Chapter 2. Topological Spaces and Continuous Functions

12. Topological Spaces, topological operations, separation

<u>Definition</u> X set, $\mathcal{A} \subset \mathcal{P}(X)$ topoogy on X if

- (1) $\emptyset, X \subset \mathcal{A}$
- (2) closed under arbitrary union $\mathcal{A}' \subset \mathcal{A} : \bigcup \mathcal{A}' = \bigcup_{A' \in \mathcal{A}'} A' \in \mathcal{A}$
- (3) closed under simple intersection $A, B \in \mathcal{A} \Rightarrow \overline{A \cap B \in \mathcal{A}}$
- $\underline{\mathbf{Remark}} (3) \iff \forall \mathcal{A}' \subset \mathcal{A} |\mathcal{A}'| < \infty \cap \mathcal{A}' \in \mathcal{A}$ closed under <u>finite</u> \cap

<u>Definition</u> (X, \mathcal{A}) topology call $A \in \mathcal{A}$ an open set

- **<u>Ex.</u>** $\mathcal{A} = \mathcal{P}(X)$ discrete topology write $(X, \mathcal{P}(X)) = X_{\text{discr}}$ $\mathcal{A} = \{\emptyset, X\}$ trivial(indiscrete) topology
- **<u>Ex.</u>** \mathcal{A} = maximal chain in $(\mathcal{P}(X), \subsetneq) \to HW$
- **<u>Ex.</u>** $\mathcal{A} = \{A \subset X : |X \setminus A| < \infty\} \cup \{\emptyset\}$ finite complement (f.c.) topology similarly: countable complement topology

trivial topology motivates

Definition (X, \mathcal{A}) topological space $x_1, x_2 \in X$ are call topologically indistinguishable if $\forall A \in \mathcal{A}$ $(x_1 \in A \Leftrightarrow x_2 \in A)$ \downarrow means $x_1, x_2 \in A$ or $x_1, x_2 \notin A$ topology \mathcal{A} cannot distinguish x_1, x_2

Definition (T_0 Kholmogorov axiom) - (very basic separation axiom) \mathcal{A} is T_0 if \nexists topologically indistinguishable points $\Leftrightarrow \forall x_1 \neq x_2 \; \exists A \in \mathcal{A} \; x_1 \in A \; x_2 \notin A \text{ or } x_1 \notin A \; x_2 \in A$

Let \mathcal{A} be a topology on X. Define an equivalence relation on X by $x_1 \sim x_2 \Leftrightarrow x_1$ is topologically indistinguishable from x_2 Then let \downarrow equivalence class of x under \sim

$$\tilde{X} = X / \sim = \{ [x]_{\sim} : x \in X \}$$

and define a topology $\tilde{\mathcal{A}}$ on \tilde{X} by

$$\tilde{\mathcal{A}} = \{\{[x]_{\sim} : x \in A\} : A \in \mathcal{A}\}$$

thus topology identifies (and removes) topologically indistinguishable points $(\tilde{X}, \tilde{\mathcal{A}})$ is called <u>Kholmogorov quotient</u> of $(X.\mathcal{A})$ Trivial topology is not T_0 unless |X| = 1

Ex. if
$$\mathcal{A} = \{\emptyset, X\}$$
 then $\tilde{X} = \{*\}$

often will assume T_0

<u>Definition</u> $(X, \mathcal{A}) \ A \subset X$ is called <u>closed</u> if $X \setminus A$ is open $\{A_i\}_{i \in I}, A_i \text{ closed}, \bigcap \{A_i\} = \bigcap_{i \in I} A_i \text{ closed} \quad A, B \text{ closed} \quad A \cup B \text{ closed}$

<u>Definition</u> $x \in X$. An $O \in \mathcal{A}, O \ni x$ is called neighborhood of x

Definition $(X, \mathcal{A}) \ A \subset X$ any set Let $Int(A) = \bigcup \{A' \in \mathcal{A} : A' \subset A\}$ the interior of $A \ \{x \in X(x \in A) : \exists O \in \mathcal{A} \ x \in O \subset A\}$

$$= \{ x \in X : \exists O \in \mathcal{A} \quad x \in O \subset A \}$$

Figure 2 - 2. interior point

$$\underbrace{\textbf{lemma}}_{1} \quad \text{Int}(A) \subset A$$

$$2) \quad \text{Int}(A) = A \Leftrightarrow A \text{ is open } (\Rightarrow \text{Int}(\emptyset) = \emptyset \quad \text{Int}(X) = X)$$

$$3) \quad A \subset B \Rightarrow \text{Int}(A) \subset \text{Int}(B)$$

$$4) \quad \text{Int}(\text{Int}(A)) = \text{Int}(A)(\Leftrightarrow \text{Int}(A) \text{ open})$$

$$\underbrace{pf.}_{2} \quad 1) \quad \checkmark$$

$$2) \quad \stackrel{`` \leftarrow "` \text{ open } A \in \mathcal{A}' = \{A' \in \mathcal{A} : A' \subset A\}}_{A \supset \text{Int}(A) = \bigcup \mathcal{A}' \supset A \Rightarrow \text{Int}(A) = A$$

$$\uparrow 1)$$

$$\stackrel{`` \Rightarrow "` \text{Int}(A) = A \quad A = \bigcup \{\underline{A' \in \mathcal{A} : A' \subset A}\}$$

$$\mathcal{A}' \subset \mathcal{A} \xrightarrow{\text{top. prop.}}_{B'} A \in \mathcal{A} \Rightarrow A \text{ open}$$

$$3) \quad A \subset B \quad \mathcal{A}' = \{A' \in \mathcal{A} : A' \subset A\}$$

$$\subset \mathcal{B}' = \{B' \in \mathcal{A} : B' \subset B\}$$

$$\text{Int}(B) = \bigcup \mathcal{B}' \supset \bigcup \mathcal{A}' = \text{Int}(A)$$

$$4) \quad \text{Int}(A) = \bigcup \mathcal{A}' \quad \text{for } \mathcal{A}' \subset \mathcal{A} \Rightarrow \text{Int}(A) \text{ open}$$

$$\xrightarrow{2}_{P} \text{Int}(\text{Int}(A)) = \text{Int}(A)$$

Definition $(X, \mathcal{A}) \ A \subset X$ define the <u>exterior</u> \leftarrow try not to use much Ext $(A) = Int(X \setminus A)$ = $\{x \in X : \exists O \in \mathcal{A} \quad O \cap A = \emptyset\}$

 $x \in \operatorname{Ext}(A)$ exterior point

closure

$$\overline{A} = X \setminus \text{Ext}(A) = X \setminus \text{Int}(X \setminus A)$$
$$= \{ x \in X : \forall O \in \mathcal{A} \ O \ni x \Rightarrow O \cap A \neq \emptyset \}$$

- **Lemma** Properties of closure $\overline{A} \supset A$ $\overline{A} = A \Leftrightarrow A \operatorname{closed}(\Rightarrow \overline{\varnothing} = \emptyset, \overline{X} = X)$ $\overline{\overline{A}} = \overline{A} \text{ (i.e. } \overline{A} \text{ is closed})$ $A \subset B \Rightarrow \overline{A} \subset \overline{B}$
- **Remark**V VS $S \subset V$ set span has similar properties:
 $\operatorname{span}(S) \supset S$
 $S \supset S' \Rightarrow \operatorname{span}(S) \supset \operatorname{span}(S')$
 $\operatorname{span}(\operatorname{span}(S)) = \operatorname{span}(S)$
Operations of this sort are called <u>hull</u> operations
[Similar conv(X) convex hull]
so closure is a hull operation

 $x \in Bd(A)$ boundary point

Figure 2 - 4. boundary point

- **<u>Ex.</u>** $\mathcal{A} = \text{discrete top. all } A \subset X \text{ open} \Rightarrow \text{ and closed}$ $\overline{\mathcal{A}} = \text{Int}(\mathcal{A}) = \mathcal{A} \quad \text{Bd } \mathcal{A} = \overline{\mathcal{A}} \setminus \text{Int}(\mathcal{A}) = \emptyset$
- **<u>Ex.</u>** $\mathcal{A} = \text{trivial top. } A \subset X \ A \neq \emptyset, X$ Int $(A) = \emptyset \ \overline{A} = X \text{ Bd } A = X$

Definition we say (X, \mathcal{A}) is T_1 (Fréchet) if $\forall x_1 \neq x_2 \exists O_{1,2} \in \mathcal{A} : O_1 \ni x_1 O_1 \not\ni x_2$ and $O_2 \ni x_2 O_2 \not\ni x_1$

Figure 2 - 5. T_1 axiom

Lemma $T_1 \stackrel{(1)}{\Leftrightarrow}$ points are closed $\stackrel{(2)}{\Leftrightarrow}$ finite sets are closed $\overline{\{x\}} = \{x\}$ <u>pf.</u> (2) because closedness is invariant under finite union (1) \mathcal{A} is T_1 let $x_1 \in X$ $x_2 \neq x_1$ $\exists x_2 \ni O_2$ open $O_2 \notin x_1$ $O_2 \cap \{x_1\} = \emptyset$ $\Rightarrow x_2 \notin \overline{\{x_1\}} \quad \forall x_2 \neq x_1$ $\Rightarrow \overline{\{x_1\}} = \{x_1\}$

 $T_1 \Rightarrow T_0$ but not converse

Ex.
$$X = \{1, 2\}$$

$$\mathcal{A} \text{ is } T_0 \quad \overline{\{x_1\}} = \{x_1, x_2\}$$

<u>Ex.</u> finite complement(f.c.) topology is T_1

Definition (X, \mathcal{A}) is T_2 (Hausdorff) if $\forall x_1, x_2 \in X \ x_1 \neq x_2 \exists O_1 \ni x_1 \ O_2 \ni X_2 \ O_i$ open $O_1 \cap O_2 = \emptyset$

Figure 2 - 7

 $T_2 \Rightarrow T_1(\Rightarrow T_0)$ but not converse

<u>Ex.</u> $|X| = \infty$, $\mathcal{A} = \text{f.c. top on } X$ $x_1, x_2 \in X$ $x_1 \neq x_2$ $O_1 \ni x_1 \ O_2 \ni x_2 \quad O_i \in \mathcal{A}$ $O_1, O_2 \neq \emptyset \Rightarrow |X \setminus O_1|, |X \setminus O_2| < \infty$ $|X \setminus (O_1 \cap O_2)| = |(X \setminus O_1) \cup (X \setminus O_2)| < \infty$ $|X| = \infty \Rightarrow O_1 \cap O_2 \neq \emptyset$ f.c. top. is not Hausdorff $\underline{\mathbf{Remark}} \quad \mathcal{A}' \supset \mathcal{A} \ A \subset X \quad \overline{\mathcal{A}}^{\mathcal{A}'} \subset \overline{\mathcal{A}}^{\mathcal{A}} \\ \mathrm{Int}_{\mathcal{A}'}(\mathcal{A}) \supset \mathrm{Int}_{\mathcal{A}}(\mathcal{A})$

13. Basis for Topology

most important topologies. we will work with can be defined through a basis

 $\begin{array}{lll} \hline \textbf{Definition} & X \text{ set } \mathcal{B} \subset \mathcal{P}(X) \text{ is a } \underline{\text{basis}} \text{ for topology on } X \text{ if} \\ \hline B1) & \forall x \in X \quad \exists B \in \mathcal{B} \quad x \in B \quad \Leftrightarrow \bigcup \mathcal{B} = X \\ B2) & \forall B_1, B_2 \in \mathcal{B} \quad \forall x \in X \\ & x \in B_1 \cap B_2 \quad \exists B_3 \in \mathcal{B} \quad x \in B_3 \subset B_1 \cap B_2 \end{array}$

Figure 2 - 8

 $\begin{array}{ll} \underline{\text{Definition}} & X = (X, \mathcal{A}). \ \mathcal{B} \text{ is basis for topology } \mathcal{A} \\ & \text{the topology } \mathcal{A} \text{ is generated by } \mathcal{B} & \mathcal{A} = \mathcal{A}(\mathcal{B}) \\ & A \in \mathcal{A} \Leftrightarrow \forall x \in A \ \exists B \in \mathcal{B} \ x \in B \ B \subset A \\ \hline & \mathbf{Remark} & \mathcal{B} \subset \mathcal{A} \end{array}$

Figure 2 - 9

$$\underline{\text{Lemma}} \quad A \in \mathcal{A} \Leftrightarrow \exists \mathcal{B}' \subset \mathcal{B} \quad A = \bigcup \mathcal{B}' \\ \Rightarrow \quad \mathcal{B}' = \{B \in \mathcal{B} : B \subset A\} \\ \leftarrow \quad A = \bigcup \mathcal{B}' \quad \forall x \in A \; \exists B \in \mathcal{B}' \; x \in B \; B \subset \bigcup \mathcal{B}' = A \\ \Rightarrow \quad A \in \mathcal{A}$$

so open sets are unions of basis elements

Definition $(\mathbb{R}, <)$ $\mathcal{B} = \{(a, b) : a < b\}$ $(a, b) = \{x : a < x < b\}$ topology generated by \mathcal{B} is called standard (Euclidean) topology on \mathbb{R} assumed below by default

<u>Definition</u> $\mathcal{B}' = \{[a,b) : a < b\}$ $\mathbb{R}_{\ell} = (\mathbb{R}, \mathcal{A}(\mathcal{B}'))$ lower limit topology

<u>Lemma</u> (X, \mathcal{A}) basis \mathcal{B} Int $(A) = \bigcup \{ B \in \mathcal{B} : B \subset A \}$

Ex. 1)
$$A = (0,1)$$
 $A \in \mathbb{R}$
 $\overline{A} = [0,1]$ Int $(A) = A = (0,1)$ (A open)
2) $A = \{1\}$ $\overline{A} = A$ Int $(A) = \emptyset$
Bd $A = A$
3) $A = [0,1)$ $\overline{A} = [0,1]$ Int $(A) = (0,1)$
Bd $A = \{0,1\}$
4) $A = \mathbb{Q}$ $\exists a', a'' \in (a,b)$ $a' \in \mathbb{Q}$ $a'' \in \mathbb{R} \setminus \mathbb{Q}$
 $\overline{A} = \mathbb{R}$ Int $(A) = \emptyset$
Bd $(A) = \mathbb{R}$ rational and irrational numbers are dense

<u>Ex.</u> \mathbb{R}_{ℓ}

1) $A = \begin{bmatrix} 0,1 \end{bmatrix}$ $\operatorname{Int}(A) = \begin{bmatrix} 0,1 \end{pmatrix}$ $\overline{A} = A$ Bd $A = \{1\}$ 2) $A = \begin{bmatrix} 0,1 \end{pmatrix}$ Int $A = A = \begin{bmatrix} 0,1 \end{pmatrix}$ A open and closed! $\overline{A} = A$ Bd $A = \emptyset$ 3) $A = \{1\}$ Int $A = \emptyset$ $\overline{A} = A$ Bd $A = \{1\}$ 4) $A = \mathbb{Q}$ like previous example

14. The Order Topology

First major source of important topologies!

