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Everywhere different knot diagrams

knot K S1 −֒−→ S3

link L S1 ∪ . . . ∪ S1

︸ ︷︷ ︸

n components

−֒−→ S3

K L

(knots/links and their diagrams usually oriented)

crossing switch

−→

D D′

−→

(1)

A diagram is positive if all crossings are positive
( )

.
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Definition 1. (Askitas-S.,Taniyama)

D everywhere (1-)trivial :⇐⇒ all D′ represent the unknot
D everywhere equivalent (EE) :⇐⇒ all D′ represent the same knot

(or link)
D everywhere different :⇐⇒ all D′ represent different knots

(or links)

For a given diagram D it is (generally) easy to check that (if) it is everywhere
different.

Question 2. (Taniyama; independently Ishii for alternating diagrams)
Do infinitely many everywhere different diagrams exist?

T

alternating diagram Dn of 8 + 2n crossings: tangle T

on left + braid tangle (σ1σ
−1
2 )n + close up.

Theorem 3. For almost all n = 3k + 1, the diagram
Dn is everywhere different.
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This example was chosen for a short proof: semiadequacy formulas for Jones
polynomial + Menasco-Thistlethwaite

We consider an example studied by Shinjo and Taniyama.

T T ′

Dn = compose T with n copies of T ′ and close up. Shinjo and Taniyama had
verified that D1 is everywhere different.

Theorem 4. For almost all n, the diagram Dn is everywhere different.

Proof based on the Temperley-Lieb category. Choose a value of the Kauffman
bracket + diagonalization and eigenvalue estimates.

Works also for a non-alternating version of Dn.
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Everywhere trivial knot diagrams

Important special case of everywhere equivalent (EE) knot diagrams.

D everywhere trivial :⇐⇒ all D′ represent the unknot

studied by Askitas-S. ’03 (called “everywhere 1-trivial”)

Example 5. Some simple everywhere trivial diagrams.

Question 6. (A-S) Can one describe everywhere trivial diagrams?

There are many everywhere trivial unknot diagrams! One can produce more
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by adding trivial clasps beside a given one:

−→ .

But it goes without trivial clasps:

Proposition 7. For every crossing number ≥ 11 there are prime everywhere
trivial unknot diagrams without a trivial clasp.

Proof. (Uses an idea of Shinjo and Taniyama) Apply T → T n (and modifi-
cations)

T T 2
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on suitably chosen (and computationally found) 11 to 16 crossing diagrams,
e.g.,

. �

Thus the part of question 6 for unknotted D is likely too complicated.

How about D knotted?

A.-S. found six (two trefoil and four figure-8-knot) diagrams:

trefoil figure-8-knot

. (2)
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Question 8. (A.-S.) Are these all?

Verification (part of more general results discussed later):

• up to 14 crossings (A.-S. ’03), later 18 crossings (S. ’11)

• for rational and Montesinos diagrams follows from the classification of
rational and Montesinos knots (not done in every detail, but not too
interesting)

• diagrams of genus ≤ 3 (using generator approach)

• 3-braid diagrams

Everywhere equivalent knot diagrams

D everywhere equivalent (EE) :⇐⇒ all D′ represent the same knot
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Question 9. (Taniyama) How do EE diagrams look like?

It is helpful to distinguish:

D strongly everywhere equivalent (SEE) :⇐⇒
D is EE and D′ represents the same knot as D

D weakly everywhere equivalent (WEE) :⇐⇒
D is EE and D′ represents a different knot from D

We (suggestively) focus here on the case that D′ is knotted. Let us also assume
D is prime.

Some general constructions:

pretzel tangle diagram P (p, q) = (p, p, . . . , p
︸ ︷︷ ︸

q times

).

P (3, 5) = (3)
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Proposition 10. EE knot diagrams:

1. The pretzel knot diagram P̂ (p, q) with p ≥ 1, q ≥ 3 both odd (obtained
from P (p, q) as in (3) by closing the two top and two bottom ends).

2. In the following k ≥ 2.

2.a. The diagram of the closed 3-braid (σl
1σ

l
2)

k (l odd, 3 ∤ k), and

2.b. diagram of closed braid (σ1σ2)
k, in which each crossing replaced

(disregarding braid orientation) by l positive half-twists in direction
not coinciding with the one of the braid (l ≥ 1, and 3 ∤ k for l odd).

3. The arborescent diagram (P (3, p), . . . , P (3, p)
︸ ︷︷ ︸

q times

) for p, q ≥ 3 odd.

4. A diagram obtained from those in type 2 by replacing (respecting di-
rection of twists; see (4) below) each twist of l crossings by P (3, l) for
l ≥ 2.
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←→ ←→ (4)

Remark 11. All these diagrams are positive (=⇒ only WEE).

Question 12.

• Is the construction (for D′ knotted + (2) for D′ unknotted) exhaustive
for prime WEE diagrams?

