
Chapter 2. Topological Spaces and Continuous Functions

12. Topological Spaces, topological operations, separation

Definition X set, A ⊂ P(X) topoogy on X if
(1) ∅,X ⊂ A
(2) closed under arbitrary union

A′ ⊂ A ∶ ⋃A′ = ⋃
A′∈A′

A′ ∈ A

(3) closed under simple intersection

A,B ∈ A ⇒ A ∩B ∈ A

Remark (3) ⇔ ∀A′ ⊂ A ∣A′∣ < ∞ ⋂A′ ∈ A
closed under finite ⋂

Definition (X,A) topology call A ∈ A an open set

Ex. A = P(X) discrete topology write (X,P(X)) =Xdiscr

A = {∅,X} trivial(indiscrete) topology

Ex. A = maximal chain in (P(X),⊊) → HW

Ex. A = {A ⊂X ∶ ∣X/A∣ < ∞} ∪ {∅}
finite complement (f.c.) topology

similarly: countable complement topology

trivial topology motivates

Definition (X,A) topological space
x1, x2 ∈X are call topologically indistinguishable
if ∀A ∈ A (x1 ∈ A⇔ x2 ∈ A)

↓means
x1, x2 ∈ A or x1, x2 ∉ A

topology A cannot distinguish x1, x2

Definition (T0 Kholmogorov axiom) - (very basic separation axiom)

A is T0 if ∄ topologically indistinguishable points
⇔ ∀x1 ≠ x2 ∃A ∈ A x1 ∈ A x2 ∉ A or x1 ∉ A x2 ∈ A

Figure 2 - 1

Let A be a topology on X . Define an equivalence relation on X by
x1 ∼ x2⇔ x1 is topologically indistinguishable from x2

Then let ↓ equivalence class of x under ∼

X̃ =X/ ∼= {[x]∼ ∶ x ∈X}
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and define a topology Ã on X̃ by

Ã = {{[x]∼ ∶ x ∈ A} ∶ A ∈ A}
thus topology identifies (and removes) topologically indistinguishable points(X̃, Ã) is called Kholmogorov quotient of (X.A)
Trivial topology is not T0 unless ∣X ∣ = 1
Ex. if A = {∅,X} then X̃ = {∗}
often will assume T0

Definition (X,A) A ⊂X is called closed if X/A is open

{Ai}i∈I ,Ai closed, ⋂{Ai} =⋂
i∈I

Ai closed A,B closed A ∪B closed

Definition x ∈X . An O ∈ A, O ∋ x is called neighborhood of x

Definition (X,A) A ⊂X any set
Let Int(A) = ⋃{A′ ∈ A ∶ A′ ⊂ A}
the interior of A {x ∈ X(x ∈ A) ∶ ∃O ∈ A x ∈ O ⊂ A}

= {x ∈X ∶ ∃O ∈ A x ∈ O ⊂ A}
Figure 2 - 2. interior point

lemma 1) Int(A) ⊂ A
2) Int(A) = A⇔ A is open (⇒ Int(∅) = ∅ Int(X)= X)
3) A ⊂ B ⇒ Int(A) ⊂ Int(B)
4) Int(Int(A)) =Int(A)(⇔ Int(A) open)

pf. 1) ✓
2) “⇐” open A ∈ A′ = {A′ ∈ A ∶ A′ ⊂ A}

A ⊃ Int(A) = ⋃A′ ⊃ A ⇒ Int(A) = A
↑ 1)

“⇒ ” Int(A) = A A = ⋃{A′ ∈ A ∶ A′ ⊂ A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A′

}
A′ ⊂ A

top. prop.
ÔÔÔ⇒ A ∈ A⇒ A open

3) A ⊂ B A′ = {A′ ∈ A ∶ A′ ⊂ A}
⊂ B′ = {B′ ∈ A ∶ B′ ⊂ B}

Int(B) = ⋃B′ ⊃ ⋃A′ = Int(A)
4) Int(A) = ⋃A′ for A′ ⊂ A⇒ Int (A) open

2)
Ô⇒ Int(Int(A))=Int(A)
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Definition (X,A) A ⊂X define the exterior← try not to use much
Ext(A) = Int(X/A)
= {x ∈X ∶ ∃O ∈ A O ∩A = ∅}

x ∈Ext(A) exterior point
Figure 2 - 3. exterior point

closure

A =X/Ext(A) =X/Int(X/A)
= {x ∈X ∶ ∀O ∈ A O ∋ x⇒ O ∩A ≠ ∅}

Lemma Properties of closure

A ⊃ A A = A⇔ A closed(⇒ ∅ = ∅,X =X)
A = A (i.e. A is closed)

A ⊂ B ⇒ A ⊂ B

Remark V VS S ⊂ V set span has similar properties:
span(S) ⊃ S
S ⊃ S′⇒ span(S) ⊃ span(S′)
span(span(S))=span(S)
Operations of this sort are called hull operations
[Similar conv(X) convex hull]
so closure is a hull operation

Definition A ⊂ X Bd A = A ∩X/A = A/Int(A)
elsewhere is called (top.) boundary of A(∂A!) Bd A = {x ∈X ∶ ∀O ∈ A O ∈ x O /⊂ A O ∩A ≠ ∅}

x ∈ Bd A is called boundary point

x ∈Bd(A) boundary point
Figure 2 - 4. boundary point

Ex. A = discrete top. all A ⊂X open ⇒ and closed

A = Int(A) = A Bd A = A/Int(A) = ∅
Ex. A = trivial top. A ⊂X A ≠ ∅,X

Int(A) = ∅ A = X Bd A =X
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Definition we say (X,A) is T1 (Fréchet)
if ∀x1 ≠ x2 ∃ O1,2 ∈ A ∶ O1 ∋ x1 O1 /∋ x2 and O2 ∋ x2 O2 /∋ x1

Figure 2 - 5. T1 axiom

Lemma T1

(1)⇐⇒ points are closed
(2)⇐⇒ finite sets are closed{x} = {x}

pf. (2) because closedness is invariant under finite union(1) A is T1 let x1 ∈X x2 ≠ x1

∃x2 ∋ O2 open O2 ∉ x1 O2 ∩ {x1} = ∅⇒ x2 ∉ {x1} ∀x2 ≠ x1⇒ {x1} = {x1}
T1 ⇒ T0 but not converse

Ex. X = {1,2}
Figure 2 - 6

A is T0 {x1} = {x1, x2}
Ex. finite complement(f.c.) topology is T1

Definition (X,A) is T2 (Hausdorff)
if ∀x1, x2 ∈X x1 ≠ x2 ∃O1 ∋ x1 O2 ∋X2 Oi open
O1 ∩O2 = ∅

Figure 2 - 7

T2 ⇒ T1(⇒ T0) but not converse
Ex. ∣X ∣ =∞, A = f.c. top on X

x1, x2 ∈X x1 ≠ x2

O1 ∋ x1 O2 ∋ x2 Oi ∈ A
O1,O2 ≠ ∅⇒ ∣X/O1∣, ∣X/O2∣ <∞∣X/(O1 ∩O2)∣ = ∣(X/O1) ∪ (X/O2)∣ <∞∣X ∣ =∞⇒ O1 ∩O2 ≠ ∅ f.c. top. is not Hausdorff
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Definition (X,A′), (X,A) two topologies on same space
we say A′ is finer than A if A′ ⊃ A

strictly finer than A′ ⊋ A
coarser than A′ ⊂ A

strictly coarser than A′ ⊊ A
! to usage of “weaker/stronger”,“higher/smaller” elsewhere (try to avoid)

Remark of course if A is Ti (i = 0,1,2)
A′ finer⇒ A′ is Ti, too

Remark A′ ⊃ A A ⊂ X A
A′
⊂ A

A

IntA′(A) ⊃ IntA(A)
Definition A ⊂ X is dense if A =X .

X is separable if ∃A ⊂X dense and countable (p.189-190 in book)

13. Basis for Topology

most important topologies. we will work with can be defined through a basis

Definition X set B ⊂ P(X) is a basis for topology on X if
B1) ∀x ∈ X ∃B ∈ B x ∈ B ⇔ ⋃B =X
B2) ∀B1,B2 ∈ B ∀x ∈X

x ∈ B1 ∩B2 ∃B3 ∈ B x ∈ B3 ⊂ B1 ∩B2

Figure 2 - 8

Definition X = (X,A). B is basis for topology A
the topology A is generated by B A = A(B)
A ∈ A⇔ ∀x ∈ A ∃B ∈ B x ∈ B B ⊂ A (∗)

Remark B ⊂ A

Lemma A ∈ A⇔ A = ⋃{B ∈ B ∶ B ⊂ A}
pf. ⇒ A ⊃ ⋃{B ∈ B ∶ B ⊂ A} A ⊂ ⋃{B ∈ B ∶ B ⊂ A} by (∗)⇐ A = ⋃{B ∈ B ∶ B ⊂ A}⇓

∀x ∈ A ∃B ∈ B B ⊂ A B ∋ x⇓
A ∈ A
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Figure 2 - 9

Lemma A ∈ A⇔ ∃B′ ⊂ B A = ⋃B′⇒ B′ = {B ∈ B ∶ B ⊂ A}⇐ A = ⋃B′ ∀x ∈ A ∃B ∈ B′ x ∈ B B ⊂ ⋃B′ = A⇒ A ∈ A

so open sets are unions of basis elements

Lemma A(B) is a topology
pf. A(B) = {⋃B′ ∶ B′ ⊂ B}

B′ = ∅⇒ ∅ ∈ A
B′ = B use B1) ⇒ X ∈ A{Aα}α∈I ⊂ A Aα = ⋃Bα Bα ⊂ B
⋃
α

Aα =⋃
α
⋃Bα =⋃ ⋃

α

Bα

²
⊂B

∈ A

assume A′,A′′ ∈ A
A′ = ⋃B′ A′′ = ⋃B′′ B′,B′′ ∈ B
let x ∈ A′ ∩A′′⇒ ∃B′ ∈ B′ x ∈ B′ ∩B′′

B′′ ∈ B′′

∩ B′ ⊂ A′

B B′′ ⊂ A′′
B2)Ô⇒ ∃B′′′ ∈ B ⊂ A x ∈ B′′′ ⊂ B′ ∩B′′

x ∈ B′′′ ⊂ A′ ∩A′′

∀x ∈ A′ ∩A′′ ∃B′′′ ∈ A x ∈ B′′′ ⊂ A′ ∩A′′⇒ A′ ∩A′′ is open ⇒ A′ ∩A′′ ∈ A

Lemma (B.2) (X,A) C ⊂ A
how to identify ∀O ∈ A x ∈ O ∃U ∈ C x ∈ U ⊂ O

a basis ⇒ C is a basis

B B′

Lemma (X,A), (X,A′)
A′ ⊃ A⇔ ∀x ∈ X ∀B ∈ B
A′ finer x ∈ B ⇒ ∃B′ ∈ B′ x ∈ B′ ⊂ B
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Definition (R,<) B = {(a, b) ∶ a < b} (a, b) = {x ∶ a < x < b}
topology generated by B is called standard (Euclidean) topology on R

assumed below by default

Definition B′ = {[a, b) ∶ a < b}
Rℓ = (R,A(B′)) lower limit topology

Lemma (X,A) basis B Int(A) = ⋃{B ∈ B ∶ B ⊂ A}
Ex. 1) A = (0,1) A ⊂ R

A = [0,1] Int(A) = A = (0,1) (A open)

2) A = {1} A = A Int(A) = ∅
Bd A = A

3) A = [0,1) A = [0,1] Int(A) = (0,1)
Bd A = {0,1}

4) A = Q ∃a′, a′′ ∈ (a, b) a′ ∈ Q a′′ ∈ R/Q
A = R Int(A) = ∅

Bd(A) = R rational and irrational numbers are dense

Ex. Rℓ

1) A = [0,1] Int(A) = [0,1)
A = A Bd A = {1}

2) A = [0,1) Int A = A = [0,1) A open and closed!