- **<u>Ex.</u>** $|X| < \infty X$ ordered $\Rightarrow \mathcal{A}$ discrete topology similarly $(\mathbb{Z}_+, <)$
- **<u>Ex.</u>** (\mathbb{R} ,<) \mathcal{A} = Euclidean topology on \mathbb{R}
- **<u>Ex.</u>** $\mathbb{R} \times \mathbb{R}$ with dictionary order

 $\begin{array}{ll} \hline \mathbf{Recall} & a \times b > c \times d \Leftrightarrow a > c \text{ or } (a = c \text{ and } b > d) \\ & \text{no smallest or largest element} \\ & (c \times d, a \times b) = \begin{cases} \{c\} \times (d, b) & a = c \\ \{c\} \times (d, \infty) \cup (c, a) \times \mathbb{R} \cup \{a\} \times (-\infty, b) & c < a \end{cases} \end{array}$

Figure 2 - 10

<u>Ex.</u> $\{1,2\} \times \mathbb{Z}_+$ dictionary order $1 \times n = a_n \quad 2 \times n = b_n \qquad X = a_1 \dots a_n \dots b_1 \ b_2 \dots$ $(b_1,b_3) = \{b_2\} \quad \{b_2\} \text{ open}$ $\{a_1\} = [a_1,a_2) \quad \{a_1\} \text{ open}$ $\uparrow \text{ nearest element}$ similarly $\{a_i\}$ open i > 1 $\{b_j\}$ open j > 2but $\{b_1\}$ is not open

> if $b_1 \in B$ open $\exists b_1 \in (a, b) \subset B$ $b > b_1$ $a < b_1$ $a = a_n$ for some n $B \supset (a, b) \supset \{a_{n+1}, a_{n+2}, \dots\}$ $|B| = \infty$

Definition $(X, <) \ a \in X$ define $(a, +\infty) = (a, \infty) = \{x : x > a\}$ $[a, \infty) = \{x : x \ge a\}$ $(-\infty, a) \ (-\infty, a]$ rays $(a, \infty) \ (-\infty, a)$ open rays (open sets) $[a, \infty) \ (-\infty, a]$ closed rays (closed sets)

15. The Product Topology

 $\begin{array}{ll} \underline{\textbf{Definition}} & (X,\mathcal{A}), (X,\mathcal{B}) \text{ define a topology} \\ \mathcal{A} \times \mathcal{B} = \mathcal{C} \text{ on } X \times Y \text{ by the basis} \\ \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\} \\ \mathcal{C} \text{ is called the product topology on } X \times Y \end{array}$

 $\begin{array}{ll} \underline{\text{Theorem}} & \text{if } \mathcal{A}' \subset \mathcal{A} \text{ is a basis for } \mathcal{A} \\ \mathcal{B}' \subset \mathcal{B} \text{ is a basis for } \mathcal{B} \\ \Rightarrow \{A' \times B' : A' \in \mathcal{A}', B' \in \mathcal{B}'\} \\ & \text{is a basis for } \mathcal{A} \times \mathcal{B} \end{array}$

Figure 2 - 11

Definition $\pi_1 : X \times Y \to X$ $\pi_1(x \times y) = x$ $\pi_2 : X \times Y \to Y$ $\pi_2(x \times y) = y$ projection

<u>Theorem</u> $\mathcal{S} = \{\pi_1^{-1}(U) : U \subseteq X \text{ open}\} \cup \{\pi_2^{-1}(U) : U \subseteq Y \text{ open}\}\$ $(\pi_1^{-1}(U) = U \times Y, \ \pi_2^{-1}(U) = X \times U)$ is a subbasis for $\mathcal{A} \times \mathcal{B}$

Figure 2 - 12

16. The Subspace Topology

 (X, \mathcal{A}) topological space $Y \subset X \qquad \downarrow$ my notation (Y, \mathcal{A}') with $\mathcal{A}' = \{A \cap Y : A \in \mathcal{A}\} = \mathcal{A}_Y$ is called subspace topology

Lemma (X, \mathcal{A}) basis $\mathcal{B} \quad Y \subset X$ $\{B \cap Y : B \in \mathcal{B}\}$ is a basis of (Y, \mathcal{A}_Y)

<u>Ex.</u> $X = \mathbb{R}$ Y = [0,1] U = (0,1]U = Y is open in YY is not open (in X) U is not open in X **Lemma** $X \supset Y \supset U$ is open in Y, Y open in X $\Rightarrow U$ open in X

 $\begin{array}{ccc} \underline{\text{Theorem}} & A \subset X & B \subset Y & (X \times Y, \mathcal{C}) & \mathcal{C} = \mathcal{A} \times \mathcal{B} \\ & \mathcal{A} & \mathcal{B} & \text{product topology} & \mathcal{A}_A \times \mathcal{B}_B = \mathcal{C}_{A \times B} \end{array}$

<u>Ex.</u> I = [0, 1] $I_0^2 = I \times I$ with dictionary order topology will be called the ordered square $I_0^2 = I \times I \subset \mathbb{R}^2$ but topology on I_0^2 is different from subspace topology of \mathbb{R}^2

Ex. $A = \{1/2\} \times (0, 1) = (1/2 \times 0, 1/2 \times 1)$ is open in I_0^2 Now consider topology related to \mathbb{R}^2 Let $p = 1/2 \times 1/2 \in A$ assume $\exists B \ni 1/2 \times 1/2$ $B \in \mathcal{B}$ $\{(a, b) \times (c, d) : \cap [0, 1]^2\}$ basis of relative top. $\Rightarrow a < 1/2 \ b > 1/2 \Rightarrow B \notin A \Rightarrow p \notin Int(A)$ In fact, similarly you see $Int(A) = \emptyset$

 $\begin{array}{ll} \underline{\textbf{Definition}} & (X, <) \ Y \subset X \ \text{convex} \\ \Leftrightarrow \forall a, b \in Y \ a < b \\ \forall x \in X \ a < x < b \Rightarrow x \in Y \end{array}$

Figure 2 - 13

(Distinguish from $A \subset V$ convex V VS over \mathbb{R})

<u>Remark</u> Intervals and rays are convex but not the other way around.

$$\underbrace{\mathbf{Ex.}}_{X = \mathbb{R} \setminus \{0\}} \\
Y = (-\infty, 0) \\
\text{this is convex subset in } X \\
\text{but one can't make } Y = (-\infty, a) \quad (-\infty, b] \quad (a, b) \dots \\
\text{for } a, b \text{ in } X \text{ (not in } \mathbb{R}!) \\
(<' := < |_{Y \times Y}) \\
(X, <) \xrightarrow{Y \subset X}_{\text{restricted order}} (Y, < |_{Y \times Y}) \\
\downarrow \\
(X, \mathcal{O}_{<}) \xrightarrow{\text{relative topology}} (Y, \mathcal{O}_{<'}) \\
\text{order topology}$$

<u>**Theorem**</u> if $Y \subset X$ convex, then $\mathcal{O}_{\leq |_{Y \times Y}} = (\mathcal{O}_{\leq})_Y$

Convention
$$(X, <)$$
 $Y \subset X$ assumed with subspace topology $(\mathcal{O}_{<})_Y$
 $(= \mathcal{O}_{<|_{Y \times Y}} \text{ if } Y \text{ convex!})$ (see pg. 25)

<u>Ex.</u> $\mathbb{Q} \subset \mathbb{R}$ subspace topology from $(\mathbb{R}, <)$ has a basis $\mathcal{B}_1 = \{(a, b) \cap \mathbb{Q} : a, b \in \mathbb{R}\}$ order topology from $(\mathbb{R}, <)$ has a basis $\mathcal{B}_2 = \{(a, b) : a, b \in \mathbb{Q}\}$

These bases are not the same (e.g. $\mathbb{Q} \cap (0, \pi) \in \mathcal{B}_1 \setminus \mathcal{B}_2$) of course $\mathcal{B}_2 \subset \mathcal{B}_1$

and you can show all sets in \mathcal{B}_1 are unions of sets in \mathcal{B}_2 , so the topology of $\mathcal{B}_1, \mathcal{B}_2$ are the same

but this shows for general ordered sets be careful (we will see later examples that top's different)

17. Closed sets, Accumulation points and Limit points

already defined closed sets

<u>Theorem</u> \emptyset, X closed A, B closed $\Rightarrow A \cup B$ closed $\{A_i\}_{i\in I}$ closed $\Rightarrow \bigcap_i A_i$ closed **Theorem** $X \supset Y \supset A$ A closed in $Y \Leftrightarrow \exists A' \subset Y$ closed $A = A' \cap Y$ **Theorem** $X \supset Y \supset Z$ Y closed in X, Z closed in Y $\Rightarrow Z$ closed in X $\begin{array}{ll} A \subset X & \overline{A} = \overline{A}^{\mathcal{A}} &= \{ x \in X \quad \forall O \in \mathcal{A} : O \ni x \Rightarrow O \cap A \neq \emptyset \} \\ & ! &= \{ x \in X \quad \forall O \in \mathcal{B} : O \ni x \Rightarrow O \cap A \neq \emptyset \} \end{array}$ \mathcal{B} basis of \mathcal{A} **Theorem** $Y \subset X \land A \subset Y (Y, A_Y)$ relative topology $\overline{A}^{\mathcal{A}_Y} = \overline{A}^{\mathcal{A}} \cap Y$ **Definition** $A \subset X \ x \in X$ if $x \in \overline{A \setminus \{x\}}$ $(\Leftrightarrow \forall O \subset \mathcal{A} \ O \ni x \Rightarrow O \cap (A \setminus \{x\}) \neq \emptyset)$ call x an accumulation point(적립점) of A if $x \in A$ and x is not an accumulation point of A call x an isolated point(고립점) of A A is <u>discrete</u>(이산집합) if all its points are isolated

Figure 2 - 14: accumulation point

Figure 2 - 15: isolated point

<u>Definition</u> $A_{\text{acc}} = \{ \text{acc. points of } A \}$

<u>**Theorem**</u> $\overline{A} = A \cup A_{\text{acc}}$

<u>Theorem</u> X is T_1 . Then $x \in X$ is accumulation point of A \Leftrightarrow for every neighborhood $O \ni x |O \cap A| = \infty$

care is needed with limit and convergence Convergence

<u>Remark</u> $(X, \mathcal{A}), (X, \mathcal{A}'), \mathcal{A}' \supset \mathcal{A} \quad x_n \to_{\mathcal{A}'} x \Rightarrow x_n \to_{\mathcal{A}} x$

<u>Ex.</u> $x_n = n$ in \mathbb{R} with finite complement topology \mathcal{O} Let $a \in \mathbb{R}$ $O \ni a$ $O \neq \emptyset$ $\Rightarrow |R \setminus O| < \infty \quad \exists N \ \forall n \ge N \ x_n \in O$ $x_n \to a \text{ so } x_n = n \to a \ \forall a \in \mathbb{R}$

<u>Theorem</u> X is T_2 (Hausdorff) \Rightarrow limit(if it exists!) is unique ↓ unique limit property i.e. every sequence of points converges to at most one point

<u>Remark</u> Converse is false, see following Ex.

<u>Ex.</u> of a non-Hausdorff space with unique limit property $X=S_\Omega\cup\{\Omega\}\cup\{\Omega'\}$ "dupli- $\frac{1}{S_0}$

cate" Ω

$$\mathcal{A} \text{ with top basis } \left\{ \begin{array}{l} [a_0, b) \\ (a, \Omega] & a, b \in \overline{S}_{\Omega} \\ (a, b) & a < b \end{array} \right\} \cup \{(a, \Omega) \cup \{\Omega'\} : a \in S_{\Omega}\}$$

basis of order topology on \overline{S}_{Ω}

Figure 2 - 18

 $\mathcal{A}_{\overline{S}_{\Omega}} = \text{ order topology on } \overline{S}_{\Omega}$ $\mathcal{A}_{X \setminus \{\Omega\}} \simeq \text{ order topology on } \overline{S}_{\Omega} \text{ with } \Omega \to \Omega' \ (\Rightarrow T_2)$

X is not T_2 because any two basis elements containing Ω, Ω' intersect but X has the unique limit property Let $\{x_n\} \subset X$

 $\begin{array}{lll} \underline{\operatorname{Lemma}} & x_n \to \Omega(\operatorname{respectively} \, \Omega') \Leftrightarrow \exists N \; \forall n \geq N \; x_n = \Omega(\operatorname{respectively} \, \Omega') \\ & \underline{pf.} & \operatorname{Assume} \exists \; \operatorname{infinitely} \; \operatorname{many} \; x_n \in S_\Omega \cup \{\Omega'\} \\ & \operatorname{if} \; \operatorname{infinitely} \; \operatorname{many} \; x_n = \Omega' \Rightarrow \exists x_{n_k} \equiv \Omega' \; \operatorname{but} \; \exists U \; \operatorname{open} \; \Omega \in U \; \Omega' \notin U \\ & \Rightarrow \; x_n \neq \Omega \not z \\ & \operatorname{So} \; \exists \; \operatorname{infinitely} \; \operatorname{many} \; x_n \in S_\Omega \quad \{x_{n_k}\} \subset S_\Omega \; \operatorname{countable} \\ & \operatorname{property} \; \operatorname{of} \; S_\Omega \Rightarrow \; \operatorname{bounded.} \quad x_{n_k} \leq d \; d \in S_\Omega \; x_{n_k} \notin (d, \Omega] \\ & \quad x_{n_k} \neq \Omega \Rightarrow x_n \neq \Omega \not z \end{array}$ Now assume $(x_n) \subset X \quad x_n \to x^1, x^2 \in X \quad x^1 \neq x^2$ If $x^1 \in S_\Omega \Rightarrow (x_n) \; \operatorname{bounded} \; x^2 \neq \Omega, \Omega' \\ x_n \to x^1, x^2 \; \operatorname{in} \; \overline{S_\Omega} \in T_2 \Rightarrow x^1 = x^2$ Similarly if $x^2 \in S_\Omega$ So return to test $\{x^1, x^2\} = \{\Omega, \Omega'\}$ but this gives $\not z$ by previous lemma

Thus $x^1 = x^2$ and X has unique limit property

<u>Theorem</u> X ordered \Rightarrow X is T_2 in order topology (X, A) is T_2 Y \subset X \Rightarrow (Y, A_Y) is T_2 (X, A)(Y, B) $T_2 \Rightarrow$ (X \times Y, $A \times B$) is T_2

 $\begin{array}{ll} \underbrace{!!} & \text{If } \exists x_1, x_2, \dots, x_n \in A & x_n \to x & x_n \neq x \\ & \text{then } x \text{ is an accumulation point of } A \\ & \underline{\text{but the converse is false}} & A_{\text{lim}} \subset A_{\text{acc}} \end{array}$

 $\begin{array}{ll} \hline \textbf{Definition} & \text{limit points } A_{\text{lim}} \coloneqq \{x \in X : \exists x_n \in A \setminus \{x\} \ x_n \to x\} \ (\text{I do not use like in book}) \\ \hline A_{\text{lim}} \varsubsetneq A_{\text{acc}} \ \text{can happen} \ (\text{I will give you ex. later}) \end{array}$

This is why be careful you understand well how a "limit point" is meant! (return to this p.19 and 34)

In "metrizable" spaces like \mathbb{R} , \mathbb{R}^n with Enclidean topology, it's okay.