• D is SEE =⇒ D (and D′) unknotted?

• (consequence of previous two + Remark 11) D′ knotted =⇒ D positive?
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Theorem 13. All is true for

• diagrams up to 18 crossings,

• diagrams up to genus 3,

• genus 4 diagrams which are (at least) one of ≤ 25 crossings, positive,
SEE, or alternating.

Remark 14. Also true for

• rational and Montesinos diagrams (with minor ‘?’; as explained)

• 3-braid diagrams (later)

Proof. Use generator description. Parametrize a diagram in the series of D̂

with n ∼-equivalence classes by a twist vector v ∈ Zn.

Test Vassiliev invariants vi on v. The degree-2 invariant gives an affine lattice
in Zn (which is empty for many generators). Then test higher degree invariants
until you are left with what you need. �
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Observation 15. Proposition 10 yields diagrams of crossing numbers 6= 2 · 3l.

Question 16. Are there any prime EE knotted diagrams of 2 · 3l crossings?

One of 6 crossings is in (2), but indeed there is none for 18 (not at all obvious!).
How about 54?

Constructions of everywhere equivalent link diagrams

Here component orientation is important, thus:

Definition 17. D link diagram

D unorientedly everywhere equivalent :⇐⇒
all D′ represent the same unoriented link

D orientedly everywhere equivalent :⇐⇒
all D′ represent the same oriented link
(may allow reversing simultaneously
orientation of all components)
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First consider unoriented EE: an idea how to create such diagrams comes via
the checkerboard graph.

unoriented link diagram D −→ checkerboard graph G = G(D) (up to duality)

two checkerboard colorings the checkerboard graph
of the first coloring

Graph is signed (for non-alternating diagrams).

Kauffman sign: crossing c of D is Kauffman positive (resp. Kauffman negative)
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if the A-corners (resp. B-corners) of c

AA

B

B

lie (say; it’s convention) in black region of checkerboard coloring.

+ −

Kauffman signs are unoriented and different from skein signs in (1).

Definition 18. A graph is edge transitive if for every two edges e, e′ there is
a symmetry mapping e to e′.

Studied in combinatorics for some time.

For example, it is well-known that there are only nine finite edge transitive
tesselations (3-connected and dually 3-connected):
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• nets (1-skeletons) of the 5 Platonic solids

• cuboctahedron, median graph of the cube net,

v1

v2

.
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and icosidodecahedron (of the dodecahedron net)

• the planar duals of the latter two.

The other (non-tesselation) cases are also known (Fleischner-Imrich ’79).

edge transitive checkerboard graph −→ EE diagram

Construction 19. G cut-free edge transitive graph, p = 1, 3, q ≥ 1. Build
alternating diagram Di(G; p, q) by replacing each edge e of G by P (p, q) either
along (i = 1), or opposite to (i = 2), the direction of e.

When G has a reflection symmetry that reflects an edge (exchanges its end-
points) consider also D1(G; p, 2) for p ≥ 1 ( reflective case).

Remark 20. G has an edge-reflecting symmetry ⇐⇒ G∗ has an edge-fixing
one. Keep both types apart!
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Example 21. G = θ theta-curve, p = 3 and q = 2.

D1(M3; 3, 2) D2(M3; 3, 2)

(3 components) (2 components)

Now recall that checkerboard graph has duality ambiguity.

Definition 22. G has dual G∗. Each set E ⊂ E(G) of edges of G has dual
set E∗ ⊂ E(G∗).

Thus one can produce more EE diagrams.

Definition 23. G dually edge transitive if

• G is self-dual, G = G∗
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• ∃ edge partition E(G) = E1 ⋒ E2:

– if e, e′ ∈ Ei, ∃ symmetry s of G with s(Ei) = Ei and s(e) = e′,

– if e ∈ Ei, e′ ∈ Ej, ∃ symmetry s of G with s(E∗

i ) = Ej and
s(e∗) = e′

Example 24. This is a bit technical, so a few examples.

• wheel (graph) Wn: connect all vertices of an n-cycle C to an extra central
vertex v (E1 = ⋆ v, E2 = C).

• twofold wheel (similar)

• double star (E1 = E(G), E2 = ∅; not cut-free)

a double star wheel W10 twofold wheel
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Remark 25. One can exchange E1 ↔ E2 = E(G) \ E1 =: E1. For G = τ

tetrahedral graph ∃ further ambiguity, so better write (G, E1).

Construction 26. (G, E1) cut-free dually edge transitive, p = 1, 3 and q ≥ 1.
Build D(G, E1; p, q) by replacing edge e ∈ Ei by P (p, q) in (i = 1; Kauffman
positive crossings) or opposite (i = 2; Kauffman negative crossings) to the
direction of e.

Remark 27. The case (like G = double star) of some Ei = ∅ is of (self-
dual) edge transitive G, which is nothing new: D(G, E(G); p, q) = D1(G; p, q)
and D(G, ∅; p, q) = D2(G; p, q) of construction 19. Thus let Ei 6= ∅ =⇒
|E1| = |E2|.

