6 3 23 12) ({4} 3 -15 -15 3) ({5} 4 -8 -18 -6) ({6} 5 1 -4) ({7} 3 4 1) ({8} 1 1)
936: ({-8} -2 -4 -3 -2) ({-11} -1 1 1 -2 -1) ({-10} -1 7 15 12 5) ({-11} 1 -2 0 9 6) ({-10} 2 -7 -17 -12 -4) ({-9} 3 -4 -14 -7) ({-8} 4 4 1 1) ({-7} 3 5 2) ({-6} 1 1)
937: ( 1 0 [-2] -2) ( -5 * -7 -2) ( -2 1 [12] 14 5) ( -2 6 * 13 3 -2) ( 1 -3 [-13] -17 -8) ( 2 -4 * -13 -6 1) ( 3 [5] 5 3) ( 3 * 6 3) ( [1] 1)
938: ({6} -4 -3) ({7} 3 1 -1 1) ({4} -1 9 10 3 3) ({5} -2 -2 5 3 -2) ({4} 1 -10 -15 -10 -6) ({5} 3 -4 -15 -7 1) ({6} 6 6 3 3) ({7} 5 9 4) ({8} 2 2)
939: ({-8} -1 -2 -2 -2) ({-9} 1 -1 -3 -1) ( 3 9 12 5 [-1]) ({-9} -2 2 12 5 -3) ( -6 -13 -15 -7 [1]) ({-9} 1 -7 -18 -7 3) ({-8} 3 3 5 5) ({-7} 4 9 5) ({-6} 2 2)
940: ( [2] 2 1) ({3} -1 -1) ({2} 3 7 4) ({1} 6 14 6 -2) ( [-7] -17 -20 -9 1) ( 1 * -15 -32 -12 4) ( [5] 4 7 8) ({1} 8 17 9) ({2} 4 4)
941: ({-6} -1 -3 -3) ({-5} -2 -4 -2) ( 3 13 17 [6] -1) ( 9 19 6 * -3 1) ( -3 -12 -23 [-11] 3) ( -10 -26 -11 * 5) ( 1 -1 5 [7]) ({-5} 3 9 6) ({-4} 2 2)
942: ( -2 [-3] -2) ( -2 * -2) ( 6 [12] 6) ( 6 * 6) ( -5 [-10] -5) ( -5 * -5) ( 1 [2] 1) ( 1 * 1)
943: ({2} -3 -4 -3 -1) ({7} 1 1) ({2} 7 14 9 2) ({3} 3 1 -2) ({2} -5 -13 -8) ({3} -4 -3 1) ({2} 1 3 2) ({3} 1 1)
944: ( -1 [-2] -3 -1) ( -1 * -1 1 1) ( 1 [6] 10 5) ( 2 * 4 -1 -3) ( [-3] -10 -7) ({1} -3 -2 1) ( [1] 3 2) ({1} 1 1)
945: ({-8} -1 -2 -2 -2) ({-9} 2 2) ({-8} 4 7 6 3) ({-9} -3 -5 -1 1) ({-8} -6 -10 -4) ({-9} 1 0 0 1) ({-8} 2 4 2) ({-7} 1 1)
946: ( -1 -1 1 [2]) ({-5} -4 -6 -2) ({-6} 6 9 3) ({-5} 7 8 1) ({-6} -5 -9 -4) ({-5} -5 -5) ({-6} 1 2 1) ({-5} 1 1)
947: ( [1] -1 -2 -1) ({1} -2 -5 -3) ( [5] 11 9 3) ( -2 * 1 6 3) ( [-9] -16 -7) ( 1 * -4 -4 1) ( [3] 6 3) ({1} 2 2)
948: ({-6} 2 3) ({-7} -4 -5 -1) ( -1 2 2 [-1]) ({-7} 3 5 -3 -5) ( -6 -5 [1]) ({-5} -1 2 3) ({-6} 1 4 3) ({-5} 1 1)
949: ({6} -4 -3) ({7} 2 -2 -4) ({4} -2 9 10 -1) ({5} -3 -3 3 3) ({4} 1 -8 -9) ({5} 2 1 -1) ({6} 3 4 1) ({7} 1 1)
101: ( -1 [0] 0 0 1 1) ({5} 4 4) ( 1 [0] 0 0 -11 -10) ( 1 * -1 1 -11 -14) ( [1] -2 3 21 15) ({1} 1 -3 12 16) ({2} 1 -4 -12 -7) ({3} 1 -6 -7) ({4} 1 2 1) ({5} 1 1)
102: ({4} 4 4 1) ({5} -2 -1 1 -1 -1) ({4} -14 -21 -5 0 -1 1) ({5} -3 3 2 -2 2) ({4} 16 33 11 -4 2) ({5} 10 2 -6 2) ({4} -7 -18 -9 2) ({5} -6 -4 2) ({4} 1 3 2) ({5} 1 1)
103: ( 1 0 [0] 1 0 -1) ({1} 6 6) ( -3 1 [0] -12 -2 6) ( -2 4 * -15 -18 3) ( 1 -2 [6] 18 4 -5) ( 1 -3 * 15 15 -4) ( 1 [-4] -10 -4 1) ( 1 * -6 -6 1) ( [1] 2 1) ({1} 1 1)
104: ( 1 0 [0] 2 2) ( -3 * -1 2) ( 1 -3 0 [1] -16 -13) ( 2 -4 8 * 7 -7) ( 3 -6 [4] 29 16) ( 3 -10 * -2 11) ( 3 [-7] -17 -7) ( 3 * -3 -6) ( [2] 3 1) ({1} 1 1)
105: ({-6} 3 5 1) ({-11} -1 0 -1 -3 -2 -1) ({-10} -2 1 -9 -22 -10) ({-11} 1 -1 3 6 7 6) ({-10} 2 -2 10 32 18) ({-9} 2 -4 -3 -2 -5) ({-8} 2 -7 -20 -11) ({-7} 2 -2 -3 1) ({-6} 2 4 2) ({-5} 1 1)
106: ({2} -3 -2 1 1) ({3} 2 3 0 0 1) ({2} 7 5 -10 -5 1 -2) ({5} -10 -2 4 -4) ({2} -5 -3 18 12 -3 1) ({3} -3 8 5 -4 2) ({2} 1 -2 -12 -7 2) ({3} 1 -4 -3 2) ({4} 1 3 2) ({5} 1 1)
107: ( [1] 0 1 2 1) ({5} -2 -5 -3) ( [-2] -2 -4 -10 -3 3) ({1} -3 1 6 10 8) ( [1] -1 8 20 6 -4) ({1} 2 -2 -2 -6 -8) ({2} 2 -5 -15 -7 1) ({3} 2 -1 -1 2) ({4} 2 4 2) ({5} 1 1)
108: ( [3] 3 0 -1) ({3} -1 1 2) ( [-13] -18 3 5 -2 1) ({1} -6 5 2 -7 2) ( [16] 30 1 -10 3) ({1} 11 -1 -8 4) ( [-7] -17 -6 4) ({1} -6 -3 3) ( [1] 3 2) ({1} 1 1)
109: ( [3] 4 2) ( -1 * -2 -2 0 1) ( 3 [-8] -22 -8 1 -2) ( 7 * 4 5 4 -4) ( -4 [10] 31 13 -3 1) ( -8 * -2 0 -4 2) ( 1 [-8] -18 -7 2) ( 2 * -2 -2 2) ( [2] 4 2) ({1} 1 1)
1010: ( 1 2 1 [1]) ({-7} -3 -6 -4 -1) ( -8 -12 -4 [-2] -2) ( 7 17 17 3 * -3 1) ( 15 26 5 [-3] 3) ( -5 -10 -16 -7 * 4) ( -10 -21 -7 [4]) ({-7} 1 -1 2 4) ({-6} 2 5 3) ({-5} 1 1)