Figure 2 - 19

<u>**Theorem</u>** $(x_n, y_n) \to (x, y) \iff \text{in } X \ x_n \to x \text{ in } \mathcal{A}$ and in $Y \ y_n \to y \text{ in } \mathcal{B}$ (separation axiom, section 31)</u>

Definition A space (X, \mathcal{A}) is regular if (p. 194) $x_1 \quad A = \overline{A} \not = x \quad \exists O_1 \ni x \quad O_i \in \mathcal{A}$ $O_2 \supset A \quad O_1 \cap O_2 = \emptyset$

Figure 2 - 21

If points are closed, then normal \Rightarrow regular $\Rightarrow T_2$

 $\begin{array}{l} \updownarrow \\ T_1 \end{array} \quad \text{but not always otherwise!} \end{array}$

So we have a diagram

(! In other books, $T_3 = \text{normal}, T_4 = \text{regular})$

Figure 2 - 22

Definition T_3 is regular Hausdorff (=regular Fréchet) T_4 is normal Hausdorff (=normal Fréchet)

<u>Theorem</u>	order topologies	are normal	and T_2 (and]	hence anything else)
----------------	------------------	------------	------------------	----------------------

58abcd				
\bigcirc 1 Convergence behavior				
$\begin{array}{l} X \text{ space} \\ \mathcal{A} \text{ topology on } X \longmapsto \\ \mathcal{A} \subset \mathcal{P}(X) \end{array}$	convergence behavior of \mathcal{A} $\mathcal{C}(\mathcal{A})$ $(x_i) \in X^{\omega} \mapsto \{\text{limit point of } (x_i)\}\$ $= \{x \in X : x_i \to x\} \in \mathcal{P}(X)$			
$\mathcal{A} \in \underbrace{\{\text{topology on } X\}}_{\subset} \subset \mathcal{P}(\mathcal{P}(X))$				
$\tilde{S}(X)$ Convergence behavior functor $\tilde{S}(X)$	$\mathcal{F}(x) \xrightarrow{\mathcal{C}} \mathcal{F}(X^{\omega}, \mathcal{P}(X))$			
Question Does the convergence i.e. is the convergence	behavior determine the topology behavior functor injective?			
Ex. $(X^{\omega}, \mathcal{A})$ and you prove $f_n \to f$ in $\mathcal{A} \Leftrightarrow f_n \to f$ pointwise $\Rightarrow \mathcal{A} =$ product topology? or X metrizable you prove $f_n \to f$ in $\mathcal{A} \Leftrightarrow f_n \Rightarrow f$ uniform $\Rightarrow \mathcal{A} =$ uniform topology?				
The answer is $\underline{no}!$ in general i.e. one cannot identify a topology	from its convergence behavior alone			
Ex. Consider $X = \overline{S}_{\Omega} \cup \{\overline{\Omega}\} = \overline{S}_{\Omega}$ \mathcal{A} on X with topology basis Thus let $\tilde{\mathcal{B}} = \{(a, b) : a < b \ a, \cup \{[a_0, \Omega]\}\}$ $\mathcal{B} = \tilde{\mathcal{B}} \cup \{(B \setminus \{\Omega\}) \cup \{\Omega'\} : \Omega\}$	$b \in \overline{S}_{\Omega} \} \cup \{ [a_0, b) : b \in \overline{S}_{\Omega} \} \cup \{ (a, \Omega] : a \in \overline{S}_{\Omega} \} \cup \{ (a, \Omega) $			
This is the topology as in the preva- $\mathcal{A} = \mathcal{A}(\mathcal{B})$ is not Hausdorff but has	-			
Now consider $\mathcal{A}' = \mathcal{A}(\mathcal{B}')$ with $\mathcal{B}' =$ (again to check easily \mathcal{B}' is a basis)				

 \mathcal{A}' is Hausdorff but \mathcal{A} and \mathcal{A}' have same convergence behavior: $\mathcal{C}(\mathcal{A}) = \mathcal{C}(\mathcal{A}')$ $x_n \to x \text{ in } \mathcal{A} \Leftrightarrow x_n \to x \text{ in } \mathcal{A}'$

Thus the convergence behavior does not define the topology, not even whether it is $T_2 \Rightarrow$ not even up to self-transform fixing convergence behavior

 S_{Ω}

<u>Remark</u> You can consider as well

 $X = \overline{S}_{\Omega} \quad \mathcal{A} = \mathcal{A}(\tilde{\mathcal{B}})$ $\mathcal{A}' = \mathcal{A}(\tilde{\mathcal{B}} \cup \{\{\Omega\}\})$ Then $\mathcal{A} \neq \mathcal{A}'$ but $\mathcal{C}(\mathcal{A}) = \mathcal{C}(\mathcal{A}')$ however in this case obviously both $\mathcal{A}, \mathcal{A}'$ are T_2 and I don't know if \nexists self-transformation h on \overline{S}_{Ω} with $h(\mathcal{A}) = \mathcal{A}'$ likely not, but it requires some argument to prove while in our way we get this $+ T_2$ - independence readily for example, $\mathcal{A} \ni \{x\}$ one element set $\Leftrightarrow x$ has no immediate predecessor or $x = a_0$ (x has always an immediate successor or $x = \Omega$ but \mathcal{A} contains uncountably many 1-element sets (old exercise) so then one cannot argue with number of of 1-element sets that $\nexists h$, etc....)

(2) Limit points

Exercise let X be a topological space $x_1 \in \mathcal{F}(\mathbb{Z}_+, X)$ a sequence let $h : \mathbb{Z}_+ \to \mathbb{Z}_+$ bijective then $x_n \to x$ in $X \Leftrightarrow x_{h(n)} \to x$ in X This means ordering a sequence is not relevant for its limit(s) Then the limit points of a sequence $\{x \in X : x_n \to x\}$ can in fact be defined on the set $\{x_n\}$

Definition X topological space $A \subset X |A| = \omega$ define $A^{\lim} = \{x \in X : \exists h : \mathbb{Z}_+ \to A \text{ bijective } h(n) \xrightarrow[n \to \infty]{} x\}$

Note, however, that $A^{\lim} \neq A_{\lim}$

the set of limit points of A as a set, as defined in the closure section

In fact, $A_{\lim} = \bigcup_{A' \subset A, |A'| = \omega} (A')^{\lim}$ (if X is T_1) also for any subset $A \subset X$ (not necessarily of cardinality ω) 58abcd_____

20. The metric Topology

most important and fundamental source of topology

Definition X set d(x, y) > 0 $x \neq y$ distance if d(x, x) = 0 d(x, y) > 0 $x \neq y$ d(x, y) = d(y, x) $d(x, y) + d(y, z) \ge d(x, z)$ d(x, y) distance between x and y **Definition** $B_{\epsilon}(x) = \{y \in x : d(x, y) < \epsilon\} \ \epsilon > 0, x \in X$ (open) ball ϵ -ball centered at x

Figure 2 - 23

Definition The metric topology \mathcal{A}_d on (X, d) induced by d is the one with basis $\{B_{\epsilon}(x) : x \in X, \epsilon > 0\}$

To check: balls form a basis

Figure 2 - 24

B1)
$$X \supset \bigcup_{x \in X} B_{\epsilon}(x) \supset \bigcup_{x \in X} \{x\} = X$$

B2) $\exists \epsilon(x) \cap B_{\epsilon'}(y)$
 $B_{\epsilon''}(z) \subset B_{\epsilon}(x) \cap B_{\epsilon'}(y)$
for $\epsilon'' = \min(\epsilon - d(x, z), \epsilon' - d(y, z)) > 0$

<u>Definition</u> (X, \mathcal{A}) metrizable $\Leftrightarrow \exists d \text{ on } X$ with $\mathcal{A} = \mathcal{A}_d$ induced by d

- **<u>Ex.</u>** $X, \delta(x, y) = \begin{cases} 0 \ x = y \\ 1 \ x \neq y \end{cases}$ discrete distance $B_1(x) = \{x\}$ so it induces the discrete topology $\mathcal{A} = \mathcal{P}(X)$ \uparrow explains the name $A \subset X$ every $a \in A$ is discrete point, every set is discrete so the discrete topology is metrizable
- **<u>Ex.</u>** Standard metric on \mathbb{R} d(x, y) = |x y|induces the usual (Euclidean) topology because $(a, b) = B_{\epsilon}(x)$ for $x = \frac{a+b}{2} \epsilon = \frac{b-a}{2}$ Euclidean topology is metrizable \Rightarrow !non-uniquely $\hat{d}(x, y) = 2|x - y|$ induces the same topology.

<u>Ex.</u> \mathbb{R} finite complement topology not metrizable

if were
$$\bigcap_{n=1} \underbrace{B_{y_n}(x)}_{\text{open}} = \{x\}$$

 $\mathbb{R} \setminus \{x\} = \bigcup_{n=1}^{\infty} (\mathbb{R} \setminus B_{y_n}(x))$
 $\underbrace{\mathbb{R} \setminus \{x\}}_{\text{finite}} = \underbrace{\bigcup_{n=1}^{\infty} (\mathbb{R} \setminus B_{y_n}(x))}_{\text{finite}}$

 $\begin{array}{ll} \hline \textbf{Definition} & V \text{ Vector Space over } \mathbb{R} \text{ or } \mathbb{C} \\ \text{a norm } \|.\|: V \to [0, \infty) \\ \text{satisfies } \|\mathbf{v}\| = 0 \Leftrightarrow \mathbf{v} = \mathbf{0}_V \\ \|\lambda \mathbf{v}\| = |\lambda| \cdot \|\mathbf{v}\| & \lambda \in \mathbb{R}(\mathbb{C}) \ \mathbf{v} \in V \\ \|\mathbf{v}\| + \|\mathbf{w}\| \ge \|\mathbf{v} + \mathbf{w}\| & \text{e.g. } \|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} \text{ if } \exists <, > \\ \|.\| \text{ induces a metric by } d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| \end{array}$

 $\{ \text{inner product space} \} \subset \{ \text{normed space} \} \subset \{ \text{metric space} \} \subset \{ \text{topological space} \} \text{ all } \varphi \\ \text{we see here later} \uparrow$

- **Ex.** \mathbb{R}^n with Euclidean norm $\|\mathbf{x}\| = \|(x_1, \dots, x_n)\| = \sqrt{x_1^2 + \dots + x_n^2}$ induces the product topology on $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \dots \times \mathbb{R}$ basis are $\{(a_1, b_1) \times \dots \times (a_n, b_n) : a_i < b_i\}$
- **<u>Ex.</u>** The Hölder *p*-norm $||\mathbf{x}||_p = \sqrt[p]{|x_1|^p + \dots + |x_n|^p}$ for $p \in [1, \infty)$ are not multiples of $||.|| = ||.||_2$ for $p \neq 2$ but all induce the same topology on \mathbb{R}^n

Definition (X, d) metric space $A \subset X \ x \in X$ dist $(x, A) = \inf\{d(x, a) : a \in A\}$

<u>Lemma</u> dist $(x, A) = 0 \Leftrightarrow x \in \overline{A}$

Definition (X, d) metric space $A \subset X$ diam $A = \sup\{d(a, a') : a, a' \in A\}$

<u>Ex.</u> diam $B_{\epsilon}(x) \leq 2\epsilon$ (not always "="!)

Figure 2 - 25

diam can be ∞ if d is unbounded

<u>Ex.</u> diam $(\mathbb{Z}_+) = \infty$ $\mathbb{Z}_+ \subset \mathbb{R}$ with Euclidean metric

<u>Research Problem</u> $A \subset \mathbb{R}^2$ diam $(A) \leq 1$ $A \subset \overline{B}_{1/\sqrt{3}}(x)$ for some x?

 $1/\sqrt{3}$ smallest possible?