If G has an edge-reflecting symmetry along an edge e ∈ E1, consider addition-
ally D(G, E1; p, 2) for p ≥ 1 (and again call it the reflective case).

Example 28. tetrahedral graph G = τ has extra peculiarity:

• (G, E(G)) is dually edge-transitive (because G is edge-transitive and
self-dual), and
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• (G, ⋆ v) is so (for any vertex v, because τ = W3)

This yields three different types of diagrams: D1(τ ; p, q) = D2(τ ; p, q) because
of self-duality, but D(τ, ⋆ v; p, q) 6= D(τ, ⋆ v; p, q)

D1,2(τ ; 3, 2) D(τ, ⋆ v; 3, 2) D(τ, ⋆ v; 3, 2)

Remark 29. Again, as in remark 20, the reflective case is not duality invariant.
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Proposition 30. (a bit disappointing) These constructions yield no new knot
diagrams!

Question 31. (speculative) Are constructions exhaustive (say, for links)?

Answer: NO! There are totally asymmetric (and thus totally different) exam-
ples. (But ‘YES’ in another case. . . )

3-braids

Definition 32. The braid group Bn on n strands:

〈

σ1, . . . , σn−1

∣
∣
∣
∣
∣

[σi, σj ] = 1 |i− j| > 1
σjσiσj = σiσjσi |i− j| = 1

〉

σi – Artin standard generators. An element β ∈ Bn is an n-braid.
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σi = . . .

i i + 1

σ−1

i = . . .

i i + 1

α · β =

α

β

Braid closure β̂:

β −→ β = β̂
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β 7−→ β̂

a braid 7−→
a knot S1 →֒ S3 or (more

generally) link S1 ∪ · · · ∪ S1 →֒ S3

a braid word
(possibly up to cyclic

permutations + symmetries)

7−→ a link diagram

[Alexander’s theorem: all links arise this way.]

Square of half-twist element ∆, the full twist

∆2 = (σ1σ2 . . . σn−1)
n,

is the generator of the center of Bn.

We consider here β ∈ B3.

Theorem 33. 3-braid word β gives an EE diagram ⇐⇒ (up to equivalence)
in following four families:
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1) the words (σ1σ
−1
2 )k or (σ1σ2σ

−1
1 σ−1

2 )k for k = 1, 2, and σ1σ
−1
2 σ−2

1 σ2
2

(non-positive case),

2) any positive (or negative, or the trivial) word representing a central
element ∆2k, k ∈ Z (central case),

3) the words (σl
1σ

l
2)

k for k, l ≥ 1 (symmetric case), and

4) the words σk
1 for k > 0 (split case).

Proof uses the relations

Burau representation←→ Jones polynomial←− adequacy

Remark 34.

• Type 4 is uninteresting,

• type 1 (essentially (2)) and type 3 (proposition 10) were (largely) ex-
pected,
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• but type 2 was (except the trivial word) totally surprising, and suggests
the following more general construction.

Lemma 35. When β ∈ Bn is central, then every positive word of β is every-
where equivalent.

Proof. All β′ represent σ−2

i β, and all are conjugate. �

Thus ∃ examples of words (and diagrams) lacking any symmetry: Every pos-
itive word in Bn is subword of a positive central word.

Remark 36. Braids come with orientation, but one can argue that theorem 33
holds for unoriented EE.

Thus the situation is already complicated even in special cases.

2-component links

Finally, there is one large case, which can be completely resolved, and the
answer (as well as its argument) is rather simple.
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To leave the subtleties for knots to their own merit, assume all link diagrams
are non-split .

Theorem 37. D is orientedly everywhere equivalent (non-split) 2-component
link diagram ⇐⇒ among the following families:

1. the pretzel link diagrams P̂ (p, q) = (p, p, . . . , p
︸ ︷︷ ︸

q times

) for p, q > 0, p odd and

q even, or

2. the arborescent link diagrams P̂ (q, 3, p) = (P (3, p), . . . , P (3, p)
︸ ︷︷ ︸

q times

), for

p > 1 odd and q > 2 even.

This says that constructions 19 and 26 are exhaustive (at least) here.

First family includes, for p = 1, the (2, q)-torus links. For p = 1, second family
reduces to the (2, 3q)-torus links, and for q = 2 to P (3, 2p), which is why we
excluded these values.
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Typical examples, for q = 4, 6 and p = 5:

P̂ (5, 6) P̂ (4, 3, 5)

Proof. Uses an observation that diagrams are special + positive⇒ alternating,
and then shoots with Menasco-Thistlethwaite (Flyping theorem) and Kauff-
man-Thistlethwaite (Jones polynomial of alternating links). �

Remark 38. Oriented EE is essential (in proof). For unoriented EE, diagrams
are special, but no longer positive (and alternating).
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Thank you!
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