Chapter 2. Topological Spaces and Continuous Functions

12. Topological Spaces, topological operations, separation

Definition X set, $\mathcal{A} \subset \mathcal{P}(X)$ topoogy on X if
(1) $\varnothing, X \subset \mathcal{A}$
(2) closed under arbitrary union
$\mathcal{A}^{\prime} \subset \mathcal{A}: \cup \mathcal{A}^{\prime}=\bigcup_{A^{\prime} \in \mathcal{A}^{\prime}} A^{\prime} \in \mathcal{A}$
(3) closed under simple intersection
$A, B \in \mathcal{A} \Rightarrow \overline{A \cap B \in} \mathcal{A}$
Remark (3) $\Leftrightarrow \forall \mathcal{A}^{\prime} \subset \mathcal{A}\left|\mathcal{A}^{\prime}\right|<\infty \cap \mathcal{A}^{\prime} \in \mathcal{A}$ closed under finite \cap

Definition (X, \mathcal{A}) topology call $A \in \mathcal{A}$ an open set
Ex. $\mathcal{A}=\mathcal{P}(X)$ discrete topology write $(X, \mathcal{P}(X))=X_{\text {discr }}$
$\mathcal{A}=\{\varnothing, X\}$ trivial(indiscrete) topology
Ex. $\mathcal{A}=$ maximal chain in $(\mathcal{P}(X), \mp) \rightarrow \mathrm{HW}$
Ex. $\mathcal{A}=\{A \subset X:|X \backslash A|<\infty\} \cup\{\varnothing\}$
finite complement (f.c.) topology
similarly: countable complement topology
trivial topology motivates
Definition (X, \mathcal{A}) topological space
$x_{1}, x_{2} \in X$ are call topologically indistinguishable
if $\forall A \in \mathcal{A} \quad\left(x_{1} \in A \Leftrightarrow x_{2} \in A\right)$
\downarrow means
$x_{1}, x_{2} \in A$ or $x_{1}, x_{2} \notin A$
topology \mathcal{A} cannot distinguish x_{1}, x_{2}
Definition (T_{0} Kholmogorov axiom) - (very basic separation axiom)
\mathcal{A} is T_{0} if \nexists topologically indistinguishable points
$\Leftrightarrow \forall x_{1} \neq x_{2} \exists A \in \mathcal{A} x_{1} \in A x_{2} \notin A$ or $x_{1} \notin A x_{2} \in A$

Figure 2-1

Let \mathcal{A} be a topology on X. Define an equivalence relation on X by $x_{1} \sim x_{2} \Leftrightarrow x_{1}$ is topologically indistinguishable from x_{2}
Then let
\downarrow equivalence class of x under \sim

$$
\tilde{X}=X / \sim=\left\{[x]_{\sim}: x \in X\right\}
$$

and define a topology $\tilde{\mathcal{A}}$ on \tilde{X} by

$$
\tilde{\mathcal{A}}=\left\{\left\{[x]_{\sim}: x \in A\right\}: A \in \mathcal{A}\right\}
$$

thus topology identifies (and removes) topologically indistinguishable points $(\tilde{X}, \tilde{\mathcal{A}})$ is called Kholmogorov quotient of (X.A)
Trivial topology is not T_{0} unless $|X|=1$
Ex. if $\mathcal{A}=\{\varnothing, X\}$ then $\tilde{X}=\{*\}$
often will assume T_{0}
Definition $(X, \mathcal{A}) A \subset X$ is called closed if $X \backslash A$ is open $\left\{A_{i}\right\}_{i \epsilon I}, A_{i}$ closed, $\bigcap\left\{A_{i}\right\}=\bigcap_{i \in I} A_{i}$ closed $\quad A, B$ closed $\quad A \cup B$ closed

Definition $x \in X$. An $O \in \mathcal{A}, O \ni x$ is called neighborhood of x
Definition $(X, \mathcal{A}) A \subset X$ any set
Let $\operatorname{Int}(A)=\bigcup\left\{A^{\prime} \in \mathcal{A}: A^{\prime} \subset A\right\}$
the interior of $A\{x \in X(x \in A): \exists O \in \mathcal{A} x \in O \subset A\}$

Figure 2-2. interior point

$$
=\{x \in X: \exists O \in \mathcal{A} \quad x \in O \subset A\}
$$

lemma

1) $\operatorname{Int}(A) \subset A$
2) $\operatorname{Int}(A)=A \Leftrightarrow A$ is open $(\Rightarrow \operatorname{Int}(\varnothing)=\varnothing \operatorname{Int}(X)=\mathrm{X})$
3) $A \subset B \Rightarrow \operatorname{Int}(A) \subset \operatorname{Int}(B)$
4) $\operatorname{Int}(\operatorname{Int}(A))=\operatorname{Int}(A)(\Leftrightarrow \operatorname{Int}(A)$ open $)$
pf. 1) \checkmark
5) " \Leftarrow " open $A \in \mathcal{A}^{\prime}=\left\{A^{\prime} \in \mathcal{A}: A^{\prime} \subset A\right\}$
$A \supset \operatorname{Int}(A)=\cup \mathcal{\mathcal { A } ^ { \prime }} \supset A \Rightarrow \operatorname{Int}(A)=A$
\uparrow 1)
$" \Rightarrow " \operatorname{Int}(A)=A \quad A=\cup\{\underbrace{A^{\prime} \in \mathcal{A}: A^{\prime} \subset A}_{\mathcal{A}^{\prime}}\}$
$\mathcal{A}^{\prime} \subset \mathcal{A} \xlongequal{\text { top. prop. }} \Rightarrow A \in \mathcal{A} \Rightarrow A$ open
6) $A \subset B \mathcal{\mathcal { A } ^ { \prime } = \{ A ^ { \prime } \in \mathcal { A } : A ^ { \prime } \subset A \}}$ $\subset \mathcal{B}^{\prime}=\left\{B^{\prime} \in \mathcal{A}: B^{\prime} \subset B\right\}$ $\operatorname{Int}(B)=\cup \mathcal{B}^{\prime} \supset \cup \mathcal{A}^{\prime}=\operatorname{Int}(A)$
7) $\operatorname{Int}(A)=\cup \mathcal{A}^{\prime}$ for $\mathcal{A}^{\prime} \subset \mathcal{A} \Rightarrow \operatorname{Int}(A)$ open

$$
\stackrel{2)}{\Rightarrow} \operatorname{Int}(\operatorname{Int}(A))=\operatorname{Int}(A)
$$

Definition $(X, \mathcal{A}) A \subset X$ define the exterior \leftarrow try not to use much $\operatorname{Ext}(A)=\operatorname{Int}(X \backslash A)$ $=\{x \in X: \exists O \in \mathcal{A} \quad O \cap A=\varnothing\}$

Figure 2-3. exterior point
closure

$$
\begin{aligned}
\bar{A} & =X \backslash \operatorname{Ext}(A)=X \backslash \operatorname{Int}(X \backslash A) \\
& =\{x \in X: \forall O \in \mathcal{A} O \ni x \Rightarrow O \cap A \neq \varnothing\}
\end{aligned}
$$

Lemma Properties of closure

$$
\begin{aligned}
& \bar{A} \supset A \quad \bar{A}=A \Leftrightarrow A \operatorname{closed}(\Rightarrow \bar{\varnothing}=\varnothing, \bar{X}=X) \\
& \overline{\bar{A}}=\bar{A} \text { (ie. } \bar{A} \text { is closed) } \\
& A \subset B \Rightarrow \bar{A} \subset \bar{B}
\end{aligned}
$$

Remark V VS $S \subset V$ set span has similar properties:
$\operatorname{span}(S) \supset S$
$S \supset S^{\prime} \Rightarrow \operatorname{span}(S) \supset \operatorname{span}\left(S^{\prime}\right)$
$\operatorname{span}(\operatorname{span}(S))=\operatorname{span}(S)$
Operations of this sort are called hull operations
[Similar conv (X) convex hull]
so closure is a hull operation
Definition $A \subset X \operatorname{Bd} A=\bar{A} \cap \overline{X \backslash A}=\bar{A} \backslash \operatorname{Int}(A)$
elsewhere is called (top.) boundary of A
$(\partial A!) \quad \operatorname{Bd} A=\{x \in X: \overline{: \forall \in \mathcal{A} O} \in x O \notin A O \cap A \neq \varnothing\}$
$x \in \operatorname{Bd} A$ is called boundary point

Figure 2-4. boundary point
Ex. $\mathcal{A}=$ discrete top. all $A \subset X$ open \Rightarrow and closed

$$
\bar{A}=\operatorname{Int}(A)=A \quad \operatorname{Bd} A=\bar{A} \backslash \operatorname{Int}(A)=\varnothing
$$

Ex. $\mathcal{A}=$ trivial top. $A \subset X A \neq \varnothing, X$

$$
\operatorname{Int}(A)=\varnothing \bar{A}=X \operatorname{Bd} A=X
$$

Definition we say (X, \mathcal{A}) is T_{1} (Fréchet)
if $\forall x_{1} \neq x_{2} \exists O_{1,2} \in \mathcal{A}: O_{1} \ni x_{1} O_{1} \nRightarrow x_{2}$ and $O_{2} \ni x_{2} O_{2} \nRightarrow x_{1}$

Figure 2-5. T_{1} axiom
$\underline{\text { Lemma }} T_{1} \stackrel{(1)}{\Longleftrightarrow} \underline{\text { points }} \frac{\{x\}}{}=\{x\}$ closed $\stackrel{(2)}{\Longleftrightarrow}$ finite sets are closed

$$
\overline{\{x\}}=\{x\}
$$

$\underline{p f}$. (2) because closedness is invariant under finite union
(1) \mathcal{A} is T_{1} let $x_{1} \in X \quad x_{2} \neq x_{1}$
$\exists x_{2} \ni O_{2}$ open $O_{2} \notin x_{1} \quad O_{2} \cap\left\{x_{1}\right\}=\varnothing$
$\Rightarrow x_{2} \notin \overline{\left\{x_{1}\right\}} \quad \forall x_{2} \neq x_{1}$
$\Rightarrow \overline{\left\{x_{1}\right\}}=\left\{x_{1}\right\}$
$T_{1} \Rightarrow T_{0}$ but not converse

Ex. $X=\{1,2\}$

Figure 2-6
\mathcal{A} is $T_{0} \quad \overline{\left\{x_{1}\right\}}=\left\{x_{1}, x_{2}\right\}$
Ex. finite complement(f.c.) topology is T_{1}
Definition (X, \mathcal{A}) is T_{2} (Hausdorff)
if $\forall x_{1}, x_{2} \in X x_{1} \neq x_{2} \exists O_{1} \ni x_{1} O_{2} \ni X_{2} O_{i}$ open
$O_{1} \cap O_{2}=\varnothing$

Figure 2-7
$T_{2} \Rightarrow T_{1}\left(\Rightarrow T_{0}\right)$ but not converse

$$
\begin{array}{ll}
\text { Ex. } & |X|=\infty, \mathcal{A}=\text { f.c. top on } X \\
x_{1}, x_{2} \in X \quad x_{1} \neq x_{2} \\
O_{1} \ni x_{1} O_{2} \ni x_{2} \quad O_{i} \in \mathcal{A} \\
O_{1}, O_{2} \neq \varnothing \Rightarrow\left|X \backslash O_{1}\right|,\left|X \backslash O_{2}\right|<\infty \\
\left|X \backslash\left(O_{1} \cap O_{2}\right)\right|=\left|\left(X \backslash O_{1}\right) \cup\left(X \backslash O_{2}\right)\right|<\infty \\
|X|=\infty \Rightarrow O_{1} \cap O_{2} \neq \varnothing \text { f.c. top. is not Hausdorff }
\end{array}
$$

Definition $\left(X, \mathcal{A}^{\prime}\right),(X, \mathcal{A})$ two topologies on same space we say \mathcal{A}^{\prime} is finer than \mathcal{A} if $\mathcal{A}^{\prime} \supset \mathcal{A}$ strictly finer than $\quad \mathcal{A}^{\prime} ¥ \mathcal{A}$ coarser than $\quad \mathcal{A}^{\prime} \subset \mathcal{A}$ strictly coarser than $\quad \mathcal{A}^{\prime} \varsubsetneqq \mathcal{A}$
! to usage of "weaker/stronger", "higher/smaller" elsewhere (try to avoid)
Remark of course if \mathcal{A} is $T_{i}(i=0,1,2)$

$$
\mathcal{A}^{\prime} \text { finer } \Rightarrow \mathcal{A}^{\prime} \text { is } T_{i} \text {, too }
$$

Remark $\mathcal{A}^{\prime} \supset \mathcal{A} A \subset X \quad \bar{A}^{\mathcal{A}^{\prime}} \subset \bar{A}^{\mathcal{A}}$

$$
\operatorname{Int}_{\mathcal{A}^{\prime}}(A) \supset \operatorname{Int}_{\mathcal{A}}(A)
$$

Definition $A \subset X$ is dense if $\bar{A}=X$.
X is separable if $\exists A \subset X$ dense and countable (p.189-190 in book)

13. Basis for Topology

most important topologies. we will work with can be defined through a basis
Definition X set $\mathcal{B} \subset \mathcal{P}(X)$ is a basis for topology on X if
B1) $\forall x \in X \quad \exists B \in \mathcal{B} \quad x \in B \quad \Leftrightarrow \cup \mathcal{B}=X$
B2) $\forall B_{1}, B_{2} \in \mathcal{B} \quad \forall x \in X$
$x \in B_{1} \cap B_{2} \quad \exists B_{3} \in \mathcal{B} \quad x \in B_{3} \subset B_{1} \cap B_{2}$

Figure 2-8
Definition $X=(X, \mathcal{A}) . \mathcal{B}$ is basis for topology \mathcal{A} the topology \mathcal{A} is generated by $\mathcal{B} \quad \mathcal{A}=\mathcal{A}(\mathcal{B})$

$$
\begin{equation*}
A \in \mathcal{A} \Leftrightarrow \forall x \in A \exists B \in \mathcal{B} x \in B B \subset A \tag{*}
\end{equation*}
$$

Remark $\mathcal{B} \subset \mathcal{A}$
Lemma $A \in \mathcal{A} \Leftrightarrow A=\bigcup\{B \in \mathcal{B}: B \subset A\}$
pf. $\quad \Rightarrow A \supset \bigcup\{B \in \mathcal{B}: B \subset A\} \quad A \subset \bigcup\{B \in \mathcal{B}: B \subset A\}$ by $(*)$
$\Leftarrow A=\bigcup\{B \in \mathcal{B}: B \subset A\}$
\Downarrow $\forall x \in A \exists B \in \mathcal{B} B \subset A B \ni x$ \Downarrow $A \in \mathcal{A}$

Figure 2-9

Lemma $\quad A \in \mathcal{A} \Leftrightarrow \exists \mathcal{B}^{\prime} \subset \mathcal{B} \quad A=\cup \mathcal{B}^{\prime}$
$\Rightarrow \quad \mathcal{B}^{\prime}=\{B \in \mathcal{B}: B \subset A\}$
$\Leftarrow A=\bigcup \mathcal{B}^{\prime} \quad \forall x \in A \exists B \in \mathcal{B}^{\prime} x \in B B \subset \cup \mathcal{B}^{\prime}=A$ $\Rightarrow A \in \mathcal{A}$
so open sets are unions of basis elements
Lemma $\mathcal{A}(\mathcal{B})$ is a topology

$$
\begin{array}{ll}
\text { pf. } & \mathcal{A}(\mathcal{B})=\left\{\cup \mathcal{B}^{\prime}: \mathcal{B}^{\prime} \subset \mathcal{B}\right\} \\
\mathcal{B}^{\prime}=\varnothing \Rightarrow \varnothing \in \mathcal{A} \\
\mathcal{B}^{\prime}=\mathcal{B} \text { use B1) } \Rightarrow X \in \mathcal{A} \\
\left\{A_{\alpha}\right\}_{\alpha \in I} \subset \mathcal{A} \quad A_{\alpha}=\bigcup \mathcal{B}_{\alpha} \mathcal{B}_{\alpha} \subset \mathcal{B} \\
\bigcup_{\alpha} A_{\alpha}=\bigcup_{\alpha} \bigcup \mathcal{B}_{\alpha}=\bigcup \underbrace{\bigcup_{\alpha} \mathcal{B}_{\alpha} \in \mathcal{A}}_{\subset \mathcal{B}}
\end{array}
$$

assume $A^{\prime}, A^{\prime \prime} \in \mathcal{A}$

$$
A^{\prime}=\cup \mathcal{B}^{\prime} \quad A^{\prime \prime}=\cup \mathcal{B}^{\prime \prime} \quad \mathcal{B}^{\prime}, \mathcal{B}^{\prime \prime} \in \mathcal{B}
$$

$$
\text { let } x \in A^{\prime} \cap A^{\prime \prime} \Rightarrow \exists B^{\prime} \in \mathcal{B}^{\prime} \quad x \in B^{\prime} \cap B^{\prime \prime}
$$

$$
B^{\prime \prime} \in \mathcal{B}^{\prime \prime}
$$

$$
\begin{array}{cr}
\cap & B^{\prime} \subset A^{\prime} \\
\mathcal{B} & B^{\prime \prime} \subset A^{\prime \prime}
\end{array}
$$