1011: ( -2 [-1] 1 0 -1) ( 1 * 5 2 -2) ( 7 [2] -12 0 5 -2) ( 1 * -16 -5 9 -3) ( -5 [-1] 16 5 -6 1) ( -3 * 11 5 -7 2) ( 1 [-2] -10 -4 3) ( 1 * -4 -2 3) ( [1] 3 2) ({1} 1 1)
1012: ( 2 2 -2 [-1]) ( 2 0 -3 -1 1 * 1) ( 2 -8 -12 2 [4]) ( -3 -1 4 5 0 * -3) ( -5 8 23 4 [-6]) ( 1 -3 0 -1 -4 * 1) ( 2 -5 -14 -5 [2]) ({-7} 2 -1 -1 2) ({-6} 2 4 2) ({-5} 1 1)
1013: ( 1 0 [-1] -1 -1 -1) ( -2 * 0 1 -1) ( -2 1 [4] -1 2 4) ( -2 3 * 0 1 6) ( 1 -3 [-3] 6 1 -4) ( 2 -3 * -2 -4 -7) ( 3 [0] -9 -5 1) ( 3 * 1 0 2) ( [2] 4 2) ({1} 1 1)
1014: ({2} -1 1 1) ({3} -1 -4 -2 2 1) ({2} 4 -1 -9 -3 0 -1) ({3} 6 10 8 0 -4) ({2} -4 2 16 5 -4 1) ({3} -7 -9 -9 -4 3) ({2} 1 -5 -14 -4 4) ({3} 2 1 3 4) ({4} 2 5 3) ({5} 1 1)
1015: ( -2 -3 [1] 1) ( -1 1 3 0 * -3 -2) ( -1 7 8 [-7] -7) ( 1 -2 -3 1 * 8 7) ( 2 -7 -8 [16] 15) ( 3 -3 -5 * -4 -5) ( 4 -1 [-15] -10) ( 3 0 * -2 1) ( 2 [4] 2) ( 1 * 1)
1016: ( -1 [1] 2 0 -1) ({3} -4 -4) ( 4 [-2] -11 2 5 -2) ( 5 * 0 8 10 -3) ( -4 [4] 17 2 -6 1) ( -7 * -2 -4 -7 2) ( 1 [-6] -13 -3 3) ( 2 * -1 0 3) ( [2] 4 2) ({1} 1 1)
1017: ( 2 [5] 2) ( 1 0 -3 * -3 0 1) ( 3 -8 [-22] -8 3) ( -3 2 6 * 6 2 -3) ( -6 11 [34] 11 -6) ( 1 -5 0 * 0 -5 1) ( 2 -7 [-18] -7 2) ( 2 -2 * -2 2) ( 2 [4] 2) ( 1 * 1)
1018: ( -1 [0] 1 1) ( -2 * -4 -4 -2) ( 4 [1] -8 -3 1 -1) ( 6 * 11 14 5 -4) ( -4 [1] 17 6 -5 1) ( -7 * -10 -12 -6 3) ( 1 [-5] -15 -5 4) ( 2 * 1 3 4) ( [2] 5 3) ({1} 1 1)
1019: ( 1 [3] 1) ( -2 -4 * -2 1 1) ( -9 [-13] 0 3 -1) ( 7 13 * 11 0 -4 1) ( 16 [23] -4 -8 3) ( -5 -8 * -15 -7 5) ( -10 [-19] -3 6) ( 1 -1 * 3 5) ( 2 [5] 3) ( 1 * 1)
1020: ( [2] 1 0 1 1) ({1} -1 -1 3 2 -1) ( [-3] -2 0 -9 -5 3) ({1} -1 2 -8 -4 7) ( [1] 0 3 17 9 -4) ({1} 1 -1 9 3 -8) ({2} 1 -2 -12 -8 1) ({3} 1 -4 -3 2) ({4} 1 3 2) ({5} 1 1)
1021: ({2} -1 2 3 1) ({5} -2 -1 3 2) ({2} 4 -3 -14 -5 0 -2) ({3} 5 3 2 0 -4) ({2} -4 4 20 9 -2 1) ({3} -7 -3 0 -2 2) ({2} 1 -6 -14 -5 2) ({3} 2 -1 -1 2) ({4} 2 4 2) ({5} 1 1)
1022: ( -2 [-1] 2 2) ( -1 * 1 1 -1) ( -2 6 [6] -12 -6 4) ( -3 7 * 0 -4 6) ( 1 -6 [-1] 16 6 -4) ( 2 -6 * -1 0 -7) ( 3 [-2] -12 -6 1) ( 3 * 0 -1 2) ( [2] 4 2) ({1} 1 1)
1023: ({-6} 2 3) ({-9} 2 1 -2 -2 -1) ( 3 -6 -13 -1 [3]) ( -3 -2 3 9 5 * -2) ( -5 5 20 3 [-7]) ( 1 -2 -2 -9 -9 * 1) ( 2 -3 -13 -5 [3]) ({-7} 2 1 3 4) ({-6} 2 5 3) ({-5} 1 1)
1024: ( [1] -1 -1 1 1) ({3} 2 4 0 -2) ( [-2] 2 5 -5 -2 4) ({1} -2 0 -7 -2 7) ( [1] -3 -5 6 3 -4) ({1} 2 -2 1 -2 -7) ({2} 3 1 -8 -5 1) ({3} 3 1 0 2) ({4} 2 4 2) ({5} 1 1)
1025: ({2} -2 0 2 1) ({3} 1 0 -2 0 1) ({2} 5 4 -4 1 3 -1) ({3} 4 2 3 2 -3) ({2} -4 -3 3 -5 -6 1) ({3} -6 -7 -9 -5 3) ({2} 1 -3 -8 1 5) ({3} 2 2 5 5) ({4} 2 5 3) ({5} 1 1)
1026: ( -1 [1] 3 2) ( -1 * -1 -2 -2) ( -1 4 [1] -12 -4 4) ( -3 5 * 5 4 7) ( 1 -7 [-2] 14 4 -4) ( 3 -7 * -9 -6 -7) ( 5 [-1] -12 -5 1) ( 5 * 4 1 2) ( [3] 5 2) ({1} 1 1)
1027: ({-6} 1 1 -1) ({-9} 1 0 -2 -2 -1) ( 3 -1 -4 4 [4]) ( -2 1 7 11 5 * -2) ( -6 -3 7 -3 [-7]) ( 1 -6 -12 -14 -8 * 1) ( 3 -1 -9 -2 [3]) ({-7} 4 6 6 4) ({-6} 3 6 3) ({-5} 1 1)
1028: ( 1 0 -3 [-1]) ( -4 -6 -2 1 * 1) ( -5 0 10 [4] -1) ( 8 18 13 -2 * -4 1) ( 12 11 -12 [-8] 3) ( -5 -12 -18 -6 * 5) ( -9 -16 -1 [6]) ({-7} 1 0 4 5) ({-6} 2 5 3) ({-5} 1 1)
1029: ( -2 [-2] -1 -1 -1) ({1} 2 0 -2) ( 5 [6] 0 4 4 -1) ( 4 * 2 7 6 -3) ( -4 [-4] 3 -5 -7 1) ( -6 * -8 -12 -7 3) ( 1 [-3] -9 0 5) ( 2 * 2 5 5) ( [2] 5 3) ({1} 1 1)
1030: ({2} -2 -1) ({3} -1 -5 -6 -2) ( [-1] 5 9 2 1 2) ({1} -3 4 16 18 9) ( [1] -7 -11 2 2 -3) ({1} 3 -6 -19 -20 -10) ({2} 5 2 -11 -7 1) ({3} 5 7 5 3) ({4} 3 6 3) ({5} 1 1)
1031: ( -1 -1 [2] 1) ( 2 2 -2 * -4 -2) ( 3 -2 [-10] -3 2) ( -3 -3 6 * 15 7 -2) ( -5 3 [20] 5 -7) ( 1 -2 -4 * -12 -10 1) ( 2 -3 [-14] -6 3) ( 2 1 * 3 4) ( 2 [5] 3) ( 1 * 1)
1032: ( -1 [-1] -1) ( 1 1 * -1 -2 -1) ( -1 4 [7] 0 0 2) ( -3 0 * 7 13 9) ( 1 -6 [-11] 2 3 -3) ( 3 -4 * -15 -18 -10) ( 5 [3] -10 -7 1) ( 5 * 7 5 3) ( [3] 6 3) ({1} 1 1)
