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1. Canonical genus bounds hyperbolic volume

knot K S1 −֒−→ S3

link L S1 ∪ . . . ∪ S1

︸ ︷︷ ︸

n components

−֒−→ S3

K = trefoil L = Hopf link

Let g(K) be the genus of K, given by

g(K) = min { g(S) : S is a Seifert surface of K } ,

where a Seifert surface S of K is as

= S −֒−→ S3, ∂S = K ,

and its genus is g(S) = #holes of S.
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gf (K), the free genus, minimal genus of free surfaces S (i.e. S3 \ S a handle-
body).

gc(K), the canonical genus, is the minimal genus of canonical surfaces S (ob-
tained by Seifert’s method).

Canonical surfaces are free ⇒

g(K) ≤ gf (K) ≤ gc(K) .

These are often (though not always) equalities. In particular:

Definition 1. alternating knots and links

A knot (or link) is alternating if it has a diagram where (along
each component) one passes strands under-over.

Theorem 2 (Crowell-Murasugi ’59-’61). L alternating knot or link ⇒
canonical surface of alternating diagram is of minimal genus (⇒ g(L) = gc(L))
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(W.) Thurston: most knots (and links) L are hyperbolic:

S3 \ L = H3
/

Γ

↑ ↑
hyperbolic

3-space
group of

isometries

,

and volume is finite: volume of L, vol(L).

(Convention: vol(L) := 0 when L not hyperbolic.)

Theorem 3 (Brittenham).

sup { vol(K) : gc(K) = g } < ∞ . (1)

Remark 4. But
sup { vol(K) : gf (K) = g } = ∞

(B. g = 1, S. g ≥ 2), thus maximal volume makes little sense for (free) genus.
But it does for alternating knots, and sup is the same as (1).
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For links use (canonical) Euler characteristic χ, χc. (knots: χ(c) = 1 − 2g(c))

Let
vχ = sup { vol(L) : χc(L) = χ } (2)

Computation? Estimates? Will return to this after a (long) detour.

2. Crossing equivalence, generators

A flype is the move

p
PQ −→

p

P

Q

Definition 5. A t̄′2 move is a move creating a pair of crossings reverse twist
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(∼-)equivalent to a given one:

−→ .

Alternating diagram generating : ⇐⇒ irreducible under flypes and reverse of
t̄′2 moves. For such diagram D,

(generating) series of D :=

{
diagrams obtained by flypes

and t̄′2 moves on D

}

.

generator := alternating knot whose alternating diagrams are generating.

Theorem 6 (S; Brittenham). The number of generators of given genus is
finite.

More precisely (S.): they have ≤ 6g−3 ∼-equivalence classes. (For links −3χ,
except χ = 0, where the Hopf link is the only generator.)
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Definition 7. Call a generator even/odd if it has even/odd crossings. Call it
maximal if it has 6g − 3 ∼-equivalence classes.

Proof of theorem 3. By Thurston’s hyperbolic surgery theorem ⇒

sup(series) = vol(limit link)
tw

is
t

twist −→ �
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Let us discard generators which are composite knots:

# =

(Similarly, discard composite and split links.)

Thus we consider only prime generators.

genus 1 2 3 4

# prime generators 2 24 4,017 3,414,819

S-Vdovina; cf. (3) below: (Exponential) growth rate is ≥ 400! Details. . .
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3. Enumeration of alternating knots by genus

A fundamental tool is the Flyping theorem.

Theorem 8 (Menasco-Thistlethwaite). Two alternating diagrams of the
same (alternating) knot/link are interconvertible by flypes.

In a generator of k ∼-equivalence classes, there are ∼ nk−1 alternating dia-
grams of n crossings.

M-T helps taking care of flypes and symmetries, and so:

Theorem 9 (S.). Let an,g be the number of alternating knots of genus g and
n crossings. Then the sequence (an,g)

∞
n=1 for fixed g is almost everywhere

periodically polynomial (aepp).

