Introduction to Topology

Alexander Stoimenov

Chapter 1. Set Theory and Logic

1. Fundamental Concepts

$$
\text { set }=\{\text { objects }\}
$$

some logical fundamentals of set theory needed.
$P=\{A: A \notin A\}$, then $P \notin P \Rightarrow P \in P \Rightarrow P \notin P$
Russell's paradox! but not discussed here.

Basic Notation

```
\(a \in A\) element
\(a \notin A\) not element
\(A\) э \(a \quad A\) contains \(a\)
\(A \subset B\) every \(a \in A\) has \(a \in B\)
            includes \(=A \subset A\)
            if excludes \(=\) write \(A \mp B\) (proper inclusion)
\(B \supset A \quad B\) superset of \(A\) or \(B\) contains \(A\)
```

notation of sets
\{objects\}
\{objects : property $\} \quad\{x: x$ even int. $\}$
union/intersection/or/and

$$
\begin{array}{lrlrl}
A \cup B & \text { union } & A \cup B & =\{x: x \in A \text { or } x \in B\} \\
A \cap B & \text { intersection } & A \cap B & =\{x: x \in A \text { and } x \in B\} \\
& & & =\{x \in A: x \in B\}
\end{array}
$$

Remark or is not exclusive
" P or Q " means ok if P and Q
if we want to exclude P and Q
say "either P or Q" or "P or Q but not both"
\varnothing empty set
if $A \cap B=\varnothing$ then A, B disjoint
$\forall x, x \notin \varnothing$
$A \cup \varnothing=A, A \cap \varnothing=\varnothing$
if ... then
If P , then $\mathrm{Q} \quad P \Rightarrow Q$ means if $\mathrm{P}=$ true, then $\mathrm{Q}=$ true.
Q if $\mathrm{P} \quad$ if $\mathrm{P}=$ false, then $\mathrm{Q}=$ true or false.
P if and only if $\mathrm{Q} P \Leftrightarrow Q$
Ex. "if $x^{2}<0$, then $x=23$ "
$P(x)=" x^{2}<0 "$. Since $\forall x(P=$ false $), " x=23 "$ (vacuously) true.
contrapositive/converse
$P \Rightarrow Q$ (contrapositive) $\neg Q \Rightarrow \neg P$
Contrapositive is true if and only if the statement is true.
Contrapositive is logically equivalent.
$P \Rightarrow Q$ (converse) $Q \Rightarrow P$ (not equivalent to $P \Rightarrow Q$)
$P \Leftrightarrow Q$ means $P \Rightarrow Q$ and $Q \Rightarrow P$
Negation of quantified statements

$$
\quad \neg P ",
$$

Set difference

$$
A-B=A \backslash B=\{x \in A: x \notin B\}
$$

Figure 1- 1. Venn diagrams
$A \cap B=B \cap A \quad A \backslash B \neq B \backslash A$

Figure 1- 2. Venn diagrams
$A \cup(B \cap C) \neq(A \cup B) \cap C$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ distributive law
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
$A \backslash(B \cup C)=(A \backslash B) \cap(A \backslash C)$ DeMorgan's law
$A \backslash(B \cap C)=(A \backslash B) \cup(A \backslash C)$
Collection of Sets
can form sets out of sets

$$
\begin{gathered}
\mathcal{P}(\mathcal{A}):=\{\mathcal{B}: \mathcal{B} \subset \mathcal{A}\} \quad \text { power set of } \mathrm{A} \\
a \in A \Leftrightarrow\{a\} \subset A \Leftrightarrow\{a\} \in \mathcal{P}(\mathcal{A})
\end{gathered}
$$

Arbitrary Unions and Intersections
\mathcal{A} family of sets

$$
\begin{aligned}
\bigcup \mathcal{A}=\bigcup_{A \in \mathcal{A}} A= & \{x: \exists A \in \mathcal{A} \quad x \in A\} \\
& x \text { is in at least one } A \in \mathcal{A} \\
\bigcap \mathcal{A}=\bigcap_{A \in \mathcal{A}} A= & \{x: \forall A \in \mathcal{A} \quad x \in A\} \\
& x \text { is in all } A \in \mathcal{A}
\end{aligned}
$$

Cartesian Products

$$
A \times B=\{(a, b)=: a \times b \quad: \quad a \in A, b \in B\}
$$

2. Functions

We need a bit more formal definition to make precise domain C, D sets, A rule of assignment is $r \subset C \times D$ with

$$
\forall c \in C \quad(\{c\} \times D) \cap r \text { has at most one element }
$$

Then define

$$
\begin{aligned}
\operatorname{domain}(r) & =\{c \in C:(\{c\} \times D) \cap r \neq \varnothing\} \\
\operatorname{image}(r) & =\{d \in D:(C \times\{d\}) \cap r \neq \varnothing\}
\end{aligned}
$$

Definition $\quad f=(r, B)$ is a function $\quad r$ is rule of assingment, $B \supset \operatorname{image}(r)$

$$
A:=\operatorname{dom}(r)=\operatorname{dom}(f) \quad \text { domain 정의 역 }
$$

공역 range of $f B$ כ $\operatorname{image}(r)=\operatorname{image}(f) \quad$ image of f 치역
$\left[\begin{array}{ccc}\underline{\text { Remark }} \text { elsewhere } & (\text { my other lectures }) & \text { image }=\text { range 치역 } \\ \text { analysis } & \text { range }=\text { target 공역 }\end{array}\right]$
$f=(r, B): A \rightarrow B \quad a \in B$ let $b \in B$ be so that $(a, b) \in r$
(b unique!) $f(a)=b \quad$ image of a under f value of f at a
Definition $g: A \rightarrow B \quad A_{0} \subset A$, where $g=(r, B), r \subset C \times D$
$g: A_{0} \rightarrow B$ defined by $\left(r \cap A_{0} \times D, B\right)$
$g \mid A_{0}$ restriction of g to A_{0}

$$
\begin{array}{lll}
\underline{\text { Ex. }} & f: \mathbb{R} \rightarrow \mathbb{R} & f(x)=x^{2} \\
\overline{\mathbb{R}_{+}}=[0, \infty) & g: \mathbb{R}_{+} \rightarrow \mathbb{R} & g(x)=x^{2} \\
& h: \mathbb{R} \rightarrow \mathbb{R}_{+} & h(x)=x^{2} \\
& k: \overline{\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}} & k(x)=x^{2}
\end{array}
$$