1033: ( [1]) ( -2 -6 * -6 -2) ( 3 0 [-6] 0 3) ( -2 6 18 * 18 6 -2) ( -7 1 [16] 1 -7) ( 1 -9 -16 * -16 -9 1) ( 3 -4 [-14] -4 3) ( 4 5 * 5 4) ( 3 [6] 3) ( 1 * 1)
1034: ( 1 1 0 [2] 1) ( -3 -4 -1 0 * -1 -1) ( -6 -8 -3 [-3] -2) ( 7 12 5 -1 * 0 1) ( 14 20 4 [0] 2) ( -5 -6 -5 -2 * 2) ( -10 -17 -5 [2]) ({-7} 1 -2 -1 2) ({-6} 2 4 2) ({-5} 1 1)
1035: ( -1 -1 0 [1] 1 1) ( -2 -1 1 * 1 1) ( 4 3 -3 [-3] -3 -2) ( 6 5 0 * -2 -3) ( -4 0 10 [5] 0 1) ( -7 -6 -1 * 0 2) ( 1 -5 -11 [-3] 2) ( 2 0 0 * 2) ( 2 4 [2]) ({-3} 1 1)
1036: ( [1] 1 2 1) ({1} 1 1 -3 -4 -1) ( [-2] -3 -6 -8 -2 1) ({1} -3 -2 8 16 9) ( [1] 0 6 18 8 -3) ({1} 2 0 -6 -15 -11) ({2} 2 -3 -16 -10 1) ({3} 2 1 2 3) ({4} 2 5 3) ({5} 1 1)
1037: ( -1 -1 [1] -1 -1) ( 2 2 -1 * -1 2 2) ( 3 0 [-6] 0 3) ( -3 -3 1 * 1 -3 -3) ( -5 2 [14] 2 -5) ( 1 -2 0 * 0 -2 1) ( 2 -3 [-10] -3 2) ( 2 0 * 0 2) ( 2 [4] 2) ( 1 * 1)
1038: ( [1] -1 -2 -1) ({7} -1 -1) ( [-2] 2 8 2 0 2) ({1} -2 1 3 8 8) ( [1] -3 -8 3 4 -3) ({1} 2 -2 -7 -13 -10) ({2} 3 2 -10 -8 1) ({3} 3 3 3 3) ({4} 2 5 3) ({5} 1 1)
1039: ({2} -2 -1) ({5} -1 0 2 1) ({2} 5 5 -1 1 1 -1) ({3} 4 5 4 -1 -4) ({2} -4 -4 5 0 -4 1) ({3} -6 -9 -9 -3 3) ({2} 1 -3 -10 -2 4) ({3} 2 2 4 4) ({4} 2 5 3) ({5} 1 1)
1040: ( 1 0 -3 [-1]) ( 1 0 0 2 2 * 1) ( 3 1 1 7 [4]) ( -2 2 6 3 -1 * -2) ( -6 -5 -2 -9 [-6]) ( 1 -6 -13 -12 -5 * 1) ( 3 0 -5 1 [3]) ({-7} 4 7 7 4) ({-6} 3 6 3) ({-5} 1 1)
1041: ( -1 [-1] -2 -2 -1) ( -1 * -2 -2 0 1) ( 3 [7] 9 10 4 -1) ( 7 * 13 10 1 -3) ( -3 [-4] -8 -14 -6 1) ( -9 * -20 -18 -4 3) ( 1 [-5] -7 4 5) ( 3 * 6 8 5) ( [3] 6 3) ({1} 1 1)
1042: ( -1 -3 [-2] -1) ( 1 1 -1 * -1) ( 4 9 [9] 6 2) ( -2 0 10 * 14 5 -1) ( -6 -11 [-8] -10 -7) ( 1 -5 -18 * -24 -11 1) ( 3 2 [-5] 0 4) ( 4 9 * 11 6) ( 3 [7] 4) ( 1 * 1)
1043: ( -1 -2 [-1] -2 -1) ( 1 0 -3 * -3 0 1) ( 3 7 [8] 7 3) ( -2 1 12 * 12 1 -2) ( -6 -8 [-4] -8 -6) ( 1 -6 -16 * -16 -6 1) ( 3 0 [-6] 0 3) ( 4 7 * 7 4) ( 3 [6] 3) ( 1 * 1)
1044: ( -1 [-2] -3 -1) ( -2 * -4 -2) ( 3 [9] 13 10 3) ( 8 * 20 15 0 -3) ( -3 [-6] -12 -18 -8 1) ( -9 * -26 -27 -6 4) ( 1 [-4] -7 5 7) ( 3 * 8 12 7) ( [3] 7 4) ({1} 1 1)
1045: ( -2 [-3] -2) ( -1 -5 * -5 -1) ( 3 12 [18] 12 3) ( -1 5 21 * 21 5 -1) ( -7 -17 [-20] -17 -7) ( 1 -10 -31 * -31 -10 1) ( 4 3 [-2] 3 4) ( 6 14 * 14 6) ( 4 [8] 4) ( 1 * 1)
1046: ({4} 6 8 3) ({5} -6 -10 -2 2) ({4} -17 -29 -7 2 -2 1) ({5} 5 23 9 -7 2) ({4} 17 42 13 -9 3) ({5} 5 -12 -13 4) ({4} -7 -23 -12 4) ({5} -5 -1 4) ({4} 1 4 3) ({5} 1 1)
1047: ({-6} 5 9 3) ({-11} -1 2 -1 -9 -8 -3) ({-10} -1 1 -15 -26 -9) ({-11} 1 -3 2 19 20 7) ({-10} 2 -3 15 35 15) ({-9} 3 -5 -14 -11 -5) ({-8} 3 -10 -23 -10) ({-7} 3 1 -1 1) ({-6} 3 5 2) ({-5} 1 1)
1048: ( 4 [9] 4) ( 2 0 -7 * -9 -3 1) ( 2 -11 [-27] -13 1) ( -3 -1 12 * 21 8 -3) ( -5 9 [37] 18 -5) ( 1 -3 -5 * -11 -9 1) ( 2 -5 [-20] -11 2) ( 2 0 * 1 3) ( 2 [5] 3) ( 1 * 1)
1049: ({6} -1 5 7 2) ({9} -9 -10 0 1) ({6} 4 -13 -20 -2 0 -1) ({7} 3 22 24 1 -4) ({6} -4 15 26 2 -4 1) ({7} -6 -18 -19 -4 3) ({6} 1 -11 -19 -3 4) ({7} 2 3 5 4) ({8} 3 6 3) ({9} 1 1)
1050: ({2} -2 1 4 2) ({3} 1 -3 -10 -6) ({2} 5 0 -13 -3 3 -2) ({3} 3 6 22 16 -3) ({2} -4 -1 18 9 -5 1) ({3} -6 -8 -15 -11 2) ({2} 1 -4 -15 -7 3) ({3} 2 1 3 4) ({4} 2 5 3) ({5} 1 1)
1051: ( 3 4 -1 [-1]) ( 2 -3 -9 -5 0 * 1) ( 1 -8 -8 4 [3]) ( -3 5 21 15 0 * -2) ( -4 9 13 -6 [-6]) ( 1 -6 -16 -16 -6 * 1) ( 2 -6 -12 -1 [3]) ({-7} 3 5 6 4) ({-6} 3 6 3) ({-5} 1 1)
1052: ( 2 [4] 0 -1) ( -4 -9 * -7 0 2) ( -7 [-9] 4 6) ( 8 24 * 24 2 -5 1) ( 13 [19] -9 -12 3) ( -5 -16 * -28 -11 6) ( -9 [-20] -3 8) ( 1 1 * 7 7) ( 2 [6] 4) ( 1 * 1)
1053: ({6} -3 0 3 1) ({7} 1 -7 -11 -3) ({4} -1 8 4 -5 2 2) ({5} -2 1 21 28 10) ({4} 1 -9 -7 6 0 -3) ({5} 3 -6 -26 -27 -10) ({6} 6 0 -13 -6 1) ({7} 6 10 7 3) ({8} 4 7 3) ({9} 1 1)