$\xrightarrow{\mathrm{B} 2)}$
$x \in B^{\prime \prime \prime} \subset A^{\prime} \cap A^{\prime \prime}$
$\forall x \in A^{\prime} \cap A^{\prime \prime} \quad \exists B^{\prime \prime \prime} \in \mathcal{A} \quad x \in B^{\prime \prime \prime} \subset A^{\prime} \cap A^{\prime \prime}$
$\Rightarrow A^{\prime} \cap A^{\prime \prime}$ is open $\Rightarrow A^{\prime} \cap A^{\prime \prime} \in \mathcal{A}$
Lemma (B.2) $(X, \mathcal{A}) \quad \mathcal{C} \subset \mathcal{A}$
how to identify $\quad \forall O \in \mathcal{A} \quad x \in O \quad \exists U \in \mathcal{C} \quad x \in U \subset O$ a basis $\quad \Rightarrow \mathcal{C}$ is a basis

$$
\mathcal{B} \quad \mathcal{B}^{\prime}
$$

Lemma $(X, \mathcal{A}),\left(X, \mathcal{A}^{\prime}\right)$
$\mathcal{A}^{\prime} \supset \mathcal{A} \Leftrightarrow \forall x \in X \quad \forall B \in \mathcal{B}$
\mathcal{A}^{\prime} finer $\quad x \in B \Rightarrow \exists B^{\prime} \in \mathcal{B}^{\prime} \quad x \in B^{\prime} \subset \mathcal{B}$

Definition ($\mathbb{R},<) \quad \mathcal{B}=\{(a, b): a<b\} \quad(a, b)=\{x: a<x<b\}$
topology generated by \mathcal{B} is called standard (Euclidean) topology on \mathbb{R} assumed below by default

Definition $\mathcal{B}^{\prime}=\{[a, b): a<b\}$
$\mathbb{R}_{\ell}=\left(\mathbb{R}, \mathcal{A}\left(\mathcal{B}^{\prime}\right)\right)$ lower limit topology
Lemma (X, \mathcal{A}) basis $\mathcal{B} \quad \operatorname{Int}(A)=\bigcup\{B \in \mathcal{B}: B \subset A\}$
Ex. 1) $\quad A=(0,1) \quad A \subset \mathbb{R}$
$\bar{A}=[0,1] \quad \operatorname{Int}(A)=A=(0,1)(A$ open $)$
2) $A=\{1\} \quad \bar{A}=A \quad \operatorname{Int}(A)=\varnothing$
$\mathrm{Bd} A=A$
3) $A=[0,1) \quad \bar{A}=[0,1] \quad \operatorname{Int}(A)=(0,1)$

$$
\operatorname{Bd} A=\{0,1\}
$$

4) $\begin{array}{llll}A=\mathbb{Q} & \exists a^{\prime}, a^{\prime \prime} \in(a, b) & a^{\prime} \in \mathbb{Q} & a^{\prime \prime} \in \mathbb{R} \backslash \mathbb{Q} \\ \bar{A}=\mathbb{R} & \operatorname{Int}(A)=\varnothing & & \end{array}$
$\operatorname{Bd}(A)=\mathbb{R} \quad$ rational and irrational numbers are dense
Ex. \mathbb{R}_{ℓ}
5) $A=[0,1] \quad \operatorname{Int}(A)=[0,1)$

$$
\bar{A}=A \quad \operatorname{Bd} A=\{1\}
$$

2) $A=[0,1) \quad$ Int $A=A=[0,1) \quad$ A open and closed!

$$
\bar{A}=A \quad \operatorname{Bd} A=\varnothing
$$

3) $A=\{1\} \quad \operatorname{Int} A=\varnothing$

$$
\bar{A}=A \quad \operatorname{Bd} A=\{1\}
$$

4) $A=\mathbb{Q} \quad$ like previous example

Definition X set \mathcal{S} subbasis $\quad \mathcal{S} \subset \mathcal{P}(X)$ topology of X is the topology with basis $\cup \mathcal{S}=X$ $\mathcal{B}=\left\{\cap \mathcal{S}^{\prime}: \mathcal{S}^{\prime} \subset \mathcal{S}\left|\mathcal{S}^{\prime}\right|<\infty\right\}$
finite intersections of elements in \mathcal{S}
$\mathcal{A}=$ unions of finite intersections of elements in \mathcal{S}

14. The Order Topology

First major source of important topologies!
Definition $(X,<)$ ordered set $a<b$
$(a, b)=\{x: a<x<b\}$
$[a, b)=\{x: a \leq x<b\}$ etc. (had before)
Definition $(X,<)$ ordered set. the order topology \mathcal{A} on X
is the one with basis \mathcal{B} consisting of

1) all open intervals $(a, b) \quad a<b$
2) $\left[a_{0}, b\right) a_{0}$ smallest element $b>a_{0}$ (if $\exists a_{0}!$) (a, b_{0}] b_{0} largest element $a<b_{0}$ (if $\exists b_{0}$!)

Ex. $|X|<\infty X$ ordered $\Rightarrow \mathcal{A}$ discrete topology
similarly $\left(\mathbb{Z}_{+},<\right)$
Ex. $(\mathbb{R},<) \mathcal{A}=$ Euclidean topology on \mathbb{R}
Ex. $\mathbb{R} \times \mathbb{R}$ with dictionary order
Recall $a \times b>c \times d \Leftrightarrow a>c$ or $(a=c$ and $b>d)$
no smallest or largest element
$(c \times d, a \times b)=\left\{\begin{array}{l}\{c\} \times(d, b) \quad a=c \\ \{c\} \times(d, \infty) \cup(c, a) \times \mathbb{R} \cup\{a\} \times(-\infty, b) \quad c<a\end{array}\right.$

Figure 2-10
Ex. $\{1,2\} \times \mathbb{Z}_{+}$dictionary order
$1 \times n=a_{n} \quad 2 \times n=b_{n} \quad X=a_{1} \ldots a_{n} \ldots b_{1} b_{2} \ldots$
$\left(b_{1}, b_{3}\right)=\left\{b_{2}\right\} \quad\left\{b_{2}\right\}$ open
$\left\{a_{1}\right\}=\left[a_{1}, a_{2}\right) \quad\left\{a_{1}\right\}$ open
\uparrow nearest element
similarly $\left\{a_{i}\right\}$ open $i>1$ $\left\{b_{j}\right\}$ open $j>2$
but $\left\{b_{1}\right\}$ is not open
if $b_{1} \in B$ open $\exists b_{1} \in(a, b) \subset B b>b_{1}$ $a<b_{1} \quad a=a_{n}$ for some n
$B \supset(a, b) \supset\left\{a_{n+1}, a_{n+2}, \ldots\right\}$
$|B|=\infty$
Definition $(X,<) a \in X$ define $(a,+\infty)=(a, \infty)=\{x: x>a\}$ $[a, \infty)=\{x: x \geq a\}$
$(-\infty, a) \quad(-\infty, a]$ rays
$(a, \infty)(-\infty, a)$ open rays (open sets)
$[a, \infty)(-\infty, a]$ closed rays (closed sets)

15. The Product Topology

Definition $(X, \mathcal{A}),(X, \mathcal{B})$ define a topology
$\mathcal{A} \times \mathcal{B}=\mathcal{C}$ on $X \times Y$ by the basis
$\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$
\mathcal{C} is called the product topology on $X \times Y$
$\underline{\text { Theorem }}$ if $\mathcal{A}^{\prime} \subset \mathcal{A}$ is a basis for \mathcal{A} $\mathcal{B}^{\prime} \subset \mathcal{B}$ is a basis for \mathcal{B}
$\Rightarrow\left\{A^{\prime} \times B^{\prime}: A^{\prime} \in \mathcal{A}^{\prime}, B^{\prime} \in \mathcal{B}^{\prime}\right\}$ is a basis for $\mathcal{A} \times \mathcal{B}$

Figure 2-11
Definition $\pi_{1}: X \times Y \rightarrow X \quad \pi_{1}(x \times y)=x$ $\pi_{2}: X \times Y \rightarrow Y \quad \pi_{2}(x \times y)=y$ projection

Theorem $\mathcal{S}=\left\{\pi_{1}^{-1}(U): U \subseteq X\right.$ open $\} \cup\left\{\pi_{2}^{-1}(U): U \subseteq Y\right.$ open $\}$ $\left(\pi_{1}^{-1}(U)=U \times Y, \pi_{2}^{-1}(U)=X \times U\right)$
is a subbasis for $\mathcal{A} \times \mathcal{B}$

Figure 2-12

16. The Subspace Topology

(X, \mathcal{A}) topological space $Y \subset X \quad \downarrow$ my notation
(Y, \mathcal{A}^{\prime}) with $\mathcal{A}^{\prime}=\{A \cap Y: A \in \mathcal{A}\}=\mathcal{A}_{Y}$ is called subspace topology
Lemma (X, \mathcal{A}) basis $\mathcal{B} \quad Y \subset X$
$\{B \cap Y: B \in \mathcal{B}\}$ is a basis of $\left(Y, \mathcal{A}_{Y}\right)$
Definition if $X \supset Y \supset U$
we can say $\quad U$ open in Y if $U \in \mathcal{A}_{Y}$
U closed in Y if $Y \backslash U \in \mathcal{A}_{Y}$
Ex. $\quad X=\mathbb{R} \quad Y=[0,1] \quad U=(0,1]$
$U=Y$ is open in Y
Y is not open (in X)
U is not open in X

Lemma $X \supset Y \supset U$ is open in Y, Y open in X $\Rightarrow U$ open in X

Theorem $A \subset X \quad B \subset Y \quad(X \times Y, \mathcal{C}) \quad \mathcal{C}=\mathcal{A} \times \mathcal{B}$
$\mathcal{A} \quad \mathcal{B}$ product topology $\mathcal{A}_{A} \times \mathcal{B}_{B}=\mathcal{C}_{A \times B}$
Ex. $I=[0,1]$
$I_{0}^{2}=I \times I$ with dictionary order topology will be called the ordered square
$I_{0}^{2}=I \times I \subset \mathbb{R}^{2}$ but topology on I_{0}^{2} is different from subspace topology of \mathbb{R}^{2}
Ex. $A=\{1 / 2\} \times(0,1)=(1 / 2 \times 0,1 / 2 \times 1)$ is open in I_{0}^{2}
Now consider topology related to \mathbb{R}^{2}
Let $p=1 / 2 \times 1 / 2 \in A$
assume $\exists B \ni 1 / 2 \times 1 / 2 \quad B \in \mathcal{B}$
$\left\{(a, b) \times(c, d): \cap[0,1]^{2}\right\}$ basis of relative top.
$\Rightarrow a<1 / 2 b>1 / 2 \Rightarrow B \notin A \Rightarrow p \notin \operatorname{Int}(A)$
In fact, similarly you see $\operatorname{Int}(A)=\varnothing$
Definition $(X,<) Y \subset X$ convex
$\Leftrightarrow \forall a, b \in Y a<b$ $\forall x \in X a<x<b \Rightarrow x \in Y$

Figure 2-13
(Distinguish from $A \subset V$ convex V VS over \mathbb{R})
Remark Intervals and rays are convex but not the other way around.

Ex. $X=\mathbb{R} \backslash\{0\}$
$Y=(-\infty, 0)$
this is convex subset in X
but one can't make $Y=(-\infty, a) \quad(-\infty, b] \quad(a, b) \ldots$
for a, b in X (not in \mathbb{R} !) $\left(<^{\prime}:=<\left.\right|_{Y \times Y}\right)$
$(X,<) \xrightarrow[\text { restricted order }]{Y \subset X}\left(Y,<\left.\right|_{Y \times Y}\right)$
$\left(X, \mathcal{O}_{<}\right) \xrightarrow[\text { relative topology }]{\downarrow}\left(Y, \mathcal{O}_{<^{\prime}}\right)$
order topology
$\underline{\text { Theorem }}$ if $Y \subset X$ convex, then $\mathcal{O}_{<\left.\right|_{Y \times Y}}=\left(\mathcal{O}_{<}\right)_{Y}$
Convention $(X,<) \quad Y \subset X$ assumed with subspace topology $\left(\mathcal{O}_{<}\right)_{Y}$ $\left(=\mathcal{O}_{<\left.\right|_{Y \times Y}}\right.$ if Y convex!) (see pg. 255)

Ex. $\mathbb{Q} \subset \mathbb{R}$ subspace topology from $(\mathbb{R},<)$
has a basis $\mathcal{B}_{1}=\{(a, b) \cap \mathbb{Q}: a, b \in \mathbb{R}\}$
order topology from $(\mathbb{R},<)$ has a basis
$\mathcal{B}_{2}=\{(a, b): a, b \in \mathbb{Q}\}$
These bases are not the same (e.g. $\left.\mathbb{Q} \cap(0, \pi) \in \mathcal{B}_{1} \backslash \mathcal{B}_{2}\right)$ of course $\mathcal{B}_{2} \subset \mathcal{B}_{1}$
and you can show all sets in \mathcal{B}_{1} are unions of sets in \mathcal{B}_{2}, so the topology of $\mathcal{B}_{1}, \mathcal{B}_{2}$ are the same
but this shows for general ordered sets be careful (we will see later examples that top's different)

17. Closed sets, Accumulation points and Limit points

already defined closed sets
Theorem \varnothing, X closed
A, B closed $\Rightarrow A \cup B$ closed
$\left\{A_{i}\right\}_{i \in I}$ closed $\Rightarrow \bigcap_{i} A_{i}$ closed
Theorem $X \supset Y \supset A \quad A$ closed in $\mathrm{Y} \Leftrightarrow \exists A^{\prime} \subset Y$ closed $A=A^{\prime} \cap Y$
Theorem $X \supset Y \supset Z \quad Y$ closed in X, Z closed in Y
$\Rightarrow Z$ closed in X

$$
\left.\begin{array}{cll}
A \subset X & \bar{A}=\bar{A}^{\mathcal{A}}= \begin{cases}x \in X & \forall O \in \mathcal{A}: O \ni x \Rightarrow O \cap A \neq \varnothing \\
! & =\{x \in X\end{cases} & \forall O \in \mathcal{B}: O \ni x \Rightarrow O \cap A \neq \varnothing
\end{array}\right\}
$$

Theorem $Y \subset X A \subset Y\left(Y, \mathcal{A}_{Y}\right)$ relative topology $\bar{A}^{\mathcal{A}_{Y}}=\bar{A}^{\mathcal{A}} \cap Y$

Definition $A \subset X x \in X$ if $x \in \overline{A \backslash\{x\}}$ $(\Leftrightarrow \forall O \subset \mathcal{A} O \ni x \Rightarrow O \cap(A \backslash\{x\}) \neq \varnothing)$
call x an accumulation point(적립점) of A if $x \in A$ and x is not an accumulation point of A call x an isolated point(고립점) of A
A is discrete(이산집합) if all its points are isolated

Figure 2 - 14: accumulation point

Figure 2-15: isolated point

Definition $A_{\text {acc }}=\{$ acc. points of $A\}$

Figure 2 - 16:
accumulation point set

Theorem $\bar{A}=A \cup A_{\text {acc }}$
Theorem X is T_{1}. Then $x \in X$ is accumulation point of A
\Leftrightarrow for every neighborhood O э $x|O \cap A|=\infty$
Convergence care is needed with limit and convergence
Definition $X \ni x_{1}, x_{2}, \ldots, x_{n}, \ldots$
we say $\lim _{n \rightarrow \infty} x_{n}=x \quad x_{n} \rightarrow x$
if $\forall O \ni x \ggg \mathcal{A} \exists N_{0} \forall n>N_{0} x_{n} \in O$

Figure 2-17

Remark $(X, \mathcal{A}),\left(X, \mathcal{A}^{\prime}\right), \mathcal{A}^{\prime} \supset \mathcal{A} \quad x_{n} \rightarrow_{\mathcal{A}^{\prime}} x \Rightarrow x_{n} \rightarrow_{\mathcal{A}} x$
Ex. $x_{n}=n$ in \mathbb{R} with finite complement topology \mathcal{O}
Let $a \in \mathbb{R} \quad O$ э $a \quad O \neq \varnothing$
$\Rightarrow|R \backslash O|<\infty \quad \exists N \forall n \geq N x_{n} \in O$
$x_{n} \rightarrow a$ so $x_{n}=n \rightarrow a \forall a \in \mathbb{R}$
Theorem X is T_{2} (Hausdorff)
$\Rightarrow \operatorname{limit}($ if it exists!) is unique
i.e. every sequence of points converges to at most one point

Remark Converse is false, see following Ex.