Figure 1- 3. Function f, g, h, k
(for us) are all diff, $g=\left.f\right|_{\overline{\mathbb{R}_{+}}}, k=\left.h\right|_{\overline{\mathbb{R}_{+}}}$
(we keep record of range!)
Definition $f: A \rightarrow B \quad g: B \rightarrow C$
Define composite $g \circ f: A \rightarrow C \quad g \circ f(a)=g(f(a))$
rule of assignment $r_{g \circ f}=\left\{(a, c) \in A \times C: \exists b \in B(a, b) \in r_{f}(b, c) \in r_{g}\right\}$
Note we define $g \circ f$ only if $\operatorname{range}(f)=\operatorname{dom}(g) \quad$ (not subset)

$\underline{\text { Definition }}$	$f: A \rightarrow B$	injective	if $\forall a \neq b \quad a, b \in A \quad f(a) \neq f(b)$
		(one-to-one)	$(\Leftrightarrow f(a)=f(b) \Rightarrow a=b)$
	$f: A \rightarrow B$	surjective	if $\forall b \in B \quad \exists a \in A \quad f(a)=b$
		(onto)	(\Leftrightarrow image $(f)=\operatorname{range}(f)=B$)
	$f: A \rightarrow B$	bijective	if f injective \& surjective
		correspond	

If $f: A \rightarrow B$ bijective, then exists $f^{-1}: B \rightarrow A$ inverse
$b \in B \quad f^{-1}(b)=a$ with $f(a)=b(f$ bijective $\rightarrow \exists!a)$
$f: A \rightarrow A \quad f(x)=x \quad I d_{A} \quad$ identity function
lemma $f: A \rightarrow B$
if $\exists g, h: B \rightarrow A \quad g \circ f=I d_{A} \quad$ left inverse $f \circ h=I d_{B} \quad$ right inverse
Then f bijective and $g=h=f^{-1}$
Definition $f: A \rightarrow B \quad A_{0} \subset A$

$$
\begin{aligned}
f\left(A_{0}\right)= & \left\{f(a): a \in A_{0}\right\} \quad \text { image of } A_{0} \text { under } f \\
= & \left\{b \in B: \exists a \in A_{0} f(a)=b\right\} \\
B_{0} \subset B \quad & f^{-1}\left(B_{0}\right)=\left\{a \in A: f(a) \in B_{0}\right\} \quad \text { preimage of } B_{0} \text { under } f
\end{aligned}
$$

Remark If f bijective, then $f^{-1}\left(B_{0}\right)=\left(f^{-1}\right)\left(B_{0}\right)$
preimage image under inverse map
Remark $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0} \quad "=$ "if f surjective $f^{-1}\left(f\left(A_{0}\right)\right) \supset A_{0} \quad "=$ "if f injective

3. Relations

(1) equivalence relation
(2) order relation

Definition A relation on a set A is a subset $C \subset A \times A$

$$
x C y \quad \text { if }(x, y) \in C " x \text { is in the relation } C \text { to } y "
$$

$x \sim_{C} y$ $x \psi_{C} y \quad(x, y) \notin C$ " x is not in the relation C to $\mathrm{y} "$
(1) equivalence relation

Definition $C \subset A \times A$ equivalence relation if
(1) Reflexivity $\quad x \sim_{C} x \quad \forall x \in A$
(2) Symmetry $\forall x, y \in A \quad x \sim_{C} y \Rightarrow y \sim_{C} x$
(3) Transitivity $\forall x, y, z \in A \quad x \sim_{C} y, y \sim_{C} z \Rightarrow x \sim_{C} z$

Ex. $C=A \times A$ trivial equivalences
$C=\{(x, x): x \in A\}$
$A=\mathbb{Z} \quad x \sim y \Leftrightarrow y-x$ is even
Definition $C \subset A \times A$ equivalence relation
$a \in A, a \in[a] \quad[a]=[a]_{\sim_{C}}=\left\{b \in A: b \sim_{C} a\right\} \subset A$
lemma $\forall a, b \in A \quad[a]=[b]$ or $[a] \cap[b]=\varnothing$
Two equivalence classes are equal or disjoint
Definition A set, \mathcal{E} family of sets is partition of A if
a) $\forall A^{\prime} \in \mathcal{E} \quad \varnothing \neq A^{\prime} \subset A$ nonempty subsets of A
b) $\forall A^{\prime}, A^{\prime \prime} \in \mathcal{E} \quad$ if $A^{\prime} \neq A^{\prime \prime} \Rightarrow A^{\prime} \cap A^{\prime \prime}=\varnothing$ disjoint
c) $\bigcup_{A^{\prime} \in \mathcal{E}} A^{\prime}=A$
\{equivalence relations on $A\} \Leftrightarrow\{$ partitions of $A\}$
If \sim_{C} is equivalence relation of $\mathrm{A} \Rightarrow \mathcal{E}=\{$ equivalence classes $\}$ is a partition of A
If \mathcal{E} partition of A, define $\forall a, b \in A a \sim \mathcal{E} b$ if $\exists A^{\prime} \in \mathcal{E} a, b \in A^{\prime}$ is an equivalence relation
(2) order relations (more important for us)

Definition $C \subset A \times A$ (simple) order, linear order if
(1) Comparability $\forall x, y \in A x \neq y x \sim_{C} y$ or $y \sim_{C} x$
(2) Nonreflexivity $\forall x \in A x \not_{C} x$
(3) Transitivity $\forall x, y, z \in A x \sim_{C} y, y \sim_{C} z \Rightarrow x \sim_{C} z$

Remark (2), (3) \Rightarrow "or" in (1) is either or $\left(\nexists x, y \in A: x \sim_{C} y\right.$ and $\left.y \sim_{C} x\right)$