I.e., ∃ pg (period), ng (initial number of exceptions), and polynomials
Pg,1, . . . , Pg,pg

∈ Q[n] with

an,g = Pg,n mod pg
(n) for n ≥ ng .
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Another way of writing this:

(an,g) aepp ⇐⇒
∑

n

an,gx
n =

Rg(x)

(xpg − 1)dg
, Rg ∈ Q[x]

(where pg is the period and dg = 1 + max
n

deg Pg,n).

pg is in general huge, but the leading terms of Pg,n have only period 2!

Theorem 10 (S.-Vdovina).

[Pg,even/odd]max =
n6g−4

(6g − 4)!
· #{ maximal even/odd generators }

Definition 11. A class C ⊂ D of knots is asymptotically dense, if

lim
n→∞

#C ∩ {c(K) = n}

#D ∩ {c(K) = n}
= 1 .
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Example 12. An example aside: non-alternating links are asymptotically dense
in the class of all links (Thistlethwaite).

Max generators are special alternating, thus:

Proposition 13 (S.-Vdovina). Among alternating knots of given genus,
special alternating ones are asymptotically dense.

Let
Cg,even/odd = #{ maximal genus g even/odd generators } .

A description in [S-V] of maximal generators yields:

Theorem 14 (S-V).

400 ≤ lim inf
g→∞

g
√

Cg,∗ ≤ lim sup
g→∞

g
√

Cg,∗ ≤
220

36
≈ 1438.38 . (3)

[later (S.) lim sup ≤ (2130/7312/7)/36 ≈ 1425.39.]

Tool: Wicks forms
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4. Wicks forms / Markings

Definition 15. A maximal Wicks form w is a cyclic word in the free group
over an alphabet with the following 3 conditions:

1) Each letter a and a−1 appears exactly once in w.

2) w ∋ no subwords of the form a±1a∓1.

3) (maximality) a±1b±1 ∈ w and b±1c±1 ∈ w (signs independently choosable)
⇒ c±1a±1 ∈ w (for proper to be chosen signs).

w, w′ equivalent up to cyclic permutation and permutation of letters (and
inverses)

First studied by Wicks, then Comerford-Edmunds, Culler, Bacher-Vdovina.

(Bacher-Vdovina) duals of 1-vertex triangulations of oriented surfaces:
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- number of letters = 6g − 3 for some g > 0

- label the edges of a 6g − 3-gon X by letters of w and reverse the orien-
tation induced from the one of X on edges corresponding to inverses of
letters.

- identify the edges labelled by each letter and its inverse according to
their orientation.

- surface S orientable of genus g. Call g the genus of the Wicks form.

- ∂X → 3-valent (cubic) graph G ⊂ S is 1-skeleton of 1-face cell complex
(edges of X ≃ letters a±1, vertices ≃ triples in maximality property).
Dual is 1-vertex triangulation.

Definition 16 (S-V). Maximal planar Wicks form w :⇐⇒ its graph G ⊂ S
planar and 3-connected (no ≤ 2 edges removed disconnect).
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Lemma 17.
{

maximal genus
g generators

}

≃

{
maximal planar Wicks

forms of genus g

}

.

G 3-connected
Whitney’s theorem

=⇒ G ⊂ S3 unique. G ⊂ S is determined by a
+/− marking of vertices G in planar embedding.

Marking gives Wicks form iff thickening

−→

+ −

(4)

has one ∂ component (knot marking).

Vdovina: 3 elementary operations W forms of genus g → W forms of genus
g + 1
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effect on the graphs: graphic α, β and γ construction

α −→

β −→

γ −→

.

(We used γ to prove the left inequality in (3).)