1054: ( -2 -2 [3] 2) ( -1 1 1 -5 * -8 -4) ( -1 5 5 [-7] -6) ( 1 -2 2 17 * 20 8) ( 2 -6 -3 [17] 12) ( 3 -7 -18 * -13 -5) ( 4 -5 [-18] -9) ( 4 3 * 0 1) ( 3 [5] 2) ( 1 * 1)
1055: ({4} 1 -1 1 3 1) ({7} 2 -4 -9 -3) ({4} -2 2 -3 -8 1 2) ({5} -2 -2 15 24 9) ({4} 1 -3 5 13 1 -3) ({5} 2 -1 -16 -23 -10) ({6} 3 -4 -15 -7 1) ({7} 3 5 5 3) ({8} 3 6 3) ({9} 1 1)
1056: ({2} -2 0 2 1) ({5} -4 -8 -4) ({2} 5 3 -7 -2 2 -1) ({3} 4 11 21 11 -3) ({2} -4 -3 12 4 -6 1) ({3} -6 -13 -21 -11 3) ({2} 1 -3 -14 -5 5) ({3} 2 3 7 6) ({4} 2 6 4) ({5} 1 1)
1057: ( 2 2 -2 [-1]) ( 1 -3 -6 -2 1 * 1) ( 2 -2 0 8 [4]) ( -2 6 18 12 0 * -2) ( -5 -1 -1 -11 [-6]) ( 1 -9 -23 -19 -5 * 1) ( 3 -3 -7 2 [3]) ({-7} 5 10 9 4) ({-6} 4 7 3) ({-5} 1 1)
1058: ( 1 0 [-2] -3 -2 -1) ( -4 * -6 -4 -2) ( -2 0 [8] 10 7 3) ( -2 8 * 21 18 7) ( 1 -2 [-5] -4 -5 -3) ( 2 -6 * -22 -23 -9) ( 3 [-1] -10 -5 1) ( 4 * 7 6 3) ( [3] 6 3) ({1} 1 1)
1059: ( -1 [-2] -4 -3 -1) ( -2 * -5 -4 0 1) ( 3 [8] 11 10 3 -1) ( 8 * 21 20 4 -3) ( -3 [-6] -8 -11 -5 1) ( -9 * -27 -28 -7 3) ( 1 [-4] -9 1 5) ( 3 * 8 11 6) ( [3] 7 4) ({1} 1 1)
1060: ( -1 -3 -4 [-2] -1) ( -3 -7 -6 * -2) ( 3 11 18 [14] 4) ( 9 27 25 * 5 -2) ( -3 -8 -17 [-22] -9 1) ( -9 -32 -38 * -11 4) ( 1 -3 -7 [5] 8) ( 3 10 16 * 9) ( 3 8 [5]) ({-3} 1 1)
1061: ( [4] 5 1 -1) ({1} -2 -8 -6) ( [-16] -24 1 6 -2 1) ({1} 1 26 17 -6 2) ( [17] 38 5 -13 3) ({1} 6 -16 -18 4) ( [-7] -22 -10 5) ({1} -5 0 5) ( [1] 4 3) ({1} 1 1)
1062: ({-6} 4 7 2) ({-11} -1 1 -1 -6 -5 -2) ({-10} -1 4 -8 -23 -10) ({-11} 1 -2 5 16 15 7) ({-10} 2 -6 6 30 16) ({-9} 3 -8 -15 -9 -5) ({-8} 4 -7 -21 -10) ({-7} 4 2 -1 1) ({-6} 3 5 2) ({-5} 1 1)
1063: ({4} 1 0 3 4 1) ({9} -8 -10 -2) ({4} -2 1 -10 -16 -2 1) ({5} -2 0 20 28 10) ({4} 1 -3 11 24 6 -3) ({5} 2 -2 -16 -23 -11) ({6} 3 -6 -19 -9 1) ({7} 3 4 4 3) ({8} 3 6 3) ({9} 1 1)
1064: ( [4] 6 3) ( -1 * -3 -6 -4) ( 4 [-9] -26 -8 3 -2) ( 6 * 4 16 15 -3) ( -4 [7] 30 13 -5 1) ( -7 * -5 -11 -11 2) ( 1 [-6] -18 -8 3) ( 2 * 0 2 4) ( [2] 5 3) ({1} 1 1)
1065: ({-6} 3 5 1) ({-9} 2 -2 -8 -6 -2) ( 1 -12 -17 -1 [3]) ( -3 4 19 20 6 * -2) ( -4 12 24 1 [-7]) ( 1 -6 -14 -17 -9 * 1) ( 2 -7 -16 -4 [3]) ({-7} 3 4 5 4) ({-6} 3 6 3) ({-5} 1 1)
1066: ({6} -2 2 4 1) ({7} 1 -5 -6) ({6} 5 -6 -8 5 2) ({7} 2 20 22 1 -3) ({6} -4 8 8 -13 -8 1) ({7} -5 -22 -28 -7 4) ({6} 1 -8 -13 3 7) ({7} 2 6 11 7) ({8} 3 7 4) ({9} 1 1)
1067: ( [1]) ({3} -2 -6 -6 -2) ( [-2] 0 2 -2 0 2) ({1} -2 7 19 19 9) ( [1] -2 -1 7 2 -3) ({1} 2 -6 -19 -21 -10) ({2} 3 -2 -13 -7 1) ({3} 4 6 5 3) ({4} 3 6 3) ({5} 1 1)
1068: ({-6} 1 1 -1) ({-7} -4 -8 -6 -2) ( -7 -5 7 [4] -1) ( 8 23 27 8 * -3 1) ( 13 17 -9 [-10] 3) ( -5 -16 -30 -14 * 5) ( -9 -20 -4 [7]) ({-7} 1 1 7 7) ({-6} 2 6 4) ({-5} 1 1)
1069: ({-8} -1 -2 -2 -2) ({-9} 1 -2 -6 -4 -1) ( 3 7 12 11 [3]) ( -2 5 23 22 5 * -1) ( -5 -9 -14 -17 [-7]) ( 1 -8 -30 -32 -10 * 1) ( 3 0 -4 3 [4]) ({-7} 5 13 14 6) ({-6} 4 8 4) ({-5} 1 1)
1070: ( -1 -2 -3 [-3] -2) ( 1 1 1 0 * -1) ( -1 4 9 9 [10] 5) ( -3 0 2 4 * 5) ( 1 -6 -12 -8 [-7] -4) ( 3 -4 -11 -10 * -6) ( 5 3 -5 [-2] 1) ( 5 6 3 * 2) ( 3 5 [2]) ({-3} 1 1)
1071: ( -1 -3 [-3] -3 -1) ( 1 1 -1 * -1 1 1) ( 4 10 [12] 10 4) ( -2 0 7 * 7 0 -2) ( -6 -12 [-12] -12 -6) ( 1 -5 -15 * -15 -5 1) ( 3 2 [-2] 2 3) ( 4 8 * 8 4) ( 3 [6] 3) ( 1 * 1)
1072: ({2} -2 -2 -2 -1) ({3} -1 -3 -1 1) ({2} 5 8 7 6 2) ({3} 5 11 9 0 -3) ({2} -4 -6 -4 -11 -8 1) ({3} -6 -14 -19 -7 4) ({2} 1 -2 -8 2 7) ({3} 2 4 9 7) ({4} 2 6 4) ({5} 1 1)
1073: ({-8} -1 -3 -4 -3) ({-9} 1 0 -3 -3 -1) ( 4 12 17 12 [3]) ( -2 1 14 16 4 * -1) ( -6 -14 -17 -16 [-7]) ( 1 -5 -21 -26 -10 * 1) ( 3 3 -2 2 [4]) ({-7} 4 10 12 6) ({-6} 3 7 4) ({-5} 1 1)