Figure 2 - 26

sometimes it is useful to bound d

<u>Theorem</u> Let (X, d) metric space Define $\overline{d} : X \times X \to \mathbb{R}$ by $\overline{d} = \max(d, 1)$ standard bounded metric

 \overline{d} induces $\mathcal{A}_{\overline{d}} = \mathcal{A}_d$, same topology

- **<u>Lemma</u>** $A \subset (X, d)$ $\mathcal{A}_{d|A \times A}$ is the relative topology of d of A

if \mathcal{A} is metrizable $\Rightarrow \mathcal{A}_A$ is metrizable

- **<u>Theorem</u>** (X, d) topological space $x_n \to x \Leftrightarrow \forall \epsilon > 0 \exists N \forall n > N d(x_n, x) < \epsilon x_n \in B_{\epsilon}(x)$
- $\frac{\text{$ **Theorem** $}}{pf.}$ metric spaces are Hausdorff and normal (so anything else in chart p.14) pf. mostly the idea for order topologies (exercise)
- <u>**Theorem**</u> (X, d) metric $x \in \overline{A} \Leftrightarrow \exists x_n \in A \ x_n \to x$

Sequence Lemma

i.e. trouble at p.14 does not occur for metrizable spaces

<u>Remark</u>: if X, Y metrizable with d_X, d_Y , then $X \times Y$ is also metrizable (e.g.) with $d(x_1 \times y_1, x_2 \times y_2) = d_X(x_1, x_2) + d_Y(y_1, y_2)$.

18. Continuous Maps

 $\begin{array}{l} (X,\mathcal{A}) \ (Y,\mathcal{B}) \\ \hline \textbf{Definition} \\ f: X \to Y \text{ topological space continuous} \\ \text{if and only if } \forall O \in \mathcal{B} \text{ open in } Y \quad f^{-1}(O) \text{ open in } X \\ \text{ continuous relative to the topologies } \mathcal{A} \subset \mathcal{B} \end{array}$

<u>Ex.</u> (X, \mathcal{A}) (X, \mathcal{B}) \mathcal{A} finer than $\mathcal{B} \Leftrightarrow \mathrm{id}_X : (X, \mathcal{A}) \to (X, \mathcal{B})$ is continuous **<u>Remark</u>** (book p.90) if $\forall O \in \mathcal{A} f(O) \in \mathcal{B}$, call f open

Lemma Let (X, \mathcal{A}) have basis $\mathcal{A}', (Y, \mathcal{B})$ have basis \mathcal{B}' f continuous $\Leftrightarrow \forall B' \in \mathcal{B}' f^{-1}(B') \in \mathcal{A}$ $\Leftrightarrow \forall B' \in \mathcal{B} \ \forall x \in f^{-1}(B') \quad \exists A' \in \mathcal{A}' \ x \in A' \subset f^{-1}(B')$

(" $\epsilon - \delta$ " and sequence condition)

Lemma if (X, d) (X, d') are metric spaces can take balls as bases

 $f: X \to Y \text{ continuous } \Leftrightarrow \forall \epsilon > 0 \ \exists \delta > 0 \quad B_{\delta}(x) \subset f^{-1}(B_{\epsilon}(f(x)))$ $\Leftrightarrow \forall x_n \to x \text{ in } X \quad f(x_n) \to f(x) \text{ in } Y$

<u>**Theorem**</u> X, Y topological spaces $f : X \to Y$ The following are equivalent 1) f continuous

- 2) $\forall A \subset X \quad f(\overline{A}) \subset \overline{f(A)}$
- 3) $\forall B \subset Y \text{ closed } f^{-1}(B) \subset X \text{ closed}$

4)
$$\forall x \in X \quad \forall U \ni f(x) \text{ open } \exists V \ni x \text{ open}$$

 $V \subset f^{-1}(U) \iff f(V) \subset U)$

Definition f homeomorphism if $f: X \to Y$ bijective, f, f^{-1} continuous $(X, \mathcal{A}) \ (Y, \mathcal{B})$

 $\mathcal{A} = \{ f^{-1}(B) : B \in \mathcal{B} \} \quad \mathcal{B} \text{ determines } \mathcal{A}$

 $X \simeq Y$ topologically equivalent

if $\exists f: X \to Y$ homeomorphism

Definition $f: X \hookrightarrow Y$ continuous, injective if $f^{-1}: f(X) \to X$ continuous, call f a (topological) embedding

<u>Ex.</u> $f: [0, 2\pi) \rightarrow S^1 = \{(x, y) : x^2 + y^2 = 1\}$ $f(t) = (\cos t, \sin t)$ with relative topology to \mathbb{R}^2 is bijective and continuous but its inverse is not continuous $\Leftrightarrow f$ is not open $[0, \alpha)$ $T = f([0, \alpha)) \subset S^1$ is not open $1 \in S^1$ but $\forall \epsilon > 0$ $S^1 \cap B_{\epsilon}(1) \notin T$ \cap $[0, 2\pi)$ open

Figure 2 - 27

Constructing Continuous Functions

see p.105, 106 in the book

Pasting lemma

$$\begin{array}{ll} X = A \cup B & A, B \text{ closed in } X \\ f: X \to Y & f|_A : A \to Y \\ & f|_B : B \to Y \text{ continuous } \Rightarrow f: X \to Y \text{ continuous} \end{array}$$

Maps into product

Theorem $f: A \to X \times Y$ (with product topology) is continuous \Leftrightarrow coordinate functions $f_1: A \to X$ $f_1 = \operatorname{pr}_X \circ f$ $f_2: A \to Y$ $f_2 = \operatorname{pr}_Y \circ f$ are continuous. $(\operatorname{pr}_X(x, y) = x, \operatorname{pr}_Y(x, y) = y)$

19. Product Topology II

<u>Motivation:</u> $X_1 \times \ldots X_n$ with topology $\mathcal{A}_1 \ldots \mathcal{A}_n$

defined product topology by (1) <u>sub</u>basis / for n = 2 but finite n is same story

$$\bigcup_{k=1}^{n} \{ \operatorname{pr}_{k}^{-1}(U) : U \subset X_{k} \text{ open} \}$$
$$U = X_{1} \times \ldots X_{k-1} \times U \times X_{k} \times \cdots \times X_{n}$$

or

(2) basis

$$\{U_1 \times \ldots U_k : U_i \subset X_i \text{ open}\}$$

gives (same) product topology

But what if ∞ product? There's a difference! First let's define general tuple indexed by an arbitrary set.

$$\underbrace{\text{Convention}}_{i=1} \quad \text{write } \mathcal{F}(X,Y) \text{ for } \{f: X \to Y\} \\
 \text{Recall } \{f: \mathbb{Z}_+ \to X\} \simeq X^{\omega} = \{(a_1, a_2, \dots) : a_i \in X\} \\
 \quad (= \mathcal{F}(\mathbb{Z}_+, X) \uparrow f(n) = a_n) \\
 \quad = \prod_{i=1}^{\infty} X \\
 \prod_{i=1}^{\infty} X_i = \{f: \mathbb{Z}_+ \to \bigcup X_i : f(n) \in X_n \; \forall n\}$$

For J index set, X set, define J-tuple of elements in X to be a function $x: J \to X$

$$x = (x_{\alpha})_{\alpha \in J} \qquad x(\alpha) = x_{\alpha}$$
$$X^{J} = \{x : x(\alpha) \in X \forall \alpha \in J \} \simeq \{f : J \to X\}$$

Definition
$$\{A_{\alpha}\}_{\alpha \in J}$$
 $(A_{\alpha}, \mathcal{A}_{\alpha})$ topological space
the box topology on $A = \prod_{\alpha \in J} A_{\alpha}$ is defined by the basis
 $\{U = \prod_{\alpha \in J} U_{\alpha} : U_{\alpha} \in \mathcal{A}_{\alpha} \ \forall \alpha \in J\}$
"U is a box" generalization of (2) above

<u>Definition</u> $(A_{\alpha}, \mathcal{A}_{\alpha})$ topological space

the product topology on $A = \prod A_{\alpha}$ is defined by the <u>subbasis</u> $\bigcup_{\alpha \in J} \bigcup_{U_{\alpha} \in \mathcal{A}_{\alpha}} \operatorname{pr}_{\alpha}^{-1}(U_{\alpha})$ with $\operatorname{pr}_{\alpha} : A \to A_{\alpha}$ being the projection on the α -th coordinate $\operatorname{pr}_{\alpha}((a_{\beta})_{\beta \in J}) = a_{\alpha}$ generalization of (1)

The product topology will be assumed by default!

Obviously, box topology \supset product topology.

but box topology is quite strong and often good for counterexamples, while product topology is used in many theorems.

For <u>metric</u> spaces (A_{α}, d_{α}) , there is one more important topology on $\prod A_{\alpha}$, the <u>uniform</u> topology. It has basis being boxes of "equal length"

$$\mathcal{B} = \{\prod_{\alpha \in J} B_{\epsilon}(x_{\alpha}) : x_{\alpha} \in A_{\alpha}, \epsilon > 0\}$$

 ϵ does not depend on α !

<u>Theorem</u> the uniform topology is induced by the uniform metric $d((a_{\alpha})_{\alpha \in J}, (b_{\alpha})_{\alpha \in J}) = \sup\{\overline{d}_{\alpha}(a_{\alpha}, b_{\alpha}) : \alpha \in J\}$ \uparrow bounded metric

Convergence

<u>Notation</u> write $\mathcal{F}(X,Y)_{\text{prod}}$ $\mathcal{F}(X,Y)_{\text{box}}$ $\mathcal{F}(X,Y)_{\text{uni}}$

Theorem Convergence in the product topology is pointwise convergence

 $\begin{array}{lll} \underline{\textbf{Definition}} & f_n \to f \Leftrightarrow & \forall \alpha \in J & f_n(\alpha) \to f(\alpha) \text{ in } A_\alpha \\ & \forall \alpha \in J & \forall O \in \mathcal{A}_\alpha \ O \ni f(\alpha) & \exists N \ \forall n \ge N \ f_n(\alpha) \in O \end{array}$

Th./Def. Convergence in the uniform topology is the uniform convergence $f_n \Rightarrow f :\Leftrightarrow \forall \epsilon > 0 \exists N \forall n \ge N \forall \alpha \in J d_\alpha(f_n(\alpha), f(\alpha)) < \epsilon$ remark: $f \to f \quad \forall \alpha \in J \forall \epsilon > 0 \exists N \forall n \ge N d_\alpha(f_n(\alpha), f(\alpha)) < \epsilon$

What is convergence in the box topology?

Ex. Consider
$$\{f : \mathbb{R} \to \mathbb{R}\}$$
 with box topology. When $f_n \to 0$?
assume $f_{n_1}(x_1) \neq 0$ choose $U_{x_1}(-f_{n_1}(x_1), f_{n_1}(x_1))$ $f_1 \notin U = \prod_{x \in \mathbb{R}} U_x$
assume $\exists x_2 \neq x_1 \quad n_2 > n_1 \quad f_{n_2}(x_2) \neq 0 \quad U_{x_2}(-f_2(x_2), f_2(x_2))$ $f_2 \notin U = \prod_{x \in \mathbb{R}} U_x$
 $\sim \text{find } (f_{n_1}, f_{n_2}, \dots) \notin U \ni 0 \text{ open.} \to f_n \neq 0$
etc. when does this fail?
 $f_n \to 0 \Leftrightarrow \exists N \ S_N \coloneqq \bigcup_{n \geq N} \{x : f_n(x) \neq 0\} \text{ finite}$
and $\forall x \in S_N \quad f_n(x) \to 0$
 $(\Leftrightarrow f|_{S_N} \to 0|_{S_N} \Leftrightarrow f_n|_{S_N} \rightrightarrows 0|_{S_N})$

Ex. $f_n(x) = \begin{cases} 0 & x \neq n \\ 1/n & x = n \end{cases}$ (so box convergence \Rightarrow pointwise and uniform convergence) of course $f_n \to 0$ and even $f_n \Rightarrow 0$ also $|\{x : f_n(x) \neq 0\}| = 1 < \infty \forall n$ but $\bigcup_{n \ge N} \{x : f_n(x) \neq 0\} = \mathbb{Z}_+ \cap [N, \infty)$ infinite so $f_n \neq 0$ (and not to any other limit) in box topology

The box topology is easily seen to be Hausdorff and I can prove regular. It is not known about normal see Ex.5 $\rm p.203$

 $\begin{array}{l} \textbf{Theorem} \quad \text{In product or box topology of } \mathcal{F}(J,X) \\ (\text{and hence in the uniform topology as well, if } X_{\alpha} \text{ metric}) \\ \text{for } A_{\alpha} \subset X_{\alpha} \quad \overline{\prod_{\alpha \in J} A_{\alpha}} = \prod_{\alpha \in J} \overline{A_{\alpha}} \\ \textbf{Ex. Consider } \mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\} \text{ in box topology. } \mathcal{F} = \mathcal{F}(\mathbb{R},\mathbb{R})_{\text{box}} \\ \text{Let } A = \prod_{\alpha \in \mathbb{R}} (0,1) = \{f : \mathbb{R} \to \mathbb{R} : \text{image}(\mathbb{R}) \subset (0,1)\} \\ \text{Then } \overline{A} = \prod_{\alpha \in \mathbb{R}} [0,1] = \{f : \mathbb{R} \to \mathbb{R} \mid \text{image}(\mathbb{R}) \subset [0,1]\} \\ \text{but consider } A_{\lim} = \{f \in \mathcal{F} : \exists f_n \in A \setminus \{f\} : f_n \to f\} \\ A_{\lim} = \bigcup_{\substack{S \subset \mathbb{R} \\ |S| < \infty}} \prod_{\substack{\alpha \in \mathbb{R} \\ [0,1] \quad \alpha \in S}} \left\{ [0,1] \quad \alpha \notin S \\ [0,1] \quad \alpha \in S \right\} \\ = \{f : \mathbb{R} \to \mathbb{R} \mid \text{image}(f) \subset [0,1], \exists S \subset \mathbb{R} \mid S| < \infty \text{ image}(f|_{\mathbb{R}\setminus S}) \subset (0,1)\} \\ \text{E.g. } 0 \in A_{\operatorname{acc}} \quad 0 \notin A_{\operatorname{lim}} (0 = \operatorname{zero function}) \\ A_{\lim} \notin A_{\operatorname{acc}} \Rightarrow \operatorname{sequence lemma fails \Rightarrow box topology not metrizable} \\ \Rightarrow (\mathcal{A}' \supset \mathcal{A} \quad \mathcal{A} \text{ metirzable} \neq \mathcal{A}' \text{ metrizable}) \\ \uparrow \operatorname{box} \uparrow \operatorname{uniform while } T_i i \leq 2 \end{array}$

$$\overline{A} \setminus A \neq \emptyset$$
 but $A_{\lim} = \emptyset$, i.e.