Ex. $A=\mathbb{R}<$ usual order relation
$A=\mathbb{R} \quad x \sim_{C} y \Leftrightarrow x^{2}<y^{2}$ or $x^{2}=y^{2} \quad x<y$
unusual order relation
Ex. $(A, C) C$ order relation $B \subset A(B, C \cap(B \times B))$ restriction usually use ' $<$ ' for order relation

Definition $x<y \quad x$ less than $\mathrm{y},(A,<)$ ordered set
$x \leq y \Leftrightarrow x<y$ or $x=y$
$x>y \Leftrightarrow x<y$
$y \geq x \Leftrightarrow y>x$ or $y=x$
write $x<y<z$ for $x<y$ and $y<z$
Definition $a, b \in(A,<) \quad a<b$
Define $(a, b)=\{x: a<x<b\}$ open interval
if $(a, b)=\varnothing$ call b immediate successor of $a \quad b=\operatorname{succ}(a)$ a immediate predecessor of $b \quad a=\operatorname{pred}(b)$

Ex. ($\mathbb{R},<$) no element has immediate succesor and predecessor
because $\forall a<b \quad(a, b) \neq \varnothing$
$(\mathbb{Q},<)$ similar
$(\mathbb{Z},<) \quad$ immediate succesor and predecessor of $a \in \mathbb{R}$ is $a+1$ and $a-1$, respectively
Definition $\left(A,<_{A}\right) \simeq\left(B,<_{B}\right)$ same order type if
$\exists f: A \rightarrow B$ bijective and $a_{1}<_{A} a_{2} \Leftrightarrow f\left(a_{1}\right)<_{B} f\left(a_{2}\right)$

Ex. $\mathbb{R} \simeq(-1,1)$
$f(x)=\frac{x}{1-x^{2}}$
$[0,1) \simeq\{0\} \cup(1,2) \quad f(0)=0 f(x)=x+1$

Figure 1-4: $x /\left(1-x^{2}\right)$

Definition $\left(A,<_{A}\right),\left(B,<_{B}\right)$ ordered sets
Define $<_{A \times B}$ on $A \times B$ by
$\left(a_{1}, b_{1}\right)<\left(a_{2}, b_{2}\right)$ if $a_{1}<_{A} a_{2}$ or $a_{1}=a_{2}$ and $b_{1}<_{B} b_{2}$
It is called dictionary(lexicographical) order relation
Ex. $\mathbb{Z} \times[0,1)$ with usual order has the order type of \mathbb{R} with lexicographical order $f(z, \epsilon)=z+\epsilon$
$[0,1) \times \mathbb{Z}$ has very different order type every element has an immediate predecessor and successor

Bounds, Maxima, Suprema, ...
$(A,<)$ ordered set, $A_{0} \subset A$
$b=\max A_{0} \quad$ largest element of A_{0} if $b \geq x \quad \forall x \in A_{0}$
$b=\min A_{0} \quad$ smallest element of A_{0} if $b \leq x \quad \forall x \in A_{0}$
$b \in A$ upper bound for A_{0} if $b \geq x \quad \forall x \in A_{0}$
$b \in A$ lower bound for A_{0} if $b \leq x \quad \forall x \in A_{0}$ (does not need to exist!)
A_{0} bounded above if A_{0} has upper bound
A_{0} bounded below if A_{0} has lower bound
bounded $=$ bounded above + bounded below
A_{0} has least upper bound b if
b upper bound for A_{0} and $\forall x \in A x<b: x$ is not upper bound for A_{0}

$$
\begin{aligned}
& b=\min \left\{x: x \text { upper bound for } A_{0}\right\} \\
& b=\sup A_{0} \text { supremum }
\end{aligned}
$$

A_{0} has greatest lower bound b if
b lower bound for A_{0} and $\forall x \in A x>b x$ is not lower bound for A_{0}

$$
\begin{aligned}
& b=\max \left\{x: x \text { lower bound for } A_{0}\right\} \\
& b=\inf A_{0} \text { infimum }
\end{aligned}
$$

$\underline{\text { Remark }}$ if $b=\sup A_{0} \in A_{0}$, then $b=\max A_{0}$
if $b=\inf A_{0} \in A_{0}, \quad b=\min A_{0}$
Definition $(A,<)$ has least upper bound(l.u.b.) property
if $\forall A_{0} \subset A \quad A_{0} \neq \varnothing \quad A_{0}$ bounded above $\exists \sup A_{0} \in A$
$(A,<)$ has greatest lower bound(g.l.b.) property
if $\forall A_{0} \subset A \quad A_{0} \neq \varnothing \quad A_{0}$ bounded below $\exists \inf A_{0} \in A$

Theorem $(A,<)$ has g.l.b.p. \Leftrightarrow l.u.b.p.

Ex. Assume ($\mathbb{R},<$) has l.u.b.p. (discuss this later!)
then $A=(-1,1),<$ has l.u.b.p.
proof. $A_{0} \subset(-1,1) A_{0} \neq \varnothing$ bounded above in A_{0}
$\exists b \in(-1,1) b \geq x \forall x \in A_{0}$
$b \in A_{0} \subset \mathbb{R} \Rightarrow A_{0}$ bounded above in \mathbb{R}
\mathbb{R} has l.u.b.p. $\Rightarrow \exists$ least upper bound \tilde{b} of A_{0} in \mathbb{R}
$A_{0} \neq \varnothing \quad \exists a \in A_{0} \quad a \leq \tilde{b} \leq b$
now $a, b \in A_{0}=(-1,1) \Rightarrow \tilde{b} \in(-1,1)=A$
\tilde{b} is least upper bound of A_{0} in A
Similarly all intervals in \mathbb{R} have l.u.b.p.
Ex. $A=(-1,0) \cup(0,1)$
$A_{0}=\{-1 / n: n>1\}$ has upper bound but no least upper bound