Ex. of a non-Hausdorff space with unique limit property $X=\underbrace{S_{\Omega} \cup\{\Omega\}}_{\bar{S}_{\Omega}} \cup\left\{\Omega^{\prime}\right\}$ "duplicate" Ω
\mathcal{A} with top basis $\left\{\begin{array}{ll}{\left[a_{0}, b\right)} & \\ (a, \Omega] & a, b \in \bar{S}_{\Omega} \\ (a, b) & a<b\end{array}\right\} \cup\left\{(a, \Omega) \cup\left\{\Omega^{\prime}\right\}: a \in S_{\Omega}\right\}$
basis of order topology on \bar{S}_{Ω}

Figure 2-18
$\mathcal{A}_{\bar{S}_{\Omega}}=$ order topology on \bar{S}_{Ω}
$\mathcal{A}_{X \backslash\{\Omega\}} \simeq$ order topology on \bar{S}_{Ω} with $\Omega \rightarrow \Omega^{\prime}\left(\Rightarrow T_{2}\right)$
X is not T_{2} because any two basis elements containing Ω, Ω^{\prime} intersect but X has the unique limit property
Let $\left\{x_{n}\right\} \subset X$
Lemma $\quad x_{n} \rightarrow \Omega$ (respectively $\left.\Omega^{\prime}\right) \Leftrightarrow \exists N \forall n \geq N x_{n}=\Omega$ (respectively Ω^{\prime})
pf. Assume \exists infinitely many $x_{n} \in S_{\Omega} \cup\left\{\Omega^{\prime}\right\}$
if infinitely many $x_{n}=\Omega^{\prime} \Rightarrow \exists x_{n_{k}} \equiv \Omega^{\prime}$ but $\exists U$ open $\Omega \in U \Omega^{\prime} \notin U$
$\Rightarrow x_{n} \ngtr \Omega\{$
So \exists infinitely many $x_{n} \in S_{\Omega} \quad\left\{x_{n_{k}}\right\} \subset S_{\Omega}$ countable
property of $S_{\Omega} \Rightarrow$ bounded. $\quad x_{n_{k}} \leq d d \in S_{\Omega} x_{n_{k}} \notin(d, \Omega]$
$x_{n_{k}} \ngtr \Omega \Rightarrow x_{n} \ngtr \Omega \dot{z}$
Now assume $\left(x_{n}\right) \subset X \quad x_{n} \rightarrow x^{1}, x^{2} \in X \quad x^{1} \neq x^{2}$
If $x^{1} \in S_{\Omega} \Rightarrow\left(x_{n}\right)$ bounded $x^{2} \neq \Omega, \Omega^{\prime}$
$x_{n} \rightarrow x^{1}, x^{2}$ in $\bar{S}_{\Omega} \in T_{2} \Rightarrow x^{1}=x^{2}$
Similarly if $x^{2} \in S_{\Omega}$
So return to test $\left\{x^{1}, x^{2}\right\}=\left\{\Omega, \Omega^{\prime}\right\}$
but this gives $\{$ by previous lemma
Thus $x^{1}=x^{2}$ and X has unique limit property

Theorem X ordered $\Rightarrow X$ is T_{2} in order topology

$$
\begin{aligned}
& (X, \mathcal{A}) \text { is } T_{2} \quad Y \subset X \Rightarrow\left(Y, \mathcal{A}_{Y}\right) \text { is } T_{2} \\
& (X, \mathcal{A})(Y, \mathcal{B}) T_{2} \Rightarrow(X \times Y, \mathcal{A} \times \mathcal{B}) \text { is } T_{2}
\end{aligned}
$$

!! If $\exists x_{1}, x_{2}, \ldots, x_{n} \in A \quad x_{n} \rightarrow x \quad x_{n} \neq x$
then x is an accumulation point of A
but the converse is false $A_{\text {lim }} \subset A_{\text {acc }}$
Definition limit points $A_{\text {lim }}:=\left\{x \in X: \exists x_{n} \in A \backslash\{x\} x_{n} \rightarrow x\right\}$ (I do not use like in book) $A_{\lim \mp}^{\mp} A_{\text {acc }}$ can happen (I will give you ex. later)
This is why be careful you understand well how a "limit point" is meant! (return to this p 19 and 34)
In "metrizable" spaces like $\mathbb{R}, \mathbb{R}^{n}$ with Enclidean topology, it's okay.

Figure 2-19
Theorem $\left(x_{n}, y_{n}\right) \rightarrow(x, y) \Leftrightarrow$ in $X x_{n} \rightarrow x$ in \mathcal{A}
and in $Y y_{n} \rightarrow y$ in $\mathcal{B} \quad$ (separation axiom, section 31)
Definition A space (X, \mathcal{A}) is regular if (p. 194)

$$
x_{1} \quad A=\bar{A} \nRightarrow x \quad \exists O_{1} \ni x \quad O_{i} \in \mathcal{A}
$$

$$
O_{2} \supset A \quad O_{1} \cap O_{2}=\varnothing
$$

Figure 2-20
Definition A space (X, \mathcal{A}) is normal if

$$
\begin{array}{ll}
\forall A_{1}, A_{2} & A_{1}=\bar{A}_{2} A_{2}=\bar{A}_{2} A_{1} \cap A_{2}=\varnothing \\
& \exists O_{1}, O_{2} \in \mathcal{A} \quad O_{1} \cap O_{2}=\varnothing O_{i} \supset A_{i}
\end{array}
$$

Figure 2-21
If points are closed, then normal \Rightarrow regular $\Rightarrow T_{2}$
$\stackrel{\imath}{i}$
T_{1}
but not always otherwise!
So we have a diagram
(! In other books, $T_{3}=$ normal, $T_{4}=$ regular)

Figure 2-22
Definition T_{3} is regular Hausdorff (=regular Fréchet)
T_{4} is normal Hausdorff (=normal Fréchet)

Theorem order topologies are normal and T_{2} (and hence anything else)
58 abcd
(1) Convergence behavior
X space
\mathcal{A} topology on $X \longmapsto \quad$ convergence behavior of $\mathcal{A} \quad \mathcal{C}(\mathcal{A})$
$\mathcal{A} \subset \mathcal{P}(X)$
$\left(x_{i}\right) \in X^{\omega} \mapsto\left\{\right.$ limit point of $\left.\left(x_{i}\right)\right\}$

$$
=\left\{x \in X: x_{i} \rightarrow x\right\} \in \mathcal{P}(X)
$$

$\mathcal{A} \in \underbrace{\{\text { topology on } X\}}_{\tilde{S}(X)} \subset \mathcal{P}(\mathcal{P}(X))$
Convergence behavior functor $\tilde{S}(X) \underset{\mathcal{c}}{\overrightarrow{\mathcal{F}}}\left(X^{\omega}, \mathcal{P}(X)\right)$
Question Does the convergence behavior determine the topology i.e. is the convergence behavior functor injective?

Ex. $\left(X^{\omega}, \mathcal{A}\right)$ and you prove $f_{n} \rightarrow f$ in $\mathcal{A} \Leftrightarrow f_{n} \rightarrow f$ pointwise
$\Rightarrow \mathcal{A}=$ product topology?
or X metrizable you prove $f_{n} \rightarrow f$ in $\mathcal{A} \Leftrightarrow f_{n} \rightrightarrows f$ uniform
$\Rightarrow \mathcal{A}=$ uniform topology?
The answer is no! in general
i.e. one cannot identify a topology from its convergence behavior alone

Ex. Consider $X=\bar{S}_{\Omega} \cup\{\bar{\Omega}\}=\bar{S}_{\Omega} \cup\left\{\Omega, \Omega^{\prime}\right\}$ Define a topology
\mathcal{A} on X with topology basis
Thus let $\tilde{\mathcal{B}}=\left\{(a, b): a<b a, b \in \bar{S}_{\Omega}\right\} \cup\left\{\left[a_{0}, b\right): b \in \bar{S}_{\Omega}\right\} \cup\left\{(a, \Omega]: a \in S_{\Omega}\right\}$

$$
\cup\left\{\left[a_{0}, \Omega\right]\right\}
$$

$\mathcal{B}=\tilde{\mathcal{B}} \cup\left\{(B \backslash\{\Omega\}) \cup\left\{\Omega^{\prime}\right\}: \Omega \in B \in \tilde{\mathcal{B}}\right\}$
This is the topology as in the previous example.
$\mathcal{A}=\mathcal{A}(\mathcal{B})$ is not Hausdorff but has unique limit property
Now consider $\mathcal{A}^{\prime}=\mathcal{A}\left(\mathcal{B}^{\prime}\right)$ with $\mathcal{B}^{\prime}=\mathcal{B} \cup\{\{\Omega\}\}$
(again to check easily \mathcal{B}^{\prime} is a basis)
\mathcal{A}^{\prime} is Hausdorff but \mathcal{A} and \mathcal{A}^{\prime}
have same convergence behavior: $\mathcal{C}(\mathcal{A})=\mathcal{C}\left(\mathcal{A}^{\prime}\right)$
$x_{n} \rightarrow x$ in $\mathcal{A} \Leftrightarrow x_{n} \rightarrow x$ in \mathcal{A}^{\prime}
Thus the convergence behavior does not define the topology, not even whether it is T_{2}
\Rightarrow not even up to self-transform fixing convergence behavior

Remark You can consider as well

$$
\begin{array}{ll}
X=\bar{S}_{\Omega} & \mathcal{A}=\mathcal{A}(\tilde{\mathcal{B}}) \\
& \mathcal{A}^{\prime}=\mathcal{A}(\tilde{\mathcal{B}} \cup\{\{\Omega\}\})
\end{array}
$$

Then $\mathcal{A} \neq \mathcal{A}^{\prime}$ but $\mathcal{C}(\mathcal{A})=\mathcal{C}\left(\mathcal{A}^{\prime}\right)$
however in this case obviously both $\mathcal{A}, \mathcal{A}^{\prime}$ are T_{2}
and I don't know if \nexists self-transformation h on \bar{S}_{Ω} with $h(\mathcal{A})=\mathcal{A}^{\prime}$
likely not, but it requires some argument to prove
while in our way we get this $+T_{2}$ - independence readily
for example, $\mathcal{A} \ni\{x\}$ one element set
$\Leftrightarrow x$ has no immediate predecessor
or $x=a_{0}$
(x has always an immediate successor or $x=\Omega$
but \mathcal{A} contains uncountably many 1 -element sets (old exercise)
so then one cannot argue with number of of 1 -element sets that $\nexists h$, etc....)
(2) Limit points

Exercise let X be a topological space
$x_{1} \in \mathcal{F}\left(\mathbb{Z}_{+}, X\right)$ a sequence
let $h: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$bijective
then $x_{n} \rightarrow x$ in $X \Leftrightarrow x_{h(n)} \rightarrow x$ in X
This means ordering a sequence is not relevant for its limit(s)
Then the limit points of a sequence $\left\{x \in X: x_{n} \rightarrow x\right\}$ can in fact be defined on the $\operatorname{set}\left\{x_{n}\right\}$

Definition X topological space $A \subset X|A|=\omega$
define $A^{\lim }=\left\{x \in X: \exists h: \mathbb{Z}_{+} \rightarrow A\right.$ bijective $\left.h(n) \underset{n \rightarrow \infty}{\longrightarrow} x\right\}$
Note, however, that $A^{\lim } \neq A_{\lim }$ the set of limit points of A as a set, as defined in the closure section

In fact, $A_{\lim }=\bigcup_{A^{\prime} \subset A,\left|A^{\prime}\right|=\omega}\left(A^{\prime}\right)^{\lim }$ (if X is T_{1})
also for any subset $A \subset X($ not necessarily of cardinality $\omega)$
58abcd

20. The metric Topology

most important and fundamental source of topology
Definition X set $d(x, y)>0 x \neq y$ distance if
$d(x, x)=0 \quad d(x, y)>0 x \neq y$
$d(x, y)=d(y, x)$
$d(x, y)+d(y, z) \geq d(x, z)$
$d(x, y)$ distance between x and y

Definition $B_{\epsilon}(x)=\{y \in x: d(x, y)<\epsilon\} \epsilon>0, x \in X$ (open) ball ϵ-ball centered at x

Figure 2-23

Definition The metric topology \mathcal{A}_{d} on (X, d) induced by d is the one with basis $\left\{B_{\epsilon}(x): x \in X, \epsilon>0\right\}$

To check: balls form a basis

Figure 2-24
B1) $X \supset \bigcup_{x \in X} B_{\epsilon}(x) \supset \bigcup_{x \in X}\{x\}=X$
B2) $\exists \epsilon(x) \cap B_{\epsilon^{\prime}}(y)$
$B_{\epsilon^{\prime \prime}}(z) \subset B_{\epsilon}(x) \cap B_{\epsilon^{\prime}}(y)$
for $\epsilon^{\prime \prime}=\min \left(\epsilon-d(x, z), \epsilon^{\prime}-d(y, z)\right)>0$
Definition (X, \mathcal{A}) metrizable $\Leftrightarrow \exists d$ on X with $\mathcal{A}=\mathcal{A}_{d}$ induced by d

Ex. $X, \delta(x, y)= \begin{cases}0 & x=y \\ 1 & x \neq y\end{cases}$
discrete distance $B_{1}(x)=\{x\}$ so
it induces the discrete topology $\mathcal{A}=\mathcal{P}(X)$
\uparrow explains the name
$A \subset X$ every $a \in A$ is discrete point, every set is discrete
so the discrete topology is metrizable
Ex. Standard metric on $\mathbb{R} d(x, y)=|x-y|$
induces the usual (Euclidean) topology
because $(a, b)=B_{\epsilon}(x)$ for $x=\frac{a+b}{2} \epsilon=\frac{b-a}{2}$
Euclidean topology is metrizable
\Rightarrow !non-uniquely $\hat{d}(x, y)=2|x-y|$ induces the same topology.

Ex. \mathbb{R} finite complement topology not metrizable
if were $\bigcap_{n=1}^{\infty} \underbrace{B_{y_{n}}(x)}_{\text {open }}=\{x\}$
$\underbrace{\mathbb{R} \backslash\{x\}}_{\text {uncountable }}=\underbrace{\bigcup_{n=1}^{\infty}(\underbrace{\left(\mathbb{R} \backslash B_{y_{n}}(x)\right)}_{\text {finite }}}_{\text {countable }}$
Definition V Vector Space over \mathbb{R} or \mathbb{C}
a norm $\|\cdot\|: V \rightarrow[0, \infty)$
satisfies $\|\mathbf{v}\|=0 \Leftrightarrow \mathbf{v}=\mathbf{0}_{V}$
$\|\lambda \mathbf{v}\|=|\lambda| \cdot\|\mathbf{v}\| \quad \lambda \in \mathbb{R}(\mathbb{C}) \mathbf{v} \in V$
$\|\mathbf{v}\|+\|\mathbf{w}\| \geq\|\mathbf{v}+\mathbf{w}\| \quad$ e.g. $\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$ if $\exists<$,
$\|$.$\| induces a metric by d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|$
\{inner product space $\} \subset\{$ normed space $\} \subset\{$ metric space $\} \subset\{$ topological space $\}$ all \mp we see here later \uparrow

Ex. \mathbb{R}^{n} with Euclidean norm
$\|\mathbf{x}\|=\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$
induces the product topology on $\mathbb{R}^{n}=\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$
basis are $\left\{\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{n}, b_{n}\right): a_{i}<b_{i}\right\}$
Ex. The Hölder p-norm
$\|\mathbf{x}\|_{p}=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}$ for $p \in[1, \infty)$
are not multiples of $\|\|=.\|.\|_{2}$ for $p \neq 2$
but all induce the same topology on \mathbb{R}^{n}
Definition (X, d) metric space $A \subset X x \in X \operatorname{dist}(x, A)=\inf \{d(x, a): a \in A\}$
Lemma $\operatorname{dist}(x, A)=0 \Leftrightarrow x \in \bar{A}$
Definition (X, d) metric space $A \subset X$
$\operatorname{diam} A=\sup \left\{d\left(a, a^{\prime}\right): a, a^{\prime} \in A\right\}$
Ex. $\operatorname{diam} B_{\epsilon}(x) \leq 2 \epsilon$ (not always " $=$ "!)

Figure 2-25
diam can be ∞ if d is unbounded
Ex. $\operatorname{diam}\left(\mathbb{Z}_{+}\right)=\infty \quad \mathbb{Z}_{+} \subset \mathbb{R}$ with Euclidean metric
Research Problem $A \subset \mathbb{R}^{2} \operatorname{diam}(A) \leq 1 A \subset \bar{B}_{1 / \sqrt{3}}(x)$ for some x ?
$1 / \sqrt{3}$ smallest possible?

Figure 2-26
sometimes it is useful to bound d

Theorem Let (X, d) metric space
Define $\bar{d}: X \times X \rightarrow \mathbb{R}$ by $\bar{d}=\max (d, 1)$
standard bounded metric
\bar{d} induces $\mathcal{A}_{\bar{d}}=\mathcal{A}_{d}$, same topology
$\underline{\text { Lemma }}(X, d),\left(X, d^{\prime}\right) \quad \mathcal{A}_{d^{\prime}} \supset \mathcal{A}_{d}$

$$
\Leftrightarrow \forall x \in X \epsilon>0 \exists \delta \quad B_{d^{\prime}, \delta}(x) \subset B_{d, \epsilon}(x)
$$

Lemma $A \subset(X, d) \mathcal{A}_{d \mid A \times A}$ is the relative topology of d of A
if \mathcal{A} is metrizable $\Rightarrow \mathcal{A}_{A}$ is metrizable
Theorem (X, d) topological space

$$
x_{n} \rightarrow x \Leftrightarrow \forall \epsilon>0 \quad \exists N \forall n>N d\left(x_{n}, x\right)<\epsilon x_{n} \in B_{\epsilon}(x)
$$

Theorem metric spaces are Hausdorff and normal (so anything else in chart p,14) pf. mostly the idea for order topologies (exercise)

Theorem (X, d) metric $x \in \bar{A} \Leftrightarrow \exists x_{n} \in A x_{n} \rightarrow x$
Sequence Lemma
i.e. trouble at $\mathrm{p}, 14$ does not occur for metrizable spaces

Remark: if X, Y metrizable with d_{X}, d_{Y}, then $X \times Y$ is also metrizable (e.g.) with $d\left(x_{1} \times\right.$ $\left.y_{1}, x_{2} \times y_{2}\right)=d_{X}\left(x_{1}, x_{2}\right)+d_{Y}\left(y_{1}, y_{2}\right)$.