A not closed (\Rightarrow has accumulation point $A_{acc} \neq \emptyset$) but no converging sequence(except constant)

<u>Ex.</u> (may skip, not very good)

Consider $X = \{f : \mathbb{R} \to \mathbb{R}_{\text{discr}}\}$ with range \mathbb{R} with discrete topology and pointwise convergence topology $X = \mathcal{F}(\mathbb{R}, \mathbb{R}_{\text{discr}})_{\text{prod}}$ (product discrete topology) i.e. $f_n \to f \Leftrightarrow \forall x \in \mathbb{R} \quad \exists N \quad \forall n \ge N \quad f_n(x) = f(x)$ the basis of the topology $\{U_{S,y_1,\ldots,y_n} = \prod_{x \in \mathbb{R}} \left\{ \begin{array}{c} \{y_i\} \quad x = x_i \\ \mathbb{R} \quad x \ne x_1,\ldots,x_n \end{array} \right\}$ $: S = \{x_1,\ldots,x_n\} \subset \mathbb{R} \quad \text{finite} \ (x_i \ne x_j), \quad y_1,\ldots,y_n \in \mathbb{R}\}$ Fix a bijection $\Phi : \{\text{finite subsets of } \mathbb{R}\} \to \mathbb{R} \setminus \{0\}$ Consider the family

 $A = \{ f_S : S \subset \mathbb{R} \text{ finite} \} \subset X$ $\downarrow \text{ function } (f(x) = 0 \quad \forall x \in \mathbb{R})$ $0 \in \overline{A} \setminus A$ A has accumulation point 0If $0 \in U$ open U basis element $U = U_{S,0,\dots,0}$ for some $S \subset \mathbb{R}$ $|S| < \infty$ $u_i=0$ $f_S \in U \cap A \neq \emptyset \Rightarrow 0 \in \overline{A}$, obviously $0 \notin A$ Now take sequence f_{S_1}, f_{S_2}, \dots in $A \quad f_{S_i} \neq f_{S_j}$ $i \neq j$ $\bigcup_{i=1}^{\infty} S_i \text{ is countable, take } x_0 \in \mathbb{R} \setminus \bigcup_{i=1}^{\infty} S_i$ $f_{S_n}(x_0) = \Phi(S_n)$ $f_{S_n}(x_0) \neq f_{S_m}(x_0)$ $\forall n, m \in \mathbb{Z}_+ n \neq m$ $f_{S_n}(x_0)$ does not converge in discrete topology $\Rightarrow f_{S_n} \neq f$ So A contains no converging sequence! (except eventually constant) $(\Rightarrow X \text{ not metrizable etc.})$ $A_{\text{acc}} \neq 0, A_{\text{lim}} = \emptyset$ End Ex.

Note: $A_{\lim} = \emptyset$ means A has no limit point $\underline{\text{in } X}$, not $\underline{\text{in } A}$. A has no limit point in A just means A is discrete, and I can find you discrete non-closed sets in simple spaces like $A = \{\frac{1}{n} : n \in \mathbb{Z}_+\} \subset \mathbb{R} = X$

Order topologies II

Theorem (X, <) ordered set \Rightarrow order topology is normal

<u>Lemma</u> $\forall x, y \in X$ [x, y] BI $\Leftrightarrow M_x = M_y$

$$[x, y] \subset M_x \Rightarrow [x, y] \cap (A \cup B) = \emptyset \Rightarrow [x, y] BI$$

$$\Rightarrow x \notin A \cup B \quad \text{Let } I \text{ BI } I \ni x$$

$$I \subset \text{ MBI } M_I$$

by uniqueness $M_I = M_x$
now $x, y \in [x, y] \text{ BI}$; by \uparrow above argument
 $M_{[x,y]} = M_x = M_y$

 $\begin{array}{ll} \underline{\textbf{Convention}} & (X, <) \text{For each MBI } \Delta \subset X \text{ fix an element, } \alpha_{\Delta} \in \Delta.(\text{AC!}) \\ & \text{Return to definition of } y_a & (\text{namely } M_{\alpha_{\Delta}} = \Delta) \end{array}$

Assume $a \in A$, So $a \notin B = \overline{B}$ if $a = \max X$ set $y_a = \infty$ ($y_\alpha = \infty$ (formally) with $(x_\alpha, y_\alpha) = (x_\alpha, \infty) = (x_\alpha, a]$) otherwise $\exists a'' > a \ a''$ is lower bound for $B \cap [a, \infty) \ B \cap (a, a'') = \emptyset$ [0] a'' is immediate successor of a set $y_a = a''$ Otherwise, $\exists a' \in (a, a'')$ (need to avoid $a' \in B$)

Figure 2 - 32

Figure 2 - 33

 $[2] \text{ if } a' \notin A \Rightarrow a' \notin A \cup B \quad \text{set } y_a = \alpha_{M_{a'}}$

 $[1] \text{ if } a' \in A \text{ set } y_a = a'$

Then y_a has the following properties

- 1) $y_a = \infty$ only if $a = \max X$ assume $a \neq \max X$ below
- 2) $y_a > a$ and $([a, y_a] \cap B = \emptyset$ or $y_a = \operatorname{succ}(a))$ $\underline{pf}.$ if $y_a \le a$, then need case [2] and $\overline{M}_{y_a} = M_{\alpha_{M_{a'}}} = M_{a'}(!)$ $\Rightarrow [y_a, a']$ blank $a \in [y_a, a']$ $a \notin A_{2}^{\prime}$
- 3) if $y_a \notin A$ then by (!) we have $y_a = \alpha_{M_{y_a}}$ or $y_a = \operatorname{succ}(a)$ is the immed. succ. of a

Similarly $\overline{y_b}$ for $b \in B$ $\overline{x_b}$ should be defined so that

- 1) $\overline{x_b} = -\infty$ only if $b = \min X$ assume $b \neq \min X$
- 2) $\overline{x_b} < b$ and $([\overline{x_b}, b] \cap A = \emptyset \text{ or } \overline{x_b} = \text{pred}(b))$

3) if $\overline{x_b} \notin B$ then $\overline{x_b} = \alpha_{M_{\overline{x_b}}}$ or $\overline{x_b} = \text{pred}(b)$ is the immed. pred. of b

Similarly x_a . So now $x_a, y_a, \overline{x_b}, \overline{y_b}$ defined. Now assume $a \in A \ b \in B$ Without loss of generality, $a < b \implies (y_a \neq \infty \ \overline{x_b} \neq -\infty)$ assume $(x_a, y_a) \cap (\overline{x_b}, \overline{y_b}) \neq \emptyset$ (**); to prove (*) at page 25 by \notin So $\overline{x_b} < y_a$

if $y_a = \operatorname{succ}(a)$, then $(x_a, y_a) = (x_a, a]$, so $(^{**}) \Rightarrow \overline{x_b} \le a$. But b > a, so $a \in A \cap [\overline{x_b}, b] \notin \text{to } 2$) Similarly $\overline{x_b} \neq \operatorname{pred}(b)$.

$$\begin{bmatrix} \overline{x_b}, b \end{bmatrix} \cap A = \emptyset$$

$$\begin{bmatrix} a, y_a \end{bmatrix} \cap B = \emptyset$$

$$M_{y_a} = M_{\overline{x_b}}$$

$$\begin{bmatrix} \overline{x_b}, y_a \end{bmatrix} \cap (A \cup B) = \emptyset$$

$$\swarrow$$

$$y_a \notin A \xrightarrow{3)} y_a = \alpha_{M_{y_a}}$$

$$\overline{x_b} \notin B \xrightarrow{3)} \overline{x_b} = \alpha_{M_{\overline{x_b}}}$$

Figure 2 - 35

$$\Rightarrow$$
 (*) at page 25 \Rightarrow

Chapter 3. Compactness, Connectedness, Completeness

26. Compact Spaces

I try to discuss this first exclusively for metric spaces and say later how/what to generalize to topological spaces.

<u>Definit</u>		(X,d) sequence, x_{n_m} > n_{m-1} $n_m \in \mathbb{Z}_+$	$_{m}$ is a subsequence if	
<u>Definit</u>	$(X, \forall (x))$	d) is called compact $a_n \in X$ sequence, $\exists (x \in X) \in X$	/ limit point compactness (see warning(!!Def.) page. 30) if $(x_{n_m}) \subset (x_n)$ subsequence $X: x_{n_m} \to x$ limit point	
<u>Remar</u>	and n	compact \Rightarrow diam(X) nust be attained X d(x, y) = diam(2)	, 	
	is not cor $(,1)$ is not	npact compact (with Eucli	idean distance)	
$\underline{\mathbf{Ex.}}$ \mathbb{R}	$\overline{d} = \min(d)$	d, 1) bounded, is not	compact	
			nded and attains diameter but not compact t be eventually constant)	
But $[0,1]$ is compact (with Euclidean distance) prove now!				
Lemm	$\underline{\mathbf{a}} x_n \subset \mathbb{R}$	increasing strictly increasing decreasing strictly decreasing monotonous	$x_n \le x_{n-1}$	
Lemm	$x_n \to s$	ceasing and bounded up $\{x_n\}$ ly decreasing	(above)	
	Similar			

<u>Lemma</u> (x_n) bounded $\Rightarrow \exists (x_{n_m})$ monotonous *pf.* Assume $\nexists(x_{n_m})$ increasing will show lemma by finding one decreasing sequence. $n_0 = 0, k = 0$ Let $x = \sup\{x_n : n > n_k\}$ if infinitely many $x_n = x$ \exists constant subsequence \Rightarrow increasing \ddagger if exists no $x_n = x$ $\exists n_1 \quad x_{n_1} > x - 1 \quad x_{n_1} < x$ $\max\{x_1,\ldots,x_{n_1}\} < x$ $\exists n_2 > n_1 \quad x_{n_2} > x_{n_1} \quad x_{n_2} < x$ x_{n_i} increasing \not So \exists finitely many $x_n = x$ Let $n_{k+1} = \max\{k : x_k = x\}$ $x_{n'} < x_{n_{k+1}}(=x)$ $n' > n_{k+1}$ x_{n_k} decreasing Theorem (Bolzano-Weierstrass) Every bounded sequence in $\mathbb{R} \supset$ converging subsequence <u>Ex.</u> [0,1] $(x_n) \in [0,1]$ $x_n \subset \mathbb{R}$ bounded $\Rightarrow x_{n_m} \to x$ [0,1] closed $\Rightarrow x \in [0,1]$ $x_{n_m} \to x \in [0,1]$ in relative topology $\Rightarrow [0,1]$ compact <u>**Theorem**</u> $(X_1, d_1), (X_2, d_2)$ compact $\Rightarrow (X_1 \times X_2, d_1 + d_2)$ compact \uparrow or any d inducing product topology $\sqrt{d_1^2 + d_2^2}$... <u>**Theorem**</u> (X,d) compact $A \subset X$ compact (in relative topology) $\Leftrightarrow A = \overline{A}$ $d|_{A \times A}$ **Theorem** (X, d) any metric space $A \subset X$ compact

 $\Rightarrow A$ closed and bounded

Figure 2 - 36

A closed and bounded \Leftrightarrow compact

 $A \subset B \subset I \times I'$

<u>Ex.</u> $[0,1]^{\omega} \subset \mathbb{R}^{\omega}$ with uniform metric closed and bounded but $\exists f_n = \begin{cases} 1 & x = n \\ 0 & x \neq n \end{cases} \quad \nexists g : f_{n_m} \Rightarrow g$ uniformly

<u>**Thoerem**</u> $f: (X, d) \to \mathbb{R}$ continuous X compact f bounded and f attains maximum value pf. if $\exists f(x_n) \to \infty$ $x_n \in X$ $\exists x_{n_m} \subset x_n \text{ converging } x_{n_m} \to x$ f continuous $f(x_{n_m}) \to f(x) \in \mathbb{R}$ so assume $f(x_n)$ bounded $\forall \epsilon > 0 \quad \exists x_{\epsilon} \in x \quad f(x_{\epsilon}) > \sup(f(x)) - \epsilon$ $(x_{1/n})$ has converging subsequence $x_{n_m} \to x \in X$ $f(x_{n_m}) \to f(x)$ $i \mapsto \sup f$ $f(x) = \sup f = \max f$ **Corollary** (X, d) compact $\Rightarrow X$ attains diam $< \infty$ $\underline{pf.} \quad d: \underbrace{X \times X}_{\text{compact}} \to \mathbb{R} \text{ continuous}$ \downarrow I use; not to confuse with my use of "limit point" (pg. 28) <u>**!! Definition**</u> (X, d) is acc. point compact $\Leftrightarrow \forall S \subset X \quad |S| = \infty \quad S \text{ has acc. point} \quad A_{\text{acc}} \neq \emptyset$ **Lemma** (X, d) acc. point compact \Leftrightarrow sequentially compact $\underline{pf.} \Leftarrow |S| = \infty \quad \exists s_1, s_2, \dots \in S \quad s_i \neq s_j$ $\exists s_{n_m} \to X \text{ at most one } S_{n_m} = X$ X acc. point of S \Rightarrow $(x_n) \subset X$ sequence, if set $\{x_n\}$ finite then \exists finitely many equal $x_{n_m} \rightarrow \text{done}$ so $|\{x_n\}| = \infty$ \Rightarrow it has accumulation point x choose $x_{n_m} \in B_{1/m}(x)$ $x_{n_m} \to x$ The ordered square $[0,1]^2$ with the Theorem (see pg. 25)order topology of the lexicographical order is not metrizable (but it is T_4 like any order topology; it is also linear continuum) (promised this theorem as an application of compactness) pf. assume $[0,1]^2$ were metrizable define $f: [0,1] \to \mathbb{R}$ by $f(x) = \operatorname{diam}(\{x\} \times [0,1]) > 0$ (w.l.o.g. bound the metric to avoid infinite) diam $(A) = \sup\{d(x, y) : A\}$ Consider $x_0 \in [0,1]$. Let $x_n \searrow x_0$ Then $(x_n, 1) \rightarrow (x_0, 1)$ and in fact for any sequence $x'_n \in [\underbrace{(x_0, 1), (x_n, 1)}_{D_n}]$ $x'_n \rightarrow (x_0, 1)$ Thus $\lim_{n \to \infty} \overline{d}((x_0, 1), D_n) = 0$ $\overline{d}(x, A) = \sup\{\underline{d}(x, y) : y \in A\}$ diam $(D_n) \leq 2\overline{d}((x_0, 1), D_n)$ by triangle inequality So diam $(D_n) \rightarrow 0$ and $D_n \supset \{x_n\} \times [0, 1]$ $\Rightarrow f(x_n) = \operatorname{diam}(\{x_n\} \times [0,1]) \rightarrow 0$