4. Integers and Real numbers

need a bit more formal approach to real numbers via axioms
Definition $f: A \times A \rightarrow A$ binary operation on A $f\left(a, a^{\prime}\right)=a f a^{\prime}$
define group, Abelian group, field
Definition The real numbers $(\mathbb{R},+, \cdot,<)$ is a set with two binary operations + addition, • multiplication and one ordering relation < such that
(1)-(5) $(\mathbb{R},+, \cdot)$ is a field

Mixed algebraic and order property
(6) $\forall x, y, z \in \mathbb{R} \quad x>y \Rightarrow x+z>y+z$

$$
x>y, z>0 \Rightarrow x \cdot z>y \cdot z
$$

order properties
(7) < has least upper bound property
(8) if $x<z \exists y: x<y$ and $y<z$
$-x$ is the additive inverse $x+(-x)=0$

$$
a-b=a+(-b) \quad \text { subtraction }
$$

$x \neq 0 \quad \frac{1}{x}=x^{-1}$ is multiplicative inverse $\quad x \frac{1}{x}=1$
$b \neq 0 \quad \frac{a}{b}=a \cdot b^{-1}=b^{-1} \cdot a \quad$ quotient
all other common properties of real numbers can be derived from these axioms (1)-(8)
Ex. if $x>y z<0 \Rightarrow x \cdot z<y \cdot z$

$$
-1<0<1
$$

$\left.\begin{array}{l}(1)-(5) \text { field } \\ (6)\end{array}\right\} \quad$ ordered field $(\Rightarrow$ char $=0!)$
(7), (8) $\}$ linear continuum (topological term)

Remark $\quad(8) \Leftarrow(1)-(7)$
given $x \neq z$ build $y=\frac{x+z}{2}$ with $2=1+1 \neq 0(!!)$
Definition $x>0$ positive $x<0$ negative
formal definition of integers

$$
\begin{aligned}
& A \subset \mathbb{R} \text { inductive if } 1 \in A \text { and } \forall x \in A x+1 \in A \\
& \mathcal{A}=\{A \in \mathbb{R}: A \text { inductive }\} \\
& \left.\left(\mathbb{N}_{+}=\right) \mathbb{Z}_{+}=\bigcap_{A \in \mathcal{A}} A \text { positive integers (natural numbers } \mathbb{N}\right) \\
& \mathbb{Z}=\mathbb{Z}_{+} \cup\{0\} \cup \underbrace{-\mathbb{Z}_{+}}_{\left\{-a: a \in \mathbb{Z}_{+}\right\}}
\end{aligned}
$$

Remark $\mathbb{Z}_{+} \subset \mathbb{R}_{+}=(0, \infty)$ because $(0, \infty)$ inductive $\min \mathbb{Z}_{+}=1 \ldots . .[1, \infty)$ is inductive, so $\mathbb{Z}_{+} \subset[1, \infty)$
define rational numbers

$$
\mathbb{Q}=\{m / n: m, n \in \mathbb{Z}, n \neq 0\}
$$

Theorem 4.1 (Well-ordering property)
$A \subset \mathbb{Z}_{+} A \neq \varnothing \Rightarrow \exists \min A A$ э smallest element
$\{1, \cdots, n\}=S_{n+1} \quad$ section of positive integers $\quad S_{1}=\varnothing$
Theorem 4.2 (Strong induction principle)
$A \subset \mathbb{Z}_{+}$and $\forall n \in \mathbb{Z}_{+} S_{n} \subset A \Rightarrow S_{n+1} \subset A$
(in particular, $n=1 \varnothing=S_{n} \subset A \Rightarrow S_{2}=\{1\} \subset A \Rightarrow 1 \in A$)
then $A=\mathbb{Z}_{+}$
l.u.b. axiom $(7) \Rightarrow \mathbb{Z}_{+}$has no upper bound
(Archimedean ordering property)
$\Rightarrow \exists \sqrt{x} x>0 \cdots \sqrt{a}=\sup \{x: x \cdot x \leq a\}$

5. Cartesian products

Generalize $A \times B$
Definition \mathcal{A} family of sets
indexing function $f: J \longrightarrow \mathcal{A} f$ surjective J index set
$\alpha \in J$ write $f(\alpha) \in \mathcal{A}$ as A_{α}
$\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in J}$
We don't need f bijective so some set can be indexed multiply!

$$
\begin{aligned}
& \bigcup_{\alpha \in J} A_{\alpha}=\bigcup_{A \in \mathcal{A}} A=\left\{x: A_{\alpha} \ni x \text { for at least one } \alpha \in J\right\} \\
& \bigcap_{\alpha \in J} A_{\alpha}=\bigcap_{A \in \mathcal{A}} A=\left\{x: A_{\alpha} \ni x \text { for all } \alpha \in J\right\}
\end{aligned}
$$

Ex. $J=\{1,2\} \mathcal{A}=\left\{A_{1}, A_{2}\right\}$

$$
\bigcap_{\alpha \in J} A_{\alpha}=A_{1} \cap A_{2} \bigcup_{\alpha \in J} A_{\alpha}=A_{1} \cup A_{2}
$$

Definition $m \in \mathbb{Z}_{+}=\mathbb{N} X$ set
m-tuple x of elements in X is $x:\{1, \ldots, m\} \rightarrow X$ $x=(x(1), \ldots, x(m)) \quad x(i) \in X$-th coordinate of x $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ family indexed by $\{1, \ldots, m\}$

$$
A_{1} \times \cdots \times A_{m}=\left\{x: m \text {-tuple of } X=\bigcup_{i=1}^{m} A_{i} \text { with } x(i) \in A_{i} \forall i=1, \ldots, m\right\}
$$

Remark $(A \times B) \times C \simeq A \times(B \times C) \simeq A \times B \times C$

$$
((a, b), c) \leftrightarrow(a,(b, c)) \leftrightarrow(a, b, c)
$$

$$
n \in \mathbb{Z}_{+} \quad A^{n}=A \times A \times \cdots \times A=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in A\right\}
$$

$$
(\mathcal{A}=\{A\} f:\{1, \ldots, m\} \rightarrow \mathcal{A} f(i)=A i=1, \ldots, m)
$$