A = A Bd A = ∅
3) A = {1} Int A = ∅

A = A Bd A = {1}
4) A = Q like previous example

Definition X set S subbasis S ⊂ P(X)
topology of X is the topology with basis ⋃S =X
B = {⋂S ′ ∶ S ′ ⊂ S ∣S ′∣ <∞}

finite intersections of elements in S
A = unions of finite intersections of elements in S

14. The Order Topology

First major source of important topologies!

Definition (X,<) ordered set a < b(a, b) = {x ∶ a < x < b}[a, b) = {x ∶ a ≤ x < b} etc. (had before)

Definition (X,<) ordered set. the order topology A on X

is the one with basis B consisting of
1) all open intervals (a, b) a < b
2) [a0, b) a0 smallest element b > a0 (if ∃a0!)(a, b0] b0 largest element a < b0 (if ∃b0!)
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Ex. ∣X ∣ <∞ X ordered ⇒ A discrete topology
similarly (Z+,<)

Ex. (R,<) A = Euclidean topology on R

Ex. R ×R with dictionary order

Recall a × b > c × d⇔ a > c or (a = c and b > d)
no smallest or largest element

(c × d, a × b) = ⎧⎪⎪⎨⎪⎪⎩
{c} × (d, b) a = c

{c} × (d,∞) ∪ (c, a) ×R ∪ {a} × (−∞, b) c < a

Figure 2 - 10

Ex. {1,2} ×Z+ dictionary order
1 × n = an 2 × n = bn X = a1 . . . an . . . b1 b2 . . .(b1, b3) = {b2} {b2} open{a1} = [a1, a2) {a1} open↑ nearest element
similarly {ai} open i > 1{bj} open j > 2
but {b1} is not open
if b1 ∈ B open ∃b1 ∈ (a, b) ⊂ B b > b1

a < b1 a = an for some n

B ⊃ (a, b) ⊃ {an+1, an+2, . . . }∣B∣ =∞
Definition (X,<) a ∈X define (a,+∞) = (a,∞) = {x ∶ x > a}[a,∞) = {x ∶ x ≥ a}(−∞, a) (−∞, a] rays(a,∞) (−∞, a) open rays (open sets)[a,∞) (−∞, a] closed rays (closed sets)

15. The Product Topology

Definition (X,A), (X,B) define a topology
A ×B = C on X × Y by the basis{A ×B ∶ A ∈ A,B ∈ B}C is called the product topology on X × Y

8



Theorem if A′ ⊂ A is a basis for A
B′ ⊂ B is a basis for B⇒ {A′ ×B′ ∶ A′ ∈ A′,B′ ∈ B′}

is a basis for A ×B

Figure 2 - 11

Definition π1 ∶ X × Y →X π1(x × y) = x
π2 ∶ X × Y → Y π2(x × y) = y
projection

Theorem S = {π−11 (U) ∶ U ⊆X open} ∪ {π−12 (U) ∶ U ⊆ Y open}(π−11 (U) = U × Y, π−12 (U) = X ×U)
is a subbasis for A × B

Figure 2 - 12

16. The Subspace Topology

(X,A) topological space Y ⊂ X ↓ my notation(Y,A′) with A′ = {A ∩ Y ∶ A ∈ A} = AY is called subspace topology

Lemma (X,A) basis B Y ⊂X{B ∩ Y ∶ B ∈ B} is a basis of (Y,AY )
Definition if X ⊃ Y ⊃ U

we can say U open in Y if U ∈ AY

U closed in Y if Y /U ∈ AY

Ex. X = R Y = [0,1] U = (0,1]
U = Y is open in Y

Y is not open (in X)
U is not open in X
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Lemma X ⊃ Y ⊃ U is open in Y , Y open in X

⇒ U open in X

Theorem A ⊂ X B ⊂ Y (X × Y,C) C = A ×B
A B product topology AA × BB = CA×B

Ex. I = [0,1]
I20 = I × I with dictionary order topology will be called the ordered square

I20 = I × I ⊂ R2 but topology on I20 is different from subspace topology of R2

Ex. A = {1/2} × (0,1) = (1/2 × 0,1/2 × 1) is open in I20
Now consider topology related to R2

Let p = 1/2 × 1/2 ∈ A
assume ∃B ∋ 1/2 × 1/2 B ∈ B{(a, b) × (c, d) ∶ ⋂[0,1]2} basis of relative top.
⇒ a < 1/2 b > 1/2⇒ B ∉ A⇒ p ∉ Int(A)
In fact, similarly you see Int(A) = ∅

Definition (X,<) Y ⊂X convex
⇔ ∀a, b ∈ Y a < b

∀x ∈X a < x < b⇒ x ∈ Y

Figure 2 - 13

(Distinguish from A ⊂ V convex V VS over R)

Remark Intervals and rays are convex
but not the other way around.

Ex. X = R/{0}
Y = (−∞,0)
this is convex subset in X

but one can’t make Y = (−∞, a) (−∞, b] (a, b) . . .
for a, b in X (not in R!)(<′ ∶= < ∣Y ×Y )(X,<) Y ⊂X

ÐÐÐÐÐÐÐ→
restricted order

(Y,< ∣Y ×Y )
↓ ↓(X,O<)ÐÐÐÐÐÐÐÐ→

relative topology
(Y,O<′)

order topology

Theorem if Y ⊂X convex, then O<∣Y ×Y = (O<)Y
Convention (X,<) Y ⊂X assumed with subspace topology(O<)Y(= O<∣Y ×Y if Y convex!) (see pg. 25)
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Ex. Q ⊂ R subspace topology from (R,<)
has a basis B1 = {(a, b) ∩Q ∶ a, b ∈ R}
order topology from (R,<) has a basis
B2 = {(a, b) ∶ a, b ∈ Q}

These bases are not the same (e.g. Q ∩ (0, π) ∈ B1 ∖B2)
of course B2 ⊂ B1
and you can show all sets in B1 are unions of sets in B2, so the topology of B1,B2 are the
same
but this shows for general ordered sets be careful (we will see later examples that top’s
different)

17. Closed sets, Accumulation points and Limit points

already defined closed sets

Theorem ∅,X closed
A,B closed⇒ A ∪B closed{Ai}i∈I closed⇒⋂

i

Ai closed

Theorem X ⊃ Y ⊃ A A closed in Y⇔ ∃A′ ⊂ Y closed A = A′ ∩ Y

Theorem X ⊃ Y ⊃ Z Y closed in X , Z closed in Y

⇒ Z closed in X

A ⊂X A = A
A
= {x ∈X ∀O ∈ A ∶ O ∋ x⇒ O ∩A ≠ ∅}

! = {x ∈X ∀O ∈ B ∶ O ∋ x⇒ O ∩A ≠ ∅}
B basis of A

Theorem Y ⊂X A ⊂ Y (Y,AY ) relative topology

A
AY
= A

A
∩ Y

Definition A ⊂ X x ∈X if x ∈ A/{x}(⇔ ∀O ⊂ A O ∋ x⇒ O ∩ (A/{x}) ≠ ∅)
call x an accumulation point(적립점) of A
if x ∈ A and x is not an accumulation point of A
call x an isolated point(고립점) of A
A is discrete(이산집합) if all its points are isolated

Figure 2 - 14:

accumulation point
Figure 2 - 15: isolated
point
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Definition Aacc = {acc. points of A}

Figure 2 - 16:

accumulation point
set

Theorem A = A ∪Aacc

Theorem X is T1. Then x ∈X is accumulation point of A
⇔ for every neighborhood O ∋ x ∣O ∩A∣ =∞

Convergence care is needed with limit and convergence

Definition X ∋ x1, x2, . . . , xn, . . .

we say lim
n→∞

xn = x xn → x

if ∀O ∋ x O ∈ A ∃N0 ∀n > N0 xn ∈ O
Figure 2 - 17

Remark (X,A), (X,A′), A′ ⊃ A xn →A′ x⇒ xn →A x

Ex. xn = n in R with finite complement topology O
Let a ∈ R O ∋ a O ≠ ∅
⇒ ∣R/O∣ <∞ ∃N ∀n ≥ N xn ∈ O

xn → a so xn = n→ a ∀a ∈ R

Theorem X is T2 (Hausdorff)
⇒ limit(if it exists!) is unique ↓ unique limit property
i.e. every sequence of points converges to at most one point

Remark Converse is false, see following Ex.

Ex. of a non-Hausdorff space with unique limit property X = SΩ ∪ {Ω}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SΩ

∪{Ω′} “dupli-

cate” Ω

A with top basis

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[a0, b)(a,Ω] a, b ∈ SΩ(a, b) a < b

⎫⎪⎪⎪⎬⎪⎪⎪⎭
∪ {(a,Ω) ∪ {Ω′} ∶ a ∈ SΩ}
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basis of order topology on SΩ

Figure 2 - 18

ASΩ
= order topology on SΩ

AX/{Ω} ≃ order topology on SΩ with Ω→ Ω′ (⇒ T2)
X is not T2 because any two basis elements containing Ω,Ω′ intersect
but X has the unique limit property
Let {xn} ⊂X
Lemma xn → Ω(respectively Ω′)⇔ ∃N ∀n ≥ N xn = Ω(respectively Ω′)

pf. Assume ∃ infinitely many xn ∈ SΩ ∪ {Ω′}
if infinitely many xn = Ω′⇒ ∃xnk

≡ Ω′ but ∃U open Ω ∈ U Ω′ ∉ U
⇒ xn /→ Ω☇
So ∃ infinitely many xn ∈ SΩ {xnk

} ⊂ SΩ countable
property of SΩ⇒ bounded. xnk

≤ d d ∈ SΩ xnk
∉ (d,Ω]

xnk
/→ Ω⇒ xn /→ Ω☇

Now assume (xn) ⊂ X xn → x1, x2 ∈ X x1 ≠ x2

If x1 ∈ SΩ⇒ (xn) bounded x2 ≠ Ω,Ω′

xn → x1, x2 in SΩ ∈ T2⇒ x1 = x2

Similarly if x2 ∈ SΩ

So return to test {x1, x2} = {Ω,Ω′}
but this gives ☇ by previous lemma
Thus x1 = x2 and X has unique limit property

Theorem X ordered ⇒X is T2 in order topology(X,A) is T2 Y ⊂X ⇒ (Y,AY ) is T2(X,A)(Y,B) T2 ⇒ (X × Y,A × B) is T2

!! If ∃x1, x2, . . . , xn ∈ A xn → x xn ≠ x

then x is an accumulation point of A
but the converse is false Alim ⊂ Aacc

Definition limit points Alim ∶= {x ∈X ∶ ∃xn ∈ A/{x} xn → x} (I do not use like in book)
Alim ⊊ Aacc can happen (I will give you ex. later)
This is why be careful you understand well how a “limit point” is meant!
( return to this p.19 and 34)
In “metrizable” spaces like R, Rn with Enclidean topology, it’s okay.
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Figure 2 - 19

Theorem (xn, yn)→ (x, y) ⇔ in X xn → x in A
and in Y yn → y in B (separation axiom, section 31)

Definition A space (X,A) is regular if (p. 194)
x1 A = A /∋ x ∃O1 ∋ x Oi ∈ A

O2 ⊃ A O1 ∩O2 = ∅

Figure 2 - 20

Definition A space (X,A) is normal if

∀A1,A2 A1 = A2 A2 = A2 A1 ∩A2 = ∅
∃O1,O2 ∈ A O1 ∩O2 = ∅ Oi ⊃ Ai

Figure 2 - 21

If points are closed, then normal ⇒ regular ⇒ T2

⇕
T1 but not always otherwise!