So $\lim_{x \to x_0^+} f(x) = 0$ Similarly let $x_n \nearrow x_0$ argue with $(x_0, 0) \leftarrow (x_n, 0)$ that $\lim_{x \to x_0^-} f(x) = 0$. Thus now $\forall x_0 \in [0, 1]$ $\lim_{x \to x_0} f(x) = 0$, but $f(x_0) > 0$ <u>Claim</u> \nexists such $f \Rightarrow \blacksquare$ <u>pf.</u> Let $\epsilon > 0$ If exist infinitely many $x \in [0, 1]$ with $f(x) \ge \epsilon$ then by compactness they have an accumulation point $\exists x_n \to x_0 \in [0, 1]$ $x_0 \ne x_n$ $f(x_n) \ge \epsilon$ \nexists to $\lim_{x \to x_0} f(x) = 0$ So $\forall \epsilon$ $S_{\epsilon} = |\{x : f(x) \ge \epsilon\}| < \infty$ Then $S = |\{x : f(x) > 0\}| = \bigcup_{i=1}^n S_{1/n}$ is countable, but we wanted S = [0, 1], which is uncountable $\nexists \blacksquare$

<u>HW</u> do it for $[0,1] \times [0,1)$; similar proof for $\{f : \mathbb{R} \to \mathbb{R}\}$ product topology <u>but</u> $\{f : \mathbb{Z}_+ \to \mathbb{R}\} = \mathbb{R}^{\omega}$ with product topology is metrizable Th. 20.5 p.123

Covering Compactness (sec. 26)

<u>Definition</u>	(X, d) metric space $\mathcal{O} \subset \mathcal{P}(x)$ is an open cover(ing) of X if $\bigcup \mathcal{O} = X$ and $\forall O \in \mathcal{O}$ O open in X $\mathcal{O}' \subset \mathcal{P}(X)$ is called a subcover of \mathcal{O} if $\mathcal{O}' \subset \mathcal{O}$ and \mathcal{O}' cover of X			
<u>Definition</u>	X is covering compact if every open cover of X contains a finite subcover			
	(the Borel-Lebesgue Covering Theorem) (X,d) metric space X sequentially compact $\Leftrightarrow X$ covering is compact for the proof, we need lemmas			
<u>Lemma</u> (X, d) compact space $\Rightarrow \forall X_1 \supset X_2 \supset X_3 \supset \dots$ filtration with nonempty <u>closed</u> sets, we have $\bigcap_{i=1}^{\infty} X_i \neq \emptyset$ <u><i>pf.</i></u> Take $x_i \in X_i \exists x_{n_i} \rightarrow x X_i$ closed $x \in X_i \forall i$				
<u>Remark</u> \Leftarrow also true. See last part of B-L proof below				
<u>Ex.</u> $X = \mathbb{R}$	$x_i = (-\infty, -i]$ closed filtration $\bigcap X_i = \emptyset$			
,	HW) $x_n \to x$ in $(X,d) \forall \epsilon > 0 \exists N \forall n, m \ge N$ $(x_n, x_m) < \epsilon$ (Cauchy-property)			

<u>**Pf of B-L**</u> " \Rightarrow " Prof. Friedrich 2.11.90 Step.1 X sequentially compact $\Rightarrow \exists$ finite ϵ -net Step.2 $\Rightarrow X$ separable (HW) Step.3 $\Rightarrow X$ is Lindelöf (every cover has <u>countable</u> subcover) Step.4 $\Rightarrow X$ covering compact Step.1 X compact $\Rightarrow \forall \epsilon > 0 \quad \exists p_1, \ldots, p_k \in X$ $\bigcup_{i=1}^{k} B_{\epsilon}(p_i) = X =: \{p_1, \dots, p_k\} \text{ is } \underline{\epsilon}\text{-net}$ $\underline{pf.} \quad \text{by \sharp assume $\exists \epsilon > 0 \quad \forall p_1, \dots, p_k \quad \forall k \quad \{p_1, \dots, p_k\}$ not ϵ-net}$ take $p_0 \in X$ $B_{\epsilon}(p_0) \subsetneq X$ $\exists p_1 \notin B_{\epsilon}(p_0)$ $B_{\epsilon}(p_0) \cup B_{\epsilon}(p_1) \not\subseteq X \quad \exists p_2 \notin B_{\epsilon}(p_0) \cup B_{\epsilon}(p_1)$ So find a sequence $p_i \subset X$ with $d(p_i, p_j) > \epsilon \quad \forall i, j$ any subsequence gives \sharp to Cauchy-property \Rightarrow does not converge. Step.2 X compact (sequentially) $\Rightarrow \exists A \subset X \quad |A| \leq \omega \quad \overline{A} = X \quad X$ separable $A = \bigcup \{ \text{finite } 1/n \text{-net} \}$ (think about it!) used d(x, A) lemma X separable, \mathcal{O} open cover Step.3 to show $\exists \mathcal{O} \supset \mathcal{O}'$ countable subcover Let $A \subset X$, $|A| \leq \omega$, $\overline{A} = X$ $\Lambda = \{ (a, r) \in A \times \mathbb{Q} : \exists O \in \mathcal{O} \ B_r(a) \subset O \}$

Figure 2 - 37

Λ countable for each (a, r) ∈ Λ choose an O = O(a, r) ∈ O with $B_r(a) ⊂ O$ (AC!)

$$\begin{array}{c} \mathcal{O}' = \{O(a,r): (a,r) \in \Lambda\} \quad |\mathcal{O}'| \leq \omega \\ \hline \text{claim} \quad \mathcal{O}' \text{ is open cover of } X \text{ (subcover of } \mathcal{O}), \text{ i.e. } \bigcup \mathcal{O}' = X \\ \hline \underline{pf.} \quad x \in X \quad \mathcal{O} \text{ cover } \exists O \in \mathcal{O} \quad x \in O \quad \exists \epsilon > 0 \quad B_{\epsilon}(x) \in O \\ \hline \text{Since } A \text{ is dense, } \exists a \in A \quad d(x,a) < \epsilon/3 \\ \Rightarrow \text{ take } r \in \mathbb{Q} \cap (\epsilon/3, \epsilon/2) \\ r > \epsilon/3 \quad B_r(a) \ni x \\ r < \epsilon/2 \quad B_r(a) \subset B_{\epsilon/3 + \epsilon/2}(x) \subset B_{\epsilon}(x) \subset \mathcal{O} \\ \exists O \in \mathcal{O} \quad B_r(a) \subset O \\ \exists O \in \mathcal{O} \quad B_r(a) \subset O' := O(a, r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O}' : x \in O' \quad \bullet \end{array} \right)$$
Figure 2 - 38
$$\begin{array}{c} (a,r) \in \Lambda \quad x \in B_r(a) \subset O' := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X \exists O' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X i \in \mathcal{O} := O(a,r) \in \mathcal{O}' \in \mathcal{O}' \\ \forall x \in X i \in \mathcal{O} := O(a,r) \in \mathcal{O}' \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X i \in \mathcal{O} := O(a,r) \in \mathcal{O} := O(a,r) \in \mathcal{O}' \\ \forall x \in X i \in \mathcal{O} := O(a,r) \in \mathcal{O}$$

E

(Do Heine's Theorem; 27.6, p.174)

Now to general topological spaces

Covering Compactness Section. 26 Limit point Compactness Section. 28

 $\begin{array}{cccc} X, \text{ Th. } 28.1 \text{ p.177}(S_{\Omega}) \\ & & & & & & \\ \text{Covering} & & & & & \\ \text{Compactness} & & & & & \\ \text{Compactness} & & & & & \\ X, \text{ p.34}(*1) \nexists & X, S_{\Omega} & \not > & \text{works as above} & & & & & & \\ & & & & & & & \\ \text{Sequence} & & & & \\ \text{Compactness} & & & & \\ \text{Lemma order topology is covering compact} \Rightarrow \exists \text{ smallest and largest element.} \end{array}$

<u>Rem</u> The converse is true if LUBP; see Th 27.1 in book

Theoremorder topology s.t. \exists smallest, largest element and Least upper bound property, \Rightarrow Sequence compact (Generalization of Bolzano-Weierstrass theorem)

Ex. $S_{\Omega} = \overline{S}_{\Omega} \setminus \{\Omega\}$ "smallest uncountable ordered set" but no largest element \Rightarrow not covering compact but S_{Ω} is sequentially (and hence accumulation point) compact \Rightarrow not metrizable! $x_1, x_2, \dots \in S_{\Omega} \quad \{x_i\} \in S_{\Omega} \quad |\{x_i\}| \leq \omega \Rightarrow \{x_i\}$ bounded a_0 smallest element of $S_{\Omega} \exists b \in S_{\Omega} \quad \{x_i\} \subset [a_0, b]$ sequentially compact. Generalization of Bolzano-Weierstrass $\Rightarrow \exists$ converging subsequence in $[a_o, b]$ also converging in S_{Ω} (order topology of interval = relative topology)

<u>Remark</u> This example shows also if $x \in \overline{A}$ (pg.13) $A = S_{\Omega}$ then not necessarily $x \in A_{\lim}$ $\Leftarrow x \in \overline{S}_{\Omega}$ $x = \Omega$ like in pg. 23 $\overline{A} = \overline{S}_{\Omega}$ but $\Omega \notin (S_{\Omega})_{\lim}$ \uparrow explains the notation \overline{S}_{Ω}

(*1)

<u>**Theorem</u>** Tychonoff's Theorem (Section 37, p. 167) The product topology of (any number of) (covering) compact spaces is (covering) compact</u>

<u>Ex.</u> $\Sigma = \{0, 1\}^{\mathbb{Z}_+} = \{\text{sequence of } 0, 1\}(\{0, 1\} \text{ discrete topology})$ $X = \{0, 1\}_{\text{prod}}^{\Sigma} \text{ is (c.) compact by Tychonoff's theorem}$ (\Rightarrow also accumulation point compact) (X is T_2 etc.) but X is not sequentially compact.

$$\begin{array}{cccc} f_n & \to & g & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\$$

Above (*1) has an example of a space that is covering (and accumulation point) compact, but not sequentially compact, but this example uses Tychonoff's theorem

<u>Pf.</u>

<u>**Pb.**</u> Prove that I_0^2 ordered space is covering compact

sol. \mathcal{O} open cover Let $x_0 \in [0,1]$ $I(x_0) = x_0 \times [0,1]$ \mathcal{O} induces covering of $I(x_0)$ $\tilde{O}_{x_0} = \{O \cap I(x_0) : O \in \mathcal{O}\}$

Figure 2 - 39

 $I(x_0) \cong [0,1]$ (covering) compact $\exists \tilde{\mathcal{O}}'_{x_0} \subset \tilde{\mathcal{O}}_{x_0} \mid \tilde{\mathcal{O}}'_{x_0} \mid < \infty \quad \bigcup \tilde{\mathcal{O}}'_{x_0} = I(x_0)$ for each $\tilde{O}' \in \tilde{\mathcal{O}}'_{x_0}$ choose an $\hat{O}_{\tilde{O}'} \in \mathcal{O}$ with $\hat{O}_{\tilde{O}'} \cap I(x_0) = \tilde{O}'$ $\mathcal{O}_{x_0} = \{ \hat{O}_{\tilde{O}'} : \tilde{O}' \in \tilde{\mathcal{O}}'_{x_0} \} \quad |\mathcal{O}_{x_0}| < \infty$ $\Rightarrow \exists \mathcal{O}_{x_0} \subset \mathcal{O} \quad |\mathcal{O}_{x_0}| < \infty \quad (\Lambda_{x_0} \coloneqq) \cup \mathcal{O}_{x_0} \supset I(x_0)$ $\Lambda_{x_0} \ni x_0 \times 0 \text{ open } \Rightarrow \Lambda_{x_0} \supset (x'_0 \times y'_0, x_0 \times 0] \quad x'_0 < x_0 \ (x_0 \neq 0)$ $\Rightarrow \Lambda_{x_0} \supset (x'_0, x_0) \times [0, 1]$ Similarly if $x_0 \neq 1$ $\Lambda_{x_0} \ni x_0 \times 1$ $\Rightarrow \Lambda_{x_0} \supset (x_0, x_0'') \times [0, 1]$ $x_0'' > x_0$ $\Rightarrow \Lambda_{x_0} \supset (x'_0, x''_0) \times [0, 1]$ so for each $x_0 \in [0,1]$ \exists finite subfamily of $\mathcal{O}, \mathcal{O}_{x_0}$ and $\exists x_0' < x_0 < x_0'' \quad \bigcup \mathcal{O}_{x_0} \supset (x_0', x_0'') \times [0, 1]$ with $(x'_0, x''_0) = (x'_0, 1]$ $x_0 = 1$ $= [0, x_0'') \quad x_0 = 0$ Now $\{(x'_0, x''_0) : x_0 \in [0, 1]\}$ is an open cover of [0, 1] $\xrightarrow{[0,1] \text{ compact}} \exists x_1, \dots, x_n : (x'_1, x''_1) \cup \dots \cup (x'_n, x''_n) = [0,1]$ then $\bigcup \mathcal{O}_{x_i}$ is a finite subcover of \mathcal{O}

<u>Pb.</u> Prove that I_0^2 is sequentially compact

The I_0^2 is sequentially compact

generalize that argument to prove the $[0,1]^{\omega}$ is sequentially compact with the dictionary order.