Definition (sequence set) X set
$x: \mathbb{Z}_{+} \rightarrow X \quad$ (infinite) sequence, ω-tuple of elements in X
$x=(x(1), x(2), \ldots)=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{n}\right)_{n \in \mathbb{N}}$
$X^{\omega}=\{x: x$ sequence in $X\}$

$$
\begin{aligned}
& \mathcal{A}=\left\{A_{i}\right\}_{i \in \mathbb{Z}_{+}} \\
& A_{1} \times A_{2} \times \cdots=\prod_{i=1}^{\infty} A_{i}=\prod_{i \in \mathbb{Z}_{+}} A_{i}=\left\{x \in X^{\omega} \text { for } X=\bigcup_{i=1}^{\infty} A_{i} x_{i} \in A_{i} \forall i \in \mathbb{Z}_{+}\right\} \\
& X^{\omega}=\prod_{i=1}^{\infty} X=\prod_{i \in \mathbb{Z}_{+}} X
\end{aligned}
$$

(later define $\prod_{\alpha \in J} A_{\alpha}$ for $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in J}$)

6. Finite sets and Cardinalities

Definition set A finite $\exists n \in \mathbb{N} \exists f: S_{n}=\{1, \ldots, n-1\} \rightarrow A$ bijective $|A|:=n-1 \in \mathbb{N} \cup\{0\} \quad$ cardinality of $A \quad|A|<\infty$

Caution why is this well defined?
Can $S_{m} \stackrel{f^{\prime}}{\leftrightarrow} A \stackrel{f}{\leftrightarrow} S_{n} \quad m \neq n$ to prove is $\nexists f: S_{m} \rightarrow S_{n}$ bijective if $n \neq m$

This is intuitively clear, but it is good to prove it formally using the tools from set theory we developed. I skip details but it requires some steps which are important for other reasons.

Theorem 6.2 Let A be a set. Assume $\exists f: A \rightarrow\{1, \ldots, n\}$ bijective
Let $B \mp A, B \neq \varnothing$.
Then (1) $\exists m \in \mathbb{N} m<n \tilde{f}: B \rightarrow\{1, \ldots, m\}$ bijective and (2) $\nexists \hat{f}: B \rightarrow\{1, \ldots, n\}$ bijective

The proof uses induction $C=\left\{n \in \mathbb{Z}_{+}\right.$: Thereom holds $\}$
prove that C is inductive
$1 \in C$ if $n \in C \Rightarrow n+1 \in C \Rightarrow C=\mathbb{Z}_{+}$
Corollary if A is finite, \nexists bijection between A and a proper subset B of itself
$\underline{p f .}$ if $A \simeq B$, since $A \simeq\{1, \ldots, n\} \Rightarrow B \mp A B \simeq\{1, \ldots, n\}$
previous theorem (2) \Rightarrow 亿
Corollary $\mathbb{Z}_{+}=\mathbb{N}$ is not finite
pf. $n \mapsto n+1 f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+} \backslash\{1\}$ bijective
Corollary $|A|$ is well defined(for A finite)
$\underline{p f .}$ otherwise, $\{1, \ldots, n\} \simeq\{1, \cdots, m\} m<n$

Corollary A finite $B \mp A \Rightarrow B$ fintite and $|B|<|A|$
Corollary The following are equivalent $\forall B \neq \varnothing$
(1) B is finite
(2) $\exists f: S_{n} \rightarrow B$ surjective for some n
(3) $\exists f: B \rightarrow S_{m}$ injective for some m

Corollary Finite unions of finite sets are finite
$\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in J}|J|<\infty \forall \alpha \in J\left|A_{\alpha}\right|<\infty$
$\Rightarrow\left|\bigcup_{\alpha \in J} A_{\alpha}\right|=\left|\bigcup_{A \in \mathcal{A}} A\right|<\infty$
induction on $|J|=n$
pf. $|J|=2 \mathcal{A}=\{A, B\}$
$\{1, \ldots, n\} \leftrightarrow A \quad\{1, \ldots, m\} \leftrightarrow B$
$\{1, \ldots, n+m\} \xrightarrow{\text { surjective }} A \cup B$
induction set $A_{n} \cup \cdots \cup A_{m}=(\underbrace{A_{n} \cup \cdots \cup A_{m-1}}_{A}) \cup \underbrace{A_{n}}_{B}$

7. Countable and uncountable sets

Definition A set infinite if not finite $\forall n \nexists f: S_{n} \rightarrow A$ bijective A countably infinite if $\exists f: A \rightarrow \mathbb{Z}_{+}$bijective

Remark countably infinite \Rightarrow infinite
$\underline{p f}$. if not \exists bijection(surjection) $\mathbb{Z}_{+} \rightarrow\{1, \ldots, n\} \Rightarrow \exists$ injection $i: \mathbb{Z}_{+} \rightarrow\{1, \ldots, n\}$
$\{1, \ldots, n\} \nsubseteq \mathbb{Z}_{+} \quad I=i(\{1, \ldots, n\}) \mp\{1, \ldots, n\}$
$\left.i\right|_{\{1, \ldots, n\}}:\{1, \ldots, n\} \rightarrow I$ bijection
$\{1, \ldots, n\}$ has bijection to proper subset $\{$
Definition A countable $\Leftrightarrow A$ finite or countably ∞ uncountable otherwise

Lemma $C \subset \mathbb{Z}_{+}$infinite $\Rightarrow C$ countalby infinite
$\underline{p f .}$ construct $h: \mathbb{Z}_{+} \xrightarrow[\text { min }]{\text { bijective }} C$ with recursive definition
$h(n)=\overbrace{\text { smallest elemet of }}^{\min } \underbrace{C \backslash h(\{1, \ldots, n-1\})}_{C_{n-1}} \rightarrow$ exists because $\subset \mathbb{Z}_{+}$
and prove h is bijective!
Recursive in terms of itself but care is needed e.g. $h(n)=\min C_{n+1}$ nonsense since $h(n) \notin C_{n+1}$
$\underline{\text { Principle of recursive definition }}$ (see book $\S 1.8$ for more detail; skip here)
If $h(1) \in A$ and \exists formula defining $h(n)$ in terms of $h(1), \ldots, h(n-1)$
then this formula determines a unique function $h: \mathbb{Z}_{+} \rightarrow A$
Theorem Let $B \neq \varnothing$. Then the following are equivalent
(1) B countable (including finite!)
(2) $\exists f: \mathbb{Z}_{+} \rightarrow B$ surjective
(3) $\exists f: B \rightarrow \mathbb{Z}_{+}$injective