So we have a diagram

(! In other books, T3 = normal, T4 = regular)

Figure 2 - 22

Definition T3 is regular Hausdorff (=regular Fréchet)
T4 is normal Hausdorff (=normal Fréchet)
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Theorem order topologies are normal and T2(and hence anything else)

58abcd
1 Convergence behavior

X space
A topology on X z→ convergence behavior of A C(A)
A ⊂ P(X) (xi) ∈ Xω ↦ {limit point of (xi)}

= {x ∈X ∶ xi → x} ∈ P(X)
A ∈ {topology on X}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S̃(X)

⊂ P(P(X))
Convergence behavior functor S̃(X)Ð→

C
F(Xω,P(X))

Question Does the convergence behavior determine the topology

i.e. is the convergence behavior functor injective?

Ex. (Xω,A) and you prove fn → f in A⇔ fn → f pointwise
⇒ A = product topology?
or X metrizable you prove fn → f in A⇔ fn ⇉ f uniform
⇒ A = uniform topology?

The answer is no! in general
i.e. one cannot identify a topology from its convergence behavior alone

Ex. Consider X = SΩ ∪ {Ω} = SΩ ∪ {Ω,Ω′} Define a topology
A on X with topology basis

Thus let B̃ = {(a, b) ∶ a < b a, b ∈ SΩ} ∪ {[a0, b) ∶ b ∈ SΩ} ∪ {(a,Ω] ∶ a ∈ SΩ}
∪ {[a0,Ω]}

B = B̃ ∪ {(B/{Ω}) ∪ {Ω′} ∶ Ω ∈ B ∈ B̃}
This is the topology as in the previous example.
A = A(B) is not Hausdorff but has unique limit property

Now consider A′ = A(B′) with B′ = B ∪ {{Ω}}
(again to check easily B′ is a basis)

A′ is Hausdorff but A and A′

have same convergence behavior: C(A) = C(A′)
xn → x in A⇔ xn → x in A′

Thus the convergence behavior does not define the topology, not even whether it is T2

⇒ not even up to self-transform fixing convergence behavior

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h ∶X →X bijective
A↦ {h(A) ∶ A ∈ A} = h(A) is a topology
F(Xω,P(X)) C(A) ↦h(C(A))

↶ ↶

=

h h C(h(A))
if C(A) = C(A′) ∃h ∶X → X bijective

A′ = h(A) s.t. C(A) = C(h(A))?
even this answer is no!

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Remark You can consider as well

X = SΩ A = A(B̃)
A′ = A(B̃ ∪ {{Ω}})

Then A ≠ A′ but C(A) = C(A′)
however in this case obviously both A,A′ are T2

and I don’t know if ∄ self-transformation h on SΩ with h(A) = A′

likely not, but it requires some argument to prove
while in our way we get this + T2 - independence readily
for example, A ∋ {x} one element set
⇔ x has no immediate predecessor
or x = a0
(x has always an immediate successor or x = Ω
but A contains uncountably many 1-element sets (old exercise)
so then one cannot argue with number of of 1-element sets that ∄h, etc.. . . )

2 Limit points

Exercise let X be a topological space
x1 ∈ F(Z+,X) a sequence
let h ∶ Z+ → Z+ bijective
then xn → x in X⇔ xh(n) → x in X

This means ordering a sequence is not relevant for its limit(s)
Then the limit points of a sequence {x ∈ X ∶ xn → x}
can in fact be defined on the set{xn}

Definition X topological space A ⊂ X ∣A∣ = ω
define Alim = {x ∈X ∶ ∃h ∶ Z+ → A bijective h(n) ÐÐ→

n→∞
x}

Note, however, that Alim ≠ Alim

the set of limit points of A as a set, as defined in the closure section

In fact, Alim = ⋃
A′⊂A,∣A′∣=ω

(A′)lim (if X is T1)

also for any subset A ⊂ X (not necessarily of cardinality ω)

58abcd

20. The metric Topology

most important and fundamental source of topology

Definition X set d(x, y) > 0 x ≠ y distance if
d(x,x) = 0 d(x, y) > 0 x ≠ y
d(x, y) = d(y, x)
d(x, y) + d(y, z) ≥ d(x, z)
d(x, y) distance between x and y

16



Definition Bǫ(x) = {y ∈ x ∶ d(x, y) < ǫ} ǫ > 0, x ∈X
(open) ball ǫ-ball centered at x

Figure 2 - 23

Definition The metric topology Ad on (X,d) induced by d is the one
with basis {Bǫ(x) ∶ x ∈X, ǫ > 0}

To check: balls form a basis

Figure 2 - 24

B1) X ⊃ ⋃
x∈X

Bǫ(x) ⊃ ⋃
x∈X

{x} = X

B2) ∃ǫ(x) ∩Bǫ′(y)
Bǫ′′(z) ⊂ Bǫ(x) ∩Bǫ′(y)
for ǫ′′ =min(ǫ − d(x, z), ǫ′ − d(y, z)) > 0

Definition (X,A) metrizable ⇔ ∃d on X

with A = Ad induced by d

Ex. X,δ(x, y) =
⎧⎪⎪
⎨
⎪⎪⎩

0 x = y

1 x ≠ y

discrete distance B1(x) = {x} so
it induces the discrete topology A = P(X)

↑ explains the name
A ⊂X every a ∈ A is discrete point, every set is discrete
so the discrete topology is metrizable

Ex. Standard metric on R d(x, y) = ∣x − y∣
induces the usual (Euclidean) topology

because (a, b) = Bǫ(x) for x =
a + b

2
ǫ =

b − a

2
Euclidean topology is metrizable

⇒!non-uniquely d̂(x, y) = 2∣x − y∣ induces the same topology.

17



Ex. R finite complement topology not metrizable

if were
∞
⋂
n=1

Byn(x)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

open

= {x}

R/{x}
´¹¹¹¹¹¸¹¹¹¹¹¶

uncountable

=
∞
⋃
n=1

(R/Byn(x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

finite
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

countable

Definition V Vector Space over R or C
a norm ∣∣.∣∣ ∶ V → [0,∞)
satisfies ∣∣v∣∣ = 0⇔ v = 0V∣∣λv∣∣ = ∣λ∣ ⋅ ∣∣v∣∣ λ ∈ R(C) v ∈ V∣∣v∣∣ + ∣∣w∣∣ ≥ ∣∣v +w∣∣ e.g. ∣∣v∣∣ =√< v,v > if ∃ <,>∣∣.∣∣ induces a metric by d(x,y) = ∣∣x − y∣∣

{inner product space}⊂{normed space}⊂{metric space}⊂{topological space} all ⊊
we see here later ↑

Ex. Rn with Euclidean norm∣∣x∣∣ = ∣∣(x1, . . . , xn)∣∣ =√x2
1 + ⋅ ⋅ ⋅ + x

2
n

induces the product topology on Rn = R ×R × ⋅ ⋅ ⋅ ×R
basis are {(a1, b1) × ⋅ ⋅ ⋅ × (an, bn) ∶ ai < bi}

Ex. The Hölder p-norm∣∣x∣∣p = p
√∣x1∣p + ⋅ ⋅ ⋅ + ∣xn∣p for p ∈ [1,∞)

are not multiples of ∣∣.∣∣ = ∣∣.∣∣2 for p ≠ 2
but all induce the same topology on Rn

Definition (X,d) metric space A ⊂ X x ∈X dist(x,A) = inf{d(x, a) ∶ a ∈ A}
Lemma dist(x,A) = 0⇔ x ∈ A

Definition (X,d) metric space A ⊂ X

diam A = sup{d(a, a′) ∶ a, a′ ∈ A}
Ex. diam Bǫ(x) ≤ 2ǫ (not always “=”!)

Figure 2 - 25

diam can be ∞ if d is unbounded

Ex. diam (Z+) =∞ Z+ ⊂ R with Euclidean metric

Research Problem A ⊂ R2 diam (A) ≤ 1 A ⊂ B1/
√
3(x) for some x?

18



1/√3 smallest possible?

Figure 2 - 26

sometimes it is useful to bound d

Theorem Let (X,d) metric space

Define d ∶ X ×X → R by d = max(d,1)
standard bounded metric

d induces Ad = Ad, same topology

Lemma (X,d), (X,d′) Ad′ ⊃ Ad

⇔ ∀x ∈X ǫ > 0 ∃δ Bd′,δ(x) ⊂ Bd,ǫ(x)
Lemma A ⊂ (X,d) Ad∣A×A is the relative topology of d of A

if A is metrizable ⇒ AA is metrizable

Theorem (X,d) topological space
xn → x⇔ ∀ǫ > 0 ∃N ∀n > N d(xn, x) < ǫ xn ∈ Bǫ(x)

Theorem metric spaces are Hausdorff and normal (so anything else in chart p.14)
pf. mostly the idea for order topologies (exercise)

Theorem (X,d) metric x ∈ A⇔ ∃xn ∈ A xn → x

Sequence Lemma
i.e. trouble at p.14 does not occur for metrizable spaces

Remark: if X,Y metrizable with dX ,dY , then X ×Y is also metrizable (e.g.) with d(x1 ×
y1, x2 × y2) = dX(x1, x2) + dY (y1, y2).