18. Continuous Maps

$(X, \mathcal{A})(Y, \mathcal{B})$
Definition $f: X \rightarrow Y$ topological space continuous
if and only if $\forall O \in \mathcal{B}$ open in $Y \quad f^{-1}(O)$ open in X continuous relative to the topologies $\mathcal{A} \subset \mathcal{B}$

Ex. $(X, \mathcal{A})(X, \mathcal{B})$
\mathcal{A} finer than $\mathcal{B} \Leftrightarrow \operatorname{id}_{X}:(X, \mathcal{A}) \rightarrow(X, \mathcal{B})$ is continuous

Remark (book p.90) if $\forall O \in \mathcal{A} f(O) \in \mathcal{B}$, call f open
Lemma Let (X, \mathcal{A}) have basis $\mathcal{A}^{\prime},(Y, \mathcal{B})$ have basis \mathcal{B}^{\prime}

$$
\begin{aligned}
f \text { continuous } & \Leftrightarrow \forall B^{\prime} \in \mathcal{B}^{\prime} f^{-1}\left(B^{\prime}\right) \in \mathcal{A} \\
& \Leftrightarrow \forall B^{\prime} \in \mathcal{B} \forall x \in f^{-1}\left(B^{\prime}\right) \quad \exists A^{\prime} \in \mathcal{A}^{\prime} x \in A^{\prime} \subset f^{-1}\left(B^{\prime}\right)
\end{aligned}
$$

(" $\epsilon-\delta$ " and sequence condition)
Lemma if $(X, d)\left(X, d^{\prime}\right)$ are metric spaces can take balls as bases

$$
\begin{array}{rlrl}
f: X \rightarrow Y \text { continuous } & \Leftrightarrow \forall \epsilon>0 \exists \delta>0 & B_{\delta}(x) \subset f^{-1}\left(B_{\epsilon}(f(x))\right) \\
& \Leftrightarrow \forall x_{n} \rightarrow x \text { in } X & & f\left(x_{n}\right) \rightarrow f(x) \text { in } Y
\end{array}
$$

Theorem X, Y topological spaces $f: X \rightarrow Y$ The following are equivalent

1) f continuous
2) $\forall A \subset X \quad f(\bar{A}) \subset \overline{f(A)}$
3) $\forall B \subset Y$ closed $f^{-1}(B) \subset X$ closed
4) $\forall x \in X \quad \forall U \ni f(x)$ open $\exists V$ э x open

$$
V \subset f^{-1}(U)(\Leftrightarrow f(V) \subset U)
$$

Definition f homeomorphism if $f: X \rightarrow Y$ bijective, f, f^{-1} continuous $(X, \mathcal{A})(Y, \mathcal{B})$
$\mathcal{A}=\left\{f^{-1}(B): B \in \mathcal{B}\right\} \quad \mathcal{B}$ determines \mathcal{A}
$X \simeq Y$ topologically equivalent
if $\exists f: X \rightarrow Y$ homeomorphism
Definition $f: X \rightarrow Y$ continuous, injective if $f^{-1}: f(X) \rightarrow X$ continuous, call f a (topological) embedding

Ex. $f:[0,2 \pi) \rightarrow S^{1}=\left\{(x, y): x^{2}+y^{2}=1\right\} \quad f(t)=(\cos t, \sin t)$
with relative topology to \mathbb{R}^{2}
is bijective and continuous
but its inverse is not continuous $\Leftrightarrow f$ is not open
$[0, \alpha) \quad T=f([0, \alpha)) \subset S^{1}$ is not open $1 \in S^{1}$ but $\forall \epsilon>0 \quad S^{1} \cap B_{\epsilon}(1) \notin T$ ก
$[0,2 \pi)$ open

Figure 2-27

Constructing Continuous Functions
see p.105, 106 in the book
$\underline{\text { Pasting lemma }}$

$$
\begin{array}{rl}
X=A \cup B & A, B \text { closed in } X \\
f: X \rightarrow Y & \left.f\right|_{A}: A \rightarrow Y \\
& \left.f\right|_{B}: B \rightarrow Y \text { continuous } \Rightarrow f: X \rightarrow Y \text { continuous }
\end{array}
$$

$\underline{\text { Maps into product }}$

Theorem $f: A \rightarrow X \times Y$ (with product topology) is continuous \Leftrightarrow coordinate functions $\quad f_{1}: A \rightarrow X \quad f_{1}=\operatorname{pr}_{X} \circ f$

$$
f_{2}: A \rightarrow Y \quad f_{2}=\operatorname{pr}_{Y} \circ f
$$

are continuous. $\left(\operatorname{pr}_{X}(x, y)=x, \operatorname{pr}_{Y}(x, y)=y\right)$

19. Product Topology II

Motivation: $X_{1} \times \ldots X_{n}$ with topology $\mathcal{A}_{1} \ldots \mathcal{A}_{n}$
defined product topology by
(1) subbasis / for $n=2$ but finite n is same story

$$
\begin{gathered}
\bigcup_{k=1}^{n}\left\{\operatorname{pr}_{k}^{-1}(U): U \subset X_{k} \text { open }\right\} \\
U=X_{1} \times \ldots X_{k-1} \times U \times X_{k} \times \cdots \times X_{n}
\end{gathered}
$$

or
(2) basis

$$
\left\{U_{1} \times \ldots U_{k}: U_{i} \subset X_{i} \text { open }\right\}
$$

gives (same) product topology
But what if ∞ product? There's a difference!
First let's define general tuple indexed by an arbitrary set.
Convention write $\mathcal{F}(X, Y)$ for $\{f: X \rightarrow Y\}$

$$
\begin{aligned}
& \text { Recall }\left\{f: \mathbb{Z}_{+} \rightarrow X\right\} \simeq X^{\omega}=\left\{\left(a_{1}, a_{2}, \ldots\right): a_{i} \in X\right\} \\
& \left(=\mathcal{F}\left(\mathbb{Z}_{+}, X\right) \uparrow f(n)=a_{n}\right) \\
& =\prod_{i=1}^{\infty} X \\
& \prod_{i=1}^{\infty} X_{i}=\left\{f: \mathbb{Z}_{+} \rightarrow \bigcup X_{i}: f(n) \in X_{n} \forall n\right\}
\end{aligned}
$$

For J index set, X set, define J-tuple of elements in X to be a function $x: J \rightarrow X$

$$
\begin{gathered}
x=\left(x_{\alpha}\right)_{\alpha \in J} \quad x(\alpha)=x_{\alpha} \\
X^{J}=\{x: \quad x(\alpha) \in X \forall \alpha \in J\} \simeq\{f: J \rightarrow X\}
\end{gathered}
$$

Definition $\begin{aligned} & \mathcal{A}=\left\{A_{\alpha}\right\}_{\alpha \in J} \\ & \prod_{\substack{ \\ \\J \\ J}} A_{\alpha}=\left\{f: J \rightarrow \bigcup_{\substack{\alpha \in J \\ \text { indexed }}} A_{\alpha}: f(\alpha) \in A_{\alpha} \forall \alpha \in J\right\}\end{aligned}$
J - indexed product
Definition $\left\{A_{\alpha}\right\}_{\alpha \in J} \quad\left(A_{\alpha}, \mathcal{A}_{\alpha}\right)$ topological space
the box topology on $A=\prod_{\alpha \in J} A_{\alpha}$ is defined by the basis
$\left\{U=\prod_{\alpha \in J} U_{\alpha}: U_{\alpha} \in \mathcal{A}_{\alpha} \forall \alpha \in J\right\}$
" U is a box" generalization of (2) above

Definition $\left(A_{\alpha}, \mathcal{A}_{\alpha}\right)$ topological space
the product topology on $A=\Pi A_{\alpha}$ is defined by the subbasis
$\bigcup_{\alpha \in J} \bigcup_{U_{\alpha} \in \mathcal{A}_{\alpha}} \operatorname{pr}_{\alpha}^{-1}\left(U_{\alpha}\right)$
with $\operatorname{pr}_{\alpha}: A \rightarrow A_{\alpha}$ being the projection on the
α-th coordinate $\operatorname{pr}_{\alpha}\left(\left(a_{\beta}\right)_{\beta \in J}\right)=a_{\alpha}$ generalization of (1)
The product topology will be assumed by default!
Obviously, box topology \supset product topology.
but box topology is quite strong and often good for counterexamples, while product topology is used in many theorems.

For metric spaces $\left(A_{\alpha}, d_{\alpha}\right)$, there is one more important topology on ΠA_{α}, the uniform topology. It has basis being boxes of "equal length"

$$
\mathcal{B}=\left\{\prod_{\alpha \in J} B_{\epsilon}\left(x_{\alpha}\right): x_{\alpha} \in A_{\alpha}, \epsilon>0\right\}
$$

ϵ does not depend on α !
Theorem the uniform topology is induced by the uniform metric

$$
d\left(\left(a_{\alpha}\right)_{\alpha \in J},\left(b_{\alpha}\right)_{\alpha \in J}\right)=\sup \left\{\bar{d}_{\alpha}\left(a_{\alpha}, b_{\alpha}\right): \alpha \in J\right\}
$$

\uparrow bounded metric

Convergence

Notation write $\mathcal{F}(X, Y)_{\text {prod }} \quad \mathcal{F}(X, Y)_{\text {box }} \quad \mathcal{F}(X, Y)_{\text {uni }}$
Theorem Convergence in the product topology is pointwise convergence
Definition $f_{n} \rightarrow f: \Leftrightarrow \quad \forall \alpha \in J \quad f_{n}(\alpha) \rightarrow f(\alpha)$ in A_{α}
$\forall \alpha \in J \quad \forall O \in \mathcal{A}_{\alpha} O \ni f(\alpha) \quad \exists N \forall n \geq N f_{n}(\alpha) \in O$
Th./Def. Convergence in the uniform topology is the uniform convergence

$$
f_{n} \rightrightarrows f: \Leftrightarrow \forall \epsilon>0 \quad \exists N \forall n \geq N \forall \alpha \in J d_{\alpha}\left(f_{n}(\alpha), f(\alpha)\right)<\epsilon
$$

remark: $f \rightarrow f \quad \forall \alpha \in J \forall \epsilon>0 \exists N \forall n \geq N d_{\alpha}\left(f_{n}(\alpha), f(\alpha)\right)<\epsilon$
What is convergence in the box topology?
Ex. Consider $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ with box topology. When $f_{n} \rightarrow 0$? assume $f_{n_{1}}\left(x_{1}\right) \neq 0 \quad$ choose $\quad U_{x_{1}}\left(-f_{n_{1}}\left(x_{1}\right), f_{n_{1}}\left(x_{1}\right)\right) \quad f_{1} \notin U=\prod_{x \in \mathbb{R}} U_{x}$
assume $\exists x_{2} \neq x_{1} \quad n_{2}>n_{1} \quad f_{n_{2}}\left(x_{2}\right) \neq 0 \quad U_{x_{2}}\left(-f_{2}\left(x_{2}\right), f_{2}\left(x_{2}\right)\right) \quad f_{2} \notin U=\prod_{x \in \mathbb{R}} U_{x}$
\leadsto find $\left(f_{n_{1}}, f_{n_{2}}, \ldots\right) \notin U \ni 0$ open. $\rightarrow f_{n} \rightarrow 0$
etc. when does this fail?
$f_{n} \rightarrow 0 \Leftrightarrow \exists N S_{N}:=\bigcup_{n \geq N}\left\{x: f_{n}(x) \neq 0\right\}$ finite
and $\forall x \in S_{N} \quad f_{n}(x) \rightarrow 0$
$\left(\left.\left.\left.\left.\Leftrightarrow f\right|_{S_{N}} \rightarrow 0\right|_{S_{N}} \Leftrightarrow f_{n}\right|_{S_{N}} \rightrightarrows 0\right|_{S_{N}}\right)$

Ex. $\quad f_{n}(x)=\left\{\begin{array}{ll}0 & x \neq n \\ 1 / n & x=n\end{array}\right.$ (so box convergence \Rightarrow pointwise and uniform convergence)
of course $f_{n} \rightarrow 0$ and even $f_{n} \rightrightarrows 0$
also $\left|\left\{x: f_{n}(x) \neq 0\right\}\right|=1<\infty \forall n$
but $\bigcup_{n \geq N}\left\{x: f_{n}(x) \neq 0\right\}=\mathbb{Z}_{+} \cap[N, \infty)$ infinite
so $f_{n} \rightarrow 0$ (and not to any other limit) in box topology
The box topology is easily seen to be Hausdorff and I can prove regular. It is not known about normal see Ex. 5 p. 203
Theorem In product or box topology of $\mathcal{F}(J, X)$
(and hence in the uniform topology as well, if X_{α} metric)
for $A_{\alpha} \subset X_{\alpha} \quad \overline{\prod_{\alpha \in J} A_{\alpha}}=\prod_{\alpha \in J} \overline{A_{\alpha}}$
Ex. Consider $\mathcal{F}=\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ in box topology. $\mathcal{F}=\mathcal{F}(\mathbb{R}, \mathbb{R})_{\text {box }}$
Let $A=\prod(0,1)=\{f: \mathbb{R} \rightarrow \mathbb{R}:$ image $(\mathbb{R}) \subset(0,1)\}$
Then $\bar{A}=\prod_{\alpha \in \mathbb{R}}^{\alpha \in \mathbb{R}}[0,1]=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid$ image $(\mathbb{R}) \subset[0,1]\}$
but consider $A_{\lim }=\left\{f \in \mathcal{F}: \exists f_{n} \in A \backslash\{f\}: f_{n} \rightarrow f\right\}$

$$
\begin{aligned}
A_{\lim }= & \bigcup_{\substack{S \subset \mathbb{R} \\
|S|<\infty}} \prod_{\alpha \in \mathbb{R}}\left\{\begin{array}{ll}
{[0,1)} & \alpha \notin S \\
{[0,1]} & \alpha \in S
\end{array}\right\} \\
& =\left\{f: \mathbb{R} \rightarrow \mathbb{R}|\operatorname{image}(f) \subset[0,1], \exists S \subset \mathbb{R}| S \mid<\infty \operatorname{image}\left(\left.f\right|_{\mathbb{R} \mid S}\right) \subset(0,1)\right\}
\end{aligned}
$$

E.g. $0 \in A_{\text {acc }} \quad 0 \notin A_{\text {lim }}(0=$ zero function)
$A_{\lim \mp} \mp A_{\text {acc }} \Rightarrow$ sequence lemma fails \Rightarrow box topology not metrizable
$\Rightarrow\left(\begin{array}{ll}\mathcal{A}^{\prime} \supset \mathcal{A} & \left.\mathcal{A} \text { metirzable } \nRightarrow \mathcal{A}^{\prime} \text { metrizable }\right) ~\end{array}\right.$
\uparrow box \uparrow uniform while $T_{i} i \leq 2$
It took me some to give an example of $A \subset X$ with

$$
\bar{A} \backslash A \neq \varnothing \text { but } A_{\lim }=\varnothing \text {, i.e. }
$$

A not closed (\Rightarrow has accumulation point $A_{\text {acc }} \neq \varnothing$) but no converging sequence(except constant)

Ex. (may skip, not very good)
Consider $X=\left\{f: \mathbb{R} \rightarrow \mathbb{R}_{\text {discr }}\right\}$ with range \mathbb{R} with discrete topology
and pointwise convergence topology $X=\mathcal{F}\left(\mathbb{R}, \mathbb{R}_{\text {discr }}\right)_{\text {prod }}$ (product discrete topology)
i.e. $f_{n} \rightarrow f \Leftrightarrow \forall x \in \mathbb{R} \quad \exists N \quad \forall n \geq N \quad f_{n}(x)=f(x)$
the basis of the topology

$$
\begin{aligned}
\left\{U_{S, y_{1}, \ldots, y_{n}}\right. & =\prod_{x \in \mathbb{R}}\left\{\begin{array}{cl}
\left\{y_{i}\right\} & x=x_{i} \\
\mathbb{R} & x \neq x_{1}, \ldots, x_{n}
\end{array}\right\} \\
: S & \left.:\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R} \text { finite }\left(x_{i} \neq x_{j}\right), \quad y_{1}, \ldots, y_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

Fix a bijection $\Phi:\{$ finite subsets of $\mathbb{R}\} \rightarrow \mathbb{R} \backslash\{0\}$
Consider the family
$f_{S}(x)=\left\{\begin{array}{ll}0 & x \in S \\ \Phi(S) & x \neq S\end{array}\right\}-\underbrace{\cdots \cdots-\cdots}_{S} \phi /(/)$ constant function except for finite zero set
Figure 2-28
$A=\left\{f_{S}: S \subset \mathbb{R}\right.$ finite $\} \subset X$
\downarrow function $\quad(f(x)=0 \quad \forall x \in \mathbb{R})$
$0 \in \bar{A} \backslash A \quad A$ has accumulation point 0
If $0 \in U$ open U basis element
$U=U_{S, 0, \ldots, 0}$ for some $S \subset \mathbb{R} \quad|S|<\infty$
$\xlongequal[y_{i}=0]{ }$
$f_{S} \in U \cap A \neq \varnothing \Rightarrow 0 \in \bar{A}$, obviously $0 \notin A$
Now take sequence $f_{S_{1}}, f_{S_{2}}, \ldots$ in $A \quad f_{S_{i}} \neq f_{S_{j}} i \neq j$
$\bigcup_{i=1}^{\infty} S_{i}$ is countable, take $x_{0} \in \mathbb{R} \backslash \bigcup_{i=1}^{\infty} S_{i}$
$f_{S_{n}}\left(x_{0}\right)=\Phi\left(S_{n}\right) \quad f_{S_{n}}\left(x_{0}\right) \neq f_{S_{m}}\left(x_{0}\right) \quad \forall n, m \in \mathbb{Z}_{+} n \neq m$
$f_{S_{n}}\left(x_{0}\right)$ does not converge in discrete topology
$\Rightarrow f_{S_{n}} \nrightarrow f$
So A contains no converging sequence! (except eventually constant)
($\Rightarrow X$ not metrizable etc.) $\quad A_{\text {acc }} \ni 0, A_{\text {lim }}=\varnothing \quad$ End Ex.
Note: $A_{\text {lim }}=\varnothing$ means A has no limit point $\underline{\text { in } X}$, $\underline{\text { not in } A}$.
A has no limit point in A just means A is discrete, and I can find you discrete non-closed sets in simple spaces like $A=\left\{\frac{1}{n}: n \in \mathbb{Z}_{+}\right\} \subset \mathbb{R}=X$
Order topologies II
Theorem $(X,<)$ ordered set \Rightarrow order topology is normal