↓ (solution below)

(It is also covering compact but this needs Th 27.1 in book and HW 10.)

Thus for non-metrizable spaces, '(any sort of) compact \Rightarrow separable ' is false!

23. Connected Spaces

<u>Remark</u> X is connected $\Leftrightarrow \forall A \in X$ A open and closed $\Rightarrow A = \emptyset$ or A = X **<u>Remark</u>** do not use "separable" in this context (\exists separation) $\exists A \subset X : \overline{A} = X, |A| \leq \omega$ for disconnected

pg. 32 step 2. in B-L proof

Definition $A \subset X$ separation of A in X $U, V \quad U, V \neq \emptyset \quad U, V \text{ <u>not</u> necessarily open}$

 $A = U \cup V \qquad U \cap \overline{V} = \emptyset$ $\overline{U} \cap V = \emptyset$

U, V disjoint and none containing an accumulation point of the other

Lemma A is connected (in relative topology) \Leftrightarrow A has no separation

<u>Ex.</u> $X = \mathbb{R}$ $A = [-1, 0) \cup (0, 1], (U = [-1, 0), V = (0, 1])$ $\overline{(0,1]} \cap [-1,0) = [0,1] \cap [-1,0) = \emptyset$ $(0,1] \cap \overline{[-1,0]} = (0,1] \cap [-1,0] = \emptyset$ A disconnected

Remark $\overline{U} \cap \overline{V} = \{0\} \neq \emptyset$ but this is not forbidden! $\uparrow U, V$ have common accumulation point

 $\underline{\mathbf{Ex.}}$ \mathbb{R}^2

Figure 2 - 40

UV $\{(x,0): x \in \mathbb{R}\} \cup \{(x,1/x): x > 0\}$ separation $U\cap V=\overline{U}\cap\overline{V}=\varnothing$

Figure 2 - 41

$$\begin{array}{cc} U & V\\ \{(x,0): x \in \mathbb{R}\} \cup \{(0,1/x): x > 0\}\\ \text{no separation}\\ \overline{V} \cap U \neq \varnothing \end{array}$$

Lemma C, D separation of $X \quad Y \subset X$ connected $\Rightarrow Y \subset C \text{ or } Y \subset D$

(!) **Theorem** $X \ni x$ $\mathcal{Y} \subset \mathcal{P}(X)$ $\forall Y \in \mathcal{Y}$ Y connected, $Y \ni x$ $\Rightarrow \cup \mathcal{Y}$ connected

Figure 2 - 42

(*)**Theorem** If $A \subset X$ connected and $A \subset B \subset \overline{A} \Rightarrow B$ connected.

<u>Ex.</u> not true for interior!

Figure 2 - 43

Theorem The image of a connected set under continuous map is connected

Theorem X, Y connected $\Rightarrow X \times Y$ connected \Rightarrow true for finite products

- **<u>Ex.</u>** \mathbb{R}^{ω} box topology or uniform topology \mathbb{R} connected (prove later) $\mathbb{R}^{\omega} = \{ \text{bounded sequences} \} \cup \{ \text{unbounded sequences} \}$ both open and disjoint non-empty $\Rightarrow \mathbb{R}^{\omega}$ disconnected with uniform or box topology
- **<u>Ex.</u>** \mathbb{R}^{ω} with product topology $\mathbb{R}^{n} \simeq \{ (x_{1}, \dots, x_{n}, 0, \dots, 0) \} \hookrightarrow \mathbb{R}^{\omega} \text{ connected} \\ \bigcap \mathbb{R}^{n} = 0 \quad R = \bigcup_{n=1}^{\infty} \mathbb{R}^{n} \text{ connected} \\ \mathbb{R}^{\omega} = \overline{R} \qquad f : \mathbb{Z}_{+} \to \mathbb{R} \in \mathbb{R}^{\omega}$ R dense $f_n(x) = \left\{ \begin{array}{cc} f(x) & x \le n \\ 0 & x > n \end{array} \right\} \to f$ pointwise \mathbb{R}^{ω} connected

24. Connected Subspaces of \mathbb{R}

Definition	(recall)	(X, <) ordered set is <u>a linear continuum</u> if	
	0)	X > 1	
	1)	Least Upper Bound Property(LUBP)	
	2)	$\forall x, y \in X x < y \Rightarrow \exists z \in X x < z < y$	
		Intermediate Element Property(IEP)	
(!)Theorem	L is lin	L is linear continuum with order topology, $Y \subset L$ convex	
	$\Rightarrow Y c$	onnected	
	in part	cicular, L connected, and so are intervals and rays in L	
	recall:	$Y \subset L \text{ convex } \forall x, y \in Y x < y \forall z \in L$	

$$x < \stackrel{\circ}{z} < y \Rightarrow z \in Y$$

Figure 2 - 46

 $\exists c < f < d \quad f \in A_0 \quad \not z \text{ to } c = \sup A_0 \quad \blacksquare$

Corollary \mathbb{R} connected and intervals and rays in it.

- **<u>Remark</u>** Converse of this Theorem also true: $(X, \mathcal{A}_{<})$ connected $\Rightarrow (X, <)$ is linear continuum
- $\begin{array}{ll} \hline \textbf{Theorem} & \text{Intermediate value theorem} \\ & (X,\mathcal{A}) \text{ connected } (Y,<) \text{ order topology} \\ & f: X \to Y \text{ continuous } \Rightarrow \forall x, y \in X \quad \forall c \in [f(x), f(y)] \\ & \exists d \in X \quad f(d) = c \\ \hline pf. & \text{by contradiction} \quad \text{if } \exists r \in (f(x), f(y)) \quad r \notin f(X) \\ & \text{Consider } X = f^{-1}((-\infty, r)) \cup f^{-1}((r,\infty)) \\ & \text{separation of } X \end{array}$

<u>**Remark</u>** take $X' = [x, y] \rightarrow d \in [x, y]$ "Darboux property"</u>

- **<u>Ex.</u>** I_0^2 ordered square with dictionary order is a linear continuum different from \mathbb{R}
- **<u>Ex.</u>** X well ordered $\Rightarrow X \times [0,1)$ with dictionary order is a linear continuum

Important case:

$$(0_i)$$
 (0_i) $X = S_{\Omega}(=\overline{S_{\Omega}} \setminus \{\Omega\})$ \times X $X = S_{\Omega}(=\overline{S_{\Omega}} \setminus \{\Omega\})$ \times $X = S_{\Omega}(=\overline{S_{\Omega} \setminus \{\Omega\})$ \times $X = S_{\Omega}(=\overline{S_{\Omega} \setminus \{\Omega\})$ \times $X = S_{\Omega}(=\overline{S_{\Omega} \setminus \{\Omega\})$ \times $X = S_{\Omega}(=\overline{S_$

25. Components

Definition X topological space define equivalence relation on X by $x, y \in X$ $x \sim y \quad \exists \text{ connected subspace } W \text{ of } X \quad W \ni x, y$ equivalence class $[x]_{\sim}$ is the connected component of $x \in X$ Definition $C_x = [x]_{\sim} = \bigcup \{ C \subset X \text{ connected}, C \ni x \}$ connected by pg.38 (!) maximal connected set containing x**<u>Remark</u>** C_x closed as $\overline{C_x}(\ni x)$ is connected $\Rightarrow \overline{C_x} \subset C_x$ **Definition** X satisfies the connected neighborhood condition (CNC) (resp. at $x \in X$) if every point (resp. the point $x \in X$) has a connected neighborhood **Lemma** $y \in C_x \Rightarrow \forall (U, V)$ separation of $X \quad x \in U \Rightarrow y \in U$ \Leftarrow if CNC see Ex. 3.26.10 $\Rightarrow \exists$ connected subspace $W \ni x, y$ pf. assume by contradiction $\exists (U, V) \quad x \in U \quad y \in V$ $(U \cap W, V \cap W)$ separation of W $W \text{ connected } \Rightarrow U \cap W(\ni x) = \emptyset \text{ or } V \cap W(\ni y) = \emptyset \quad \nleq$ \Leftarrow by contraposition $\exists x \neq y$ $\forall W \ni x \text{ connected} \quad W \not\ni y$ $C_x = \bigcup \{ W \ni x \text{ connected} \} \not = y$ connected neighborhood condition $\Rightarrow C_x$ open(and closed) (2) or Remark above (1)YE KAR. Figure 2 - 48: (1) Figure 2 - 49: (2)

<u>Note</u> If $A \subset X$, connected components of A are meant with respect to relative topology

Definition X is totally disconnected if all its connected components are points

- **Example** If $|S| = n < \infty$ $\mathcal{F}(S, \mathbb{R}_{\text{discr}})_{\text{prod}} \simeq \mathbb{R}^n_{\text{discr}}$ totally disconnected $\mathcal{F}(\mathbb{Z}_+, \mathbb{R}_{\text{discr}})_{\text{prod}} = (\mathbb{R}_{\text{discr}})^{\omega} \stackrel{\text{why?}}{=} (\mathbb{R}^{\omega}, \text{ dictionary order}) \text{ also totally disconnected}$
- **Remark** $A \subset X$ discrete $\Rightarrow A$ totally disconnected (in relative topology) converse is false
- **<u>Ex.</u>** $\mathbb{Q} \subset \mathbb{R}$ is totally disconnected (but surely not discrete) $x < y \quad \exists r \in (x, y) \text{ irrational}$ $\mathbb{Q} = (\mathbb{Q} \cap (-\infty, r)) \cup (\mathbb{Q} \cup (r, \infty))$ open in \mathbb{Q} open in \mathbb{Q} I can separate points by open sets (whose union is the whole space unlike in T_2 !)
- **Remark** \mathbb{Q} does not satisfy the CNC, but " \Leftarrow " of lemma is still true
- **Remark** $CNC \xrightarrow{(1),(2)}$ every union of connected components is open and closed (which is false for \mathbb{Q})
- **Definition** X locally connected at x $\forall U \ni x$ neighborhood $\exists U' \subset U \quad U' \ni x$ neighborhood connected

X locally connected if locally connected at $x \forall x \in X$

Remark X locally connected (at x) \Rightarrow CNC (at x) (set U = X)

Theorem X is locally connected $\Leftrightarrow \forall U \subset X$ open $\forall C_x \subset U$ component of U (in relative topology) $C_x \subset X$ open

<u>Ex.</u> $\{f : \mathbb{R} \to \mathbb{R}\}$ with uniform topology $\mathcal{F}(\mathbb{R}, \mathbb{R})_{\text{uni}}$ $f(x) = x \in \{f : \lim_{x \to \infty} \frac{f(x)}{x} = 1\} = \Lambda_1 \text{ open and closed} \\ 0 \in \{f : \lim_{x \to \infty} \frac{f(x)}{x} = 0\} = \Lambda_0 \\ \text{disconnected!} \qquad \text{every behavior } \to \infty \text{ gives a separation}$

every behavior $\rightarrow \infty$ gives a separation

Line non - enskel fet.

Figure 2 - 51

 $\{f:\mathbb{R}\to\mathbb{R}\}$

connected components $[f]_{\sim}$

 $f \sim q \Leftrightarrow f - q$ bounded

Path Connectedness and Path Components

X is path connected if $\forall x, y \in X \quad \exists \text{ path in } X \text{ from } x \text{ to } y$

 $\forall x, y \in X \quad \exists \text{ path in } X \text{ from } x \text{ to write } "x \leftrightarrow y"$

<u>**Remark**</u> path-connected \Rightarrow connected

<u>Ex.</u> $V, \|\cdot\|$ norm, whose unit ball $B = \{x \in V : \|x\| \le 1\}$ $B \text{ is convex} \quad \forall x, y \in B, \ t \in [0, 1], \quad tx + (1 - t)y \in B.$ Then $t \mapsto tx + (1 - t)y$ continuous in t (in norm topology) B is path connected

<u>Ex.</u> I_0^2 is not path connected, but it's a linear continuum (LUBP HW!) So it's connected

Figure 2 - 54

 $f:[0,1] \to X \text{ continuous image must be connected}$ if image $\ni a, b \Rightarrow \text{ image } \supset [a,b] \supset \underbrace{(x_1,x_2)}_{\text{uncountable}} \times [0,1]$ $\exists x_0 \in (x_1,x_2) \quad f(\underbrace{\mathbb{Q} \cap [0,1]}_{\text{countable}}) \cap (\{x_0\} \times (0,1)) = \varnothing$ $f^{-1}(\{x_0\} \times (0,1)) \subset \mathbb{R} \smallsetminus \mathbb{Q}, \text{ but } \text{Int}(\mathbb{R} \smallsetminus \mathbb{Q}) = \varnothing \ \texttt{i}$ non-empty open as f is continuous **<u>Ex.</u>** $A = \{x \times \sin \frac{1}{x} : 0 < x < \frac{1}{\pi}\} \subset \mathbb{R}^2$ topologist's sine curve

Figure 2 - 55

$$\begin{split} \overline{A} &= A \cup \left(\{0\} \times [-1,1] \right) \\ A \text{ connected } \Rightarrow \overline{A} \text{ connected but } \overline{A} \text{ is not path connected} \\ \text{Let there be a path } f : [0,1] \rightarrow \overline{A} \in \mathbb{R}^2 \\ f(t) &= (x(t), y(t)) \text{ with } f(0) &= (0,0) \quad f(1) = (\frac{1}{\pi},0) \\ \stackrel{=A}{=B} \\ x \text{ continuous } x^{-1}(0) \in [0,1] \text{ closed } \Rightarrow \exists \max x^{-1}(0) =: a' \\ \text{w.l.o.g. } f : [a',1] \rightarrow \overline{A} \quad x(t) > 0 \quad t > a' \Rightarrow \inf(f|_{(a',1]}) \in A \\ x(a') &= 0, x(1) = \frac{1}{\pi} \Rightarrow \text{ by Intermediate Value Theorem} \\ \forall x \in (0,\frac{1}{\pi}] \quad \exists t \quad x(t) = x \Rightarrow y(t) = \sin(\frac{1}{x}) \quad \text{Image}(f) = A \cup \{0 \times y(a')\} \\ [a',1] \text{ (sequentially) compact, } f \text{ continuous } \Rightarrow \operatorname{Img}(f) \text{ closed} \\ \Rightarrow \operatorname{Img}(f) = \overline{A} \cup \{0 \times y(a')\} = \overline{A} \neq A \cup \{0 \times y(a')\} \quad \not{i} \\ \text{This means the closure of a path-connected set is not path-connected!} \\ (\text{Compare theorem}(*) \text{ on pg. 38}) \end{split}$$

Definition X topological space, define equivalence relation by $x \sim y \quad \exists \text{ path in } X \text{ from } x \text{ to } y$ $[x]_{\sim} \text{ is } x$'s path component

Theorempath components of X are
disjoint path connected subspaces
whose union is X
each path-connected subspace of X is
contained in exactly one path component

Figure 2 - 56

all components trivial \Rightarrow all path components are trivial

Ex. from pg.44 topologist's sine curve is connected but not path-connected! *A* has one component, \overline{A} , and two path components $A \setminus \{0 \times 0\}$ and $\{0\} \times [-1, 1]$ $=A_1$ note that in A,

 A_1 is open but not closed \Rightarrow unlike components, path A_2 is closed but not open components need not be closed

<u>Ex.</u> connected take $A \setminus \{0 \times 0\} \cup \{0\} \times ([-1, 1] \setminus \mathbb{Q})$

this is still connected (= one component) but has uncountably many path components!