1074: ({2} -2 0 2 1) ({5} -4 -8 -4) ( [-1] 5 8 -1 1 4) ({1} -3 3 9 11 8) ( [1] -7 -9 3 0 -4) ({1} 3 -6 -12 -10 -7) ({2} 5 1 -9 -4 1) ({3} 5 5 2 2) ({4} 3 5 2) ({5} 1 1)
1075: ({-6} -1 -3 -3) ( -3 -7 -5 * -1) ( 3 12 20 [15] 4) ( 9 24 17 * -1 -3) ( -3 -9 -21 [-24] -8 1) ( -9 -29 -29 * -5 4) ( 1 -3 -4 [7] 7) ( 3 9 13 * 7) ( 3 7 [4]) ({-3} 1 1)
1076: ({2} -4 -4 0 1) ({3} 4 8 2 -2) ({2} 8 9 -7 -4 3 -1) ({3} -2 -15 -3 7 -3) ({2} -5 -7 10 4 -7 1) ({3} -2 7 -2 -8 3) ({2} 1 0 -9 -3 5) ({3} 1 -2 2 5) ({4} 1 4 3) ({5} 1 1)
1077: ( 1 -1 -5 [-2]) ( 1 -1 -1 3 4 * 2) ( 2 -2 -1 7 [4]) ( -2 2 6 0 -5 * -3) ( -6 0 8 -3 [-5]) ( 1 -7 -9 -3 -1 * 1) ( 3 -3 -9 -1 [2]) ({-7} 4 4 2 2) ({-6} 3 5 2) ({-5} 1 1)
1078: ({2} -1 -1 -4 -4 -1) ({3} -1 -3 2 6 2) ({2} 3 6 11 10 1 -1) ({3} 7 15 5 -7 -4) ({2} -3 -4 -7 -10 -3 1) ({3} -9 -21 -15 0 3) ({2} 1 -5 -8 2 4) ({3} 3 6 7 4) ({4} 3 6 3) ({5} 1 1)
1079: ( 5 [11] 5) ( 2 -2 -11 * -11 -2 2) ( 1 -13 [-28] -13 1) ( -3 4 22 * 22 4 -3) ( -4 12 [32] 12 -4) ( 1 -6 -15 * -15 -6 1) ( 2 -7 [-18] -7 2) ( 3 4 * 4 3) ( 3 [6] 3) ( 1 * 1)
1080: ({6} -2 3 6 2) ({7} 1 -8 -12 -2 1) ({6} 5 -7 -13 2 2 -1) ({7} 2 22 29 6 -3) ({6} -4 8 13 -5 -5 1) ({7} -5 -23 -29 -8 3) ({6} 1 -8 -15 -1 5) ({7} 2 6 10 6) ({8} 3 7 4) ({9} 1 1)
1081: ( -1 -1 [1] -1 -1) ( 1 -2 -8 * -8 -2 1) ( 3 6 [6] 6 3) ( -2 5 25 * 25 5 -2) ( -5 -9 [-8] -9 -5) ( 1 -8 -31 * -31 -8 1) ( 3 0 [-6] 0 3) ( 5 13 * 13 5) ( 4 [8] 4) ( 1 * 1)
1082: ( [1]) ( -1 * -2 0 2 1) ( 1 [-6] -13 -5 0 -1) ( 7 * 10 5 -2 -4) ( -3 [14] 32 10 -4 1) ( -10 * -8 -4 -3 3) ( 1 [-14] -27 -8 4) ( 3 * -2 -1 4) ( [4] 8 4) ({1} 2 2)
1083: ( 1 2 1 [1]) ({-7} -3 -6 -4 -1) ( 2 -4 -10 -2 [2]) ( -2 9 20 13 3 * -1) ( -6 10 22 -1 [-7]) ( 1 -11 -18 -17 -10 * 1) ( 3 -10 -22 -5 [4]) ({-7} 5 5 6 6) ({-6} 5 10 5) ({-5} 2 2)
1084: ( [-1] -4 -2) ( 1 * 2 2 0 -1) ( [4] 7 1 -1 1) ( -2 * -2 4 11 6 -1) ( [-6] -5 9 2 -6) ( 1 * -4 -11 -20 -13 1) ( [3] -2 -17 -8 4) ({1} 4 5 8 7) ({2} 4 10 6) ({3} 2 2)
1085: ({-6} 1 1 -1) ({-9} 1 0 -2 -2 -1) ({-10} -1 1 -5 -14 -7) ({-11} 1 -4 2 14 11 4) ({-10} 3 -7 8 37 19) ({-9} 5 -10 -15 -4 -4) ({-8} 6 -12 -32 -14) ({-7} 6 0 -5 1) ({-6} 5 8 3) ({-5} 2 2)
1086: ( [2] 2 1) ( -1 * -3 -4 -2) ( 3 [1] -6 -2 2) ( -2 4 * 13 15 8) ( 1 -9 [-7] 13 7 -3) ( 4 -11 * -23 -17 -9) ( 8 [-2] -21 -10 1) ( 9 * 9 3 3) ( [6] 10 4) ({1} 2 2)
1087: ( -1 [-2] -3 -1) ( 1 1 * -1 -1) ( -1 3 [7] 3 1 1) ( -3 2 * 13 15 7) ( 1 -5 [-5] 8 5 -2) ( 3 -6 * -21 -23 -11) ( 5 [-3] -21 -12 1) ( 6 * 7 5 4) ( [5] 10 5) ({1} 2 2)
1088: ( -1 [-1] -1) ( -1 -4 * -4 -1) ( 3 7 [8] 7 3) ( -1 6 19 * 19 6 -1) ( -6 -10 [-8] -10 -6) ( 1 -11 -32 * -32 -11 1) ( 4 -2 [-12] -2 4) ( 7 14 * 14 7) ( 6 [12] 6) ( 2 * 2)
1089: ( -1 -2 -1 0 [1]) ({-9} 1 -1 -4 -2) ({-8} 3 6 6 3) ({-9} -2 4 20 19 5) ( -5 -4 -2 -9 [-6]) ( 1 -7 -27 -35 -15 * 1) ( 3 -3 -15 -4 [5]) ({-7} 5 11 15 9) ({-6} 5 12 7) ({-5} 2 2)
1090: ( -2 [-2] 0 1) ( -2 * -2 -1 -1) ( -1 6 [8] -5 -4 2) ( -2 7 * 9 7 7) ( 1 -8 [-6] 15 9 -3) ( 3 -10 * -15 -11 -9) ( 6 [-3] -21 -11 1) ( 7 * 5 1 3) ( [5] 9 4) ({1} 2 2)
1091: ( 2 [5] 2) ( 1 0 -4 * -6 -3) ( 2 -7 [-19] -9 1) ( -2 0 9 * 18 9 -2) ( -6 7 [35] 16 -6) ( 1 -6 -7 * -13 -12 1) ( 3 -7 [-26] -13 3) ( 4 1 * 2 5) ( 4 [9] 5) ( 2 * 2)
1092: ({2} -1 1 1) ({3} -1 -5 -5 -1) ({2} 3 1 -2 2 2) ({3} 6 18 21 7 -2) ({2} -3 2 10 -4 -8 1) ({3} -8 -22 -32 -14 4) ({2} 1 -8 -22 -5 8) ({3} 3 5 12 10) ({4} 4 11 7) ({5} 2 2)
1093: ({-4} -1 -2) ( 1 -1 -6 * -6 -2) ( 7 7 [-6] -6) ( 1 -4 7 25 * 18 5) ( 3 -14 -6 [28] 17) ( 6 -17 -29 * -10 -4) ( 9 -9 [-31] -13) ( 9 5 * -3 1) ( 6 [9] 3) ( 2 * 2)
1094: ( [3] 4 2) ( -1 * -3 -5 -3) ( 2 [-7] -18 -6 2 -1) ( 6 * 10 16 9 -3) ( -3 [11] 31 10 -6 1) ( -9 * -11 -15 -10 3) ( 1 [-12] -27 -9 5) ( 3 * 0 3 6) ( [4] 9 5) ({1} 2 2)
