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Links and Alexander polynomial

knot K S1 −֒−→ S3

link L S1 ∪ . . . ∪ S1

︸ ︷︷ ︸

n components

−֒−→ S3

K L

Alexander polynomial ∆ : { knots and links } → Z[t±1/2] ,

determined by (and studied below using) the skein relation

∆
( )

− ∆
( )

=
(

t1/2 − t−1/2
)

∆
( )

, (1)

and (here) with the (common) normalization

∆
(©)

= 1 .
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(Alternative approach using Seifert matrices, Fox calculus, etc.)

Remark 1. We have ∆(L) ∈ Z[t±1] for links of odd (number of) components
(in particular, for knots), and ∆(L) ∈ t1/2Z[t±1] for even components.

Remark 2. Alexander polynomial a priori an oriented link invariant. Invariant
when orientation of all components reversed ⇒ for knots orientation does not
matter, but is does a lot for links.

The Alexander polynomial is of profound importance. Roots are studied among
others for

• monodromy and dynamics of surface homeomorphisms (cf. Rolfsen ”Knots
and links”; Silver-Williams),

• divisibility of knot groups (Murasugi),

• orderability of knot groups (Perron-Rolfsen),
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• statistical mechanical models of the Alexander polynomial (Lin-Wang),

• Mahler measure and Lehmer’s question (Ghate-Hironaka, Silver-Williams).

Conway version of ∆, Conway polynomial ∇(z) ∈ Z[z]

∇(L)(t1/2 − t−1/2) = ∆(L)(t)

For an n-component link,

∇(L) ∈ zn−1Z[z2] . (2)

It is known what are Alexander polynomials of knots.

Theorem 3. (Levine, Kondo, . . . ; late 60’s)
∆ ∈ Z[t±1] is Alexander polynomial of a knot iff ∆ satisfies

(1) ∆(t) = ∆(1/t) (reciprocity)

(2) ∆(1) = 1 (unimodularity)
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There is also a corresponding theorem for n-component links (e.g., easy con-
sequence of Kondo’s proof for knots). The conditions are superreciprocity

∆(t) = (−1)n−1∆(1/t) ,

and a divisibility property, following from (2).

How about alternating knots and links?

A knot (or link) is alternating if it has a diagram where (along
each component) one passes strands under-over.

Alexander polynomial of alternating links

Problem 4. Characterize the Alexander polynomials of alternating knots (or
links).

Even though in general alternating knots are much better understood, this
problem seems very difficult. A complete solution is likely impossible!
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What is known

Below some classes of knots in relation to alternating knots (similarly links).

rational
(2-bridge)

knots
⊂ Montesinos

knots
⊂

algebraic
(arborescent)

knots

∩

alternating
knots

⊃
special

alternating
knots

Let [∆]k for k ∈ Z · 1

2
be the coefficient of tk in ∆.

maximal degree max deg ∆ = max { k ∈ Z · 1
2 : [∆]k 6= 0 }

minimal degree min deg ∆ = min { k ∈ Z · 1
2 : [∆]k 6= 0 }
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Remark 5. Degrees make sense if ∆ 6= 0. Unimodularity ⇒ ∆ 6= 0 for all knots
(∆(−1) 6= 0, odd). But ∃ links with ∆ = 0! However, for an alternating link
L,

∆ 6= 0 ⇐⇒ L non-split(table).

(There is no hyperplane in R3 which can separate L non-trivially.) We thus
assume alternating links are non-split .

(super)reciprocity ⇒ mindeg ∆ = −max deg ∆.

Definition 6.

• We call a coefficient [∆]k admissible if min deg ∆ ≤ k ≤ max deg ∆ and
k − mindeg ∆ (or max deg ∆ − k) is an integer.

• We call ∆ positive/negative if all its admissible coefficients are posi-
tive/negative (and in particular non-zero).

• We call ∆(t) alternating if ∆(−t) is positive or negative.

Remark 1 ⇒ [∆]k 6= 0 only if [∆]k is admissible.
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Theorem 7 (Crowell-Murasugi ’59-’61). L alternating knot or (non-split)
alternating link ⇒ ∆L(t) is alternating.