More about this later. . .
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5. Tables of generators

If we sort the 24 prime generators of genus g = 2 according to number of
crossings and ∼-equivalence classes, we obtain the following table:

c

# ∼
5 6 7 8 9 10 11 12 13 total

4 1 1

5 1 1 2 1 5

6 1 1 1 3 1 7

7 1 2 1 1 5

8 2 2 4

9 1 1 2

total 1 2 3 3 5 4 3 2 1 24
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(For g = 1 the ‘table’ is not very revealing.)

The table for g = 3:

c

# ∼

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 total

6 4 4

7 1 2 5 8 11 9 36

8 6 10 21 22 30 44 13 146

9 4 16 42 72 64 55 68 7 328

10 2 15 51 104 159 119 52 45 2 549

11 1 10 49 120 194 211 130 20 14 749

12 1 5 32 112 220 229 154 75 2 1 831

13 1 2 17 63 170 252 178 48 18 749

14 1 4 22 63 132 163 82 467

15 2 3 12 25 47 46 23 158

total 1 8 19 47 91 168 267 377 511 563 598 499 411 240 148 46 23 4017
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And finally the picture for g = 4:

# ∼

c
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 total

8 29 29

9 1 2 10 28 71 104 147 145 508

10 21 72 210 356 557 660 819 1092 369 4156

11 48 257 766 1791 2942 3832 3080 2804 3188 447 19155

12 55 487 2033 4734 8585 12145 13523 8500 5168 4707 313 60250

13 56 548 3087 9661 19112 27552 31293 27717 14629 5427 3876 111 143069

14 46 590 3519 13251 32388 52870 61747 53398 35540 15787 3173 1827 20 274156

15 41 489 3584 14749 41049 78373 102880 95709 61646 28311 10626 965 465 1 438888

16 27 356 2814 13781 42566 90877 135278 138221 100392 48096 13094 4195 115 49 589861

17 14 231 1854 9704 34955 83859 141210 163710 125842 68515 24978 2942 837 658651

18 4 96 989 5258 20307 56939 110240 150023 136642 75688 27646 8127 172 46 592177

19 4 25 300 2109 8414 25220 57598 92985 105424 77316 29771 5059 1302 405527

20 6 52 401 2181 6905 17039 32977 45891 44939 27879 7828 186098

21 9 36 205 876 2328 4882 8272 10236 9024 5094 1332 42294

total 1 23 130 550 1736 5079 12201 26961 52634 94210 152635 226658 307010 378728 426503 433576 401122 330227 246055 158812 91995 43347 18200 5094 1332 3414819

B
A

C D
E F

This already displays typical features:

• Entries lies in the angle between {c = # ∼} (left) and {c = 2# ∼} (right
critical line).
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• Entry A: only generator in first column (c = 2g +1) the (2, 2g +1)-torus
knot, giving the series of odd pretzel knots.

• Entry B: only non-zero entry in first row (# ∼ = 2g). Generators look
like a disk with 2g Hopf bands plumbed. [explain how and linking graph]

For genus g = 2 gives, and for g > 2 includes the 2-bridge knot generator
(where linking graph is a tree).

• Entry C: maximal generators on left critical line (c = # ∼ = 6g −
3). Correspond to planar bipartite 3-connected cubic graphs with odd
number of spanning trees. ∃ for g = 1 (θ-curve) and g ≥ 6, but not for
g = 2, . . . , 5.

[Aside: let G be planar bipartite graph, and t(G) the number of spanning
trees of G. Then:

t(G) ≡ 3 mod 4 =⇒ χ(G) ≡ 3 mod 4

t(G) ≡ 1 mod 4 =⇒ χ(G) ≡ 1 mod 4

t(G) ≡ 2 mod 4 =⇒ χ(G) ≡ 0 mod 2
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The only proof I know uses knot theory. A graph-theoretic proof?]

• Entry D: maximal generators with c = 6g − 2 crossings. Always zero;
even for links. (6 ∃ triangulation of the square with even valence vertices.)

