Linear algebra and Its Applications

August 29, 2018

Alexander Stoimenov GIST College A 212 010-4491-4241 stoimenov@ gist.ac.kr

Classroom: Mon/Wed 9:00, Mon / Wed 13:00 111 GIST College A

Website: http://stoimenov.net/stoimeno/homepage/teach/teach.html and maybe https://gel.gist.ac.kr/course/view.php?id=????
(When it finally works!!!)

Book: Linear Algebra (4th Edition), by Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence

Grades(tentative):

Attendance	$:$	5%
Recit.	$:$	10%
Quiz, HW	$:$	5% each
Midterm	$:$	25%
Final	$:$	50%

〈Syllabus rules 〉

0 Sets, Numbers, Maps, Fields, Rings

0.1 Set theory

$$
\text { set }=\{\text { collection of objects }\}
$$

$\underline{\operatorname{Ex}} A=\{0,1,2\}, \mathbb{N}=\{0,1,2,3, \cdots\}$
some notations:

```
x\inA : element
x\not\inA : not element
A\subsetB : A contained in B; when }x\inA,\mathrm{ then }x\in
A\subsetneqB : A\subsetB and A\not=B
    \varnothing : empty set(no element)
```


Ex

1. $x=1, A=\{1,2,3\}$
$\Rightarrow x \in A$
2. $x=4 \Rightarrow x \notin A$
$\underline{\text { Ex }} 1 \in\{1,2,3\}$

$$
\{1\} \subset\{1,2,3\},\{1,2,3\} \subset\{1,2,3\},\{1,3\} \subset\{1,2,3\}
$$

$$
\{1\} \subsetneq\{1,2,3\} \underline{\text { not }}\{1,2,3\} \subsetneq\{1,2,3\}
$$

$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

$$
\begin{array}{rll}
A \cap B & =\{x: x \in A \text { and } x \in B\} & : \text { intersection } \\
A \cup B & =\{x: x \in A \text { or } x \in B\} & : \text { union } \\
A \backslash B & =\{x: x \in A \text { and } \operatorname{not} x \in B\} & : \text { set difference }
\end{array}
$$

What kind of numbers?
\mathbb{N} natural numbers (0 incl.) $0,1,2,3, \ldots$
\mathbb{Z} integers $\cdots-3,-2,-1,0,1,2,3, \cdots$
\mathbb{Q} rationals $\frac{m}{n}(m, n \in \mathbb{Z}, n \neq 0)$
\mathbb{R} real numbers
\mathbb{C} complex numbers
\mathbb{H} quaternions (Hamilton numbers; later)
$\mathbb{N}_{+}:=\mathbb{N} \backslash\{0\} \underline{\text { positive natural numbers }}$
if $A \subset X, X$ fixed, then $X \backslash A=: \bar{A}$ is called complement of A in X if $A \cap B=\varnothing \Leftrightarrow: \mathrm{A}, \mathrm{B}$ disjoint
indexed \cap and \cup
$\left\{A_{i}: i \in I\right\}$ sets

$$
\begin{aligned}
& \bigcap_{i \in I} A_{i}:=\left\{x: x \in A_{i} \text { for all } i \in I\right\} \\
& \bigcup_{i \in I} A_{i}:=\left\{x: x \in A_{i} \text { for at least one } i \in I\right\}
\end{aligned}
$$

Ex. when $I=\mathbb{Q}$ and $A_{i}=\{x \in \mathbb{Q}: x \geq i\}$ then $\bigcup_{i \in I} A_{i}=\mathbb{Q}$ and $\bigcap_{i \in I} A_{i}=\varnothing$ and
$\underline{\text { product set }} A \times B:=\{(x, y): x \in A, y \in B\}$
$\underbrace{A \times A \times \cdots \times A}_{n \text { times }}=: A^{n}$
example: $\mathbb{R}^{2}:=\{(x, y): x, y$ real $\}$ coordinate plane
$\mathbb{R}^{3}:=\{(x, y, z): x, y, z$ real $\}$ (3-dimensional) Euclidean space
cardinality \# of elements in the set (or ∞)
$|\varnothing|=0,|\{1\}|=1,|\mathbb{Z}|=\infty$
equivalence relation on a set $X: \quad S \subset X \times X$ with 3 properties:

$\forall x \in X:$	$(x, x) \in S$	(reflexivity)
$\forall x, y \in X:$	if $(x, y) \in S$, then $(y, x) \in S$	(symmetry)
$\forall x, y, z \in X:$	if $(x, y),(y, z) \in S$, then $(x, z) \in S$	(transitivity)

We write $x \sim_{S} y$, or simply $x \sim y$, " x is equivalent to y ", for $(x, y) \in S$.
Ex $S=\{(x, x): x \in X\}, S=X \times X$ trivial equivalences
$\underline{\text { Ex }} x, y \in X=\mathbb{Z}, \quad x \sim_{n} y$ if $n \mid(x-y)(n \in \mathbb{N}, n>0)$

0.2 Real numbers

Arithmetic

$$
\begin{gathered}
\frac{m \cdot k}{n \cdot k}=\frac{m}{n} \text { reduction }(k \in \mathbb{Z}, k \neq 0), \frac{m}{n} \pm \frac{p}{q}=\frac{m q \pm p n}{n q} \\
\frac{m}{n} \cdot \frac{p}{q}=\frac{m p}{n q}, \frac{m}{n} / \frac{p}{q}=\frac{m q}{n p}(n, p, q \neq 0)
\end{gathered}
$$

Rational numbers are" dense(조밀)". But they are not all. E.g., $x=\sqrt{2} \notin \mathbb{Q}$; x is irrational
$\underline{\text { more generally }}$ if z is integer and $x=\sqrt{z}$ is not integer, then \sqrt{z} is irrational.

0.2.1 Algebra of Real Numbers

Addition \& multiplication

$$
\left\{\begin{array}{lll}
\text { commutativity(교환법칙) } & a+b=b+a, & a b=b a \\
\text { associativity(결합법칙) } & (a+b)+c=a+(b+c), & a(b c)=(a b) c
\end{array}\right.
$$

$$
\begin{aligned}
& 3-5 \neq 5-3, \quad(3-1)-2 \neq 3-(1-2) \\
& 3 \div 5 \neq 5 \div 3, \quad(3 \div 2) \div 5 \neq 3 \div(2 \div 5)
\end{aligned}
$$

implicit parentheses: $\quad a-b-c=(a-b)-c$
from left to right $\quad a \div b \div c=(a \div b) \div c$
$\underline{\text { Order algebraic of operations }}$

1. multiplication \& division precede addition \& subtraction

$$
a+b \cdot c=a+(b \cdot c)[\neq(a+b) \cdot c]
$$

2. evaluate innermost parentheses 1st

Ex $2 \overbrace{(6+3 \overbrace{\underbrace{(1+4)}_{\text {inner }()}}^{\text {outer }()}}^{\text {on }}=2(6+3 \cdot 5)$

$$
\begin{aligned}
& =2(6+15) \\
& =2 \cdot 21=42
\end{aligned}
$$

Distributive Property

$$
(b+c) a=a(b+c)=a b+a c
$$

\longleftarrow simplify
\longrightarrow expand
Examples of use:

$$
\begin{gathered}
(a+b)(c+d)=a c+a d+b c+b d \\
(a+b)^{2}=a^{2}+2 a b+b^{2}
\end{gathered}
$$

Additive inverses \& subtraction

additive inverse of $a \in \mathbb{R}-a: a+(-a)=0$

$$
a-b=a+(-b)
$$

$$
\begin{aligned}
-(-a) & =a \\
-(a+b) & =-a-b \\
(-a)(-b) & =a b \\
(-a) b=a(-b) & =-a b \\
(a-b) c & =a c-b c
\end{aligned}
$$

$\underline{\text { multiplicative inverses \& division }}$
multiplicative inverse of $b \in \mathbb{R}, b \neq 0 \frac{1}{b}\left(=b^{-1}\right): b \cdot \frac{1}{b}=1$

$$
\frac{a}{b}=a \cdot \frac{1}{b}=a \cdot b^{-1}
$$

see rules for rational numbers

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}, \frac{1}{\frac{a}{b}}=\frac{b}{a}, \frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}, \frac{-a}{-b}=\frac{a}{b}\left(\text { in particular } \frac{1}{-b}=-\frac{1}{b}\right)
$$