1095: ({-6} 2 3) ({-9} 1 -2 -5 -3 -1) ( 2 -4 -7 1 [2]) ( -2 5 17 16 5 * -1) ( -5 4 13 -2 [-6]) ( 1 -8 -21 -25 -12 * 1) ( 3 -6 -19 -6 [4]) ({-7} 5 8 10 7) ({-6} 5 11 6) ({-5} 2 2)
1096: ( -1 -2 -3 [-3] -2) ( -2 -2 -1 * -1) ( 3 6 10 [12] 5) ( 7 16 17 * 7 -1) ( -3 -1 -4 [-17] -10 1) ( -8 -23 -34 * -15 4) ( 1 -7 -17 [0] 9) ( 3 6 14 * 11) ( 4 11 [7]) ({-3} 2 2)
1097: ({2} -2 -2 -2 -1) ({3} -2 -6 -4) ( [-1] 6 10 3 1 1) ({1} -2 10 24 20 8) ( [1] -7 -9 5 4 -2) ({1} 3 -12 -32 -28 -11) ({2} 6 -3 -21 -11 1) ({3} 8 11 7 4) ({4} 6 11 5) ({5} 2 2)
1098: ({2} -1 3 5 2) ({5} -6 -12 -6) ({2} 3 -2 -10 0 4 -1) ({3} 5 14 25 14 -2) ({2} -3 4 17 2 -7 1) ({3} -8 -17 -26 -14 3) ({2} 1 -9 -23 -7 6) ({3} 3 3 8 8) ({4} 4 10 6) ({5} 2 2)
1099: ( 4 [9] 4) ( 1 -3 -10 * -10 -3 1) ( 1 -8 [-18] -8 1) ( -2 5 21 * 21 5 -2) ( -5 9 [28] 9 -5) ( 1 -9 -18 * -18 -9 1) ( 3 -9 [-24] -9 3) ( 5 5 * 5 5) ( 5 [10] 5) ( 2 * 2)
10100: ({-6} 3 5 1) ({-9} 2 -2 -8 -6 -2) ({-8} 4 -6 -17 -7) ({-11} 1 -5 5 26 20 5) ({-10} 3 -11 5 36 17) ({-9} 6 -14 -27 -11 -4) ({-8} 8 -12 -33 -13) ({-7} 8 4 -3 1) ({-6} 6 9 3) ({-5} 2 2)
10101: ({6} -2 2 4 1) ({9} -8 -9 -1) ({4} -1 7 -1 -9 1 1) ({5} -2 4 26 28 8) ({4} 1 -8 1 15 3 -2) ({5} 3 -8 -31 -31 -11) ({6} 6 -6 -24 -11 1) ({7} 7 10 7 4) ({8} 6 11 5) ({9} 2 2)
10102: ( -1 [0] 1 1) ( -2 * -4 -4 -2) ( -1 3 [2] -8 -4 2) ( -3 7 * 16 13 7) ( 1 -6 [3] 21 8 -3) ( 3 -9 * -17 -14 -9) ( 5 [-7] -24 -11 1) ( 6 * 4 1 3) ( [5] 9 4) ({1} 2 2)
10103: ( 1 0 -3 [-1]) ( -4 -6 -2 1 * 1) ( 1 -6 -8 2 [3]) ( -2 10 21 9 -2 * -2) ( -6 13 25 0 [-6]) ( 1 -12 -16 -9 -5 * 1) ( 3 -12 -23 -5 [3]) ({-7} 5 3 2 4) ({-6} 5 9 4) ({-5} 2 2)
10104: ( 1 [3] 1) ( 1 1 -2 * -4 -2) ( 3 -4 [-15] -6 2) ( -2 -1 4 * 13 8 -2) ( -6 3 [27] 12 -6) ( 1 -5 -6 * -12 -11 1) ( 3 -5 [-22] -11 3) ( 4 2 * 3 5) ( 4 [9] 5) ( 2 * 2)
10105: ( -1 [-1] -1) ( -2 * -4 -3 -1) ( 3 [5] 4 5 3) ( 7 * 18 19 6 -2) ( -3 [-1] 2 -9 -8 1) ( -8 * -24 -33 -13 4) ( 1 [-7] -19 -3 8) ( 3 * 6 13 10) ( [4] 11 7) ({1} 2 2)
10106: ( [2] 2 1) ( -1 * -2 -1 1 1) ( 2 [-5] -13 -3 2 -1) ( 7 * 9 8 3 -3) ( -3 [9] 22 4 -5 1) ( -9 * -12 -13 -7 3) ( 1 [-11] -23 -6 5) ( 3 * 1 4 6) ( [4] 9 5) ({1} 2 2)
10107: ({-4} -1 -2) ( 1 0 -3 * -3 -1) ( 3 3 [0] 2 2) ( -2 3 15 * 17 6 -1) ( -5 -2 [5] -4 -6) ( 1 -7 -22 * -27 -12 1) ( 3 -4 [-16] -5 4) ( 5 9 * 11 7) ( 5 [11] 6) ( 2 * 2)
10108: ( [1]) ( -2 -6 * -6 -2) ( -7 [-10] 0 2 -1) ( 5 19 * 28 10 -3 1) ( 17 [33] 4 -9 3) ( -4 -11 * -29 -17 5) ( -13 [-33] -13 7) ( 1 -3 * 4 8) ( 3 [9] 6) ( 2 * 2)
10109: ( 3 [7] 3) ( 1 -1 -5 * -5 -1 1) ( 2 -7 [-18] -7 2) ( -2 4 13 * 13 4 -2) ( -5 6 [22] 6 -5) ( 1 -8 -16 * -16 -8 1) ( 3 -7 [-20] -7 3) ( 5 6 * 6 5) ( 5 [10] 5) ( 2 * 2)
10110: ( -1 [0] 0 -1 -1) ( -1 * -3 -6 -4) ( 3 [2] -1 6 5 -1) ( 6 * 13 21 12 -2) ( -3 [1] 8 -4 -7 1) ( -8 * -19 -27 -13 3) ( 1 [-8] -20 -5 6) ( 3 * 4 9 8) ( [4] 10 6) ({1} 2 2)
10111: ({2} -1 2 3 1) ({3} -1 -7 -10 -4) ({2} 3 -2 -10 -3 1 -1) ({3} 5 19 30 13 -3) ({2} -3 3 22 10 -5 1) ({3} -8 -20 -28 -13 3) ({2} 1 -9 -26 -11 5) ({3} 3 3 7 7) ({4} 4 10 6) ({5} 2 2)
10112: ( -2 -4 [-1]) ({-5} 2 2) ( 1 1 -3 [-3]) ( -3 -1 9 13 * 6) ( 1 -7 3 28 [15] -2) ( 4 -8 -17 -16 * -11) ( 7 -9 -35 [-18] 1) ( 8 4 0 * 4) ( 7 13 [6]) ({-3} 3 3)
10113: ({2} -3 -3 -1) ({1} -1 -1 1 1) ( [3] 8 8 3) ( -1 * 5 17 16 5) ( [-6] -6 1 -4 -5) ( 1 * -10 -30 -36 -16 1) ( [4] -5 -23 -9 5) ({1} 7 12 15 10) ({2} 7 16 9) ({3} 3 3)
10114: ({-4} -1 -2) ( -2 -3 * -1) ( -3 -5 [0] 2) ( 7 18 18 * 5 -2) ( -2 14 26 [1] -8 1) ( -11 -21 -27 * -13 4) ( 1 -17 -35 [-9] 8) ( 4 2 8 * 10) ( 6 14 [8]) ({-3} 3 3)
10115: ( 1 [3] 1) ( -2 -5 * -5 -2) ( 2 -1 [-6] -1 2) ( -1 8 22 * 22 8 -1) ( -5 1 [12] 1 -5) ( 1 -13 -34 * -34 -13 1) ( 4 -9 [-26] -9 4) ( 8 13 * 13 8) ( 8 [16] 8) ( 3 * 3)