• Entries E and F: final two columns. These are c = 10g − 7 and 10g − 8
(for g > 1). Non-zero (V. examples), and only non-zero entries in their
column: all generators are maximal for 10g−8 (when g > 2) and 10g−7
crossings (for g > 1).

How do I obtain these tables? This is far from routine. Every new genus
requires an entirely different idea!

• g = 1 is easy and ‘folklore’ (apart from Brittenham, observed also by
Rudolph)

• g = 2 using a check in the knot tables

• g = 3 using Wicks forms: in Bacher-Vdovina’s list of maximal genus 3
Wicks forms, replace each letter by 0, 1 or 2 unlinked crossings and test
realizability. Took 3–4 days (on computer).
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• g = 4 using the (reverse) Hirasawa algorithm. 8 minutes for g = 3, and
11/2 months for g = 4.

• g = 5 is (probably forever?) hopeless

[explain Hirasawa algorithm]

Fact 18.

every series

Hirasawa
algorithm

⊂ a special series
S-V

⊂ maximal (generator) series ,

and Seifert graph of maximal series is (2-)3-valent.

Note: if D is in the series with Seifert graph G, then # ∼(D) = # edges in G
after removing val-2 vertices

This way I was able to obtain also the bottom rows for g = 5, 6.

Method: plantri of Brinkmann and McKay + symmetry groups calculated
by MATHEMATICA

TM
.
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Small application.

lim
n→∞

a2n±1,g

a2n,g
=

# max odd generators

# max even generators

evaluates as follows:

genus 1 2 3 4 5 6

# m.e. generators 0 1 74 21124 8307392 3971937256

# m.o. generators 1 1 84 21170 8310928 3971965116

odd

even
≈ ∞ 1 1.3514 1.00218 1.00043 1.00001

Combinatorialists know enough to ascertain:

Theorem 19.

# maximal odd gens of genus g

# maximal even gens of genus g

(exp. fast)
−→

g → ∞
1 .
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Something we don’t know is:

Conjecture 20.

# max odd gens of genus g > # max even gens of genus g (for g > 1)

There is an explanation of both statements from the B-V work (later).

6. Further applications of generators

[only keywordwise, since would get too long]

• enumeration problems (already discussed)

• hyperbolic volume (more below)

• signature of positive (and k-almost positive) links
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• exactness of the Morton-Williams-Franks braid index inequality and ex-
istence of minimal string Bennequin surfaces for alternating knots up to
genus 4

• conjectures of Hoste and Fox (Trapezoidal conjecture) on Alexander
polynomial of alternating knots (up to genus 4)

• Thurston-Bennequin invariant for Legendrian (and transverse) links

• non-triviality of the Jones (k ≤ 3) and skein (HOMFLY-PT) polynomial
(k ≤ 4; in special diagrams k = 5) of k-almost positive knots

• examples of unsharp Morton inequality for canonical genus

• crossing number estimates for semiadequate links

• wave move unknotting conjecture and number of Reidemeister moves
needed for unknotting
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7. Back to hyperbolic volume

Recall we were interested in vχ from (2).

3-conn. 3-valent planar graph G → unoriented link LG:

−→ . (5)

Fact 18 + Thurston’s hyperbolic surgery theorem ⇒

Corollary 21.
vχ := max

χ(G)=χ
vol(LG) , (6)

maximum taken over 3-connected 3-valent planar graphs. (And the supremum
vχ is attained by special alternating links.)
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So the question is now: what is vol(LG)?

For the following let

V0 ≈ 1.01494 , volume(regular ideal tetrahedron) ,

V8 ≈ 3.66386 , volume(regular ideal octahedron) .

and

θ = the theta-curve (7)

τ = the tetrahedral graph (8)

Estimates.