Ex. $\mathbb{R} \times \mathbb{R}$ with dictionary order is metrizable
$\simeq(0,1) \times(0,1) \quad$ HW Ex. 2.20.2 p. 124
ordered square $I_{0}^{2}=[0,1] \times[0,1]$ is not, proof later! see pg. 30
in particular, restricting the order topology of
$\mathbb{R} \times \mathbb{R}$ to $[0,1] \times[0,1]$ does not give the
same topology as the topology from restricting
dictionary order on $[0,1] \times[0,1]$ see pg . 10
(My) $\underline{p f}$. Let $(X,<)$ be ordered.
$A, B \subset X$ closed disjoint fixed.
idea. $\forall a \in A$ construct $\left(x_{a}, y_{a}\right) \ni a \quad\left(x_{a}, y_{a}\right) \cap B=\varnothing$
$\forall b \in B \quad\left(\overline{x_{b}}, \overline{y_{b}}\right) \ni b \quad\left(\overline{x_{b}}, \overline{y_{b}}\right) \cap A=\varnothing$
$\forall a, b \quad\left(x_{a}, y, a\right) \cap\left(\overline{x_{b}}, \overline{y_{b}}\right)=\varnothing \quad(*)$ see pg. 27
Let then $O_{1}=\bigcup_{a \in A}\left(x_{a}, y_{a}\right) \quad O_{2}=\bigcup_{b \in B}\left(\overline{x_{b}}, \overline{y_{b}}\right)$
$O_{1} \supset A \quad O_{2} \supset B \quad O_{1} \cap O_{2}=\varnothing$
Need to define $x_{a}, y_{a}, \overline{x_{b}}, \overline{y_{b}}$
First, need to take care of blank intervals
Definition a) (recall) $I \subset X$ convex if
$\forall a, b \in I \quad a<b \quad \forall x \in X \quad a<x<b \Rightarrow x \in I$

Figure 2-29
b) $I \subset X$ is called blank interval(BI) if I convex and $I \cap(A \cup B)=\varnothing$
c) $I \subset X$ is maximal b.i.(MBI) if I is BI $\forall \mathrm{BI} \quad I^{\prime} \supset I \Rightarrow I^{\prime}=I$

Lemma each BI $I \subset$! one MBI $\tilde{I}=M_{I}$
pf. $\exists \max \mathrm{BI} \quad \tilde{I} \supset I$ by maximum principle
unique because if $\tilde{I}, \tilde{I}^{\prime} \supset I \quad \hat{I}=\tilde{I} \cup \tilde{I}^{\prime} \supset I$
MBI also defines BI $\supset I$
by $\max \begin{array}{lll}\hat{I} \supset \tilde{I} & \tilde{I} \max \Rightarrow \hat{I}=\tilde{I} \\ \hat{I} \supset \tilde{I}^{\prime} & \tilde{I}^{\prime} \max \Rightarrow \hat{I}=\tilde{I}^{\prime}\end{array} \Rightarrow \tilde{I}=\tilde{I}^{\prime}$
In particular, $\forall x \notin A \cup B \quad\{x\}$ is BI
$\exists!$ MBI $\supset\{x\}$ write it M_{x}

Lemma $\forall x, y \in X \quad[x, y] \mathrm{BI} \Leftrightarrow M_{x}=M_{y}$

$$
\underline{p f .} \Leftarrow M_{x}=M_{y} \ni\{x, y\} \quad \text { BI }
$$

Figure 2-30

$$
\begin{gathered}
\quad[x, y] \subset M_{x} \Rightarrow[x, y] \cap(A \cup B)=\varnothing \Rightarrow[x, y] \mathrm{BI} \\
\Rightarrow \quad x \notin A \cup B \text { Let } I \text { BI } I \ni x \\
I \subset \text { MBI } M_{I} \\
x \in \text { MBI } M_{I} \\
\\
\text { by uniqueness } M_{I}=M_{x} \\
\text { now } x, y \in[x, y] \text { BI; by } \uparrow \text { above argument } \\
\\
M_{[x, y]}=M_{x}=M_{y}
\end{gathered}
$$

Convention $(X,<)$ For each MBI $\Delta \subset X$ fix an element, $\alpha_{\Delta} \in \Delta .(\mathrm{AC}!)$
Return to definition of $y_{a} \quad$ (namely $M_{\alpha_{\Delta}}=\Delta$)

Figure 2-31
Assume $a \in A$, So $a \notin B=\bar{B}$
if $a=\max X$ set $y_{a}=\infty\left(y_{\alpha}=\infty\right.$ (formally) with $\left.\left(x_{\alpha}, y_{\alpha}\right)=\left(x_{\alpha}, \infty\right)=\left(x_{\alpha}, a\right]\right)$
otherwise $\exists a^{\prime \prime}>a a^{\prime \prime}$ is lower bound for $B \cap[a, \infty) B \cap\left(a, a^{\prime \prime}\right)=\varnothing$
[0] $a^{\prime \prime}$ is immediate successor of a set $y_{a}=a^{\prime \prime}$
Otherwise, $\exists a^{\prime} \in\left(a, a^{\prime \prime}\right) \quad$ (need to avoid $a^{\prime} \in B$)

Figure 2-32

Figure 2-33
[2] if $a^{\prime} \notin A \Rightarrow a^{\prime} \notin A \cup B$ set $y_{a}=\alpha_{M_{a^{\prime}}}$
Then y_{a} has the following properties

1）$y_{a}=\infty$ only if $a=\max X$ assume $a \neq \max X$ below
2）$y_{a}>a$ and $\left(\left[a, y_{a}\right] \cap B=\varnothing\right.$ or $\left.y_{a}=\operatorname{succ}(a)\right)$
$\underline{p f . \text { if }} y_{a} \leq a$ ，then need case［2］and
$\bar{M}_{y_{a}}=M_{\alpha_{M_{a^{\prime}}}}=M_{a^{\prime}}(!)$
$\Rightarrow\left[y_{a}, a^{\prime}\right]$ blank $a \in\left[y_{a}, a^{\prime}\right] a \notin A$ 亿
3）if $y_{a} \notin A$ then by（！）we have $y_{a}=\alpha_{M_{y_{a}}}$ or $y_{a}=\operatorname{succ}(a)$ is the immed．succ．of a
Similarly $\overline{y_{b}}$ for $b \in B$
$\overline{x_{b}}$ should be defined so that
1）$\overline{x_{b}}=-\infty$ only if $b=\min X$ assume $b \neq \min X$
2）$\overline{x_{b}}<b$ and $\left(\left[\overline{x_{b}}, b\right] \cap A=\varnothing\right.$ or $\left.\overline{x_{b}}=\operatorname{pred}(b)\right)$

Figure 2－34
3）if $\overline{x_{b}} \notin B$ then $\overline{x_{b}}=\alpha_{M_{\overline{x_{b}}}}$ or $\overline{x_{b}}=\operatorname{pred}(b)$ is the immed．pred．of b
Similarly x_{a} ．So now $x_{a}, y_{a}, \overline{x_{b}}, \overline{y_{b}}$ defined．
Now assume $a \in A b \in B$
Without loss of generality，$a<b \quad \Rightarrow\left(y_{a} \neq \infty \overline{x_{b}} \neq-\infty\right)$
assume $\left(x_{a}, y_{a}\right) \cap\left(\overline{x_{b}}, \overline{y_{b}}\right) \neq \varnothing(* *)$ ；to prove $(*)$ at page 25 by 4
So $\overline{x_{b}}<y_{a}$
if $y_{a}=\operatorname{succ}(a)$ ，then $\left(x_{a}, y_{a}\right)=\left(x_{a}, a\right]$ ，so $(* *) \Rightarrow \overline{x_{b}} \leq a$ ．But $b>a$ ，so $a \in A \cap\left[\overline{x_{b}}, b\right]$ 亿 to 2$)$
Similarly $\overline{x_{b}} \neq \operatorname{pred}(b)$ ．

$$
\begin{aligned}
& {\left[\overline{x_{b}}, b\right] \cap A=\varnothing} \\
& {\left[a, y_{a}\right] \cap B=\varnothing} \\
& {\left[\overline{x_{b}}, y_{a}\right] \cap(A \cup B)=\varnothing} \\
& M_{y_{a}}=M_{\overline{x_{b}}} \\
& \begin{array}{cc}
\Downarrow & \Downarrow \\
\\
& y_{a} \notin A \stackrel{3)}{\Rightarrow} y_{a}=\alpha_{M_{y_{a}}} \\
& \overline{x_{b}} \notin B \stackrel{3)}{\Rightarrow} \overline{x_{b}}=\alpha_{M_{\overline{x_{b}}}} \\
\Downarrow & \Downarrow
\end{array}
\end{aligned}
$$

$$
y_{a}=\overline{x_{b}} \text { 名 }
$$

Figure 2－35

$$
\Rightarrow(*) \text { at page } 25 \Rightarrow
$$

Chapter 3. Compactness, Connectedness, Completeness

26. Compact Spaces

I try to discuss this first exclusively for metric spaces and say later how/what to generalize to topological spaces.
Definition $x_{n} \subset(X, d)$ sequence, $x_{n_{m}}$ is a subsequence if $n_{m}>n_{m-1} \quad n_{m} \in \mathbb{Z}_{+}$
Definition (sequence) compactness / limit point compactness (see warning(!!Def.) page. 30) (X, d) is called compact if
$\forall\left(x_{n}\right) \subset X$ sequence, $\exists\left(x_{n_{m}}\right) \subset\left(x_{n}\right)$ subsequence
converging in $X \quad \exists x \in X: x_{n_{m}} \rightarrow x$ limit point
Remark (X, d) compact $\Rightarrow \operatorname{diam}(X)<\infty$ and must be attained $\exists x, y \in X \quad d(x, y)=\operatorname{diam}(X)$
ex. \mathbb{R} is not compact
$(0,1)$ is not compact (with Euclidean distance)
Ex. $\mathbb{R}, \bar{d}=\min (d, 1)$ bounded, is not compact
Ex. \mathbb{R} with discrete distance is bounded and attains diameter but not compact (every converging sequence must be eventually constant)
But $[0,1]$ is compact (with Euclidean distance) prove now!
$\begin{array}{lll}\text { Lemma } & x_{n} \subset \mathbb{R} & \text { increasing } \\ & & x_{n} \geq x_{n-1} \\ \text { strictly increasing }\end{array} x_{n}>x_{n-1}$
strictly increasing $x_{n}>x_{n-1}$
decreasing $\quad x_{n} \leq x_{n-1}$
strictly decreasing $x_{n}<x_{n-1}$
monotonous $\quad=$ increasing or decreasing
Lemma x_{n} increasing and bounded (above)
$x_{n} \rightarrow \sup \left\{x_{n}\right\}$
similarly decreasing

Lemma $\left(x_{n}\right)$ bounded $\Rightarrow \exists\left(x_{n_{m}}\right)$ monotonous
$\underline{p f}$. Assume $\nexists\left(x_{n_{m}}\right)$ increasing will show lemma
by finding one decreasing sequence.
$n_{0}=0, k=0$
Let $x=\sup \left\{x_{n}: n>n_{k}\right\}$
if infinitely many $x_{n}=x \quad \exists$ constant subsequence \Rightarrow increasing z
if exists no $x_{n}=x$
$\exists n_{1} \quad x_{n_{1}}>x-1 \quad x_{n_{1}}<x$
$\max \left\{x_{1}, \ldots, x_{n_{1}}\right\}<x$
$\exists n_{2}>n_{1} \quad x_{n_{2}}>x_{n_{1}} \quad x_{n_{2}}<x$
$x_{n_{i}}$ increasing $\&$
So \exists finitely many $x_{n}=x$
Let $n_{k+1}=\max \left\{k: x_{k}=x\right\} \quad x_{n^{\prime}}<x_{n_{k+1}}(=x) \quad n^{\prime}>n_{k+1}$
$x_{n_{k}}$ decreasing
Theorem (Bolzano-Weierstrass)
Every bounded sequence in $\mathbb{R} \supset$ converging subseqence
Ex. $[0,1] \quad\left(x_{n}\right) \subset[0,1]$
$x_{n} \subset \mathbb{R}$ bounded $\Rightarrow x_{n_{m}} \rightarrow x$
$[0,1]$ closed $\Rightarrow x \in[0,1]$
$x_{n_{m}} \rightarrow x \in[0,1]$ in relative topology
$\Rightarrow[0,1]$ compact
Theorem $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ compact
$\Rightarrow\left(X_{1} \times X_{2}, d_{1}+d_{2}\right)$ compact \uparrow or any d inducing product topology $\sqrt{d_{1}^{2}+d_{2}^{2}} \ldots$

Theorem (X, d) compact $A \subset X$ compact (in relative topology)
$\Leftrightarrow A=\left.\bar{A} \quad d\right|_{A \times A}$
Theorem (X, d) any metric space $A \subset X$ compact
$\Rightarrow A$ closed and bounded

Theorem (Heine-Borel) $X=\mathbb{R}^{n}$ with Euclidean metric

Figure 2-36
A closed and bounded \Leftrightarrow compact

$$
A \subset B \subset I \times I^{\prime}
$$

Ex. $[0,1]^{\omega} \subset \mathbb{R}^{\omega}$ with uniform metric closed and bounded but $\exists f_{n}=\left\{\begin{array}{ll}1 & x=n \\ 0 & x \neq n\end{array}\right\} \quad \nexists g: f_{n_{m}} \rightrightarrows g$ uniformly

Thoerem $f:(X, d) \rightarrow \mathbb{R}$ continuous X compact
f bounded and f attains maximum value
$\underline{p f}$. if $\exists f\left(x_{n}\right) \rightarrow \infty \quad x_{n} \in X$
$\exists x_{n_{m}} \subset x_{n}$ converging $x_{n_{m}} \rightarrow x$
f continuous $f\left(x_{n_{m}}\right) \rightarrow f(x) \in \mathbb{R} \boldsymbol{Z}$
so assume $f\left(x_{n}\right)$ bounded
$\forall \epsilon>0 \quad \exists x_{\epsilon} \in x \quad f\left(x_{\epsilon}\right)>\sup (f(x))-\epsilon$
$\left(x_{1 / n}\right)$ has converging subsequence $x_{n_{m}} \rightarrow x \in X$
$f\left(x_{n_{m}}\right) \rightarrow f(x)$

$$
\leftrightarrows \sup f \quad f(x)=\sup f=\max f
$$

Corollary (X, d) compact $\Rightarrow X$ attains diam $<\infty$
pf. $d: \underbrace{X \times X}_{\text {compact }} \rightarrow \mathbb{R}$ continuous
\downarrow I use; not to confuse with my use of "limit point" (pg. 288)
!! Definition (X, d) is acc. point compact
$\Leftrightarrow \forall S \subset X \quad|S|=\infty \quad S$ has acc. point $\quad A_{\text {acc }} \neq \varnothing$
Lemma (X, d) acc. point compact \Leftrightarrow sequentially compact
$\underline{p f_{.}} \Leftarrow|S|=\infty \quad \exists s_{1}, s_{2}, \cdots \in S \quad s_{i} \neq s_{j}$
$\exists s_{n_{m}} \rightarrow X$ at most one $S_{n_{m}}=X$
X acc. point of S
$\Rightarrow \quad\left(x_{n}\right) \subset X$ sequence, if set $\left\{x_{n}\right\}$ finite
then \exists finitely many equal $x_{n_{m}} \rightarrow$ done
so $\left|\left\{x_{n}\right\}\right|=\infty$
\Rightarrow it has accumulation point x
choose $x_{n_{m}} \in B_{1 / m}(x) \quad x_{n_{m}} \rightarrow x$
Theorem The ordered square $[0,1]^{2}$ with the
(see pg. (25) order topology of the lexicographical order is not metrizable (but it is T_{4} like any order topology; it is also linear continuum)
(promised this theorem as an application of compactness)
$p f$. assume $[0,1]^{2}$ were metrizable
define $f:[0,1] \rightarrow \mathbb{R}$ by $f(x)=\operatorname{diam}(\{x\} \times[0,1])>0$
(w.l.o.g. bound the metric to avoid infinite)
$\operatorname{diam}(A)=\sup \{d(x, y): A\}$
Consider $x_{0} \in[0,1]$. Let $x_{n} \searrow x_{0}$ Then $\left(x_{n}, 1\right) \rightarrow\left(x_{0}, 1\right)$
and in fact for any sequence $x_{n}^{\prime} \in[\underbrace{\left(x_{0}, 1\right),\left(x_{n}, 1\right)}_{D_{n}}]$
$x_{n}^{\prime} \rightarrow\left(x_{0}, 1\right)$
Thus $\lim _{n \rightarrow \infty} \bar{d}\left(\left(x_{0}, 1\right), D_{n}\right)=0$
$\bar{d}(x, A)=\sup \{d(x, y): y \in A\}$
$\operatorname{diam}\left(D_{n}\right) \leq 2 \bar{d}\left(\left(x_{0}, 1\right), D_{n}\right)$ by triangle inequality
So $\operatorname{diam}\left(D_{n}\right) \rightarrow 0$ and $D_{n} \supset\left\{x_{n}\right\} \times[0,1]$
$\Rightarrow f\left(x_{n}\right)=\operatorname{diam}\left(\left\{x_{n}\right\} \times[0,1]\right) \rightarrow 0$