10116: ( [1]) ( -1 -3 -3 * -1) ( 2 1 -3 [-1] 1) ( -2 6 19 17 * 6) ( 1 -8 -1 19 [9] -2) ( 4 -13 -29 -22 * -10) ( 8 -8 -32 [-15] 1) ( 10 9 3 * 4) ( 8 14 [6]) ({-3} 3 3)
10117: ({-6} 1 1 -1) ({-7} -3 -5 -3 -1) ( 1 -3 -4 2 [2]) ( -1 8 21 18 5 * -1) ( -5 6 17 0 [-6]) ( 1 -14 -29 -26 -11 * 1) ( 4 -12 -28 -8 [4]) ({-7} 8 10 9 7) ({-6} 8 15 7) ({-5} 3 3)
10118: ( [1]) ( -1 -3 * -3 -1) ( 1 -2 [-6] -2 1) ( -1 5 15 * 15 5 -1) ( -6 6 [24] 6 -6) ( 1 -12 -20 * -20 -12 1) ( 4 -11 [-30] -11 4) ( 7 6 * 6 7) ( 7 [14] 7) ( 3 * 3)
10119: ( -1 [-1] -1) ( -1 -3 -4 * -2) ( 1 0 1 [6] 4) ( 7 19 22 * 9 -1) ( -2 8 13 [-7] -9 1) ( -10 -26 -37 * -17 4) ( 1 -14 -31 [-7] 9) ( 4 5 13 * 12) ( 6 15 [9]) ({-3} 3 3)
10120: ({6} -3 0 3 1) ({7} 2 -4 -8 -2) ({6} 7 0 -7 1 1) ({7} 5 26 29 8) ({4} 1 -11 -3 17 6 -2) ({5} 4 -17 -44 -33 -10) ({6} 10 -9 -33 -13 1) ({7} 13 16 7 4) ({8} 10 16 6) ({9} 3 3)
10121: ( [1] 1 2 1) ({3} -1 -3 -2) ({2} -3 -7 -3 1) ({1} 4 14 19 8 -1) ( [-5] 3 22 9 -5) ( 1 * -15 -30 -28 -13 1) ( [5] -13 -36 -14 4) ({1} 10 11 9 8) ({2} 10 19 9) ({3} 4 4)
10122: ( -2 -4 [-1]) ({-5} 2 2) ( [2] 2) ( 4 14 18 * 6 -2) ( -1 12 24 [3] -7 1) ( -11 -25 -32 * -14 4) ( 1 -20 -42 [-13] 8) ( 5 3 9 * 11) ( 8 18 [10]) ({-3} 4 4)
10123: ( -2 [-3] -2) ( -2 * -2) ( 6 [12] 6) ( 5 21 * 21 5) ( -5 -3 [4] -3 -5) ( 1 -15 -38 * -38 -15 1) ( 5 -11 [-32] -11 5) ( 10 14 * 14 10) ( 10 [20] 10) ( 4 * 4)
10124: ({8} 7 8 2) ({9} -8 -8) ({8} -21 -22 -1) ({9} 14 14) ({8} 21 21) ({9} -7 -7) ({8} -8 -8) ({9} 1 1) ({8} 1 1)
10125: ( 3 [7] 3) ( 1 -1 -6 * -8 -4) ( 1 -6 [-15] -8) ( 1 8 * 17 10) ( 2 [13] 11) ( -5 * -11 -6) ( [-6] -6) ( 1 * 2 1) ( [1] 1)
10126: ({-6} 4 7 2) ({-9} 3 -1 -8 -6 -2) ({-8} 1 -11 -16 -4) ({-9} -4 2 16 11 1) ({-8} -3 11 16 2) ({-9} 1 -3 -9 -5) ({-8} 1 -5 -6) ({-7} 1 2 1) ({-6} 1 1)
10127: ({4} 5 6 2) ({5} -5 -8 -2 1) ({4} -9 -14 -2 1 -2) ({5} 5 16 7 -4) ({4} 3 11 4 -3 1) ({5} -3 -10 -5 2) ({6} -4 -2 2) ({5} 1 3 2) ({6} 1 1)
10128: ({6} -2 2 4 1) ({7} 1 -5 -6) ({6} 6 -5 -11) ({7} 2 13 11) ({6} -5 7 12) ({7} -4 -10 -6) ({6} 1 -5 -6) ({7} 1 2 1) ({8} 1 1)
10129: ( 1 [2] -1 -1) ( -2 -5 * -5 -1 1) ( -3 [-4] 2 3) ( 1 9 * 15 4 -3) ( 2 [8] 0 -6) ( -4 * -11 -6 1) ( [-4] -2 2) ( 1 * 3 2) ( [1] 1)
10130: ( 2 2 -2 [-1]) ( -6 -9 -3 1 * 1) ( -4 0 6 [2]) ({-7} 11 21 8 -2) ({-6} 7 0 -7) ({-7} -6 -15 -8 1) ({-6} -5 -3 2) ({-7} 1 3 2) ({-6} 1 1)
10131: ({2} -2 0 2 1) ({3} 1 -1 -5 -3) ({2} 3 2 -3 2 4) ({3} 1 2 10 9) ({4} -2 -2 -4 -4) ({3} 1 -3 -12 -8) ({4} 2 0 -1 1) ({5} 2 4 2) ({6} 1 1)
10132: ({-6} 2 3) ({-7} -5 -8 -4 -1) ({-6} -6 -7 -1) ({-7} 10 19 9) ({-6} 10 10) ({-7} -6 -12 -6) ({-6} -6 -6) ({-7} 1 2 1) ({-6} 1 1)
10133: ({2} -1 2 3 1) ({5} -4 -7 -3) ({2} 1 -3 -6 1 3) ({3} 1 7 16 10) ({4} 2 6 0 -4) ({5} -4 -13 -9) ({6} -4 -3 1) ({5} 1 3 2) ({6} 1 1)
10134: ({6} -3 0 3 1) ({7} 2 -4 -8 -2) ({6} 7 0 -7 1 1) ({9} 11 14 3) ({6} -5 1 5 -1) ({7} -3 -11 -8) ({6} 1 -3 -3 1) ({7} 1 3 2) ({8} 1 1)
10135: ( 2 [4] 0 -1) ( -3 -6 * -4 1 2) ( -4 [-6] 1 3) ( 3 9 * 8 -1 -3) ( 2 [3] -4 -5) ( -4 * -8 -3 1) ( 1 [0] 1 2) ( 2 * 4 2) ( [1] 1)
10136: ( -1 -3 [-2] -1) ( -2 -4 * -2) ( 1 4 [6] 3) ( 7 16 * 9) ( 2 [-2] -4) ( -5 -14 * -9) ( -4 [-3] 1) ( 1 3 * 2) ( 1 [1])
10137: ( -1 [-1] -2 -2 -1) ( -1 * -3 -5 -3) ( 1 [4] 7 8 4) ( 2 * 9 15 8) ( [-2] -5 -7 -4) ({1} -7 -15 -8) ( [1] -1 -1 1) ({1} 2 4 2) ({2} 1 1)
10138: ( -2 [-3] -3 -2 -1) ( -1 * -1 -2 -2) ( 5 [12] 10 6 3) ( 6 * 8 5 3) ( -4 [-12] -13 -5) ( -7 * -14 -6 1) ( 1 [1] 3 3) ( 2 * 5 3) ( [1] 1)
10139: ({8} 6 6 1) ({9} -6 -5 -1 -2) ({8} -21 -19 0 -2) ({9} 13 13 1 1) ({8} 21 20 0 1) ({9} -7 -7) ({8} -8 -8) ({9} 1 1) ({8} 1 1)