Crowell-Murasugi: if K knot, then max deg ∆ = g(K), genus of K. (For L

link,
1 − χ(L)

2
.)

Fox conjectured more:

Conjecture 8 (Fox’s Trapezoidal conjecture). K alternating knot ⇒ ∃
a number 0 ≤ n ≤ g(K) such that for ∆[k] :=

∣
∣[∆K ]k

∣
∣ we have

∆[k] = ∆[k−1] for 0 < |k| ≤ n,
∆[k] < ∆[k−1] for n < |k| ≤ g(K) .

(3)

(n is half-length of ‘upper base of trapezoid’)

Trapezoidal conjecture was verified for

• rational (2-bridge) knots (Hartley ’79)
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• some more algebraic knots (Murasugi ’85)

The signature of a knot σ(K) is even and satisfies

|σ(K)| ≤ 2g(K) . (4)

Extension (first) of Trapezoidal conjecture (S. ’05): for n in (3),

n ≤ |σ(K)|/2 ,

where σ is the signature. (Extended Trapezoidal conjecture)

(In particular σ(K) = 0 ⇒ n = 0, i.e., ∆ is a ‘triangle’; Murasugi conjectured
independently this case.)

Recent partial results toward the (Extended) Trapezoidal conjecture:

• S.: knots of genus g(K) ≤ 4, using a combinatorial method developed
from S.-Vdovina (I.D. Jong ’08 for genus g ≤ 2 using same method);
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• Ozsváth-Szabó: g(K) ≤ 2, and |k| = g(K) in (3) for general case (knot
Floer homology)

(Ozsváth-Szabó obtain more generally certain inequalities on the coefficients
of ∆ for an alternating knot.)

Second extension of Trapezoidal conjecture (S. ’05)

Polynomial X log-concave, if [X ]k are log-concave, i.e.

[X ]2k ≥ [X ]k+1[X ]k−1 ≥ 0 (5)

for all k ∈ Z. (‘≥ 0’, because want to regard only positive and alternating
polynomials as log-concave.)

Conjecture 9 (log-concavity conjecture, S. ’05). If K is an alternating
knot, then ∆K(t) is log-concave.

log-concavity conjecture ⇒ Trapezoidal conjecture

Refined log-concavity conjecture: equality in (5) for admissible [∆]k only if

[∆]k = [∆]k−1 = [∆]k+1 .
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Using method related to S.-Vdovina, I verified the (refined) log-concavity con-
jecture for genus g(K) ≤ 4 (and χ(L) ≥ −7 for links L).

Hoste’s conjecture

Hoste, based on computer verification, made the following conjecture about
10 years ago.

Conjecture 10 (Hoste’s conjecture). If t ∈ C is a root of the Alexander
polynomial ∆ of an alternating knot, then ℜe t > −1.

Not much is known.

1. Crowell-Murasugi: Since ∆ is alternating, real t < 0 is never a root. Thus
Hoste’s conjecture is true if all roots of ∆ are real.

2. Let
S1 := { t ∈ C : |t| = 1 } .
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There’s the following ‘folklore’ inequality (Riley)

# { zeros t of ∆ on S1 with ℑm t > 0 } ≥ |σ(K)|
2

. (6)

K special alternating ⇐⇒ (4) is an equality (Murasugi)

=⇒ all roots of ∆ are on S1

=⇒ Hoste’s conjecture for sp. al. knots.

3. Using (6), S-V, and a test based on Rouché’s theorem, I verified the
Hoste conjecture for g(K) ≤ 4.

Example 11. (Mizuma; as quoted by Murasugi) The (unimodular symmetric)
polynomial

t−6−2t−5 +4t−4−8t−3 +16t−2−32t−1 +43−32t+16t2 −8t3 +4t4 −2t5 + t6

is trapezoidal (and log-concave), but has zero t with ℜe t < −1.
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Thus trapezoidality (or log-concavity) of ∆ does not imply Hoste’s conjecture.
In fact, they are almost unrelated :

Theorem 12 (S. ’11). Zeros of log-concave (even monic) alternating Alexan-
der knot polynomials are dense in C.