So $\lim _{x \rightarrow x_{0}^{+}} f(x)=0$
Similarly let $x_{n} \nearrow x_{0}$ argue with $\left(x_{0}, 0\right) \leftarrow\left(x_{n}, 0\right)$
that $\lim _{x \rightarrow x_{0}^{-}} f(x)=0$. Thus now
$\forall x_{0} \in[0,1] \quad \lim _{x \rightarrow x_{0}} f(x)=0$, but $f\left(x_{0}\right)>0$
Claim \nexists such $f \Rightarrow$
$p f$. Let $\epsilon>0$
If exist infinitely many $x \in[0,1]$ with $f(x) \geq \epsilon$
then by compactness they have an accumulation point
$\exists x_{n} \rightarrow x_{0} \in[0,1] \quad x_{0} \neq x_{n}$
$f\left(x_{n}\right) \geq \epsilon \quad$, to $\lim _{x \rightarrow x_{0}} f(x)=0$
So $\forall \epsilon \quad S_{\epsilon}=|\{x: f(x) \geq \epsilon\}|<\infty$
Then $S=|\{x: f(x)>0\}|=\bigcup_{i=1}^{n} S_{1 / n}$ is countable,
but we wanted $S=[0,1]$, which is uncountable 友
$\underline{H W}$ do it for $[0,1] \times[0,1)$; similar proof for $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ product topology
but $\left\{f: \mathbb{Z}_{+} \rightarrow \mathbb{R}\right\}=\mathbb{R}^{\omega}$ with product topology is metrizable Th . 20.5 p .123

Covering Compactness (sec. 26)

Definition (X, d) metric space
$\mathcal{O} \subset \mathcal{P}(x)$ is an open cover(ing) of X if
$\cup \mathcal{O}=X$ and $\forall O \in \mathcal{O} \quad O$ open in X
$\mathcal{O}^{\prime} \subset \mathcal{P}(X)$ is called a subcover of \mathcal{O} if $\mathcal{O}^{\prime} \subset \mathcal{O}$ and \mathcal{O}^{\prime} cover of X
Definition X is covering compact if every open
cover of X contains a finite subcover
Theorem (the Borel-Lebesgue Covering Theorem)
(X, d) metric space X sequentially compact $\Leftrightarrow X$ covering is compact for the proof, we need lemmas

Lemma (X, d) compact space $\Rightarrow \forall X_{1} \supset X_{2} \supset X_{3} \supset \ldots$ filtration with nonempty closed sets, we have $\bigcap_{i=1}^{\infty} X_{i} \neq \varnothing$
$\underline{p f .}$ Take $x_{i} \in X_{i} \quad \exists x_{n_{i}} \rightarrow x \quad X_{i}$ closed $\quad x \in X_{i} \forall i$
Remark \Leftarrow also true. See last part of B-L proof below
Ex. $\quad X=\mathbb{R} \quad x_{i}=(-\infty,-i]$ closed filtration $\quad \cap X_{i}=\varnothing$
Lemma (HW) $x_{n} \rightarrow x$ in $(X, d) \quad \forall \epsilon>0 \quad \exists N \quad \forall n, m \geq N$

$$
d\left(x_{n}, x_{m}\right)<\epsilon \text { (Cauchy-property) }
$$

Pf of B-L " \Rightarrow " Prof. Friedrich 2.11.90
Step. $1 X$ sequentially compact $\Rightarrow \exists$ finite ϵ-net
Step. $2 \Rightarrow X$ separable (HW)
Step. $3 \Rightarrow X$ is Lindelöf (every cover has countable subcover)
Step. $4 \Rightarrow X$ covering compact
Step. $1 X$ compact $\Rightarrow \forall \epsilon>0 \quad \exists p_{1}, \ldots, p_{k} \in X$
$\bigcup_{i=1}^{k} B_{\epsilon}\left(p_{i}\right)=X \quad=:\left\{p_{1}, \ldots, p_{k}\right\}$ is $\underline{\epsilon \text {-net }}$
$\underline{p f .}$ by $\left\{\right.$ assume $\exists \epsilon>0 \quad \forall p_{1}, \ldots, p_{k} \quad \forall k \quad\left\{p_{1}, \ldots, p_{k}\right\}$ not ϵ-net take $p_{0} \in X \quad B_{\epsilon}\left(p_{0}\right) \mp X \quad \exists p_{1} \notin B_{\epsilon}\left(p_{0}\right)$
$B_{\epsilon}\left(p_{0}\right) \cup B_{\epsilon}\left(p_{1}\right) \mp X \quad \exists p_{2} \notin B_{\epsilon}\left(p_{0}\right) \cup B_{\epsilon}\left(p_{1}\right)$
So find a sequence $p_{i} \subset X$ with $d\left(p_{i}, p_{j}\right)>\epsilon \quad \forall i, j$ any subsequence gives $\{$ to Cauchy-property \Rightarrow does not converge.
Step. $2 X$ compact (sequentially) $\Rightarrow \exists A \subset X \quad|A| \leq \omega \quad \bar{A}=X \quad X$ separable
$A=\bigcup_{n=1}^{\infty}\{$ finite $1 / n$-net $\} \quad$ (think about it!) used $d(x, A)$ lemma
Step. $3 X$ separable, \mathcal{O} open cover
to show $\exists \mathcal{O} \supset \mathcal{O}^{\prime}$ countable subcover
Let $A \subset X,|A| \leq \omega, \bar{A}=X$
$\Lambda=\left\{(a, r) \in A \times \mathbb{Q}: \exists O \in \mathcal{O} B_{r}(a) \subset O\right\}$

Figure 2-37
Λ countable
for each $(a, r) \in \Lambda$ choose an $O=O(a, r) \in \mathcal{O}$ with $B_{r}(a) \subset O(\mathrm{AC}!)$
$\mathcal{O}^{\prime}=\{O(a, r):(a, r) \in \Lambda\} \quad\left|\mathcal{O}^{\prime}\right| \leq \omega$
claim \mathcal{O}^{\prime} is open cover of X (subcover of \mathcal{O}), i.e. $\cup \mathcal{O}^{\prime}=X$
$\underline{p f .} \quad x \in X \quad \mathcal{O}$ cover $\exists O \in \mathcal{O} \quad x \in O \quad \exists \epsilon>0 \quad B_{\epsilon}(x) \subset O$
Since A is dense, $\exists a \in A \quad d(x, a)<\epsilon / 3$
\Rightarrow take $r \in \mathbb{Q} \cap(\epsilon / 3, \epsilon / 2)$
$r>\epsilon / 3 \quad B_{r}(a)$ э x
$r<\epsilon / 2 \quad B_{r}(a) \subset B_{\epsilon / 3+\epsilon / 2}(x) \subset B_{\epsilon}(x) \subset \mathcal{O}$
$\exists O \in \mathcal{O} \quad B_{r}(a) \subset O$
Figure 2-38
$(a, r) \in \Lambda \quad x \in B_{r}(a) \subset O^{\prime}:=O(a, r) \in \mathcal{O}^{\prime}$
$\forall x \in X \exists O^{\prime} \in \mathcal{O}^{\prime}: \quad x \in O^{\prime}$
Step. 4 (final) \mathcal{O} open cover
$\exists \mathcal{O}^{\prime}$ countable subcover $X=O_{1} \cup O_{2} \cup \cdots \cup \cdots$
Consider $F_{n}=X \backslash \bigcup_{i=1}^{n} O_{i}$
$F_{1} \supset F_{2} \supset \ldots \quad F_{i}$ closed
if $\forall i F_{i} \neq \varnothing \underset{\text { Lemma }}{=} \bigcap_{i=1}^{\infty} F_{i} \neq \varnothing \Rightarrow \bigcup_{i=1}^{\infty} O_{i} \neq X$ 名
So some $F_{n}=\varnothing \Rightarrow X=\bigcup_{i=1}^{n} O_{i}$
$\mathcal{O}^{\prime}=\left\{O_{i}\right\}_{i=1}^{n}$ is finite subcover of $\mathcal{O} \quad$ (end of " \Rightarrow ")
Pf of B-L " \Leftarrow " X convering compact $\Rightarrow X$ sequentially compact.
assume $p_{1}, \ldots, p_{n} \ldots$ sequence in X
Consider $F_{n}=\overline{\left\{p_{n+1}, p_{n+2}, \ldots\right\}} \quad U_{n}=X \backslash F_{n}$
$F_{1} \supset F_{2} \supset F_{3}$ closed $\quad U_{1} \subset U_{2} \subset U_{3}$ open
if $\bigcup_{n=1}^{\infty} U_{n}=X \xlongequal[\text { covering property }]{ } \bigcup_{n=1}^{N} U_{n}=X \Rightarrow F_{N}=\varnothing \boldsymbol{Z}$
Thus $\bigcup_{i=1}^{\infty} U_{i} \mp X \Rightarrow \bigcap_{i=1}^{\infty} F_{i} \neq \varnothing$
$p \in \bigcap_{i=1}^{\infty} F_{i} \quad p \in F_{1}=\overline{\left\{p_{2}, p_{3}, \ldots\right\}} \quad \epsilon=1 \quad \exists n_{1}>1 \quad d\left(p_{n_{1}}, p\right)<1$ $p \in F_{n_{1}}=\overline{\left\{p_{n_{1}+1}, \ldots\right\}} \quad \epsilon=1 / 2 \quad \exists n_{2}>n_{1} \quad d\left(p_{n_{2}}, p\right)<1 / 2$ $p \in F_{n_{2}}=\overline{\left\{p_{n_{2}+1}, \ldots\right\}} \quad \epsilon=1 / 3 \quad \exists n_{3}>n_{2} \quad d\left(p_{n_{3}}, p\right)<1 / 3$
$\ldots p_{n_{i}} \rightarrow p$ subsequence of $\left(p_{n}\right)$
(Do Heine's Theorem; 27.6, p.174)

Now to general topological spaces
Covering Compactness Section. 26 Limit point Compactness Section. 28

$$
\begin{array}{cc}
\text { X, Th. } 28.1 \mathrm{p} .177\left(S_{\Omega}\right) & \\
\neq & \text { Accumulation point } \\
\Rightarrow & \text { Compactness }
\end{array}
$$

Covering
Compactness
$\mathrm{X}, \mathrm{p} \cdot \mathbf{3 4}(* 1) \nVdash \mathrm{X}, S_{\Omega} \quad \pi$ works as above \& X p. 34($* 1$)
Sequence
Compactness
$\underline{\text { Lemma }}$ order topology is covering compact $\Rightarrow \exists$ smallest and largest element.
Rem The converse is true if LUBP; see Th 27.1 in book
Theorem order topology s.t. \exists smallest, largest element and Least upper bound property, \Rightarrow Seqence compact (Generalization of Bolzano-Weierstrass theorem)

Ex. $S_{\Omega}=\bar{S}_{\Omega} \backslash\{\Omega\}$ "smallest uncountable ordered set"
but no largest element \Rightarrow not covering compact
but S_{Ω} is sequentially (and hence accumulation point) compact \Rightarrow not metrizable! $x_{1}, x_{2}, \cdots \subset S_{\Omega} \quad\left\{x_{i}\right\} \subset S_{\Omega} \quad\left|\left\{x_{i}\right\}\right| \leq \omega \Rightarrow\left\{x_{i}\right\}$ bounded a_{0} smallest element of $S_{\Omega} \exists b \in S_{\Omega} \quad\left\{x_{i}\right\} \subset\left[a_{0}, b\right]$ sequentially compact.
Generalization of Bolzano-Weierstrass $\Rightarrow \exists$ converging subsequence in $\left[a_{o}, b\right]$ also converging in S_{Ω}
(order topology of interval $=$ relative topology $)$
$\underline{\text { Remark }}$ This example shows also if $x \in \bar{A} \quad(\operatorname{pg} \underline{\bar{S}}) A=S_{\Omega}$
then not necessarily $x \in A_{\lim } \quad \Leftarrow x \in \bar{S}_{\Omega} \quad x=\Omega$
like in pg. 23
$\bar{A}=\bar{S}_{\Omega}$ but $\Omega \notin\left(S_{\Omega}\right)_{\lim }$
\uparrow explains the notation \bar{S}_{Ω}

(*1)

Theorem Tychonoff's Theorem (Section 37, p. 167)
The product topology of (any number of) (covering) compact spaces is (covering) compact

Ex. $\Sigma=\{0,1\}^{\mathbb{Z}_{+}}=\{$sequence of 0,1$\}(\{0,1\}$ discrete topology $)$
$X=\{0,1\}_{\text {prod }}^{\Sigma}$ is (c.) compact by Tychonoff's theorem
(\Rightarrow also accumulation point compact) (X is T_{2} etc.)
but X is not sequentially compact.

Pf.

f_{n}	\rightarrow	g
m		$\forall \sigma \in \Sigma \quad \exists n \quad f_{i}(\sigma)=g(\sigma) i \geq n$
$\{0,1\}^{\Sigma}$	$\{0,1\}^{\Sigma}$	pointwise convergence
$\Rightarrow\left\{\left(f_{n}\right)\right.$ converge $\Leftrightarrow \forall$	$\forall \sigma \in \Sigma$	$\left\{f_{n}(\sigma)\right\}$ is eventually constant $\}$

Consdier $\left(f_{n}\right) \subset\{0,1\}^{\Sigma}$ given by $f_{n}(\sigma)=\sigma(n)$
$f_{n}: \Sigma \rightarrow\{0,1\} \quad f_{n}((0,1,0, \ldots, 0,1,1,0, \ldots))=1$
Let $\left(f_{n_{k}}\right) \subset\left(f_{n}\right)$; choose $\hat{\sigma} \in \Sigma$ with $\hat{\sigma}\left(n_{i}\right)=\left\{\begin{array}{ll}1 & i \text { even } \\ 0 & i \text { odd }\end{array}\right\}$
$f_{n_{k}}(\hat{\sigma})=\hat{\sigma}\left(n_{k}\right)=\left\{\begin{array}{cc}1 & k \text { even } \\ 0 & k \text { odd }\end{array}\right\}$ is not eventually constant
$f_{n_{k}} \rightarrow g$
Remark There are simpler examples for 'acc. point compact \nRightarrow sequentially compact' like $X_{\text {disc }} \times\{0,1\}_{\text {indisc }},|X|=\infty$, but not even T_{0}

Above (${ }^{*} 1$) has an example of a space that is covering (and accumulation point) compact, but not sequentially compact, but this example uses Tychonoff's theorem

Pb. Prove that I_{0}^{2} ordered space is covering compact
sol. \mathcal{O} open cover
Let $x_{0} \in[0,1] \quad I\left(x_{0}\right)=x_{0} \times[0,1]$
$\underline{\mathcal{O} \text { induces covering of } I\left(x_{0}\right) \quad \tilde{O}_{x_{0}}=\left\{O \cap I\left(x_{0}\right): O \in \mathcal{O}\right\}}$

Figure 2-39
$I\left(x_{0}\right) \cong[0,1]$ (covering) compact
$\exists \tilde{\mathcal{O}}_{x_{0}}^{\prime} \subset \tilde{\mathcal{O}}_{x_{0}}\left|\tilde{\mathcal{O}}_{x_{0}}^{\prime}\right|<\infty \quad \cup \tilde{\mathcal{O}}_{x_{0}}^{\prime}=I\left(x_{0}\right)$
for each $\tilde{O}^{\prime} \in \tilde{\mathcal{O}}_{x_{0}}^{\prime}$ choose an $\hat{O}_{\tilde{O}^{\prime}} \in \mathcal{O}$ with $\hat{O}_{\tilde{O}^{\prime}} \cap I\left(x_{0}\right)=\tilde{O}^{\prime}$
$\mathcal{O}_{x_{0}}=\left\{\hat{O}_{\tilde{O}^{\prime}}: \tilde{O}^{\prime} \in \tilde{\mathcal{O}}_{x_{0}}^{\prime}\right\} \quad\left|\mathcal{O}_{x_{0}}\right|<\infty$
$\Rightarrow \exists \mathcal{O}_{x_{0}} \subset \mathcal{O} \quad\left|\mathcal{O}_{x_{0}}\right|<\infty \quad\left(\Lambda_{x_{0}}:=\right) \cup \mathcal{O}_{x_{0}} \supset I\left(x_{0}\right)$
$\Lambda_{x_{0}} \ni x_{0} \times 0$ open $\Rightarrow \Lambda_{x_{0}} \supset\left(x_{0}^{\prime} \times y_{0}^{\prime}, x_{0} \times 0\right] \quad x_{0}^{\prime}<x_{0}\left(x_{0} \neq 0\right)$

$$
\Rightarrow \Lambda_{x_{0}} \supset\left(x_{0}^{\prime}, x_{0}\right) \times[0,1]
$$

Similarly if $x_{0} \neq 1 \quad \Lambda_{x_{0}} \ni x_{0} \times 1$
$\Rightarrow \Lambda_{x_{0}} \supset\left(x_{0}, x_{0}^{\prime \prime}\right) \times[0,1] \quad x_{0}^{\prime \prime}>x_{0}$
$\Rightarrow \Lambda_{x_{0}} \supset\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right) \times[0,1]$
so for each $x_{0} \in[0,1] \quad \exists$ finite subfamily of $\mathcal{O}, \mathcal{O}_{x_{0}}$ and
$\exists x_{0}^{\prime}<x_{0}<x_{0}^{\prime \prime} \quad \cup \mathcal{O}_{x_{0}} \supset\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right) \times[0,1]$
with $\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right)=\left(x_{0}^{\prime}, 1\right] \quad x_{0}=1$

$$
=\left[0, x_{0}^{\prime \prime}\right) \quad x_{0}=0
$$

Now $\left\{\left(x_{0}^{\prime}, x_{0}^{\prime \prime}\right): x_{0} \in[0,1]\right\}$ is an open cover of $[0,1]$
$\xrightarrow{[0,1] \text { compact }} \exists x_{1}, \ldots, x_{n}:\left(x_{1}^{\prime}, x_{1}^{\prime \prime}\right) \cup \cdots \cup\left(x_{n}^{\prime}, x_{n}^{\prime \prime}\right)=[0,1]$
then $\bigcup_{i=1}^{n} \mathcal{O}_{x_{i}}$ is a finite subcover of \mathcal{O}