0.2.2 Inequalities

$a<b \quad$ a less than b
(a left of b on real line)
$a>b \quad$ a greater than b
$a \leq b \quad$ a less/smaller than or equal to b
$a \geq b \quad$ a greater/bigger than or equal to b
$a<b, b<c \Rightarrow a<c \quad$ transitive
addition

$$
a<b, c<d \Rightarrow a+c<b+d
$$

multiplication

$$
\begin{array}{ll}
a<b & c>0 \\
& c<0 \Rightarrow a c<b c \\
& \Rightarrow a c>b c
\end{array}
$$

\Rightarrow (additive inverse) $a<b \Rightarrow-a>-b$
multiplicative inverse \& inequalities

$$
\begin{array}{ll}
a b \neq 0, \quad a<b & \frac{1}{a}<\frac{1}{b} \text { if } a b<0 \\
& \frac{1}{a}>\frac{1}{b} \text { if } a b>0
\end{array}
$$

$\underline{\text { Ex }} a b>0$

1. $a=2, b=3 \quad \frac{1}{3}<\frac{1}{2}$
2. $a=-3, b=-2 \quad-\frac{1}{2}<-\frac{1}{3}$
$a b<0$ 3. $a=-2, b=3 \quad-\frac{1}{2}<0<\frac{1}{3}$
Intervals
Let $a, b \in \mathbb{R}, a \leq b$

$$
\begin{aligned}
\text { set } & =\{\text { objects with some property }\} & & \\
(a, b) & =\{x \in \mathbb{R}: a<x<b\} & & \text { open interval } \\
(a, b] & =\{x \in \mathbb{R}: a<x \leq b\} & & \text { left-open intervals } \\
{[a, b) } & =\{x \in \mathbb{R}: a \leq x<b\} & & \text { right-open intervals } \\
{[a, b] } & =\{x \in \mathbb{R}: a \leq x \leq b\} & & \text { closed interval }
\end{aligned}
$$

Ex

1. $A=[0,2), B=(1,3)$

$$
A \cap B=(1,2), A \cup B=[0,3)
$$

$$
A \backslash B=[0,1], B \backslash A=[2,3)
$$

2. $A=[0,1], B=[1,2)$

$$
A \cap B=1
$$

3. $A=[0,1], B=(1,2)$

$$
A \cap B=\varnothing \quad(\mathrm{A}, \mathrm{~B} \text { disjoint })
$$

∞ :infinity, $\Rightarrow \infty>a \forall a \in \mathbb{R}$
$-\infty$:negative infinity, $\Rightarrow-\infty<a \forall a \in \mathbb{R}$

$$
\begin{aligned}
(a, \infty) & =\{x \in \mathbb{R}: a<x\} \\
{[a, \infty) } & =\{x \in \mathbb{R}: a \leq x\} \\
(-\infty, a) & =\{x \in \mathbb{R}: x<a\} \\
(-\infty, a] & =\{x \in \mathbb{R}: x \leq a\}
\end{aligned}
$$

(Note: '[$-\infty$,' or ', $\infty]^{\prime}$ make no sense, since $\infty,-\infty \notin \mathbb{R}$)
Absolute value

$$
|x|= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$

$\underline{\operatorname{Ex}}\left|\frac{3}{2}\right|=\frac{3}{2},|-2|=2,|0|=0$
$\underline{\text { Ex }}\{x \in \mathbb{R}:|x|<2\}=(-2,2)$

0.3 Functions and Their Graphs

0.3.1 Functions

Domain(정의역) and target(공역)
function f from A and B associates to each $a \in A$ (argument) an element $f(a) \in B($ value $)$

$$
\begin{array}{ccc}
& & f: A \longrightarrow B \\
A & : & \text { domain of } f
\end{array}
$$

$\underline{\text { Ex }} f(x)=x^{2}, x \in \mathbb{R}$
Then $f(3)=3^{2}=9$
$f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}$
Ex f does not need to be defined by a single expression.

