Name (hangul): \qquad 학과/학년: \qquad Student \#: \qquad Section: \qquad

Quiz-11 (Review quiz) (12 problems for 20 minutes, 60 points, $100 \%=40$ points)

Multiple choice problems (5 points for right answer, 0 points for no answer, -1 point for wrong answer)

Problem 1. When is a field algebraically closed?when every non-constant polynomial has at least one zerowhen every polynomial of degree n has n distinct zeroswhen every polynomial of degree n has at most n zeros
\square when there is no polynomial with a multiple zero which splits
Problem 2. Which of these claims is true for all $A \in M_{n \times n}(F)$?
\square If A is traceless and upper-triangular, then A is not invertible.If A is scalar and traceless, then A is not invertible.
\square If A is diagonalizable and invertible, then A is diagonal.
\square If A is upper-triangular and symmetric, then A is diagonal.
Problem 3. What are the values of $p \in \mathbb{R}$ for which

$$
\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{p}:=\sqrt[p]{\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}
$$

defines a norm on \mathbb{C}^{n} ?
$\square p \geq 0$
$\square p=2$
$\square p \geq 1$
$\square p \in \mathbb{N}_{+}$

Problem 4. What property of a matrix A says that A is Hermitian?
$\square A=\bar{A}^{T}$
$\square A^{2}=I d$
$\square A^{2}=A$
$\square A=\left(A^{-1}\right)^{T}$

Problem 5. Let $A \in M_{n}(\mathbb{R})$ be a projection matrix. What of the following is (always) true?
$\square \operatorname{tr}(A)=\operatorname{rk}(A)$
$\square \mathrm{rk}(A)=n$$\operatorname{det}(A)=1$
$\square A^{2}=0$

Problem 6. What is the number of positive permutations of 5 elements?
20
24

Problem 7. Which of the following claims is false for $A \in M_{n}(F)$ and $P \in F[z]=\mathcal{P}(F)$?
\square If $P(A)=0$, then $P(\lambda)=0$ for all eigenvalues λ of A.
If $P(\lambda)=0$ for all eigenvalues λ of A, then $P(A)=0$.
$\chi_{A}(\lambda)=0$ for all eigenvalues λ of A.
$\chi_{A}(A)=0$
Problem 8. What is the coefficient in degree $n-1$ of $\chi_{A}(t)$ for a matrix $A \in M_{n}(F)$?
$\square \operatorname{det} A$
$\square(-1)^{n-1} \mathrm{rk} A$
$\square(-1)^{n-1} \operatorname{tr} A$
$\square(-1)^{n-1}$

Problem 9. What of the following is not an inner product $\langle f, g\rangle$ for $f, g \in C^{\omega}(\mathbb{R}, \mathbb{R})$?
$\square \int_{-1}^{1} f^{\prime}(x) g^{\prime}(x) d x+f(0) g(0)$
$\square \int_{-1}^{1} f(x) g(x) \cdot x^{2} d x$
$\square \sum_{n=0}^{\infty} f^{(n)}(0) g^{(n)}(0) \cdot \frac{1}{(3 n)!}$
$\square \sum_{n=1}^{\infty} f(n) g(n) \cdot \frac{1}{n^{n}}$

Problem 10. How is the property of a norm called which determines whether it comes from an inner product?
\square positive definiteness
\square triangle inequality
\square Cauchy-Schwarz inequality
\square Parallelogram identity
Problem 11. Which of the below properties does an orthogonal matrix not always have?
\square it is invertible
\square it preserves norm
\square if it is diagonalizable, then its eigenvalues are ± 1
\square any two linearly independent eigenvectors are orthogonal
Problem 12. Assume $A \in M_{2}(\mathbb{R})$ is a definite matrix, $\mathbf{b} \in \mathbb{R}^{2}$, and $c>0$, and the equation $\mathbf{x}^{T} A \mathbf{x}-$ $2 \mathbf{x}^{T} \mathbf{b}+c=0$ determines a regular conic. What of the following types is the conic?two parallel lines $\quad \square$ ellipsehyperbola
\square parabola