18. Continuous Maps

(X,A) (Y,B)
Definition f ∶ X → Y topological space continuous

if and only if ∀O ∈ B open in Y f−1(O) open in X

continuous relative to the topologies A ⊂ B

Ex. (X,A) (X,B)
A finer than B⇔ idX ∶ (X,A) → (X,B) is continuous
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Remark (book p.90) if ∀O ∈ A f(O) ∈ B, call f open

Lemma Let (X,A) have basis A′, (Y,B) have basis B′

f continuous ⇔ ∀B′ ∈ B′ f−1(B′) ∈ A
⇔ ∀B′ ∈ B ∀x ∈ f−1(B′) ∃A′ ∈ A′ x ∈ A′ ⊂ f−1(B′)

(“ǫ − δ” and sequence condition)
Lemma if (X,d) (X,d′) are metric spaces can take balls as bases

f ∶ X → Y continuous ⇔ ∀ǫ > 0 ∃δ > 0 Bδ(x) ⊂ f−1(Bǫ(f(x)))
⇔ ∀xn → x in X f(xn)→ f(x) in Y

Theorem X,Y topological spaces f ∶X → Y The following are equivalent
1) f continuous

2) ∀A ⊂X f(A) ⊂ f(A)
3) ∀B ⊂ Y closed f−1(B) ⊂X closed
4) ∀x ∈ X ∀U ∋ f(x) open ∃V ∋ x open

V ⊂ f−1(U) (⇔ f(V ) ⊂ U)
Definition f homeomorphism if

f ∶ X → Y bijective, f, f−1 continuous(X,A) (Y,B)
A ={f−1(B) ∶ B ∈ B} B determines A

X ≃ Y topologically equivalent
if ∃f ∶ X → Y homeomorphism

Definition f ∶ X ↪ Y continuous, injective
if f−1 ∶ f(X)→X continuous,
call f a (topological) embedding

Ex. f ∶ [0,2π)→ S1 = {(x, y) ∶ x2 + y2 = 1} f(t) = (cos t, sin t)
with relative topology to R2

is bijective and continuous
but its inverse is not continuous ⇔ f is not open[0, α) T = f([0, α)) ⊂ S1 is not open 1 ∈ S1 but ∀ǫ > 0 S1 ∩Bǫ(1) /⊂ T
∩[0,2π) open

Figure 2 - 27

Constructing Continuous Functions

see p.105, 106 in the book

Pasting lemma

X = A ∪B A,B closed in X
f ∶ X → Y f ∣A ∶ A→ Y

f ∣B ∶ B → Y continuous ⇒ f ∶ X → Y continuous

Maps into product

20



Theorem f ∶ A→X × Y (with product topology) is continuous ⇔
coordinate functions f1 ∶ A→ X f1 = prX ○ f

f2 ∶ A→ Y f2 = prY ○ f
are continuous. (prX(x, y) = x, prY (x, y) = y)

19. Product Topology II

Motivation: X1 × . . . Xn with topology A1 . . .An

defined product topology by
(1) subbasis / for n = 2 but finite n is same story

n

⋃
k=1

{pr−1k (U) ∶ U ⊂Xk open}
U =X1 × . . .Xk−1 ×U ×Xk × ⋅ ⋅ ⋅ ×Xn

or

(2) basis {U1 × . . . Uk ∶ Ui ⊂ Xi open}
gives (same) product topology
But what if ∞ product? There’s a difference!
First let’s define general tuple indexed by an arbitrary set.

Convention write F(X,Y ) for {f ∶ X → Y }
Recall {f ∶ Z+ →X} ≃Xω = {(a1, a2, . . . ) ∶ ai ∈ X}(= F(Z+,X) ↑ f(n) = an)

=
∞
∏
i=1

X

∞
∏
i=1

Xi = {f ∶ Z+ →⋃Xi ∶ f(n) ∈Xn ∀n}
For J index set, X set, define J-tuple of elements in X to be a function x ∶ J →X

x = (xα)α∈J x(α) = xα

XJ = {x ∶ x(α) ∈X ∀α ∈ J } ≃ {f ∶ J →X}
A = {Aα}α∈J

Definition ∏
α∈J

Aα = {f ∶ J → ⋃
α∈J

Aα ∶ f(α) ∈ Aα ∀α ∈ J}
J - indexed product

Definition {Aα}α∈J (Aα,Aα) topological space
the box topology on A =∏

α∈J

Aα is defined by the basis

{U =∏
α∈J

Uα ∶ Uα ∈ Aα ∀α ∈ J}
“U is a box” generalization of (2) above
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Definition (Aα,Aα) topological space
the product topology on A =∏Aα is defined by the subbasis

⋃
α∈J

⋃
Uα∈Aα

pr−1α (Uα)
with prα ∶ A→ Aα being the projection on the
α-th coordinate prα((aβ)β∈J) = aα generalization of (1)

The product topology will be assumed by default!

Obviously, box topology ⊃ product topology.
but box topology is quite strong and often good for counterexamples, while product
topology is used in many theorems.

For metric spaces (Aα, dα), there is one more important topology on ∏Aα, the uniform
topology. It has basis being boxes of “equal length”

B = {∏
α∈J

Bǫ(xα) ∶ xα ∈ Aα, ǫ > 0}
ǫ does not depend on α!

Theorem the uniform topology is induced by the uniform metric

d((aα)α∈J , (bα)α∈J) = sup{dα(aα, bα) ∶ α ∈ J}
↑ bounded metric

Convergence

Notation write F(X,Y )prod F(X,Y )box F(X,Y )uni
Theorem Convergence in the product topology is pointwise convergence

Definition fn → f ∶⇔ ∀α ∈ J fn(α)→ f(α) in Aα

∀α ∈ J ∀O ∈ Aα O ∋ f(α) ∃N ∀n ≥ N fn(α) ∈ O
Th./Def. Convergence in the uniform topology is the uniform convergence

fn ⇉ f ∶⇔ ∀ǫ > 0 ∃N ∀n ≥ N ∀α ∈ J dα(fn(α), f(α)) < ǫ
remark: f → f ∀α ∈ J ∀ǫ > 0 ∃N ∀n ≥ N dα(fn(α), f(α)) < ǫ

What is convergence in the box topology?

Ex. Consider {f ∶ R→ R} with box topology. When fn → 0?
assume fn1

(x1) ≠ 0 choose Ux1
(−fn1

(x1), fn1
(x1)) f1 ∉ U =∏

x∈R

Ux

assume ∃x2 ≠ x1 n2 > n1 fn2
(x2) ≠ 0 Ux2

(−f2(x2), f2(x2)) f2 ∉ U =∏
x∈R

Ux

↝ find (fn1
, fn2

, . . . ) ∉ U ∋ 0 open. → fn ↛ 0
etc. when does this fail?
fn → 0⇔ ∃N SN ∶= ⋃

n≥N

{x ∶ fn(x) ≠ 0} finite
and ∀x ∈ SN fn(x) → 0(⇔ f ∣SN

→ 0∣SN
⇔ fn∣SN

⇉ 0∣SN
)
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Ex. fn(x) =
⎧⎪⎪⎨⎪⎪⎩
0 x ≠ n

1/n x = n
(so box convergence ⇒ pointwise and uniform convergence)

of course fn → 0 and even fn ⇉ 0
also ∣{x ∶ fn(x) ≠ 0}∣ = 1 <∞∀n
but ⋃

n≥N

{x ∶ fn(x) ≠ 0} = Z+ ∩ [N,∞) infinite
so fn ↛ 0 (and not to any other limit) in box topology

The box topology is easily seen to be Hausdorff and I can prove regular. It is not known
about normal see Ex.5 p.203

Theorem In product or box topology of F(J,X)(and hence in the uniform topology as well, if Xα metric)
for Aα ⊂Xα ∏

α∈J

Aα =∏
α∈J

Aα

Ex. Consider F = {f ∶ R→ R} in box topology. F = F(R,R)box
Let A =∏

α∈R

(0,1) = {f ∶ R→ R ∶ image(R) ⊂ (0,1)}
Then A =∏

α∈R

[0,1] = {f ∶ R→ R ∣ image(R) ⊂ [0,1]}
but consider Alim = {f ∈ F ∶ ∃fn ∈ A/{f} ∶ fn → f}
Alim = ⋃

S⊂R
∣S∣<∞

∏
α∈R

⎧⎪⎪⎨⎪⎪⎩
[0,1) α ∉ S

[0,1] α ∈ S

⎫⎪⎪⎬⎪⎪⎭
= {f ∶ R→ R ∣ image(f) ⊂ [0,1], ∃S ⊂ R ∣S∣ <∞ image(f ∣R/S) ⊂ (0,1)}

E.g. 0 ∈ Aacc 0 ∉ Alim (0 =zero function)
Alim ⊊ Aacc ⇒ sequence lemma fails⇒ box topology not metrizable
⇒ (A′ ⊃ A A metirzable⇏ A′ metrizable)
↑ box ↑ uniform while Ti i ≤ 2

It took me some to give an example of A ⊂X with

A/A ≠ ∅ but Alim = ∅, i.e.

A not closed (⇒ has accumulation point Aacc ≠ ∅) but no converging sequence(except
constant)
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Ex. (may skip, not very good)
Consider X = {f ∶ R→ Rdiscr} with range R with discrete topology
and pointwise convergence topology X = F(R,Rdiscr)prod (product discrete topology)
i.e. fn → f ⇔ ∀x ∈ R ∃N ∀n ≥ N fn(x) = f(x)
the basis of the topology

{US,y1,...,yn =∏
x∈R

{ {yi} x = xi

R x ≠ x1, . . . , xn
}

∶ S = {x1, . . . , xn} ⊂ R finite (xi ≠ xj), y1, . . . , yn ∈ R}
Fix a bijection Φ ∶ {finite subsets of R}→ R/{0}
Consider the family

fS(x) = { 0 x ∈ S

Φ(S) x ≠ S
}

Figure 2 - 28

constant function except for finite zero set

A = {fS ∶ S ⊂ R finite} ⊂X
↓ function (f(x) = 0 ∀x ∈ R)
0 ∈ A/A A has accumulation point 0

If 0 ∈ U open U basis element
U = US,0,...,0

´ ¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¶
yi=0

for some S ⊂ R ∣S∣ <∞
fS ∈ U ∩A ≠ ∅⇒ 0 ∈ A, obviously 0 ∉ A
Now take sequence fS1

, fS2
, . . . in A fSi

≠ fSj
i ≠ j

∞
⋃
i=1

Si is countable, take x0 ∈ R/ ∞⋃
i=1

Si

fSn
(x0) = Φ(Sn) fSn

(x0) ≠ fSm
(x0) ∀n,m ∈ Z+ n ≠m

fSn
(x0) does not converge in discrete topology

⇒ fSn
/→ f

So A contains no converging sequence! (except eventually constant)(⇒ X not metrizable etc.) Aacc ∋ 0, Alim = ∅ End Ex.

Note: Alim = ∅ means A has no limit point in X , not in A.
A has no limit point in A just means A is discrete,
and I can find you discrete non-closed sets in
simple spaces like A = { 1

n
∶ n ∈ Z+} ⊂ R = X

Order topologies II

Theorem (X,<) ordered set ⇒ order topology is normal
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Ex. R ×R with dictionary order is metrizable
≃ (0,1) × (0,1) HW Ex. 2.20.2 p. 124
ordered square I20 = [0,1] × [0,1]is not, proof later! see pg. 30
in particular, restricting the order topology of
R ×R to [0,1] × [0,1] does not give the
same topology as the topology from restricting
dictionary order on [0,1] × [0,1] see pg. 10

(My) pf. Let (X,<) be ordered.