Figure 2 - 58

Ex. Consider $\{f : \mathbb{R} \to \mathbb{R}\}$ with uniform topology connected component C_f of f is the set of maps gwith |g - f| bounded. (see Ex. 3.26.2 p.160 in book, p. 38 in note) This is path connected in fact it is <u>convex</u> (as $\subset VS/\mathbb{R}$) tf + (1 - t)g gives a (straight) path from f to $g \in C_f$ Similarly you can do in box topology with $C_f = \{g : |\{x : g(x) \neq f(x)\}| < \infty\}$ (is also convex)

Again there is a local version

Definition X is locally path connected if $\forall U \ni x \text{ open } \exists U \supset U' \ni x \quad U' \text{ path connected}$

<u>**Remark**</u> locally path connected \Rightarrow locally connected

<u>Ex.</u>		$\times [0,1)$ with dictionary order is not connected, not locally connected ot path connected and not locally path connected.)		
<u>Ex.</u>		$\times (0,1)$ with dictionary order is not connected but locally connected bath connected, but locally path connected		
<u>Ex.</u>	and lo	set with the discrete topology is locally connected ocally path connected since $U = \{x\} \ni x$ is open of course, totally disconnected and path-disconnected)		
Theo	orem	$ \begin{array}{l} X \text{ locally (path) connected } \Leftrightarrow \forall U \in X \text{ open} \\ \forall U' \text{ (path) component of } U U' \in X \text{ open} \end{array} $		
<u>Theo</u>	orem	each path component of X lies (entirely) within a component of X if X is locally path connected, then components and path components are the same		
Corc	ollary	connected and locally path connected \Rightarrow path connected		

<u>Ex.</u> $I_0^2 = [0, 1]^2$ has LUBP(HW1) (See Pb.3. p.160 in book) Intermediate Element Property (IEP) \Rightarrow Linear continuum

 $\xrightarrow{\text{Th.(!) p.39}} \text{ connected and locally connected}$

path connected?

Figure 2 - 59

but $(a, b) \notin (c, d)$ if $a \neq c$ assume $f: [0, 1] \rightarrow I_0^2$ $f(0) = (a, b) = a \times b$ $f(1) = (c, d) = c \times d$ $f([0, 1]) \supset [a \times b, c \times d]$ $A = \mathbb{Q} \cap [0, 1] \subset [0, 1]$ dense, countable f continuous $\Rightarrow \overline{f(A)} \supset f(\overline{A}) = f([0, 1]) \supset [a \times b, c \times d]$ $B := f(A) \cap (a \times b, c \times d)$ dense in $(a \times b, c \times d)$, countable but $(a \times b, c \times d) \supset \bigcup_{a < x < b} \{x\} \times [0, 1] \Rightarrow \exists s \in (a, b)$ uncountable, disjoint union $B \cap (\{s\} \times [0, 1]) = \emptyset$ $(a \times b, c \times d) \supset \{s\} \times [0, 1] \supset \{s\} \times (0, 1)$ open $\overline{B} \subsetneq (a \times b, c \times d) \not \downarrow$

so path components of I_0^2 are $\{s\}\times [0,1]$

Figure 2 - 60

43. Complete metric spaces

Assume (X, d) metric space Recall (proof of Borel-Lebesgue) $(X, d) \supset (x_n)$

$$x_n \to x \Rightarrow \forall \epsilon \exists N \ \forall m, n \ge N \ d(x_m, x_n) < \epsilon \tag{(·)}$$

<u>Definition</u> We say (x_n) is Cauchy-sequence if (x_n) satisfies (\cdot)

<u>Lemma</u> (x_n) converges $\Rightarrow (x_n)$ Cauchy-sequence

- **Definition** We say (X, d) is complete if every Cauchy sequence converges (i.e. converse of lemma holds)
- **Lemma** Let (x_n) be a Cauchy-sequence, if (x_n) has a convergent subsequence, then (x_n) converges

Corollary X complete \Leftrightarrow every Cauchy sequence has a convergent subsequence

- $\mathbb{R}_{\text{Eucl.}}$ (‡)Comment (0,1)homeomorphic \simeq Eucl. complete non-complete so \exists metric on (0,1) giving Euclidean topology with respect to which (0,1) is complete Thus completeness depends on metric (not only on metrizability) \Rightarrow X complete Corollary X compact topological property metric property metrizable topology \Rightarrow complete with respect to every metric space compact inducing the topology **Theorem** \mathbb{R}^k complete. (with Euclidean metric) pf. let (x_n) be Cauchy-sequence \Rightarrow (x_n) bounded \Rightarrow (x_n) $\supset [-M, M]^k$ compact \Rightarrow (x_n) has convergent subsequence \Rightarrow (x_n) converges For \mathbb{R}^{ω} recall the following lemma **<u>Lemma</u>** let $X = \prod X_{\alpha}$ with product topology, and for $\alpha_0 \in I$ let $\pi_{\alpha_0} : X \to X_{\alpha_0}$ be the projection $(x_{\alpha})_{\alpha \in I} \mapsto x_{\alpha_0}$ Then $\overline{x_n} \to \overline{x}$ in $X \Leftrightarrow \forall \alpha \in I \ \pi_\alpha(\overline{x_n}) \to \pi_\alpha(\overline{x})$ in X_α (i.e. convergence in the product topology is pointwise convergence) <u>Theorem</u> The product topology on \mathbb{R}^{ω} has a metric with respect to which it is complete <u>*pf.*</u> $d(\overline{x}, \overline{y}) = \sup_{i>0} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\} \quad \overline{d}(a, b) = \min(|a - b|, 1)$ d gives product space assume $(\overline{x_n})$ Cauchy-sequence in $(X = \mathbb{R}^{\omega}, d)$ $\forall i \quad \pi_i(\overline{x_n}) \text{ is } \mathbb{R} \text{ is Cauchy-sequence because}$ $|\pi_i(\overline{a}) - \pi_i(\overline{b})| \le i \cdot d(\overline{a}, \overline{b})$ *i*-fixed so $\pi_i(\overline{x_n}) \to a_i$ convergent in $\mathbb{R} \forall i$ Then, $\overline{x_n} \to (a_i)_{i=1}^{\infty}$ in X <u>**Remark**</u> (x_n) Cauchy-sequence, with respect to d \Leftrightarrow (x_n) Cauchy sequence with respect to \overline{d} (X, d) complete $\Leftrightarrow (X, \overline{d})$ complete
- **<u>Ex.</u>** $\mathbb{Q}, (-1, 1)$ with Euclidean metric not complete consider $x_n \in \mathbb{Q}$ $x_n \to \sqrt{2}$ in \mathbb{R} (for \mathbb{Q}) $-1 + \frac{1}{n} \in (-1, 1) \to -1$ (for (-1, 1))

 $(-1,1)_{\text{not complete}} \simeq \mathbb{R}_{\text{complete}}$ homeomorphic Remark so $\exists d$ on (-1,1) giving Euclidean topology with respect to which is complete \rightarrow completeness pg.47 (‡)Comment \leftarrow depends on metric(not only on metrizability) **Theorem** Let (X, d) complete. $A \subset X$ closed $\Rightarrow (A, d|_{A \times A})$ complete pf. $(x_n) \subset A$ $(x_n) \subset X$ Cauchy-sequence $(x_n) \to x$ in X Cauchy-sequence A closed $\Rightarrow x \in A \Rightarrow$ $(x_n) \to x \text{ in } A$ **Remark** \Leftarrow also true: $A \subset X$ complete $\Rightarrow A$ closed **<u>Remark</u>** $\mathbb{R}^J = \mathcal{F}(J, \mathbb{R})_{\text{prod}}$ is in general not metrizable, so completeness makes no sense but \mathbb{R}^J_{uni} is metrizable. Recall <u>uniform metric</u> **<u>Definition</u>** Let (Y_{α}, d_{α}) metric space. Let $\overline{d_{\alpha}} = \min(d_{\alpha}, 1)$ For $Y = \prod_{\alpha \in J} A_{\alpha}$ define the uniform metric on Y by $\overline{\varrho}(\overline{x},\overline{y}) \coloneqq \sup_{\alpha \in J} \{ \overline{d_{\alpha}}(\pi_{\alpha}(\overline{x}),\pi_{\alpha}(\overline{y})) \} \qquad \pi_{\alpha} : Y \to A_{\alpha}$ <u>**Theorem**</u> (Y,d) compete $\Rightarrow Y^J = \prod_{\alpha} Y_{\alpha}$ $Y_{\alpha} = Y$ is complete with uniform metric \uparrow index the copy pf. let $(f_n) \subset Y^J$ Cauchy-sequence with respect to $\overline{\varrho}$ then $(\pi_{\alpha}(f_n)) \subset Y_{\alpha}$ Cauchy-sequence in $(Y_{\alpha}, \overline{d}_{\alpha})$ \Rightarrow Cauchy sequence in (Y_{α}, d_{α}) $\pi_{\alpha}(f_n) \to y_{\alpha} \text{ in } Y_{\alpha}$ Let $f : \alpha \mapsto y_{\alpha}$ We claim $f_n \to f$ in $(Y^J, \overline{\varrho})$ Given $\epsilon > 0$ choose N with $\forall n, m \ge N$ $\overline{d}(f_n(\alpha), f_m(\alpha)) < \epsilon/2 \quad \forall \alpha \in J (\Leftarrow \overline{\varrho}(f_m, f_n) < \epsilon/2)$ $\xrightarrow{m \to \infty} \overline{d}(f_n(\alpha), f(\alpha)) \le \epsilon/2$ This holds $\forall \alpha \in J \quad \forall n \ge N$ $\overline{\varrho}(f_n, f) = \sup \overline{d}(f_n(\alpha), f(\alpha)) \le \epsilon/2 < \epsilon$ $\Rightarrow \forall \epsilon > 0 \exists \overset{\alpha}{N} \forall n \ge N \ \overline{\rho}(f_n, f) < \epsilon \Rightarrow f_n \to f$ **Definition** Now assume X is topological space $C(X,Y) \subset \mathcal{F}(X,Y) = Y^X$ is $\{ f \in Y^X : f \text{ continuous} \}$ **Definition** $f: X \to (Y, d)$ bounded if $f(X) \subset Y$ is a bounded set diam $(f(X)) < \infty$ $B(X,Y) \subset Y^X$ $\{f: X \to Y \ f \text{ bounded}\}$

<u>Theorem</u> (Y,d) metric space B(X,Y) and C(X,Y)(X topological space) are closed in $(Y^X, \overline{\varrho})$ and therefore complete

<u>Ex.</u> $C(\mathbb{R},\mathbb{R}) \subset \mathcal{F}(\mathbb{R},\mathbb{R})_{\text{uni}}$ closed (but not discrete) $C(\mathbb{R},\mathbb{R}) \subset \mathcal{F}(\mathbb{R},\mathbb{R})_{\text{box}}$ (closed and) discrete \Leftarrow HW $C(\mathbb{R},\mathbb{R}) \subset \mathcal{F}(\mathbb{R},\mathbb{R})_{\text{prod}}$ is dense (and not closed) $\mathbb{R}[z]$ dense (Lagrange Interpolation)

Completion

- **Definition** $(X, d), (Y, \tilde{d})$ metric spaces we say $f: X \to Y$ is isometry if $\forall x, \tilde{x} \in X \quad d(x, \tilde{x}) = \tilde{d}(f(x), f(\tilde{x}))$
- $\begin{array}{ll} \underline{\textbf{Remark}} & f \text{ isometry} \Rightarrow \text{injective} \\ & \text{so } f \text{ is also called an "isometric embedding"} \end{array}$
- **Theorem**(Existence of completion)
(X,d) metric space $\exists (Y,\tilde{d})$ complete metric space
 $f: X \to Y$ isometric embedding
- **Definition** If (X, d) metric space (Y, \tilde{d}) compete metric space $f: X \to Y$ isometric embedding call $\overline{f(X)} \subset Y$ the completion of X

<u>Remark</u> completion is unique up to isometry

$$\begin{array}{ll} \hline \textbf{Construction} & U(X^{\omega}) = \{(x_1, x_2, x_3, \dots) \in X \text{ Cauchy sequence}\} \subset X^{\omega} \\ & \text{Let } \sim \text{ be equivalence relation on } U(X^{\omega}) \\ & (x_i) \sim (x'_i) :\Leftrightarrow d(x_i, x'_i) \to 0 \\ & \text{Then } Y = \Gamma(X) := U(X^{\omega})/ \sim \\ & \tilde{d}([(x_i)], [(x'_i)]) = \lim_{i \to \infty} d(x_i, x'_i) \\ & f: X \hookrightarrow Y \text{ is given by } x \mapsto [(x, x, x, \dots)] \end{array}$$

<u>Ex.</u> $X = \mathbb{Q}$ with Euclidean metric $\Gamma(\mathbb{Q}) = \mathbb{R}$ construction of real numbers