Corollary B countable, $C \subseteq B \underset{(3)}{\Longrightarrow} C$ countable

Corollary $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$countably infinite
pf.(1)

Figure 1-5: proof
(2) define $f: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$by $f(m, n)=2^{m} 3^{n}$ injective (prime factorization is unique)

Exercise \mathbb{Q} countably infinite
Theorem countable union of countable sets is countable
i.e. $\mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in J} J$ countable $\forall \alpha \in J A_{\alpha}$ countable $\Rightarrow \bigcup_{A \in \mathcal{A}} A$ countable
$\underline{p f .}$ fix $g: \mathbb{Z}_{+} \rightarrow J$ surjective
$\forall \alpha \in J f_{\alpha}: \mathbb{Z}_{+} \rightarrow A_{\alpha}$ surjective
consider $h: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \rightarrow \bigcup_{\alpha \in J} A_{\alpha}$
$h(k, m)=f_{g(h)}(m) h$ surjective
Theorem Finite product of countable set is countable
i.e. A_{1}, \ldots, A_{n} countable $\Rightarrow \prod_{i=1}^{n} A_{i}$ countable

Remark not true for ∞ products

$$
\begin{aligned}
& \prod_{i=1}^{\infty}\{0,1\}=\{0,1\}^{\infty} \text { uncountable } \\
& \{0,1\}^{\infty} \longleftrightarrow{ }_{h} \mathcal{P}\left(\mathbb{Z}_{+}\right)=\left\{A: A \subset \mathbb{Z}_{+}\right\} \\
& h\left(\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)\right)=\left\{n \in \mathbb{Z}_{+}: x_{i}=1\right\} \\
& h^{-1}(A)=\left(x_{1}, x_{2}, \ldots\right) \text { with } x_{n}=\left\{\begin{array}{l}
1 \text { if } n \in A \\
0 \text { if } n \notin A
\end{array}\right.
\end{aligned}
$$

Theorem $\forall A \exists$ no bijection between A and $\mathcal{P}(A)$
pf. assume $A \stackrel{f}{\simeq} \mathcal{P}(A)$
consider $B=\{a \in A: a \notin f(a)\} \subset A, B \in \mathcal{P}(A)$
let $b=f^{-1}(B) \in A$
if $b=f^{-1}(B) \in B \Rightarrow b \notin f(b)=f\left(f^{-1}(B)\right)=B$
if $b \notin B \Rightarrow b \in f(b)=B$ 々
pf. can be modified to f surjection $A \longrightarrow \mathcal{P}(A)$ (Exercise)

Theorem(book) \exists no surjective map $A \rightarrow \mathcal{P}(A)$
\exists no injective map $\mathcal{P}(A) \rightarrow A$
Notation we will write $A \rightarrow B$ " A embeds in B " if $\exists f: A \rightarrow B$ injective
Theorem \mathbb{R} uncountable
$\underline{p f}$. describe $\{0,1\}^{\omega}{ }_{h}$ R injective

$$
\left(x_{1}, \ldots, x_{n}, \ldots\right) \mapsto \sum_{i=1}^{\infty} \frac{x_{i}}{3^{i}}\left[\begin{array}{cc}
\text { not } 2 \text { because } & (0,1,1,1, \ldots) \\
& \downarrow \\
& 1 / 2 \\
& \uparrow \\
& (1,0, \ldots, 0, \ldots)
\end{array}\right]
$$

now if \mathbb{R} countable
$\exists f: \mathbb{R} \rightarrow \mathbb{Z}_{+}$injective
$h \circ f:\{0,1\}^{\omega} \rightarrow \mathbb{Z}_{+}$injective $\{$
But this makes use of algebraic and analytic properties of \mathbb{R} etc.. (convergence...) later proof only using order properties

Definition If for $f, A \exists f: A \rightarrow \mathbb{R}$ bijective say
A has the cardinality \aleph_{0} of the continuum
linear continuum if bijection preserves order
Example $\{0,1\}^{\omega}$ has cardinality of the continuum (need a bit of proof!)

Remark

a) $\left\{A \subseteq \mathbb{Z}_{+}|A|<\infty\right\}$ all finite subset of \mathbb{Z}_{+}is countble!
\downarrow
b) $\left(\mathbb{Z}_{+}\right)_{0}^{\omega}=\{\left(x_{1}, \ldots\right) x_{i} \in \mathbb{Z}_{+} \underbrace{\exists n \forall N>n x_{N}=0}_{\text {eventually zero integer sequence }}\}$ countable!

$$
\downarrow \quad \mathbb{Z}_{+} \rightarrow \mathbb{Z}
$$

c) $\mathbb{Z}[t]=\{$ polynomial with integer coefficients $\}$ countable $\{$ algebraic numbers $\}=\bigcup_{\mathcal{P} \in \mathbb{Z}[t]}\{$ roots of $\mathcal{P}\} \subset \mathbb{R}$ countable
\downarrow
d) transcendental numbers $=\mathbb{R} \backslash\{$ algebraic numbers\} are uncountable
\uparrow (Cantor's proof of existence of transcendental numbers)
even although very hard to find explicit transcendental numbers
$\pi, e, a^{b} a$ rational, b algebraic but not rational
e.g. $2^{\sqrt{2}}$ (Baker's theorem) but proofs are very hard!!
See Exercise 1.7.6 p. 49
Definition Say sets A, B of same cardinality ("equicardinal") $|A|=|B|$, if $\exists f: A \rightarrow B$ bijective
$\underline{\text { Th (Schroeder-Bernstein) }} \quad A \hookrightarrow B, B \rightarrow A \Rightarrow|A|=|B|$.