A,B ⊂Xclosed disjoint fixed.
idea. ∀a ∈ A construct (xa, ya) ∋ a (xa, ya) ∩B = ∅

∀b ∈ B (xb, yb) ∋ b (xb, yb) ∩A = ∅
∀a, b (xa, y,a ) ∩ (xb, yb) = ∅ (∗) see pg. 27

Let then O1 = ⋃
a∈A

(xa, ya) O2 = ⋃
b∈B

(xb, yb)
O1 ⊃ A O2 ⊃ B O1 ∩O2 = ∅
Need to define xa, ya, xb, yb
First, need to take care of blank intervals

Definition a) (recall) I ⊂ X convex if
∀a, b ∈ I a < b ∀x ∈X a < x < b⇒ x ∈ I

Figure 2 - 29

b) I ⊂ X is called blank interval(BI) if
I convex and I ∩ (A ∪B) = ∅

c) I ⊂ X is maximal b.i.(MBI) if
I is BI ∀BI I ′ ⊃ I ⇒ I ′ = I

Lemma each BI I ⊂! one MBI Ĩ =MI

pf. ∃maxBI Ĩ ⊃ I by maximum principle

unique because if Ĩ , Ĩ ′ ⊃ I Î = Ĩ ∪ Ĩ ′ ⊃ I
MBI also defines BI ⊃ I

by max
Î ⊃ Ĩ Ĩmax⇒ Î = Ĩ

Î ⊃ Ĩ ′ Ĩ ′max⇒ Î = Ĩ ′
⇒ Ĩ = Ĩ ′

In particular, ∀x ∉ A ∪B {x} is BI
∃! MBI ⊃ {x} write it Mx
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Lemma ∀x, y ∈X [x, y] BI ⇔Mx =My

pf.⇐ Mx =My ∋ {x, y} BI

Figure 2 - 30

[x, y] ⊂Mx⇒ [x, y] ∩ (A ∪B) = ∅⇒ [x, y] BI
⇒ x ∉ A ∪B Let I BI I ∋ x

I ⊂ MBI MI

x ∈ MBI MI

by uniqueness MI =Mx

now x, y ∈ [x, y] BI; by ↑ above argument
M[x,y] =Mx =My

Convention (X,<)For each MBI ∆ ⊂X fix an element, α∆ ∈∆.(AC!)
Return to definition of ya (namely Mα∆

=∆)

Figure 2 - 31

Assume a ∈ A, So a ∉ B = B

if a =maxX set ya =∞ (yα =∞(formally) with (xα, yα) = (xα,∞) = (xα, a] )
otherwise ∃a′′ > a a′′ is lower bound for B ∩ [a,∞) B ∩ (a, a′′) = ∅[0] a′′ is immediate successor of a set ya = a′′

Otherwise, ∃a′ ∈ (a, a′′) (need to avoid a′ ∈ B)

Figure 2 - 32

[1] if a′ ∈ A set ya = a′

Figure 2 - 33

[2] if a′ ∉ A⇒ a′ ∉ A ∪B set ya = αMa′

Then ya has the following properties
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1) ya =∞ only if a =maxX
assume a ≠maxX below

2) ya > a and ([a, ya] ∩B = ∅ or ya = succ(a) )
pf.if ya ≤ a, then need case [2] and

Mya =MαM
a′
=Ma′(!)

⇒ [ya, a′] blank a ∈ [ya, a′] a /∈ A☇
3) if ya ∉ A then by (!) we have ya = αMya

or ya = succ(a) is the immed. succ. of a

Similarly yb for b ∈ B
xb should be defined so that

1) xb = −∞ only if b =minX
assume b ≠ minX

2) xb < b and ([xb, b] ∩A = ∅ or xb = pred(b) )

Figure 2 - 34

3) if xb ∉ B then xb = αMxb
or xb = pred(b) is the immed. pred. of b

Similarly xa. So now xa, ya, xb, yb defined.
Now assume a ∈ A b ∈ B

Without loss of generality, a < b ⇒ (ya ≠∞ xb ≠ −∞)
assume (xa, ya) ∩ (xb, yb) ≠ ∅ (**); to prove (∗) at page 25 by ☇
So xb < ya

if ya = succ(a), then (xa, ya) = (xa, a], so (**)⇒ xb ≤ a. But b > a, so a ∈ A∩ [xb, b] ☇ to 2)
Similarly xb ≠ pred(b).

[xb, b] ∩A = ∅[a, ya] ∩B = ∅ [xb, ya] ∩ (A ∪B) = ∅
⇒

⇓

Mya =Mxb

ya ∉ A
3)
Ô⇒ ya = αMya

xb ∉ B
3)
Ô⇒ xb = αMxb⇒ ⇓

ya = xb ☇

Figure 2 - 35

⇒ (∗) at page 25⇒ ∎

27



Chapter 3. Compactness, Connectedness, Completeness

26. Compact Spaces

I try to discuss this first exclusively for metric spaces and say later how/what to generalize
to topological spaces.

Definition xn ⊂ (X,d) sequence, xnm
is a subsequence if

nm > nm−1 nm ∈ Z+

Definition (sequence) compactness / limit point compactness ( see warning(!!Def.) page. 30)(X,d) is called compact if
∀(xn) ⊂X sequence, ∃(xnm

) ⊂ (xn) subsequence
converging in X ∃x ∈X ∶ xnm

→ x limit point

Remark (X,d) compact ⇒ diam(X) < ∞
and must be attained
∃x, y ∈ X d(x, y) = diam(X)

ex. R is not compact(0,1) is not compact (with Euclidean distance)

Ex. R, d =min(d,1) bounded, is not compact

Ex. R with discrete distance is bounded and attains diameter but not compact
(every converging sequence must be eventually constant)

But [0,1] is compact (with Euclidean distance) prove now!

Lemma xn ⊂ R increasing xn ≥ xn−1
strictly increasing xn > xn−1
decreasing xn ≤ xn−1
strictly decreasing xn < xn−1
monotonous = increasing or decreasing

Lemma xn increasing and bounded (above)
xn → sup{xn}
similarly decreasing
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Lemma (xn) bounded ⇒ ∃(xnm
) monotonous

pf. Assume ∄(xnm
) increasing will show lemma

by finding one decreasing sequence.
n0 = 0, k = 0
Let x = sup{xn ∶ n > nk}
if infinitely many xn = x ∃ constant subsequence ⇒ increasing ☇
if exists no xn = x

∃n1 xn1
> x − 1 xn1

< x
max{x1, . . . , xn1

} < x
∃n2 > n1 xn2

> xn1
xn2
< x

xni
increasing ☇

So ∃ finitely many xn = x

Let nk+1 = max{k ∶ xk = x} xn′ < xnk+1
(= x) n′ > nk+1

xnk
decreasing

Theorem (Bolzano-Weierstrass)
Every bounded sequence in R ⊃ converging subseqence

Ex. [0,1] (xn) ⊂ [0,1]
xn ⊂ R bounded ⇒ xnm

→ x[0,1] closed ⇒ x ∈ [0,1]
xnm
→ x ∈ [0,1] in relative topology

⇒ [0,1] compact

Theorem (X1, d1), (X2, d2) compact
⇒ (X1 ×X2, d1 + d2) compact

↑ or any d inducing product topology
√
d21 + d

2
2 ...

Theorem (X,d) compact A ⊂ X compact (in relative topology)

⇔ A = A d∣A×A
Theorem (X,d) any metric space A ⊂ X compact

⇒ A closed and bounded

Theorem (Heine-Borel) X = Rn with Euclidean metric

Figure 2 - 36

A closed and bounded ⇔ compact A ⊂ B ⊂ I × I ′

Ex. [0,1]ω ⊂ Rω with uniform metric closed and bounded

but ∃fn = { 1 x = n

0 x ≠ n
} ∄g ∶ fnm

⇉ g uniformly
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Thoerem f ∶ (X,d)→ R continuous X compact
f bounded and f attains maximum value

pf. if ∃f(xn)→∞ xn ∈ X

∃xnm
⊂ xn converging xnm

→ x

f continuous f(xnm
)→ f(x) ∈ R☇

so assume f(xn) bounded
∀ǫ > 0 ∃xǫ ∈ x f(xǫ) > sup(f(x)) − ǫ(x1/n) has converging subsequence xnm

→ x ∈X
f(xnm

)→ f(x)

↰

sup f f(x) = sup f =max f

Corollary (X,d) compact ⇒ X attains diam <∞
pf. d ∶X ×X´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

compact

→ R continuous

↓ I use; not to confuse with my use of “limit point”(pg. 28)
!! Definition (X,d) is acc. point compact

⇔ ∀S ⊂X ∣S∣ =∞ S has acc. point Aacc ≠ ∅

Lemma (X,d) acc. point compact ⇔ sequentially compact
pf.⇐ ∣S∣ =∞ ∃s1, s2, ⋅ ⋅ ⋅ ∈ S si ≠ sj

⇒

∃snm
→ X at most one Snm

=X

X acc. point of S
⇒ (xn) ⊂ X sequence, if set {xn} finite

then ∃ finitely many equal xnm
→ done

so ∣{xn}∣ =∞
⇒ it has accumulation point x
choose xnm

∈ B1/m(x) xnm
→ x

Theorem The ordered square [0,1]2 with the
(see pg. 25) order topology of the lexicographical order is not metrizable

(but it is T4 like any order topology; it is also linear continuum)
(promised this theorem as an application of compactness)

pf. assume [0,1]2 were metrizable

define f ∶ [0,1]→ R by f(x) =diam({x} × [0,1]) > 0
(w.l.o.g. bound the metric to avoid infinite)
diam (A) = sup{d(x, y) ∶ A}
Consider x0 ∈ [0,1]. Let xn ↘ x0 Then (xn,1)→ (x0,1)
and in fact for any sequence x′n ∈ [(x0,1), (xn,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Dn

]
x′n → (x0,1)
Thus lim

n→∞
d((x0,1),Dn) = 0

d(x,A) = sup{d(x, y) ∶ y ∈ A}
diam (Dn) ≤ 2d((x0,1),Dn) by triangle inequality
So diam(Dn)→ 0 and Dn ⊃ {xn} × [0,1]
⇒ f(xn) = diam ({xn} × [0,1])→ 0
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So lim
x→x+

0

f(x) = 0
Similarly let xn ↗ x0 argue with (x0,0) ← (xn,0)
that lim

x→x−
0

f(x) = 0. Thus now
∀x0 ∈ [0,1] lim

x→x0

f(x) = 0, but f(x0) > 0
Claim ∄ such f ⇒ ∎

pf. Let ǫ > 0
If exist infinitely many x ∈ [0,1] with f(x) ≥ ǫ
then by compactness they have an accumulation point
∃xn → x0 ∈ [0,1] x0 ≠ xn

f(xn) ≥ ǫ ☇ to lim
x→x0

f(x) = 0
So ∀ǫ Sǫ = ∣{x ∶ f(x) ≥ ǫ}∣ <∞
Then S = ∣{x ∶ f(x) > 0}∣ = n

⋃
i=1

S1/n is countable,

but we wanted S = [0,1], which is uncountable ☇∎

HW do it for [0,1] × [0,1); similar proof for {f ∶ R→ R} product topology
but {f ∶ Z+ → R} = Rω with product topology is metrizable Th. 20.5 p.123

Covering Compactness (sec. 26)

Definition (X,d) metric space
O ⊂ P(x) is an open cover(ing) of X if

⋃O =X and ∀O ∈ O O open in X

O′ ⊂ P(X) is called a subcover of O if O′ ⊂ O and O′ cover of X

Definition X is covering compact if every open

cover of X contains a finite subcover

Theorem (the Borel-Lebesgue Covering Theorem)(X,d) metric space X sequentially compact ⇔X covering is compact
for the proof, we need lemmas