Pb. Prove that I_{0}^{2} is sequentially compact
sol. Let $\left(x_{n} \times y_{n}\right) \subset I_{0}^{2}$
$\left(x_{n}\right) \subset[0,1]$ sequence $\exists x_{n_{k}} \rightarrow x$
w.l.o.g. (1) $x_{n_{k}} \equiv x \quad$ (2) $x_{n_{k}} \nrightarrow x$ (3) $x_{n_{k}} \searrow x$
go over to subsequence
(2) $\left(x_{n_{k}}, y_{n_{k}}\right) \rightarrow(x, 0)$
(3) $\left(x_{n_{k}}, y_{n_{k}}\right) \rightarrow(x, 1)$
(1) $\exists\left(y_{n_{k_{l}}}\right) \subset\left(y_{n_{k}}\right) y_{n_{k_{l}}} \rightarrow y$
$\left(x_{n_{k_{l}}}, y_{n_{k_{l}}}\right) \rightarrow(x, y)$

The I_{0}^{2} is sequentially compact generalize that argument to prove the $[0,1]^{\omega}$ is sequentially compact with the dictionary order.
\rightarrow (solution below)
(It is also covering compact but this needs Th 27.1 in book and HW 10.)
Sol. Assume $\left(f_{k}\right)_{k=1}^{\infty} \in \mathcal{F}\left(\mathbb{Z}_{+},[0,1]\right) \simeq[0,1]^{\omega}$
does not have converging subsequence in dictionary order. We give \downarrow.
We construct for each $n \in \mathbb{Z}_{+}$a subsequence $\left(f_{k, n}\right)_{k=1}^{\infty}$ of f_{k}
and a sequence $\left(C_{k}\right)_{k=1}^{\infty}$ such that $\left(f_{k, n+1}\right) \subset\left(f_{k, n}\right)$ is a subsequence
and $\left.f_{k, n}\right|_{\{1, \ldots, n-1\}}=\left.C\right|_{\{1, \ldots, n-1\}}$.
We prove by induction, $i=1$ is ok $f_{k, 1}=f_{k}$
Assume $\left(f_{k, n}\right)_{k=1}^{\infty}$ constructed as well as C_{1}, \ldots, C_{n-1}
Consider $\left(f_{k, n}(n)\right)_{k=1}^{\infty} \quad$ w.l.o.g. $\exists\left(f_{k, n+1}\right) \subset\left(f_{k}\right)$

$$
\text { (1) } f_{k, n+1}(n) \equiv C_{n} \quad(k \rightarrow \infty)
$$

$f_{k, n+1}(n) \rightarrow C_{n}$ w.l.o.g. either $(2) f_{k, n+1}(n) \nsucc C_{n} \quad(k \rightarrow \infty)$
(3) $f_{k, n+1}(n) \searrow C_{n} \quad(k \rightarrow \infty)$
(2) $f_{k, n+1} \underset{k \rightarrow \infty}{\longrightarrow} f(l)=\left\{\begin{array}{cc}C_{l} & l \leq n \\ 0 & l>n\end{array}\right\} \quad$ b
(3) $f_{k, n+1} \underset{k \rightarrow \infty}{\longrightarrow} f(l)=\left\{\begin{array}{cc}C_{l} & l \leq n \\ 1 & l>n\end{array}\right\} \quad$ z
(1) constructed $f_{k, n+1}$ and $C_{n} \quad$ Induction complete

So now $\exists\left(f_{k, n}\right) \subset\left(f_{k}\right) \quad\left(C_{1}, C_{2}, \ldots\right)$ as needed.
Consider $\left(f_{k, k}\right)_{k=1}^{\infty}$ diagonalization
$f_{k, k}(n)=C_{n} \quad k>n$
$f_{k, k} \xrightarrow[k \rightarrow \infty]{\longrightarrow}\left(C_{1}, C_{2}, C_{3}, \ldots\right) \simeq\left(f(n)=C_{n}\right)$ z
Thus for non-metrizable spaces, '(any sort of) compact \Rightarrow separable ' is false!

23. Connected Spaces

Definition X topological space. A separation (I write (disjoint) decomposition)
$U, V \quad U, V \subset X$ open $\quad \overline{U, V \neq \varnothing}$
$U \cup V=X \quad U \cap V=\varnothing$
X connected $\Leftrightarrow X$ has no separation
X disconnected $\Leftrightarrow \exists$ separation
Remark X is connected $\Leftrightarrow \forall A \subset X \quad A$ open and closed

$$
\Rightarrow A=\varnothing \text { or } A=X
$$

Remark do not use "separable" in this context (\exists separation) $\exists A \subset X: \bar{A}=X,|A| \leq \omega$ for disconnected pg. 32 step 2. in B-L proof

Definition $A \subset X$ separation of A in X
$U, V \quad U, V \neq \varnothing \quad U, V$ not necessarily open
$A=U \cup V \quad U \cap \bar{V}=\varnothing$

$$
\bar{U} \cap V=\varnothing
$$

U, V disjoint and none containing an accumulation point of the other
Lemma A is connected (in relative topology) $\Leftrightarrow A$ has no separation
Ex. $X=\mathbb{R} \quad A=[-1,0) \cup(0,1],(U=[-1,0), V=(0,1])$
$\overline{(0,1]} \cap[-1,0)=[0,1] \cap[-1,0)=\varnothing$
$(0,1] \cap \overline{[-1,0)}=(0,1] \cap[-1,0]=\varnothing$
A disconncected
Remark $\bar{U} \cap \bar{V}=\{0\} \neq \varnothing$ but this is not forbidden! $\uparrow U, V$ have common accumulation point

Ex. \mathbb{R}^{2}

Figure 2-40

$U \quad V$
$\{(x, 0): x \in \mathbb{R}\} \cup\{(x, 1 / x): x>0\}$
separation
$U \cap V=\bar{U} \cap \bar{V}=\varnothing$

Ex. \mathbb{R}^{2}

Figure 2-41

$$
\begin{aligned}
& \quad U \\
& \{(x, 0): x \in \mathbb{R}\} \cup\{(0,1 / x): x>0\} \\
& \text { no separation } \\
& \bar{V} \cap U \neq \varnothing
\end{aligned}
$$

Lemma C, D separation of $X \quad Y \subset X$ connected $\Rightarrow Y \subset C$ or $Y \subset D$
(!)Theorem $X \ni x \quad \mathcal{Y} \subset \mathcal{P}(X) \quad \forall Y \in \mathcal{Y} \quad Y$ connected, $Y \ni x$ $\Rightarrow \cup \mathcal{Y}$ connected

Figure 2-42
(*)Theorem If $A \subset X$ connected and $A \subset B \subset \bar{A} \Rightarrow B$ connected.

Ex. not true for interior!

Figure 2-43

Theorem The image of a connected set under continuous map is connected
Theorem X, Y connected $\Rightarrow X \times Y$ connected \Rightarrow true for finite products

Ex. \mathbb{R}^{ω} box topology or uniform topology
\mathbb{R} connected (prove later)
$\mathbb{R}^{\omega}=\{$ bounded sequences $\} \cup\{$ unbounded sequences $\}$
both open and disjoint non-empty
$\Rightarrow \mathbb{R}^{\omega}$ disconnected with uniform or box topology
Ex. \mathbb{R}^{ω} with product topology
$\mathbb{R}^{n} \simeq\left\{\left(x_{1}, \ldots, x_{n}, 0, \ldots, 0\right)\right\} \leftrightarrow \mathbb{R}^{\omega}$ connected
$\cap \mathbb{R}^{n}=0 \quad R=\bigcup_{n=1}^{\infty} \mathbb{R}^{n}$ connected
$\mathbb{R}^{\omega}=\bar{R} \quad f: \mathbb{Z}_{+} \rightarrow \mathbb{R} \in \mathbb{R}^{\omega}$
R dense $f_{n}(x)=\left\{\begin{array}{ll}f(x) & x \leq n \\ 0 & x>n\end{array}\right\} \rightarrow f$ pointwise
\mathbb{R}^{ω} connected

24. Connected Subspaces of \mathbb{R}

Definition (recall) $(X,<)$ ordered set is a linear continuum if
0) $|X|>1$

1) Least Upper Bound Property(LUBP)
2) $\forall x, y \in X \quad x<y \Rightarrow \exists z \in X \quad x<z<y$ Intermediate Element Property(IEP)
(!)Theorem L is linear continuum with order topology, $Y \subset L$ convex $\Rightarrow Y$ connected
in particular, L connected, and so are intervals and rays in L recall: $Y \subset L$ convex $\forall x, y \in Y \quad x<y \quad \forall z \in L$ $x<z<y \Rightarrow z \in Y$
pf. By contradiction
Assume $Y=A \cup B \quad A \cap B=\varnothing \quad A, B \neq \varnothing \quad A, B$ open (in Y) $a \in A \quad b \in B \quad$ assume w.l.o.g. $a<b$
$I=[a, b]=\underbrace{A \cap[a, b]}_{A_{0}} \cup \underbrace{B \cap[a, b]}_{B_{0}} \quad A_{0}, B_{0}$ open in I

Figure 2-44
$c=\sup \underbrace{A \cap[a, b]}_{A_{0}}$

$$
\exists d<c
$$

1) If $c \in B_{0} \Rightarrow c \neq a \Rightarrow(d, c] \subset B_{0} \quad B_{0}$ open in I
$\exists d<f<c \quad[f, c] \subset B_{0}$

Figure 2-45
$[f, c] \cap A_{0}=\varnothing \quad z$ to $c=\sup A_{0}$
2) If $c \in A_{0} \Rightarrow c \neq b \Rightarrow \exists[c, d) \subset A_{0} \quad A_{0}$ open in I

Figure 2-46
$\exists c<f<d \quad f \in A_{0} \quad$ \& to $c=\sup A_{0}$
Corollary \mathbb{R} connected and intervals and rays in it.
Remark Converse of this Theorem also true:
$\left(X, \mathcal{A}_{<}\right)$connected $\Rightarrow(X,<)$ is linear continuum
Theorem Intermediate value theorem
(X, \mathcal{A}) connected $(Y,<)$ order topology
$f: X \rightarrow Y$ continuous $\Rightarrow \forall x, y \in X \quad \forall c \in[f(x), f(y)]$

$$
\exists d \in X \quad f(d)=c
$$

$\underline{p f}$ by contradiction if $\exists r \in(f(x), f(y)) \quad r \notin f(X)$
Consider $X=f^{-1}((-\infty, r)) \cup f^{-1}((r, \infty))$
separation of X
Remark take $X^{\prime}=[x, y] \rightarrow d \in[x, y]$ "Darboux property"
Ex. I_{0}^{2} ordered square with dictionary order is a linear continuum different from \mathbb{R}

Ex. X well ordered $\Rightarrow X \times[0,1)$ with dictionary order is a linear continuum

Figure 2-47
$X=S_{\Omega}\left(=\overline{S_{\Omega}} \backslash\{\Omega\}\right)$
consider $S_{\Omega} \times[0,1) \backslash\left\{a_{0} \times 0\right\}=: \Lambda$
with dictionary order
topologist's long line
Λ is locally homeomorphic to \mathbb{R} (every point has a neighborhood homeomorphic to an interval)
but not embeddable in \mathbb{R}; it is not separable

25. Components

Definition X topological space define equivalence relation on X by $x, y \in X$
$x \sim y \quad \exists$ connected subspace W of $X \quad W$ э x, y
equivalence class
Definition $[x]_{\sim}$ is the connected component of $x \in X$ $C_{x}=[x]_{\sim}=\bigcup\{C \subset X$ connected, $C \ni x\} \quad$ connected by pg 38 (!) maximal connected set containing x

Remark C_{x} closed as $\overline{C_{x}}(\ni x)$ is connected $\Rightarrow \overline{C_{x}} \subset C_{x}$
Definition X satisfies the connected neighborhood condition (CNC) (resp. at $x \in X$) if every point (resp. the point $x \in X$) has a connected neighborhood

Lemma $y \in C_{x} \Rightarrow \forall(U, V)$ separation of $X \quad x \in U \Rightarrow y \in U$

$$
\Leftarrow \text { if CNC } \quad \text { see Ex. 3.26.10 }
$$

$\underline{p f .} \quad \Rightarrow \quad \exists$ connected subspace $W \ni x, y$

$$
\text { assume by contradiction } \exists(U, V) \quad x \in U \quad y \in V
$$

$(U \cap W, V \cap W) \quad$ separation of W
W connected $\Rightarrow U \cap W(\ni x)=\varnothing$ or $V \cap W(\ni y)=\varnothing$ z
\Leftarrow by contraposition $\exists x \nprec y$
$\forall W \ni x$ connected $W \nRightarrow y$ $C_{x}=\bigcup\{W \ni x$ connected $\} \nRightarrow y$
connected neighborhood condition $\Rightarrow C_{x}$ open(and closed)
$\left.\Rightarrow \underset{\Psi_{x}}{C_{x}} \cup \underset{\Psi_{y}}{X \backslash C_{x}}\right)$ is a separation

Figure 2-48: (1)

Figure 2-49: (2)

Note If $A \subset X$, connected components of A are meant with respect to relative topology

Definition X is totally disconnected if all its connected components are points
$\underline{\text { Example If }|S|=n<\infty}$
$\mathcal{F}\left(S, \mathbb{R}_{\text {discr }}\right)_{\text {prod }} \simeq \mathbb{R}_{\text {discr }}^{n} \quad$ totally disconnected
$\mathcal{F}\left(\mathbb{Z}_{+}, \mathbb{R}_{\text {discr }}\right)_{\text {prod }}=\left(\mathbb{R}_{\text {discr }}\right)^{\omega} \stackrel{\text { why? }}{=}\left(\mathbb{R}^{\omega}\right.$, dictionary order $)$ also totally disconnected
Remark $A \subset X$ discrete $\Rightarrow A$ totally disconnected (in relative topology)
converse is false
Ex. $\mathbb{Q} \subset \mathbb{R}$ is totally disconnected (but surely not discrete)
$x<y \quad \exists r \in(x, y)$ irrational
$\mathbb{Q}=(\underset{\text { open in } \mathbb{Q}}{\mathbb{Q}} \cap(-\infty, r)) \cup \underset{\text { open in } \mathbb{Q}}{\mathbb{Q}} \cup(r, \infty))$
I can separate points by open sets
(whose union is the whole space unlike in T_{2} !)
Remark \mathbb{Q} does not satisfy the CNC, but " \Leftarrow " of lemma is still true
Remark $\mathrm{CNC} \xlongequal{(1),(2)}$ every union of connected components is open and closed (which is false for \mathbb{Q})

Definition X locally connected at x
$\forall U \ni x$ neighborhood $\exists U^{\prime} \subset U \quad U^{\prime} \ni x$ neighborhood connected

X locally connected if locally connected at $x \forall x \in X$

Figure 2-50
Remark X locally connected (at $x) \Rightarrow \mathrm{CNC}($ at $x) \quad($ set $U=X)$
Theorem X is locally connected $\Leftrightarrow \forall U \subset X$ open $\forall C_{x} \subset U$ component of U (in relative topology) $C_{x} \subset X$ open
Ex. $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ with uniform topology $\mathcal{F}(\mathbb{R}, \mathbb{R})_{\text {uni }}$
$f(x)=x \in\left\{f: \lim _{x \rightarrow \infty} \frac{f(x)}{x}=1\right\}=\Lambda_{1}$ open and closed
$0 \in\left\{f: \lim _{x \rightarrow \infty} \frac{f(x)}{x}=0\right\}=\Lambda_{0}$
disconnected! every behavior $\rightarrow \infty$ gives a separation

Figure 2-51
$\{f: \mathbb{R} \rightarrow \mathbb{R}\}$
connected components $[f]_{\sim}$

$$
f \sim g \Leftrightarrow f-g \text { bounded }
$$

Path Connectedness and Path Components

Definition path: $[a, b] \rightarrow X$ from $x \in X$ to $y \in X$ is continuous $f(a)=x, f(b)=y$

Figure 2-52
X is path connected if
$\forall x, y \in X \quad \exists$ path in X from x to y
write " $x \leftrightarrow y$ "
Remark path-connected \Rightarrow connected
Ex. $V,\|\cdot\|$ norm, whose unit ball $B=\{x \in V:\|x\| \leq 1\}$
B is convex $\forall x, y \in B, t \in[0,1], \quad t x+(1-t) y \in B$. Then
$t \mapsto t x+(1-t) y$ continuous in t (in norm topology)
B is path connected

Ex. $\mathbb{R}^{n} \backslash\{0\}$ path connected

Figure 2-53

Ex. I_{0}^{2} is not path connected, but it's a linear continuum (LUBP HW!) So it's connected

$$
a=\left(x_{1}, y_{1}\right) \quad b=\left(x_{2}, y_{2}\right) \quad x_{2}>x_{1}
$$