Monic: leading coefficient is ±1; can be realized by a fibered (hyperbolic) knot.

Remark 13. Minor relations, e.g.,

• an alternating polynomial cannot have a real negative zero.

• conditions when restricting the degree. E.g., when max deg ∆ = 2, then
∆ alternating ⇒ Hoste’s conjecture (Murasugi).

Results for 2-bridge links

Rational (2-bridge) links are one important class of alternating links.
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Schubert’s (’56) form L = S(q, p), for p and q coprime integers with 0 < p < q;
determines L up to mirror image up to ambiguity

±p±1 ∈ Z∗

q . (7)

Continued fraction expansion of p/q ∈ Q:

p

q
= (b1, . . . , bn) =

1

b1 +
1

b2 + . . . 1

bn

(8)

Ambiguity (7) allows for special types: positive fraction expansion,
even fraction expansion (below).

How to join twists into a rational tangle and close up. (Twists composed in a
non-alternating way when the sign of bi changes.)
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−→

rational tangle −→ rational link

(1, 2, 4,−4) =
34

49

→ S(49, 34)

Lyubich-Murasugi (arXiv ’11) examine roots of ∆ of a 2-bridge (rational) knot
or link, by studying stability of Seifert matrix. One of their results:

Theorem 14 (Lyubich-Murasugi). L 2-bridge knot or link, t root of ∆(L)
⇒ −3 < ℜe t < 6.

Theorem 15 (S.). If L 2-bridge, ∆(L)(t) = 0, then

∣
∣t1/2 − t−1/2

∣
∣ < 2. (9)
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Or:
∇(L)(z) = 0 ⇒ |z| < 2 . (10)

Let
t ∈ C \ {0} internal : ⇐⇒ t satisfies (9),

external otherwise.
D := { t ∈ C \ {0} : t internal }.

-2 2 4 6

-4

-2

2

4
The domain D is bounded by the graphs of the
four functions

±f±(x) = ±
√

−x2 + 2x + 7 ± 4
√

2x + 3 .

f± defined on
[

−3

2
, 3 ± 2

√
2
]

.

A few special values are
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f±

(

−3

2

)

=

√
7

2
,

f−(−1) = 0 ,

f+(−1) =
√

8 ,
f±

(
3 ± 2

√
2
)

= 0 . (11)

Thus (9) =⇒

• −3

2
< ℜe t . (12)

(improves lower bound in L-M)

• (ℜe t ≤) |t| < 3 + 2
√

2 ≈ 5.8284 (13)

(improves upper bound in L-M)

L-M prove the conjecture for certain 2-bridge links:

Theorem 16 (Lyubich-Murasugi). Consider the even expansion (8), with

bi = 2ai (ai ∈ Z \ {0}) . (14)

• If no two consecutive ai = ±1, then H.’s conjecture holds.
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• If no ai = ±1, then −1 < ℜe t < 3.

I improved this:

Proposition 17 (S.). Under the previous assumption,

• if no three consecutive ai = ±1, then H.’s conjecture holds;

• if no ai = ±1, then |z| < 1 in (10). In particular,

3

8
< ℜe t and |t| <

3 +
√

5

2
.

Interestingly, the two approaches – Seifert matrix (L-M) and skein relation
(S.) – meet similar difficulties.

Here skein relation does better, but L-M have further results, not skein theo-
retically recovered. E.g.:
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Proposition 18 (L-M). If all ai > 0 in (14), then all zeros of ∆ are real
(⇒ H.’s conjecture).

On the other hand, the skein approach does more:

• condition on the zeros of the skein (HOMFLY-PT) polynomial of a 2-
bridge link (skipped), and

• for ∆ of more general links (below).