• ‘easy’ observation (Brittenham ’98): vol(L) ≤ 4V0c(L) (c(L) crossing
number) ⇒ vol(LG) ≤ 16V0# ∼(D);
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• (Lackenby ’04) vol(LG) ≤ 16V0(# ∼(D) − 1) [in fact works for twist
number t(D) ≤ # ∼(D)] ⇒

vχ ≤ 16V0(−3χ − 1)

• Agol and D. Thurston (appendix to Lackenby’s paper) ⇒ factor 16 → 10
(and asymptotically sharp, but not for fixed χ)

• better approach: v.d. Veen ’08 (+C.Adams ’85, C.Atkinson ’09); below

Disclaimer! The following pictures are taken from R. v.d. Veen, The volume
conjecture for augmented knotted trivalent graphs, preprint arXiv:0805.0094.

[now we explain a bit of v.d.Veen’s work]

G ⊂ S3 graph; N(G) neighborhood of G. Want hyp. structure on S3 \N(G).

If all ∂N(G) is cusp, structure is independent under vertex slide and not
interesting (in particular no planar G is hyp.)

Thus different structure:
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• each vertex of G: geodesic 2-sphere

• each edge of G: geodesic cylinder → cusps (later link components)

If S3 \ N(G) is hyp. (and G 6= θ 3-connected planar always ok; see below),
some sort of (Mostov) rigidity holds ⇒ ∃ volume; graph volume vol(G) of G.

Definition 22. vdV’s moves (which turn G into a link):
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• (un)zipping (almost same as (5)) preserves volume

• composition (essentially) ‘#’ adds volumes

G1 # G2 = G2G1
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When G2 = τ , triangle △ move (vdV considers only this case):

−→

Note: despite that # is highly ambiguous, additivity

vol(G#G′) = vol(G) + vol(G′)

holds for all possible ways of doing ‘#’ !

G( 6= θ) planar ⇒ S3 \ N(G) = 2 (equal) ideal π/2-angled polyhedra with
1-skeleton = median graph of G (realizable by Andreev’s theorem when G
3-conn.) ⇒ G hyperbolic.
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Zipping ⇒
vol(LG) = vol(G′) ,

where G′ is obtained from G by △ move at each vertex ⇒

vol(LG) = vol(G) + 2V8 · v(G) ,

with v(G) := # { vertices of G }.

By using Atkinson’s estimate on polyhedral volume:

Proposition 23.

V8 (−6χ − 2) ≤ vχ ≤ V8(−7χ − 1) . (9)

Remark 24. Lower bound attained when we glue only octahedra; for G =
τ#τ# . . . #τ . VdV proves Volume conjecture for (unzippings of) such G.

More generally, iterated composition shows:

Corollary 25. ∃ ‘stable volume-χ ratio’

δ = lim
χ→−∞

vχ

(−2 − 6χ)V8
= sup

χ<0

vχ

(−2 − 6χ)V8
,
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and

1 ≤ δ ≤
7

6
. (10)

Computation (below) improves lower bound to ≈ 1.08796 ⇒ upper bound
sharp up to < 10%.

Computation.

first simplification

instead of vol(LG) can calculate vol(L′
G): unzip G along a perfect matching .

Definition 26. Perfect matching S ⊂ { edges of G } s.t. ∀ vertex of G !∃
incident edge ∈ S.

L′
G has (at least) 3 times fewer crossings than LG! (Faster to obtain vol with

J.Weeks’ SnapPea)
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L′
τ Lτ

Remark 27. Always ∃ perfect matching (in fact, ∃ exponentially many, a
40-year-old problem solved recently Esperet-Kardoš-King-Král’-Norine ’11).

second simplification

composition ⇒ enough to consider cyclically 4-connected (c4c) G.