9. Infinite sets and axiom of choice

Some criteria for infinite sets we had are sufficient to exactly characterize infinite sets
Theorem 9.1 A set, the following are equivalent:
(1) $\exists f: \mathbb{Z}_{+} \rightarrow A$ injective
(2) $\exists A \leftrightarrow B$ bijective $B \mp A$
(3) $|A|=\infty$

construct $f(n)$ by induction
$\exists a_{1} \in A$ set $f(1):=a$
$\exists a_{n} \in \underbrace{A \backslash(\{1, \ldots, n-1\})}_{A_{n}}$ set $f(n):=a_{n}$
This proof uses a choice of element in an infinite family of sets $\left\{A_{n}\right\}$
The freedom of such choice does not follow from previous set constructions so we need a new method
$\underline{\text { Axiom of choice(AC) }}$

$$
\begin{align*}
\mathcal{A} & =\left\{A_{i}\right\}_{i \in I} \quad A_{i} \neq \varnothing A_{i} \cap A_{j}=\varnothing \quad i \neq j \tag{1}\\
& \Rightarrow \exists C \subset \bigcup_{i \in I} A_{i} \text { with }\left|C \cap A_{i}\right|=1 \forall i \in I \tag{2}
\end{align*}
$$

This is the same as saying $\exists f: \mathcal{A} \rightarrow \cup \mathcal{A}$ with $f(A) \in A \forall A \in \mathcal{A}$ because given f take $C=\operatorname{image}(f)$ which satisfies (2) because of (1)
and given C define $f(A)=x$ for $x \in C \cap A$
One can show (lemma 9.2 in book) that when one uses a choice function we can get rid of the condition $A_{i} \cap A_{j}=\varnothing$
Lemma \mathcal{B} family of sets $\exists c: \mathcal{B} \rightarrow \cup B$
with $c(B) \in B \forall B \in \mathcal{B}$
now with this one can make proof of $(3) \Rightarrow(1)$ in Theorem 9.1 more precese
let $\mathcal{C}=\left\{A^{\prime} \subset A: A^{\prime} \neq \varnothing\right\}$
take $c: \mathcal{C} \rightarrow \cup \mathcal{C}$
$f(n)=c((A \backslash f(\{1, \ldots, n-1\})) \ldots$
AC did generate some controversy as to bizarre consequences like the Well-ordering theorem. But now it is widely accepted.

10. Well-ordered sets

Definition $(A,<)$ well ordered if $\exists \varnothing \neq A^{\prime} \subset A$
smallest element $a=\min A^{\prime} \in A^{\prime}$ exists
$\underline{\text { Example }\left(\mathbb{Z}_{+},<\right)}$
$(\mathbb{Z},<)$ is not well ordered, neither

$$
([0,1],<) \quad((0,1),<) \quad(\mathbb{R},<)
$$

Construction of well ordered sets
(a) if $(A,<)$ well ordered and $B \subset A$
($B,<\left.\right|_{B \times B}$) is well ordered
(b) A, B well ordered $\Rightarrow A \times B$ with dictionary order is well ordered

Theorem Every nonempty finite ordered set has the order type of ($S_{n},<$)
So is well ordered
Example \mathbb{Z}_{+}^{n} is well ordered with dictionary order
\mathbb{Z}_{+}^{ω} also has a "dictionary order"
$\left(a_{1}, \ldots, a_{n}, \ldots\right)<\left(b_{1}, \ldots, b_{n}, \ldots\right)$
if $\exists i a_{1}=b_{1} \ldots a_{i-1}=b_{i-1} a_{i}<b_{i}$
but it's not well ordered e.g. $\left\{(1, \ldots, 1,2,1, \ldots, 1): i \in \mathbb{Z}_{+}\right\}$
has no smallest element
is there another < making \mathbb{Z}_{+}^{n} well ordered?
Theorem (Well-ordering theorem W.O.T.; Zermelo 1904) For every set $A \exists<$ such that $(A,<)$ well ordered

This proof only uses the AC and startled many mathematicians at that time which led to suspicions about AC.
Unfortunately the proof (as for the AC) is not constructive, so one can't know what is <?!

Corollary $\exists a$ well-ordered uncountable set
Definition X well ordered set $\alpha \in X$ let $S_{\alpha}=\{x \in X: x<\alpha\}$
section of X by α
(needed later)
lemma \exists well ordered set A with largest element Ω
s.t. $S_{\Omega}=\{a \in A: a<\Omega\}=A \backslash\{\Omega\}$
is uncountable, but all other sections of A
$S_{\alpha}=\{a \in A: a<\alpha\}$ are countable
write $A=S_{\Omega} \cup\{\Omega\}=\overline{S_{\Omega}}$
Example of something similar
$\left(\{1\} \cup\left\{1-\frac{1}{n}: n \in \mathbb{Z}_{+}\right\},<\right)$well ordered
then $\Omega=1$ and $\left|S_{\Omega}\right|=\infty$ but $\forall a<1 \quad\left|S_{a}\right|<\infty$
Theorem if $A \subset S_{\Omega}$ countable then
A has an upper bound in S_{Ω}

11. The Maximum Principle

AC has several consequences (later proved equivalent to it) of the type "maximum principle"
Two versions here

Definition A set, <c $A \times A$ is strict partial order(s.p.o)
if (1) $\forall a \in A a \nless a$ (Nonrefelxivity)
(2) $\forall a, b, c a<b$ and $b<c \Rightarrow a<c$ (Transitivity)
(like order but don't need to compare all elements)
Ex. $(\mathcal{P}(A), \mp)$
Remark $a \leq b: \Leftrightarrow a<b$ or $a=b$ defines a partial order (not strict)
Definition $(A,<)$ s.p.o. set $B \subset A$ is (simply) $\rightarrow \mathrm{I}$ use the word 'chain'
ordered subset if
$<\left.\right|_{B \times B}$ is an order on B
(i.e. $\forall b, c, \in B: b<c$ or $c<b$)