3-braid alternating links

Definition 19. The braid group Bn on n strands:
〈

σ1, . . . , σn−1

∣
∣
∣
∣
∣

[σi, σj ] = 1 |i − j| > 1
σjσiσj = σiσjσi |i − j| = 1

〉

σi – Artin standard generators. An element β ∈ Bn is an n-braid.
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σi = . . .

i i + 1

σ−1
i = . . .

i i + 1

α · β =

α

β

Braid closure β̂:

β −→ β = β̂
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is a knot S1 →֒ S3 or (more generally) link S1 ∪ · · · ∪ S1 →֒ S3.

Alexander’s theorem: all links arise this way.

We say that a braid (word)

β =
n∏

i=1

σqi

pi
(15)

(with qi 6= 0) is alternating if qiqj · (−1)pi−pj > 0 whenever i 6= j.

We consider here β ∈ B3.

Theorem 20 (S. ’03). If L alternating link is closed 3-braid, then L is either
(a) closed alternating 3-braid, or
(b) a (special alternating) pretzel link P (1, p, q, r) (p, q, r > 0; see below).

For special alternating links, H.’s conjecture is true, so look at alternating
3-braids.
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Theorem 21. If L closed alternating 3-braid, ∆(L)(t) = 0, then

∣
∣t1/2 − t−1/2

∣
∣ < 2.45317 ,

i.e., |z| < 2.45317 in (10). (All decimal constants rounded.)

The proof (and the constant) is more technical.

A discourse on non-alternating braids (and links):

Proposition 22. If L closed positive 3-braid (in (15) all qi > 0),

∣
∣t1/2 − t−1/2

∣
∣ < 3.274601 .

Remark 23. S. ’05: if L closed positive braid and closed 3-braid ⇒ L is closed
positive 3-braid. Not true for 4-braids (∃ counterexamples).

Example 24. (Hirasawa) 10152 is closed positive 3-braid, but ∆ has (real) root
t ≈ −1.85 ⇒ Hoste’s conjecture (and (9)) fails for positive 3-braid links.
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Montesinos links

A Montesinos link has the presentation

L = M(e, p1/q1, . . . , pn/qn) . (16)

M(4, 3/11,−1/4, 2/5)

Terminology: e integer part , and pi/qi fractional parts. Their number n length.
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Special cases:

• If n ≤ 2, Montesinos link is rational.

• When all pi = ±1, we stipulate that we sign qi so that pi = 1, and have
pretzel link

L = M(1/q1, . . . , 1/qn) = P (q1, . . . , qn) . (17)

Here orientation issues become essential, and we distinguish:

e
p1

q1

p2

q2

pn

qn
reverse M link

e
p1

q1

p2

q2

pn

qn
parallel M link
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Our result regarding M links is:

Theorem 25. L alternating Montesinos link, ∆(L)(t) = 0 and t 6∈ D (i.e., t
external).

• If L is reverse, then ℜe t > 0.

• If L is parallel, then ℜe t > −1 and t satisfies (13).

Corollary 26. If L alternating Montesinos link, Hoste’s conjecture holds for
external zeros; in particular ∆(L)(t) = 0 ⇒ (12).

One more specific statement possible for reverse links (works also for many
non-alternating ones):

if t 6∈ D, then
∣
∣ℜe

(
z2

) ∣
∣ < |z| (with z = t1/2 − t−1/2) ,

i.e., (roughly) when |t| large, |ℑm t| or |ℜe t| small.

25



But no bound on |t| (Murasugi has examples, where t ∈ R, t → ∞).

Proofs: rational links 1 page (easy), 3-braid links 5 pages (tricky but manage-
able), Montesinos links 20+ pages (still not deep, but very painful).

Open questions

• H.’s conjecture remains open for everything (in general): rational knots,
3-braid knots, Montesinos knots (and links)!

• Statements about non-alternating links. ∃ non-split (non-alternating) 3-
braid or Montesinos links with ∆ = 0. (For 3-braid at least there’s a full
description; S. ’06.) How bypass them?

• (S. ’07) Is there a condition (at all, except general ones) on the Alexander
polynomial of an arbitrary Montesinos link? (No for arborescent links,
yes – obviously – for rational links.)
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