Lemma (X,d) compact space ⇒ ∀X1 ⊃ X2 ⊃ X3 ⊃ . . . filtration with

nonempty closed sets, we have
∞
⋂
i=1

Xi ≠ ∅

pf. Take xi ∈Xi ∃xni
→ x Xi closed x ∈Xi ∀i ∎

Remark ⇐ also true. See last part of B-L proof below

Ex. X = R xi = (−∞,−i] closed filtration ⋂Xi = ∅

Lemma (HW) xn → x in (X,d) ∀ǫ > 0 ∃N ∀n,m ≥ N
d(xn, xm) < ǫ (Cauchy-property) ∎
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Pf of B-L “⇒ ” Prof. Friedrich 2.11.90
Step.1 X sequentially compact ⇒ ∃ finite ǫ-net
Step.2 ⇒X separable (HW)
Step.3 ⇒X is Lindelöf (every cover has countable subcover)
Step.4 ⇒X covering compact

Step.1 X compact⇒ ∀ǫ > 0 ∃p1, . . . , pk ∈ X
k

⋃
i=1

Bǫ(pi) =X =∶ {p1, . . . , pk} is ǫ-net
pf. by ☇ assume ∃ǫ > 0 ∀p1, . . . , pk ∀k {p1, . . . , pk} not ǫ-net

take p0 ∈X Bǫ(p0) ⊊ X ∃p1 ∉ Bǫ(p0)
Bǫ(p0) ∪Bǫ(p1) ⊊X ∃p2 ∉ Bǫ(p0) ∪Bǫ(p1)
So find a sequence pi ⊂ X with d(pi, pj) > ǫ ∀i, j
any subsequence gives ☇ to Cauchy-property ⇒ does not converge.

Step.2 X compact (sequentially) ⇒ ∃A ⊂X ∣A∣ ≤ ω A = X X separable

A =
∞
⋃
n=1

{finite 1/n-net} (think about it!) used d(x,A) lemma

Step.3 X separable, O open cover

to show ∃O ⊃ O′ countable subcover

Let A ⊂X, ∣A∣ ≤ ω, A = X
Λ = {(a, r) ∈ A ×Q ∶ ∃O ∈ O Br(a) ⊂ O}

Figure 2 - 37

Λ countable
for each (a, r) ∈ Λ choose an O = O(a, r) ∈ O with Br(a) ⊂ O (AC!)
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O′ = {O(a, r) ∶ (a, r) ∈ Λ} ∣O′∣ ≤ ω
claim O′ is open cover of X (subcover of O), i.e. ⋃O′ =X
pf. x ∈ X O cover ∃O ∈ O x ∈ O ∃ǫ > 0 Bǫ(x) ⊂ O

Since A is dense, ∃a ∈ A d(x, a) < ǫ/3

Figure 2 - 38

⇒ take r ∈ Q ∩ (ǫ/3, ǫ/2)
r > ǫ/3 Br(a) ∋ x
r < ǫ/2 Br(a) ⊂ Bǫ/3+ǫ/2(x) ⊂ Bǫ(x) ⊂ O

∃O ∈ O Br(a) ⊂ O(a, r) ∈ Λ x ∈ Br(a) ⊂ O′ ∶= O(a, r) ∈ O′
∀x ∈X∃O′ ∈ O′ ∶ x ∈ O′ ∎

Step.4 (final) O open cover

∃O′ countable subcover X = O1 ∪O2 ∪ ⋅ ⋅ ⋅ ∪ . . .

Consider Fn =X/ n

⋃
i=1

Oi

F1 ⊃ F2 ⊃ . . . Fi closed

if ∀iFi ≠ ∅ÔÔ⇒
Lemma

∞
⋂
i=1

Fi ≠ ∅⇒
∞
⋃
i=1

Oi ≠ X☇

So some Fn = ∅⇒X =
n

⋃
i=1

Oi

O′ = {Oi}ni=1 is finite subcover of O ∎ (end of “⇒”)

Pf of B-L “⇐”X convering compact ⇒ X sequentially compact.
assume p1, . . . , pn. . . . sequence in X

Consider Fn = {pn+1, pn+2, . . . } Un =X/Fn

F1 ⊃ F2 ⊃ F3 closed U1 ⊂ U2 ⊂ U3 open

if
∞
⋃
n=1

Un =X ÔÔÔÔÔÔÔ⇒
covering property

N

⋃
n=1

Un =X ⇒ FN = ∅☇

Thus
∞
⋃
i=1

Ui ⊊X ⇒
∞
⋂
i=1

Fi ≠ ∅

p ∈
∞
⋂
i=1

Fi p ∈ F1 = {p2, p3, . . . } ǫ = 1 ∃n1 > 1 d(pn1
, p) < 1

p ∈ Fn1
= {pn1+1, . . . } ǫ = 1/2 ∃n2 > n1 d(pn2

, p) < 1/2
p ∈ Fn2

= {pn2+1, . . . } ǫ = 1/3 ∃n3 > n2 d(pn3
, p) < 1/3

. . . pni
→ p subsequence of (pn) ∎

(Do Heine’s Theorem; 27.6, p.174)
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Now to general topological spaces

Covering Compactness Section. 26 Limit point Compactness Section. 28

X, Th. 28.1 p.177(SΩ)
Covering /⇐ Accumulation point

Compactness ⇒ Compactness

X, p.34(∗1) /⇓ /⇑ X,SΩ ⇗ works as above /⇙ X p. 34(∗1)

Sequence
Compactness

Lemma order topology is covering compact ⇒ ∃ smallest and largest element.

Rem The converse is true if LUBP; see Th 27.1 in book

Theorem order topology s.t. ∃ smallest, largest element and Least upper bound property,
⇒ Seqence compact (Generalization of Bolzano-Weierstrass theorem)

Ex. SΩ = SΩ/{Ω} “smallest uncountable ordered set”
but no largest element⇒ not covering compact
but SΩ is sequentially (and hence accumulation point) compact⇒ not metrizable!
x1, x2, ⋅ ⋅ ⋅ ⊂ SΩ {xi} ⊂ SΩ ∣{xi}∣ ≤ ω⇒ {xi} bounded
a0 smallest element of SΩ ∃b ∈ SΩ {xi} ⊂ [a0, b] sequentially compact.
Generalization of Bolzano-Weierstrass ⇒ ∃ converging subsequence in [ao, b]
also converging in SΩ

(order topology of interval = relative topology)

Remark This example shows also if x ∈ A (pg.13) A = SΩ

then not necessarily x ∈ Alim ⇐ x ∈ SΩ x = Ω
like in pg. 23

A = SΩ but Ω ∉ (SΩ)lim
↑ explains the notation SΩ

(∗1)
Theorem Tychonoff’s Theorem (Section 37, p. 167)

The product topology of (any number of) (covering) compact spaces is
(covering) compact

Ex. Σ = {0,1}Z+ = {sequence of 0,1}({0,1} discrete topology)
X = {0,1}Σprod is (c.) compact by Tychonoff’s theorem

(⇒ also accumulation point compact) (X is T2 etc.)
but X is not sequentially compact.
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Pf.
fn → g

∈ ∈

{0,1}Σ {0,1}Σ
∀σ ∈ Σ ∃n fi(σ) = g(σ) i ≥ n

pointwise convergence

⇒ {(fn)converge⇔ ∀σ ∈ Σ {fn(σ)} is eventually constant}
Consdier (fn) ⊂ {0,1}Σ given by fn(σ) = σ(n)
fn ∶ Σ → {0,1} fn((0,1,0, . . . ,0,1,1

n
,0, . . . )) = 1

Let (fnk
) ⊂ (fn); choose σ̂ ∈ Σ with σ̂(ni) = { 1 i even

0 i odd
}

fnk
(σ̂) = σ̂(nk) = { 1 k even

0 k odd
} is not eventually constant

fnk
↛ g

Remark There are simpler examples for ‘acc. point compact /⇒ sequentially compact’
like Xdisc × {0,1}indisc, ∣X ∣ =∞, but not even T0

Above (*1) has an example of a space that is covering (and accumulation point) compact,
but not sequentially compact, but this example uses Tychonoff’s theorem
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Pb. Prove that I20 ordered space is covering compact
sol. O open cover

Let x0 ∈ [0,1] I(x0) = x0 × [0,1]
O induces covering of I(x0) Õx0

= {O ∩ I(x0) ∶ O ∈ O}

Figure 2 - 39

I(x0) ≅ [0,1] (covering) compact

∃Õ′x0
⊂ Õx0

∣Õ′x0
∣ <∞ ⋃ Õ′x0

= I(x0)
for each Õ′ ∈ Õ′x0

choose an ÔÕ′ ∈ O with ÔÕ′ ∩ I(x0) = Õ′
Ox0
= {ÔÕ′ ∶ Õ

′ ∈ Õ′x0
} ∣Ox0

∣ <∞
⇒ ∃Ox0

⊂ O ∣Ox0
∣ <∞ (Λx0

∶=)⋃Ox0
⊃ I(x0)

Λx0
∋ x0 × 0 open ⇒ Λx0

⊃ (x′0 × y′0, x0 × 0] x′0 < x0 (x0 ≠ 0)
⇒ Λx0

⊃ (x′0, x0) × [0,1]
Similarly if x0 ≠ 1 Λx0

∋ x0 × 1
⇒ Λx0

⊃ (x0, x
′′
0) × [0,1] x′′0 > x0

⇒ Λx0
⊃ (x′0, x′′0) × [0,1]

so for each x0 ∈ [0,1] ∃ finite subfamily of O,Ox0
and

∃x′0 < x0 < x′′0 ⋃Ox0
⊃ (x′0, x′′0) × [0,1]

with (x′0, x′′0) = (x′0,1] x0 = 1
= [0, x′′0) x0 = 0

Now {(x′0, x′′0) ∶ x0 ∈ [0,1]} is an open cover of [0,1]
[0,1] compact
ÔÔÔÔÔ⇒ ∃x1, . . . , xn ∶ (x′1, x′′1) ∪ ⋅ ⋅ ⋅ ∪ (x′n, x′′n) = [0,1]
then

n

⋃
i=1

Oxi
is a finite subcover of O
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Pb. Prove that I20 is sequentially compact
sol. Let (xn × yn) ⊂ I20(xn) ⊂ [0,1] sequence ∃xnk

→ x

w.l.o.g. (1)xnk
≡ x (2) xnk

↗ x (3) xnk
↘ x

go over to subsequence(2) (xnk
, ynk
)→ (x,0) (3) (xnk

, ynk
)→ (x,1)(1) ∃(ynkl

) ⊂ (ynk
) ynkl

→ y (xnkl
, ynkl
)→ (x, y)

The I20 is sequentially compact
generalize that argument to prove the [0,1]ω is sequentially compact with the dictionary
order.

↰

(solution below)
(It is also covering compact but this needs Th 27.1 in book and HW 10.)