Figure 2-54
$f:[0,1] \rightarrow X$ continuous image must be connected
if image $\ni a, b \Rightarrow$ image $\supset[a, b] \supset \underbrace{\left(x_{1}, x_{2}\right)}_{\text {uncountable }} \times[0,1]$
$\exists x_{0} \in\left(x_{1}, x_{2}\right) \quad f(\underbrace{\mathbb{Q} \cap[0,1]}) \cap\left(\left\{x_{0}\right\} \times(0,1)\right)=\varnothing$
$f^{-1}\left(\left\{x_{0}\right\} \times(0,1)\right) \subset \mathbb{R} \backslash \mathbb{Q}$, but $\quad \operatorname{Int}(\mathbb{R} \backslash \mathbb{Q})=\varnothing\{$
non-empty open as f is continuous

Ex. $\underline{A=\left\{x \times \sin \frac{1}{x}: 0<x<\frac{1}{\pi}\right\} \subset \mathbb{R}^{2}}$ topologist's sine curve

Figure 2-55
$\bar{A}=A \cup(\{0\} \times[-1,1])$
A connected $\Rightarrow \bar{A}$ connected but \bar{A} is not path connected
Let there be a path $f:[0,1] \rightarrow \bar{A} \subset \mathbb{R}^{2}$
$f(t)=(x(t), y(t))$ with $f(0)=\underset{=A}{(0,0)} \quad f(1)=\underset{\substack{\left(\frac{1}{\pi}, 0\right) \\=B}}{(0)}$
x continuous $x^{-1}(0) \subset[0,1]$ closed $\quad \Rightarrow \exists \max x^{-1}(0)=: a^{\prime}$
w.l.o.g. $f:\left[a^{\prime}, 1\right] \rightarrow \bar{A} \quad x(t)>0 \quad t>a^{\prime} \Rightarrow \operatorname{img}\left(\left.f\right|_{\left(a^{\prime}, 1\right]}\right) \subset A$
$x\left(a^{\prime}\right)=0, x(1)=\frac{1}{\pi} \Rightarrow$ by Intermediate Value Theorem
$\forall x \in\left(0, \frac{1}{\pi}\right] \quad \exists t \quad x(t)=x \Rightarrow y(t)=\sin \left(\frac{1}{x}\right) \quad$ Image $(f)=A \cup\left\{0 \times y\left(a^{\prime}\right)\right\}$
[$a^{\prime}, 1$] (sequentially) compact, f continuous $\Rightarrow \operatorname{Img}(f)$ closed
$\Rightarrow \operatorname{Img}(f)=\overline{A \cup\left\{0 \times y\left(a^{\prime}\right)\right\}}=\bar{A} \neq A \cup\left\{0 \times y\left(a^{\prime}\right)\right\} \quad$ 名
This means the closure of a path-connected set is not path-connected! (Compare theorem(*) on pg. 38)

Definition X topological space, define equivalence relation by $x \sim y \quad \exists$ path in X from x to y $[x]_{\sim}$ is x 's path component

Figure 2-56

Theorem path components of X are disjoint path connected subspaces whose union is X each path-connected subspace of X is contained in exactly one path component

Figure 2-57

Ex. $\mathbb{Q} \subset \mathbb{R}$
all components trivial \Rightarrow all path components are trivial

Ex. from pg 44 topologist's sine curve is connected but not path-connected! A has one component, \bar{A}, and two path components $A \backslash\left\{\begin{array}{c}\{0 \times 0\} \\ =A_{1}\end{array}\right.$ and $\{0\} \times[-1,1]$ note that in A,
A_{1} is open but not closed \Rightarrow unlike components, path
A_{2} is closed but not open components need not be closed

$$
\underline{\text { Ex. }} \text { connected take } A \backslash\{0 \times 0\} \cup\{0\} \times([-1,1] \backslash \mathbb{Q})
$$

this is still connected (= one component) but has uncountably many path components!

Figure 2-58

Ex. Consider $\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ with uniform topology
connected component C_{f} of f is the set of maps g
with $|g-f|$ bounded. (see Ex. 3.26 .2 p. 160 in book, p. 38 in note)
This is path connected in fact it is convex (as $\subset \mathrm{VS} / \mathbb{R}$)
$t f+(1-t) g$ gives a (straight) path from f to $g \in C_{f}$
Similarly you can do in box topology with
$C_{f}=\{g:|\{x: g(x) \neq f(x)\}|<\infty\}$ (is also convex)
Again there is a local version
Definition X is locally path connected if $\forall U \ni x$ open $\exists U \supset U^{\prime} \ni x \quad U^{\prime}$ path connected

Remark locally path connected \Rightarrow locally connected
Ex. $(0,1) \times[0,1)$ with dictionary order is not connected, not locally connected
(\Rightarrow not path connected and not locally path connected.)
Ex. $[0,1] \times(0,1)$ with dictionary order is not connected but locally connected not path connected, but locally path connected

Ex. every set with the discrete topology is locally connected and locally path connected since $U=\{x\} \ni x$ is open (but, of course, totally disconnected and path-disconnected)

Theorem X locally (path) connected $\Leftrightarrow \forall U \subset X$ open
$\forall U^{\prime}$ (path) component of $U \quad U^{\prime} \subset X$ open
Theorem each path component of X lies (entirely) within a component of X if X is locally path connected, then components and path components are the same
$\underline{\text { Corollary }}$ connected and locally path connected \Rightarrow path connected

Ex. $I_{0}^{2}=[0,1]^{2}$ has LUBP(HW1) (See Pb.3. p. 160 in book)
Intermediate Element Property (IEP) \Rightarrow Linear continuum
$\xrightarrow{\text { Th.(!) } \mathrm{p} \text { (39 }}$ connected and locally connected path connected?
$(a, b) \leftrightarrow(c, d)$ if $a=c$

Figure 2-59
but $(a, b) \nleftarrow(c, d)$ if $a \neq c$
assume $f:[0,1] \rightarrow I_{0}^{2} \quad f(0)=(a, b)=a \times b$
$f(1)=(c, d)=c \times d$
$f([0,1]) \supset[a \times b, c \times d]$
$A=\mathbb{Q} \cap[0,1] \subset[0,1]$ dense, countable
f continuous $\Rightarrow \overline{f(A)} \supset f(\bar{A})=f([0,1]) \supset[a \times b, c \times d]$
$B:=f(A) \cap(a \times b, c \times d)$ dense in $(a \times b, c \times d)$, countable
but $(a \times b, c \times d) \supset \bigcup_{a<x<b}\{x\} \times[0,1] \Rightarrow \exists s \in(a, b)$
uncountable, disjoint union
$\underline{B} \cap(\{s\} \times[0,1])=\varnothing \quad(a \times b, c \times d) \supset\{s\} \times[0,1] \supset\{s\} \times(0,1)$ open
$\bar{B} \mp(a \times b, c \times d)$ z
so path components of I_{0}^{2} are $\{s\} \times[0,1]$

Figure 2-60

43. Complete metric spaces

Assume (X, d) metric space
Recall (proof of Borel-Lebesgue) $\quad(X, d) \supset\left(x_{n}\right)$

$$
x_{n} \rightarrow x \Rightarrow \forall \epsilon \exists N \forall m, n \geq N d\left(x_{m}, x_{n}\right)<\epsilon
$$

Definition We say $\left(x_{n}\right)$ is Cauchy-sequence if $\left(x_{n}\right)$ satisfies (回)
Lemma $\left(x_{n}\right)$ converges $\Rightarrow\left(x_{n}\right)$ Cauchy-sequence
Definition We say (X, d) is complete if every Cauchy sequence converges (i.e. converse of lemma holds)

Lemma Let $\left(x_{n}\right)$ be a Cauchy-sequnece, if $\left(x_{n}\right)$ has a convergent subsequence, then $\left(x_{n}\right)$ converges

Corollary X complete \Leftrightarrow every Cauchy sequence has a convergent subsequence
(\ddagger) Comment $\underset{\substack{\text { Eucl. } \\ \text { non-complete }}}{(0,1)} \simeq \underset{\substack{\text { Eucl. } \\ \text { complete }}}{\mathbb{R}}$ homeomorphic
so \exists metric on $(0,1)$ giving Euclidean topology with respect to which $(0,1)$ is complete
Thus completeness depends on metric (not only on metrizability)
Corollary $\quad X$ compact $\quad \Rightarrow \quad X$ complete topological property metric property metrizable topology \Rightarrow complete with respect to every metric space compact inducing the topology

Theorem \mathbb{R}^{k} complete. (with Euclidean metric)
$\underline{p f}$. let $\left(x_{n}\right)$ be Cauchy-sequence
$\Rightarrow\left(x_{n}\right)$ bounded $\Rightarrow\left(x_{n}\right) \supset[-M, M]^{k}$ compact
$\Rightarrow\left(x_{n}\right)$ has convergent subsequence $\Rightarrow\left(x_{n}\right)$ converges
For \mathbb{R}^{ω} recall the following lemma
$\underline{\text { Lemma }}$ let $X=\prod_{\alpha \in I} X_{\alpha}$ with product topology, and
for $\alpha_{0} \in I$ let $\pi_{\alpha_{0}}: X \rightarrow X_{\alpha_{0}}$
be the projection $\left(x_{\alpha}\right)_{\alpha \in I} \mapsto x_{\alpha_{0}}$
Then $\overline{x_{n}} \rightarrow \bar{x}$ in $X \Leftrightarrow \forall \alpha \in I \pi_{\alpha}\left(\overline{x_{n}}\right) \rightarrow \pi_{\alpha}(\bar{x})$ in X_{α}
(i.e. convergence in the product topology is pointwise convergence)

Theorem The product topology on \mathbb{R}^{ω} has a metric with respect to which it is complete
pf. $d(\bar{x}, \bar{y})=\sup _{i>0}\left\{\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}\right\} \quad \bar{d}(a, b)=\min (|a-b|, 1)$
d gives product space
assume $\left(\overline{x_{n}}\right)$ Cauchy-sequence in $\left(X=\mathbb{R}^{\omega}, d\right)$
$\forall i \pi_{i}\left(\overline{x_{n}}\right)$ is \mathbb{R} is Cauchy-sequence because
$\left|\pi_{i}(\bar{a})-\pi_{i}(\bar{b})\right| \leq i \cdot d(\bar{a}, \bar{b}) \quad i$-fixed
so $\pi_{i}\left(\overline{x_{n}}\right) \rightarrow a_{i}$ convergent in $\mathbb{R} \forall i$ Then,
$\overline{x_{n}} \rightarrow\left(a_{i}\right)_{i=1}^{\infty}$ in X
Remark $\left(x_{n}\right)$ Cauchy-sequence, with respect to d $\Leftrightarrow\left(x_{n}\right)$ Cauchy sequence with respect to \bar{d} (X, d) complete $\Leftrightarrow(X, \bar{d})$ complete

Ex. $\mathbb{Q},(-1,1)$ with Euclidean metric not complete consider $x_{n} \in \mathbb{Q} \quad x_{n} \rightarrow \sqrt{2}$ in $\mathbb{R}($ for $\mathbb{Q})$
$-1+\frac{1}{n} \in(-1,1) \rightarrow-1 \quad($ for $(-1,1))$
$\underline{\text { Remark }} \underset{\text { not complete }}{(-1,1)} \simeq \underset{\text { complete }}{\mathbb{R}}$ homeomorphic
so $\exists \bar{d}$ on ($-1,1$) giving Euclidean topology
with respect to which is complete \rightarrow completeness
$\mathrm{pg} 47(\ddagger)$ Comment \Leftarrow depends on metric(not only on metrizability)
Theorem Let (X, d) complete.
$A \subset X$ closed $\Rightarrow\left(A,\left.d\right|_{A \times A}\right)$ complete
$\underline{p f .}\left(x_{n}\right) \subset A \quad\left(x_{n}\right) \subset X$ Cauchy-sequence $\left(x_{n}\right) \rightarrow x$ in X
Cauchy-sequence A closed $\Rightarrow x \in A \Rightarrow$
$\left(x_{n}\right) \rightarrow x$ in A
Remark \Leftarrow also true: $A \subset X$ complete $\Rightarrow A$ closed
Remark $\mathbb{R}^{J}=\mathcal{F}(J, \mathbb{R})_{\text {prod }}$ is in general not metrizable, so completeness makes no sense
but $\mathbb{R}_{\text {uni }}^{J}$ is metrizable. Recall uniform metric
Definition Let $\left(Y_{\alpha}, d_{\alpha}\right)$ metric space.
Let $\overline{d_{\alpha}}=\min \left(d_{\alpha}, 1\right)$
For $Y=\prod_{\alpha \in J} A_{\alpha}$ define the uniform metric on Y by
$\bar{\varrho}(\bar{x}, \bar{y}):=\sup _{\alpha \in J}\left\{\overline{d_{\alpha}}\left(\pi_{\alpha}(\bar{x}), \pi_{\alpha}(\bar{y})\right)\right\} \quad \pi_{\alpha}: Y \rightarrow A_{\alpha}$
Theorem (Y, d) compete $\Rightarrow Y^{J}=\prod_{\alpha \in J} Y_{\alpha} \quad Y_{\alpha}=Y$
is complete with uniform metric \uparrow index the copy
$\underline{p f}$. let $\left(f_{n}\right) \subset Y^{J}$ Cauchy-sequence with respect to $\bar{\varrho}$
then $\left(\pi_{\alpha}\left(f_{n}\right)\right) \subset Y_{\alpha}$ Cauchy-sequence in $\left(Y_{\alpha}, \bar{d}_{\alpha}\right)$
\Rightarrow Cauchy sequence in $\left(Y_{\alpha}, d_{\alpha}\right)$
$\pi_{\alpha}\left(\overline{f_{n}}\right) \rightarrow y_{\alpha}$ in Y_{α}
Let $f: \alpha \mapsto y_{\alpha}$
We claim $f_{n} \rightarrow f$ in $\left(Y^{J}, \bar{\varrho}\right)$
Given $\epsilon>0$ choose N with $\forall n, m \geq N$
$\bar{d}\left(f_{n}(\alpha), f_{m}(\alpha)\right)<\epsilon / 2 \quad \forall \alpha \in J\left(\Leftarrow \bar{\varrho}\left(f_{m}, f_{n}\right)<\epsilon / 2\right)$
$\xrightarrow[\bar{d} \text { continuous }]{m \rightarrow \infty} \bar{d}\left(f_{n}(\alpha), f(\alpha)\right) \leq \epsilon / 2$
This holds $\forall \alpha \in J \quad \forall n \geq N$
$\bar{\varrho}\left(f_{n}, f\right)=\sup \bar{d}\left(f_{n}(\alpha), f(\alpha)\right) \leq \epsilon / 2<\epsilon$
$\Rightarrow \forall \epsilon>0 \exists \stackrel{\alpha}{N} \forall n \geq N \bar{\varrho}\left(f_{n}, f\right)<\epsilon \Rightarrow f_{n} \rightarrow f$
Definition Now assume X is topological space
$C(X, Y) \subset \mathcal{F}(X, Y)=Y^{X}$
is $\left\{f \in Y^{X}: f\right.$ continuous $\}$
Definition $f: X \rightarrow(Y, d)$ bounded if $f(X) \subset Y$
is a bounded set $\operatorname{diam}(f(X))<\infty$

$$
\begin{aligned}
& B(X, Y) \subset Y^{X} \\
& \quad \text { " }\{f: X \rightarrow Y f \text { bounded }\}
\end{aligned}
$$

Theorem (Y, d) metric space $B(X, Y)$ and $C(X, Y)(X$ topological space) are closed in $\left(Y^{X}, \bar{\varrho}\right)$ and therefore complete

Ex. $C(\mathbb{R}, \mathbb{R}) \subset \mathcal{F}(\mathbb{R}, \mathbb{R})_{\text {uni }} \quad$ closed (but not discrete)
$C(\mathbb{R}, \mathbb{R}) \subset \mathcal{F}(\mathbb{R}, \mathbb{R})_{\text {box }} \quad($ closed and) discrete $\Leftarrow \mathrm{HW}$
$C(\mathbb{R}, \mathbb{R}) \subset \mathcal{F}(\mathbb{R}, \mathbb{R})_{\text {prod }}$ is dense (and not closed)
$\mathbb{R}[z]$ dense (Lagrange Interpolation)

Completion

Definition $(X, d),(Y, \tilde{d})$ metric spaces we say $f: X \rightarrow Y$ is isometry if $\forall x, \tilde{x} \in X \quad d(x, \tilde{x})=\tilde{d}(f(x), f(\tilde{x}))$

Remark f isometry \Rightarrow injective so f is also called an "isometric embedding"

Theorem (Existence of completion)
(X, d) metric space $\exists(Y, \tilde{d})$ complete metric space
$f: X \rightarrow Y$ isometric embedding
Definition If (X, d) metric space (Y, \tilde{d}) compete metric space
$f: X \rightarrow Y$ isometric embedding call $\overline{f(X)} \subset Y$ the completion of X

Remark completion is unique up to isometry
Construction $U\left(X^{\omega}\right)=\left\{\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in X\right.$ Cauchy sequence $\} \subset X^{\omega}$
Let \sim be equivalence relation on $U\left(X^{\omega}\right)$
$\left(x_{i}\right) \sim\left(x_{i}^{\prime}\right): \Leftrightarrow d\left(x_{i}, x_{i}^{\prime}\right) \rightarrow 0$
Then $Y=\Gamma(X):=U\left(X^{\omega}\right) / \sim$
$\tilde{d}\left(\left[\left(x_{i}\right)\right],\left[\left(x_{i}^{\prime}\right)\right]\right)=\lim _{i \rightarrow \infty} d\left(x_{i}, x_{i}^{\prime}\right)$
$f: X \rightarrow Y$ is given by $x \mapsto[(x, x, x, \ldots)]$
Ex. $X=\mathbb{Q}$ with Euclidean metric $\Gamma(\mathbb{Q})=\mathbb{R}$ construction of real numbers