Ex. $\left\{S_{n}: n \in \mathbb{Z}_{+}\right\} \subset \mathcal{P}\left(\mathbb{Z}_{+}\right)$with \mp
Definition B is maximal ordered subset ($=$ 'maximal chain')
if B is ordered subset and $\forall A \supset B^{\prime} \nsupseteq B, B^{\prime}$ is not ordered subset of A
Ex. $\mathcal{A}=\left\{S_{n}: n \in \mathbb{Z}_{+}\right\}$is not max ordered
because $\mathcal{A} \cup\left\{\mathbb{Z}_{+}\right\}$is ordered
"
but $\mathcal{A}^{\prime}=\left\{S_{n}\right\} \cup\left\{\mathbb{Z}_{+}\right\}$is m.o. in $\left(\mathcal{P}\left(\mathbb{Z}_{+}\right), \mp\right)$
pf. $A \notin \mathcal{A}^{\prime} A \subset \mathbb{Z}_{+}$assume $\mathcal{A}^{\prime} \cup\{A\}$ is ordered
if $|A|=\infty A \supset S_{n} \forall n \Rightarrow A=\mathbb{Z}_{+} \in \mathcal{A}^{\prime} \nmid$
if $|A|<\infty$ let $m=\max A(\in A)$
then $S_{m} \subset A$ or $A(\ni m) \subset S_{m}(\nRightarrow m) \notin$
\Downarrow
So $S_{m} \cup\{m\} \subset A \subset S_{m+1}$
${ }^{\|} S_{m+1}$
$\Rightarrow A=S_{m+1} \in \mathcal{A}^{\prime}$ 亿
Theorem(Max Principle, $\Longleftrightarrow \mathrm{AC})(A,<)$ s.p.o. set $\Rightarrow \exists B \subset A \max$ (simply) ordered subset
Definition $(A,<)$ s,p.o. set $B \subset A$ subset
$c \in A$ upper bound for B if $\forall b \in B b=c$ or $B<C$
$\Omega \in A$ is maximum element if $\nexists a \in A \Omega<a$
Remark if A is ordered, maximum element Ω is unique(if exists), but not always when A is strictly partially ordered

Lemma (Zorn) $(A,<)$ s.p.o.
$\Uparrow \quad$ if $\forall B \subset A$ ordered \exists upper bound of B in A
$\mathrm{AC} \quad \Rightarrow A$ has a maximum element
This has some important applications:
(1)LA: every vector space(infinite dimension) has a basis(next page)
(2)functional analysis: Hahn-Banach

$$
\begin{aligned}
& T^{\prime}: V^{\prime} \rightarrow W \text { V } V^{\prime} \subset V \text { linear } \\
& \exists T: V \rightarrow W \text { T }=\left.T\right|_{V^{\prime}} \text { with }\|T\|=\left\|T^{\prime}\right\|
\end{aligned}
$$

(3)Definition cardinality

we say $|A|<|B| B$ has greater cardinality than A if $\exists c: A \rightarrow B$ injective $\nexists \mathcal{K}: B \rightarrow A$ injective
$\mathrm{AC} \downarrow$
AC \downarrow
$\exists c^{\prime}: B \rightarrow A$ surjective $\nexists \mathcal{K}^{\prime}: A \rightarrow B$ surjective we say $|A|=|B| B$ has same cardinality as A if $\exists c: A \rightarrow B$ bijective

Theorem For any two sets A, B
$\Downarrow \quad$ either $|A|<|B|,|A|=|B|$ or $|B|<|A|$
W.O.T. (Ex. 1.10.11) Cardinalities are "strictly ordered"
recall $\left|\mathbb{Z}_{+}\right|=\omega$ infinitely countable cardinality
$|\mathbb{R}|=\aleph_{0}$ "aleph zero" cardinality of the continuum
Continuum hypothesis \nexists cardinality κ with $\kappa>\omega, \kappa<\kappa_{0}$
Generalized C. h. $\quad \forall|A|=\infty, \nexists$ cardinality $\kappa>|A|, \kappa<|\mathcal{P}(A)|$
independent of other set theory axioms!

Theorem V VS over $F V$ has a basis
$\underline{p f}$. (use Maximum Priniciple)
$\mathcal{K}=\{A \subset V: A$ linearly independent $\}$
$(\mathcal{K}, \mp) \subset \mathcal{P}(V)$ is s.p.o. set
\exists max chain $\mathcal{E} \subset \mathcal{K}($ chain $=($ simply $)$ ordered subset $)$
Consider $B=\bigcup_{E \in \mathcal{E}} E \subset V$

1) we claim B linearly independent
$\lambda_{i} \in F \sum_{i=1}^{n} \lambda_{i} v_{i}=0 v_{i} \in E_{i} E_{i} \in \mathcal{E}$
\mathcal{E} chain $\Rightarrow \exists j E_{j}=\max \left(E_{i}\right)_{i=1}^{n} \supset E_{i} \forall i$
$v_{i} \in E_{j} E_{j} \in \mathcal{E} \subset \mathcal{K}$ linearly independent $\Rightarrow \lambda_{j}=0$
2) B generating

Assume B not generating. $\exists v \notin \operatorname{span}(B) v \in V$
$\Rightarrow B \cup\{v\}(\in \mathcal{K})$ linearly independent $B \cup\{v\} \supset E \forall E \in \mathcal{E}$
$\mathcal{K} \supset \mathcal{E}^{\prime}=\mathcal{E} \cup\{\mathcal{B} \cup\{\mathrm{v}\}\} \supset \mathcal{E}$ is a chain in (\mathcal{K}, \mp)
\mathcal{E} is maximal $\Rightarrow \mathcal{E}^{\prime}=\mathcal{E} \Rightarrow B \cup\{v\} \in \mathcal{E} \Rightarrow$
$v \in \bigcup_{E \in \mathcal{E}} E=B \Rightarrow$ Z
$\Rightarrow B$ basis
Remark highly non-constructive:
What is a basis of \mathbb{R} over \mathbb{Q} ?