Sol. Assume (fk)∞k=1 ∈ F(Z+, [0,1]) ≃ [0,1]ω
does not have converging subsequence in dictionary order. We give ☇.
We construct for each n ∈ Z+ a subsequence (fk,n)∞k=1 of fk
and a sequence (Ck)∞k=1 such that (fk,n+1) ⊂ (fk,n) is a subsequence
and fk,n∣{1,...,n−1} = C ∣{1,...,n−1}.
We prove by induction, i = 1 is ok fk,1 = fk
Assume (fk,n)∞k=1 constructed as well as C1, . . . ,Cn−1

Consider (fk,n(n))∞k=1 w.l.o.g. ∃(fk,n+1) ⊂ (fk)
fk,n+1(n)→ Cn w.l.o.g. either

(1)fk,n+1(n) ≡ Cn (k →∞)(2)fk,n+1(n)↗ Cn (k →∞)(3)fk,n+1(n)↘ Cn (k →∞)
(2) fk,n+1 ÐÐ→

k→∞
f(l) = { Cl l ≤ n

0 l > n
} ☇

(3) fk,n+1 ÐÐ→
k→∞

f(l) = { Cl l ≤ n
1 l > n

} ☇

(1) constructed fk,n+1 and Cn Induction complete
So now ∃(fk,n) ⊂ (fk) (C1,C2, . . . ) as needed.
Consider (fk,k)∞k=1 diagonalization
fk,k(n) = Cn k > n
fk,k ÐÐ→

k→∞
(C1,C2,C3, . . . ) ≃ (f(n) = Cn) ☇

Thus for non-metrizable spaces, ‘(any sort of) compact ⇒ separable ’ is false!

23. Connected Spaces

Definition X topological space. A separation (I write (disjoint) decomposition)

U,V U,V ⊂X open U,V ≠ ∅
U ∪ V = X U ∩ V = ∅
X connected ⇔X has no separation
X disconnected ⇔ ∃ separation

Remark X is connected ⇔ ∀A ⊂X A open and closed
⇒ A = ∅ or A = X
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Remark do not use “separable” in this context (∃ separation) ∃A ⊂ X ∶ A =X, ∣A∣ ≤ ω
for disconnected pg. 32 step 2. in B-L proof

Definition A ⊂ X separation of A in X

U,V U,V ≠ ∅ U,V not necessarily open

A = U ∪ V U ∩ V = ∅
U ∩ V = ∅

U,V disjoint and none containing an accumulation point of the other

Lemma A is connected (in relative topology)⇔ A has no separation

Ex. X = R A = [−1,0) ∪ (0,1], (U = [−1,0), V = (0,1])(0,1] ∩ [−1,0) = [0,1] ∩ [−1,0) = ∅(0,1] ∩ [−1,0) = (0,1] ∩ [−1,0] = ∅
A disconncected

Remark U ∩ V = {0} ≠ ∅ but this is not forbidden!
↑ U,V have common accumulation point

Ex. R2 Ex. R2

Figure 2 - 40 Figure 2 - 41

U V U V{(x,0) ∶ x ∈ R} ∪ {(x,1/x) ∶ x > 0} {(x,0) ∶ x ∈ R} ∪ {(0,1/x) ∶ x > 0}
separation no separation

U ∩ V = U ∩ V = ∅ V ∩U ≠ ∅

Lemma C,D separation of X Y ⊂ X connected
⇒ Y ⊂ C or Y ⊂ D

(!)Theorem X ∋ x Y ⊂ P(X) ∀Y ∈ Y Y connected, Y ∋ x

⇒ ⋃Y connected

Figure 2 - 42

(*)Theorem If A ⊂ X connected and A ⊂ B ⊂ A ⇒ B connected.
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Ex. not true for interior!

Figure 2 - 43

Theorem The image of a connected set under continuous map is connected

Theorem X,Y connected ⇒ X × Y connected
⇒ true for finite products

Ex. Rω box topology or uniform topology
R connected (prove later)
Rω = {bounded sequences}∪{unbounded sequences}
both open and disjoint non-empty
⇒ Rω disconnected with uniform or box topology

Ex. Rω with product topology
Rn ≃ {(x1, . . . , xn,0, . . . ,0)} ↪ Rω connected

⋂Rn = 0 R =
∞
⋃
n=1

Rn connected

Rω = R f ∶ Z+ → R ∈ Rω

R dense fn(x) = { f(x) x ≤ n
0 x > n

} → f pointwise

Rω connected

24. Connected Subspaces of R

Definition (recall) (X,<) ordered set is a linear continuum if
0) ∣X ∣ > 1
1) Least Upper Bound Property(LUBP)
2) ∀x, y ∈X x < y⇒ ∃z ∈X x < z < y

Intermediate Element Property(IEP)

(!)Theorem L is linear continuum with order topology, Y ⊂ L convex

⇒ Y connected
in particular, L connected, and so are intervals and rays in L

recall: Y ⊂ L convex ∀x, y ∈ Y x < y ∀z ∈ L
x < z < y⇒ z ∈ Y
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pf. By contradiction

Assume Y = A ∪B A ∩B = ∅ A,B ≠ ∅ A,B open (in Y )
a ∈ A b ∈ B assume w.l.o.g. a < b
I = [a, b] = A ∩ [a, b]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A0

∪B ∩ [a, b]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B0

A0,B0 open in I

Figure 2 - 44

c = supA ∩ [a, b]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A0

∃d < c
1) If c ∈ B0 ⇒ c ≠ a⇒ (d, c] ⊂ B0 B0 open in I

∃d < f < c [f, c] ⊂ B0

Figure 2 - 45

[f, c] ∩A0 = ∅ ☇ to c = supA0

2) If c ∈ A0 ⇒ c ≠ b⇒ ∃[c, d) ⊂ A0 A0 open in I

Figure 2 - 46

∃c < f < d f ∈ A0 ☇ to c = supA0 ∎

Corollary R connected and intervals and rays in it.

Remark Converse of this Theorem also true:(X,A<) connected ⇒ (X,<) is linear continuum
Theorem Intermediate value theorem(X,A) connected (Y,<) order topology

f ∶ X → Y continuous ⇒ ∀x, y ∈ X ∀c ∈ [f(x), f(y)]
∃d ∈ X f(d) = c

pf. by contradiction if ∃r ∈ (f(x), f(y)) r ∉ f(X)
Consider X = f−1((−∞, r)) ∪ f−1((r,∞))
separation of X

Remark take X ′ = [x, y]→ d ∈ [x, y] “Darboux property”

Ex. I20 ordered square with dictionary order is a linear continuum
different from R

Ex. X well ordered ⇒ X × [0,1) with dictionary order is a linear continuum
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Important case:

Figure 2 - 47

X = SΩ(= SΩ/{Ω})
consider SΩ × [0,1)/{a0 × 0} =∶ Λ
with dictionary order
topologist’s long line

Λ is locally homeomorphic to R (every point has a neighborhood
homeomorphic to an interval)
but not embeddable in R; it is not separable

25. Components

Definition X topological space define equivalence relation on X by x, y ∈X

x ∼ y ∃ connected subspace W of X W ∋ x, y

equivalence class
Definition [x]∼ is the connected component of x ∈ X

Cx = [x]∼ = ⋃{C ⊂X connected, C ∋ x} connected by pg.38 (!)
maximal connected set containing x

Remark Cx closed as Cx(∋ x) is connected ⇒ Cx ⊂ Cx

Definition X satisfies the connected neighborhood condition (CNC) (resp. at x ∈ X)
if every point (resp. the point x ∈X) has a connected neighborhood

Lemma y ∈ Cx ⇒ ∀(U,V ) separation of X x ∈ U ⇒ y ∈ U

⇐ if CNC see Ex. 3.26.10
pf. ⇒ ∃ connected subspace W ∋ x, y

assume by contradiction ∃(U,V ) x ∈ U y ∈ V(U ∩W,V ∩W ) separation of W
W connected ⇒ U ∩W (∋ x) = ∅ or V ∩W (∋ y) = ∅ ☇

⇐ by contraposition ∃x /∼ y
∀W ∋ x connected W /∋ y
Cx = ⋃{W ∋ x connected} /∋ y
connected neighborhood condition ⇒ Cx open

(1)

(and closed)
(2) or Remark above

⇒ Cx

∈x
∪ (X/Cx)

∈y
is a separation

Figure 2 - 48: (1) Figure 2 - 49: (2)

Note If A ⊂X , connected components of A are meant with respect to relative topology
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Definition X is totally disconnected if all its connected components are points

Example If ∣S∣ = n <∞
F(S,Rdiscr)prod ≃ Rn

discr totally disconnected

F(Z+,Rdiscr)prod = (Rdiscr)ω why?
= (Rω, dictionary order) also totally disconnected

Remark A ⊂ X discrete ⇒ A totally disconnected (in relative topology)
converse is false

Ex. Q ⊂ R is totally disconnected (but surely not discrete)
x < y ∃r ∈ (x, y) irrational
Q = (Q ∩ (−∞, r))

open in Q

∪ (Q ∪ (r,∞))
open in Q

I can separate points by open sets
(whose union is the whole space unlike in T2!)

Remark Q does not satisfy the CNC, but “⇐” of lemma is still true

Remark CNC
(1),(2)
ÔÔ⇒ every union of connected components is open and closed

(which is false for Q)
Definition X locally connected at x

∀U ∋ x neighborhood ∃U ′ ⊂ U U ′ ∋ x neighborhood connected

X locally connected if locally connected at x ∀x ∈X

Figure 2 - 50

Remark X locally connected (at x)⇒ CNC (at x) (set U = X)

Theorem X is locally connected ⇔ ∀U ⊂X open
∀Cx ⊂ U component of U (in relative topology)
Cx ⊂X open

Ex. {f ∶ R→ R} with uniform topology F(R,R)uni
f(x) = x ∈ {f ∶ lim

x→∞
f(x)
x
= 1} = Λ1 open and closed

0 ∈ {f ∶ lim
x→∞

f(x)
x
= 0} = Λ0

disconnected! every behavior →∞ gives a separation

Figure 2 - 51´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
{f ∶R→R}

connected components [f]∼
f ∼ g⇔ f − g bounded
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Path Connectedness and Path Components

Definition path: [a, b] →X from x ∈X to y ∈X

is continuous f(a) = x, f(b) = y

Figure 2 - 52

X is path connected if
∀x, y ∈X ∃ path in X from x to y

write “x↔ y”

Remark path-connected ⇒ connected

Ex. V, ∥ ⋅ ∥ norm, whose unit ball B = {x ∈ V ∶ ∥x∥ ≤ 1}
B is convex ∀x, y ∈ B, t ∈ [0,1], tx + (1 − t)y ∈ B. Then
t ↦ tx + (1 − t)y continuous in t (in norm topology)
B is path connected

Ex. Rn/{0} path connected

Figure 2 - 53

Ex. I20 is not path connected, but it’s a linear continuum (LUBP HW!) So it’s connected

Figure 2 - 54

a = (x1, y1) b = (x2, y2) x2 > x1

f ∶ [0,1]→X continuous image must be connected
if image ∋ a, b⇒ image ⊃ [a, b] ⊃ (x1, x2)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

uncountable

×[0,1]
∃x0 ∈ (x1, x2) f(Q ∩ [0,1]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

countable

) ∩ ({x0}×(0,1)
open

) = ∅
f−1({x0} × (0,1)) ⊂ R ∖Q, but Int(R ∖Q) = ∅ ☇
non-empty open as f is continuous
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Ex. A = {x × sin 1
x
∶ 0 < x < 1

π
} ⊂ R2 topologist’s sine curve

Figure 2 - 55

A = A ∪ ({0} × [−1,1])
A connected ⇒ A connected but A is not path connected

Let there be a path f ∶ [0,1]→ A ⊂ R2

f(t) = (x(t), y(t)) with f(0) = (0,0)
=A

f(1) = ( 1
π
,0)
=B

x continuous x−1(0) ⊂ [0,1] closed ⇒ ∃maxx−1(0) =∶ a′
w.l.o.g. f ∶ [a′,1]→ A x(t) > 0 t > a′⇒ img(f ∣(a′,1]) ⊂ A
x(a′) = 0, x(1) = 1

π
⇒ by Intermediate Value Theorem

∀x ∈ (0, 1
π
] ∃t x(t) = x⇒ y(t) = sin( 1

x
) Image(f) = A ∪ {0 × y(a′)}[a′,1] (sequentially) compact, f continuous ⇒ Img(f) closed

⇒ Img(f) = A ∪ {0 × y(a′)} = A ≠ A ∪ {0 × y(a′)} ☇
This means the closure of a path-connected set is not path-connected!
(Compare theorem(*) on pg. 38)

Definition X topological space, define equivalence relation by
x ∼ y ∃ path in X from x to y[x]∼ is x’s path component

Figure 2 - 56

Theorem path components of X are
disjoint path connected subspaces
whose union is X
each path-connected subspace of X is
contained in exactly one path component

Figure 2 - 57

Ex. Q ⊂ R

all components trivial ⇒ all path components are trivial
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Ex. from pg.44 topologist’s sine curve is connected but not path-connected!