10140: ( [1] 2 4 2) ({3} -2 -6 -4) ({2} -4 -12 -8) ({3} 6 16 10) ({2} 1 12 11) ({3} -5 -11 -6) ({4} -6 -6) ({3} 1 2 1) ({4} 1 1)
10141: ( [2] 2 1) ( -1 * -3 -4 -2) ( 1 [-4] -9 -1 3) ( 2 * 5 13 10) ( [3] 8 1 -4) ({1} -3 -12 -9) ({2} -4 -3 1) ({1} 1 3 2) ({2} 1 1)
10142: ({6} -1 4 5 1) ({9} -6 -4 2) ({6} 6 -10 -17 -1) ({7} 3 12 9) ({6} -5 9 15 1) ({7} -4 -9 -5) ({6} 1 -5 -6) ({7} 1 2 1) ({8} 1 1)
10143: ({-6} 2 3) ({-9} 1 -2 -5 -3 -1) ({-8} 3 -3 -10 -4) ({-9} -3 5 14 7 1) ({-8} -6 2 11 3) ({-9} 1 -6 -10 -3) ({-8} 2 -2 -4) ({-7} 2 3 1) ({-6} 1 1)
10144: ( [3] 4 2) ({3} -2 -2) ( [-7] -12 -2 2 -1) ({3} 8 4 -4) ( [3] 8 -2 -6 1) ({1} -1 -8 -4 3) ({2} -2 2 4) ({1} 1 4 3) ({2} 1 1)
10145: ({-10} 1 1 1 2) ({-11} -5 -6 -2 -1) ({-10} -6 -4 -2 -4) ({-11} 10 18 8) ({-10} 10 9 0 1) ({-11} -6 -12 -6) ({-10} -6 -6) ({-11} 1 2 1) ({-10} 1 1)
10146: ( [1]) ( -1 -3 * -3 -1) ( 3 3 [-3] -3) ( -2 5 12 * 6 1) ( -8 -6 [5] 3) ( 1 -8 -11 * -2) ( 3 1 [-2]) ( 3 4 * 1) ( 1 [1])
10147: ( -1 [-1] -1) ( -2 * -4 -3 -1) ( 4 [6] 1 0 1) ( 8 * 13 8 3) ( -4 [-6] -2) ( -8 * -14 -6) ( 1 [-1] -1 1) ( 2 * 4 2) ( [1] 1)
10148: ({-6} 3 5 1) ({-9} 2 -1 -5 -3 -1) ({-8} 2 -6 -11 -3) ({-9} -3 1 9 6 1) ({-8} -5 2 10 3) ({-9} 1 -4 -7 -2) ({-8} 2 -1 -3) ({-7} 2 3 1) ({-6} 1 1)
10149: ({4} 4 4 1) ({5} -3 -3 1 1) ({4} -7 -9 0 1 -1) ({5} 2 5 -1 -4) ({4} 3 5 -4 -5 1) ({5} -1 -6 -2 3) ({6} -1 3 4) ({5} 1 4 3) ({6} 1 1)
10150: ({2} -2 -1) ({5} -2 -3 -1) ({2} 5 8 3 1 1) ({3} 5 8 6 3) ({2} -4 -9 -5) ({3} -7 -12 -5) ({2} 1 0 0 1) ({3} 2 4 2) ({4} 1 1)
10151: ( 1 0 -3 [-1]) ( -3 -3 1 2 * 1) ( -2 4 10 [4]) ( 3 5 1 -3 * -2) ( 2 -6 -15 [-7]) ( -2 -7 -4 * 1) ( 1 3 5 [3]) ({-5} 2 5 3) ({-4} 1 1)
10152: ({8} 8 10 3) ({9} -10 -11 1 2) ({8} -22 -26 -3 -1 -2) ({9} 17 19 -3 -5) ({8} 21 25 2 -1 1) ({9} -8 -8 2 2) ({8} -8 -9 0 1) ({9} 1 1) ({8} 1 1)
10153: ( -1 1 [6] 3) ( 3 2 -6 * -10 -5) ( 3 -2 [-12] -7) ( -4 -4 12 * 22 10) ( -4 0 [14] 10) ( 1 1 -7 * -13 -6) ( 1 0 [-7] -6) ( 1 * 2 1) ( [1] 1)
10154: ({6} -4 -2 2 1) ({7} 3 -3 -10 -4) ({6} 9 5 -5 2 3) ({7} -2 9 21 10) ({6} -6 -2 7 -1 -4) ({9} -6 -15 -9) ({6} 1 0 -5 -3 1) ({9} 1 3 2) ({10} 1 1)
10155: ( 2 4 [3]) ({-5} -2 -2) ( 4 -1 -11 [-5] 1) ( 8 6 0 * 2) ( -4 -1 7 [4]) ({-5} -8 -9 -1) ({-6} 1 -2 -3) ({-5} 2 3 1) ({-4} 1 1)
10156: ({-4} -1 -2) ({-7} -1 -2 -2 -1) ( -2 1 7 [4]) ( 1 4 8 3 * -2) ( 3 2 -9 [-8]) ( -1 -9 -7 * 1) ( -1 2 [3]) ({-5} 1 4 3) ({-4} 1 1)
10157: ({-8} -1 0 2) ({-9} 4 4) ({-10} 2 7 0 -5) ({-11} -4 -8 -6 -2) ({-12} 1 -8 -15 -3 3) ({-11} 4 0 -3 1) ({-10} 6 8 2) ({-9} 4 5 1) ({-8} 1 1)
10158: ( -2 [-2] 0 1) ( -1 * 1 2) ( -1 5 [9] -2 -5) ( -3 3 * 2 -4) ( 1 -8 [-13] -1 3) ( 3 -5 * -7 1) ( 5 [6] 1) ( 4 * 5 1) ( [1] 1)
10159: ({2} -1 1 1) ({3} 1 1 1 1) ({2} -2 -4 1 3) ({1} 1 0 0 -1 -2) ({2} 4 3 -8 -7) ({3} 1 -5 -5 1) ({6} 3 3) ({3} 1 4 3) ({4} 1 1)
10160: ({2} -1 0 -1 -1) ({3} -1 -3 0 2) ({2} 4 3 0 1) ({3} 7 10 3) ({2} -4 -3 2 1) ({3} -8 -11 -3) ({2} 1 -2 -3) ({3} 2 3 1) ({4} 1 1)
10161: ({6} -3 -1 1) ({7} 2 0 1 3) ({6} 9 3 -3 3) ({7} -1 0 -3 -4) ({6} -6 -1 1 -4) ({11} 1 1) ({6} 1 0 0 1)
10162: ( -1 0 3 [3]) ({-5} -5 -7 -2) ( -2 5 5 -9 [-7]) ({-7} -3 12 15) ( 1 -6 -4 6 [3]) ({-7} 2 -8 -11 -1) ({-6} 3 1 -2) ({-5} 3 4 1) ({-4} 1 1)
10163: ( [1] 1 2 1) ({3} -1 -3 -2) ( [2] 2 -4 -4) ( -1 * 3 8 7 3) ( [-8] -11 1 4) ( 1 * -10 -15 -4) ( [4] 3 0 1) ({1} 5 8 3) ({2} 2 2)
10164: ( 1 [3] 1) ( -2 -5 * -5 -2) ( 3 0 [-9] -6) ( -2 7 16 * 10 3) ( -7 -3 [8] 4) ( 1 -10 -17 * -6) ( 3 -1 [-3] 1) ( 4 7 * 3) ( 2 [2])
10165: ({-6} 1 1 -1) ({-9} -1 -5 -5 -1) ({-10} 2 2 -2 1 3) ({-9} 10 18 11 3) ({-10} -3 -2 -2 -3) ({-9} -11 -22 -10 1) ({-10} 1 -4 -2 3) ({-9} 3 7 4) ({-8} 2 2)
Alexander Stoimenow,
stoimeno_stoimenov.net