Definition 28. Cubic G cyclically 4-connected :⇔ ≤ 3 edges disconnecting
G are 3 edges incident to a vertex of G (in particular, 3-conn.)
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Or: G = G1#G2 ⇒ G1 = θ or G2 = θ

Result:

χ # c4c G max. vol. vχ ≈
vχ

(−2 − 6χ)V8

≈

−1 0 4V8 1
−2 1 10V8 1
−3 0 16V8 1
−4 1 82.7139821 1.02616
−5 1 105.8287878 1.03159
−6 2 129.3489143 1.03835
−7 4 153.3818722 1.04659

. . .
−19 136610879 444.7966230 1.08394
−20 765598927 469.2471319 1.08538
−21 4332047595 493.7021266(?) 1.08669(?)
−22 ? 518.1952668? 1.08796?
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(Last row uses only – heuristically – cycl. 5-conn. graphs.)

Conjecture 29. Right ratio always rising, i.e., maximal vol(G) attained for
c4c G. (In fact, can conjecture c5c for χ ≤ −12.)

8. The relation between volume and the slN polynomial

We studied maximal volume vχ for links: if χc(L) = χ, then L has n =
2 − χ, χ, . . . , χ mod 2(∈ {1, 2}) components.

How about fixing n (in particular knots n = 1)?

Definition 30. Recall marking O : { vertices of G } → {+,−} and thicken-
ing (4) we call S = SG,O.

Let LG,O = ∂SG,O and nG,O = n(LG,O) be # of components.

Again for χ(G) = χ, have n = nG,O = 2−χ, χ, . . . , χ mod 2 components. Call
O
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• even/odd if diagram of LG,O has even/odd crossings,

• minimal if LG,O has n(LG,O) = 1 or 2 components, and

• spherical if LG,O has n = 2 − χ.

[starting again a (last) detour]

Thickenings occur in the calculation of the slN polynomial .

Theory of Vassiliev invariants (Kontsevich, Bar-Natan): for a (semisimple)
Lie algebra g ∃ invariant, weight system, Wg of (uni-)trivalent graphs G.

For g = slN the polynomial WslN (G) = WN (G) can be calculated by:

WN (G) = WN,+(G) − WN,−(G) ,

with
WN,+/− (G) =

∑

O even/odd

NnG,O .
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WN (G) ∈ Z[N ]; only even or odd degree terms, maximal possible degree 2−χ.

Theorem 31 (Bar-Natan’s version of Four color theorem 4CT).

#{ spherical markings of G } 6= 0 ⇒ #{ four-colorings of G } 6= 0

= ≃

(if G planar)

[WN (G)]2−χ 6= 0 ⇒ W2(G) 6= 0

Little else known on WN (G).

Easy:

WN (θ) = 2N (N2 − 1) | WN (G) , and W ′
N (G) :=

WN (G)

WN (θ)

has only even/odd powers.

Lemma 32. W ′
N (G1#G2) = W ′

N (G1)W
′
N (G2) (for all ‘#’).
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Remark 33. Vogel ’96 introduced an algebra Λ and proved something simi-
lar (under restrictions) for arbitrary Lie (super) algebra (showing ∃ non-Lie
algebraic weight systems).

Recall that degree 1 (=knot markings) studied by B-V.

Definition 34 (following B-V). Call a vertex of G good/bad in a marking
O if changing marking of v in O preserves/changes nG,O.

Lemma 35 (B-V). A knot marking O for G with χ(G) = 1− 2g has 2g bad
and 2g − 2 good vertices.

(⇒ number of good/bad vertices independent of O and depends on G only via
χ(G)!)

Corollary 36. If G 6= θ (even non-planar),

[WN,+(G)]1 = [WN,−(G)]1 ⇒ [WN (G)]1 = 0 .
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Modding out by symmetries of G returns us to maximal generators:

• It is known that symmetries fade (fast) when g → ∞ ⇒ theorem 19.

• Even markings still seem to have a few more symmetries than odd mark-
ings ⇒ conjecture 20.

Remark 37. Nothing similar to lemma 35 true for n > 1. Of course, by lemma
32: G = G1# . . .#Gn ⇒ often low degree terms vanish, but many c4c G have
degree 2 or 3 terms.