A has one component, A, and
two path components A/{0 × 0}

=A1

and {0} × [−1,1]
=A2

note that in A,
A1 is open but not closed ⇒ unlike components, path
A2 is closed but not open components need not be closed

Ex. connected take A/{0 × 0} ∪ {0} × ([−1,1]/Q)

Figure 2 - 58

this is still connected (= one component)
but has uncountably many path components!

Ex. Consider {f ∶ R→ R} with uniform topology
connected component Cf of f is the set of maps g
with ∣g − f ∣ bounded. (see Ex. 3.26.2 p.160 in book, p. 38 in note)
This is path connected in fact it is convex (as ⊂ VS/R)
tf + (1 − t)g gives a (straight) path from f to g ∈ Cf

Similarly you can do in box topology with
Cf = {g ∶ ∣{x ∶ g(x) ≠ f(x)}∣ <∞} (is also convex)

Again there is a local version

Definition X is locally path connected if
∀U ∋ x open ∃U ⊃ U ′ ∋ x U ′ path connected

Remark locally path connected ⇒ locally connected

Ex. (0,1) × [0,1) with dictionary order is not connected, not locally connected(⇒ not path connected and not locally path connected.)

Ex. [0,1] × (0,1) with dictionary order is not connected but locally connected
not path connected, but locally path connected

Ex. every set with the discrete topology is locally connected
and locally path connected since U = {x} ∋ x is open
(but, of course, totally disconnected and path-disconnected)

Theorem X locally (path) connected ⇔ ∀U ⊂X open
∀U ′ (path) component of U U ′ ⊂X open

Theorem each path component of X lies (entirely) within a component of X
if X is locally path connected, then components and path components are the same

Corollary connected and locally path connected ⇒ path connected
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Ex. I20 = [0,1]2 has LUBP(HW1) (See Pb.3. p.160 in book)
Intermediate Element Property (IEP) ⇒ Linear continuum

Th.(!) p.39
ÔÔÔÔ⇒ connected and locally connected

path connected?

(a, b)↔ (c, d) if a = c
Figure 2 - 59

but (a, b) /↔ (c, d) if a ≠ c
assume f ∶ [0,1]→ I20 f(0) = (a, b) = a × b

f(1) = (c, d) = c × d
f([0,1]) ⊃ [a × b, c × d]
A = Q ∩ [0,1] ⊂ [0,1] dense, countable
f continuous ⇒ f(A) ⊃ f(A) = f([0,1]) ⊃ [a × b, c × d]
B ∶= f(A) ∩ (a × b, c × d) dense in (a × b, c × d), countable
but (a × b, c × d) ⊃ ⋃

a<x<b

{x} × [0,1]⇒ ∃s ∈ (a, b)
uncountable, disjoint union

B ∩ ({s} × [0,1]) = ∅ (a × b, c × d) ⊃ {s} × [0,1] ⊃ {s} × (0,1) open
B ⊊ (a × b, c × d) ☇

so path components of I20 are {s} × [0,1]
Figure 2 - 60

43. Complete metric spaces

Assume (X,d) metric space
Recall (proof of Borel-Lebesgue) (X,d) ⊃ (xn)

xn → x⇒ ∀ǫ ∃N ∀m,n ≥ N d(xm, xn) < ǫ (⋅)

Definition We say (xn) is Cauchy-sequence if (xn) satisfies (⋅)
Lemma (xn) converges ⇒ (xn) Cauchy-sequence
Definition We say (X,d) is complete if every Cauchy sequence converges

(i.e. converse of lemma holds)

Lemma Let (xn) be a Cauchy-sequnece, if (xn) has a convergent subsequence,
then (xn) converges
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Corollary X complete ⇔ every Cauchy sequence has a convergent subsequence

(�)Comment (0,1)
Eucl.

non-complete

≃ R
Eucl.

complete

homeomorphic

so ∃ metric on (0,1) giving Euclidean topology
with respect to which (0,1) is complete
Thus completeness depends on metric (not only on metrizability)

Corollary X compact ⇒ X complete

topological property metric property
metrizable topology ⇒ complete with respect to every metric

space compact inducing the topology

Theorem Rk complete. (with Euclidean metric)
pf. let (xn) be Cauchy-sequence

⇒ (xn) bounded ⇒ (xn) ⊃ [−M,M]k compact
⇒ (xn) has convergent subsequence ⇒ (xn) converges

For Rω recall the following lemma

Lemma let X =∏
α∈I

Xα with product topology, and

for α0 ∈ I let πα0
∶ X → Xα0

be the projection (xα)α∈I ↦ xα0

Then xn → x in X⇔ ∀α ∈ I πα(xn)→ πα(x) in Xα

(i.e. convergence in the product topology is pointwise convergence)

Theorem The product topology on Rω has a metric with respect to
which it is complete

pf. d(x, y) = sup
i>0
{d(xi, yi)

i
} d(a, b) = min(∣a − b∣,1)

d gives product space
assume (xn) Cauchy-sequence in (X = Rω, d)
∀i πi(xn) is R is Cauchy-sequence because∣πi(a) − πi(b)∣ ≤ i ⋅ d(a, b) i-fixed
so πi(xn)→ ai convergent in R∀i Then,
xn → (ai)∞i=1 in X

Remark (xn) Cauchy-sequence, with respect to d

⇔ (xn) Cauchy sequence with respect to d(X,d) complete ⇔ (X,d) complete

Ex. Q, (−1,1) with Euclidean metric not complete

consider xn ∈ Q xn →
√
2 in R (for Q)

−1 + 1
n
∈ (−1,1)→ −1 (for (−1,1))
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Remark (−1,1)
not complete

≃ R
complete

homeomorphic

so ∃d on (-1,1) giving Euclidean topology
with respect to which is complete → completeness
pg.47 (�)Comment ⇐ depends on metric(not only on metrizability)

Theorem Let (X,d) complete.
A ⊂ X closed ⇒ (A,d∣A×A) complete

pf. (xn) ⊂ A (xn) ⊂X Cauchy-sequence (xn)→ x in X

Cauchy-sequence A closed ⇒ x ∈ A⇒(xn)→ x in A

Remark ⇐ also true: A ⊂X complete ⇒ A closed

Remark RJ = F(J,R)prod is in general not metrizable,
so completeness makes no sense
but RJ

uni is metrizable. Recall uniform metric

Definition Let (Yα, dα) metric space.

Let dα = min(dα,1)
For Y =∏

α∈J

Aα define the uniform metric on Y by

̺(x, y) ∶= sup
α∈J

{dα(πα(x), πα(y))} πα ∶ Y → Aα

Theorem (Y, d) compete ⇒Y J =∏
α∈J

Yα Yα = Y

is complete with uniform metric ↑ index the copy
pf. let (fn) ⊂ Y J Cauchy-sequence with respect to ̺

then (πα(fn)) ⊂ Yα Cauchy-sequence in (Yα, dα)
⇒ Cauchy sequence in (Yα, dα)
πα(fn)→ yα in Yα

Let f ∶ α ↦ yα
We claim fn → f in (Y J , ̺)
Given ǫ > 0 choose N with ∀n,m ≥ N
d(fn(α), fm(α)) < ǫ/2 ∀α ∈ J(⇐ ̺(fm, fn) < ǫ/2)

m→∞
ÐÐÐÐÐÐ→
d continuous

d(fn(α), f(α)) ≤ ǫ/2
This holds ∀α ∈ J ∀n ≥ N
̺(fn, f) = sup

α
d(fn(α), f(α)) ≤ ǫ/2 < ǫ

⇒ ∀ǫ > 0 ∃N ∀n ≥ N ̺(fn, f) < ǫ⇒ fn → f

Definition Now assume X is topological space
C(X,Y )

=

⊂ F(X,Y ) = Y X

is {f ∈ Y X ∶ f continuous}
Definition f ∶ X → (Y, d) bounded if f(X) ⊂ Y

is a bounded set diam(f(X)) <∞
B(X,Y )

=

⊂ Y X

{f ∶ X → Y f bounded}
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Theorem (Y, d) metric space
B(X,Y ) and C(X,Y )(X topological space)
are closed in (Y X , ̺) and therefore complete

Ex. C(R,R) ⊂ F(R,R)uni closed
⇓

(but not discrete)

C(R,R) ⊂ F(R,R)box (closed and) discrete ⇐ HW
C(R,R)

∪
⊂ F(R,R)prod is dense (and not closed)

R[z] dense (Lagrange Interpolation)

Completion

Definition (X,d), (Y, d̃) metric spaces
we say f ∶ X → Y is isometry if

∀x, x̃ ∈ X d(x, x̃) = d̃(f(x), f(x̃))
Remark f isometry ⇒ injective

so f is also called an “isometric embedding”

Theorem (Existence of completion)(X,d) metric space ∃(Y, d̃) complete metric space
f ∶ X → Y isometric embedding

Definition If (X,d) metric space (Y, d̃) compete metric space
f ∶ X → Y isometric embedding

call f(X) ⊂ Y the completion of X

Remark completion is unique up to isometry

Construction U(Xω) = {(x1, x2, x3, . . . ) ∈X Cauchy sequence} ⊂Xω

Let ∼ be equivalence relation on U(Xω)(xi) ∼ (x′i) ∶⇔ d(xi, x
′
i)→ 0

Then Y = Γ(X) ∶= U(Xω)/ ∼
d̃([(xi)], [(x′i)]) = lim

i→∞
d(xi, x

′
i)

f ∶ X ↪ Y is given by x ↦ [(x,x, x, . . . )]
Ex. X = Q with Euclidean metric Γ(Q) = R construction of real numbers
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