But there is a criterion for good vertices in the general case:

Theorem 38. ∃ good vertex of (G, O) ⇐⇒ a component of diagram of LG,O

has a self-crossing.

If G 2-connected, Whitney’s theorem ⇒ spherical markings are even.
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Corollary 39. G 2-connected (cubic), O non-spherical marking ⇒ ∃ O′ of
opposite parity with nG,O = nG,O′ .

(In some sense a counterpart to Whitney’s theorem on higher genus surfaces.)

Relation to volume.

Computations led to the following (a priori naive) question:

Question 40. Is there a relation between WN (G) and vol(G)? (Bluntly): does
one determine other?

Analogy: both WN (G) and vol(G) behave ‘well’ under composition

⇒ look at c4c G.

Result:

vol(G) /=⇒ WN (G) G1, G2 of χ = −9 equal vol, different WN

vol(G) /⇐= WN (G) counterexamples only from χ = −15 (3-4 months of
computation and skillful programming needed!)
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One pair:

vol(G) ≈ 120.7043405 vol(G′) ≈ 120.7043733

WN (G) = WN (G′) = 10496N3 − 1536N5 − 9760N7 − 7100N9

+6672N11 + 1156N13 + 70N15 + 2N17

Remark 41. It is not that WN (G) = WN (G′) occurs seldom. E.g., in χ = −12
∃ 1357 c4c graphs, 617 coincidences of WN (i.e., 740 diff. values)
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In 105’s of computed c4c examples (til χ = −17, ≈ 55% of χ = −18), WN (G) =
WN (G′) ⇒ vol(G) = vol(G′), and even in discrepancies WN predicts vol with
unusual accuracy: ∣

∣ vol(G) − vol(G′)
∣
∣

vol(G)
< 6 · 10−7 .

So what is mystery around question 40? Why answer so little naive?

9. Independence of volume on number of components

[end of the last detour]

Recall: how about maximal volume of knots (or fixed number of link compo-
nents)?

vn,χ = sup { vol(L) : χc(L) = χ, n(L) = n } (11)

New version of (6),
vn,χ := max

χ(G)=χ
vol(LG) ,
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changes by taking only G with n-component markings.

Thus: what (3-conn. cubic planar) G have n-component markings?

Lemma 42. G has n-component non-spherical marking ⇒ ∃ n+2-component.

Proof (easy). Take n-component marking O and successively make all signs
+ (or −) to get spherical marking. �

So question is: given G what is minimal component marking, min degN WN,±?

Example 43. Can be arbitrarily large! Consider the ‘ladder’ An of n stairs (or
spokes); for n = 6

.
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An → Bn by △ move (. . .#τ) at each vertex. Then

min degN WN,±(Bn) ≥
1

6
v(Bn) → ∞ .

(Question: ‘worst’ case?)

When ∃ minimal marking (min deg ≤ 2)? Maybe such examples arise because
we build # in the ‘wrong’ way?

Lemma 44. G1, G2 planar 3-conn. cubic graphs w/ minimal marking ⇒
∃ a way to do G1#G2 s.t. it has minimal marking.

(Proof uses again B-V lemma 35.)

So question reduces to c4c graphs. Also n = 2 reduces easily n = 1, and we
are back to knots. Of course,

knots ⇒ knot markings ⇒ Wicks forms ⇒ Vdovina constructions α, β, γ

give exact description, but it’s recursive and takes no account of c4c.

So I crunched a bit until I had what I wanted:
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Theorem 45. Every cyclically 4-connected planar 3-valent graph of odd χ has
a knot marking.

. . . with the intended application:

Corollary 46. vn,χ = vχ, i.e., maximal volume independent of number of
components.

Proof. Take G with maximal vol(LG) (for given χ), decompose it into c4c
pieces, (get a minimal marking on each c4c piece,) and put the pieces correctly
together. �

Remark 47. If conjecture 29 is true, then this whole ‘rearrangement’ is unnec-
essary.
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Thank you!
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