$$
g(x)= \begin{cases}3 x & \text { if } x<0 \\ \sqrt{2} & \text { if } x=0 \\ x^{2}+7 & \text { if } x>0\end{cases}
$$

These conditions must be disjoint!
Domain $=\{x \in \mathbb{R}:$ some condition for $x\}$

$$
\begin{aligned}
& g(-2)=3 \cdot(-2)=-6 \\
& g(0)=\sqrt{2} \\
& g(1)=1^{2}+7=8
\end{aligned}
$$

$\underline{\text { Equality of functions }}$
Definition : Two functions f, g are equal if

$$
\operatorname{domain}(f)=\operatorname{domain}(g), \operatorname{target}(f)=\operatorname{target}(g)(\text { not in book! }),
$$

and for all $x \in \operatorname{domain}(f)$ we have $f(x)=g(x)$.
Ex

$$
g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(t)=3 t
$$

$f=g$ (how you call the variable in definition does not matter)

Ex

$$
f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x)=3 x
$$

$$
g: \mathbb{R} \longrightarrow \mathbb{R}, \quad g(x)=\sqrt{(3 x)^{2}}
$$

$f=g$ (how you call the variable in definition does not matter)

$$
f \neq g
$$

because $x=-1 g(x)=\sqrt{9}=3, f(x)=3 \cdot(-1)=-3$
Ex
$f: \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x)=3 x$

$$
g:\{x \in \mathbb{R}: x>0\} \longrightarrow \mathbb{R}, \quad g(x)=3 x
$$

$f=g$ (how you call the variable in definition does not matter)

$$
f \neq g
$$

because $\operatorname{domain}(f) \neq \operatorname{domain}(g)$
Definition : Assume $A \subseteq B \subseteq \mathbb{R}$ and $f: B \longrightarrow \mathbb{R}$ function
Then the function $g: A \longrightarrow \mathbb{R}$ given by $g(x)=f(x)$ for all $x \in A$ is called the restriction of f to A and written

$$
g=\left.f\right|_{A}
$$

[(in the above ex. $\left.g=\left.f\right|_{\{x \in \mathbb{R}: x>0\}}\right)$]
$\underline{\operatorname{Ex}} A=1,2 f(x)=x^{2}, g(x)=3 x-2$

$$
f(1)=g(1)=1, f(2)=g(2)=4 \rightarrow f=g
$$

so functions can be equal even if given by very different formulas.

Domain

Convention(협약): If no domain is given, we assume that the domain is the maximal subset of \mathbb{R} where definition makes sense.

Ex $f(x)=\frac{1}{3 x-4}$

$$
\rightarrow \operatorname{domain}(f)=\{x \in \mathbb{R}: 3 x-4 \neq 0\}=\mathbb{R} \backslash\left\{\frac{4}{3}\right\}
$$

Ex $f(x)=\sqrt{3 x-4}$

$$
\rightarrow \operatorname{domain}(f)=\{x \in \mathbb{R}: 3 x-4 \geq 0\}=\left[\frac{4}{3}, \infty\right)
$$

Ex $f(x)=x+1, g(x)=\frac{(x+1)(x+2)}{(x+2)}$

$$
\operatorname{domain}(f)=\mathbb{R}, \operatorname{domain}(g)=\{x \in \mathbb{R}: x+2 \neq 0\}=\mathbb{R} \backslash\{-2\}
$$

g is not defined in -2 !

Functions via tables

x	$f(x)$
0.1	1.01
0.2	1.04
0.3	1.25
0.4	1.39

$\underline{\text { Range(치역) of a function }}$
Definition : Range of a function $f: A \longrightarrow B$ is all $b \in B$ for which these is at least one $a \in A$ with $f(a)=b$

$\underline{\text { Ex }} f: \mathbb{R} \longrightarrow \mathbb{R} f(x)=|x|$
domain $=\mathbb{R}$, target $=\mathbb{R}$, range $=\{x \in \mathbb{R}: x \geq 0\}$
Ex $f=$

$$
\text { domain }\left\{\begin{array}{c|c}
x & f(x) \\
\hline \vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots
\end{array}\right\} \text { range }
$$

when f is given by a table
$\underline{\text { Ex }} f=3 x+1$ domain $(f)=[-2,5]$
Is $19 \in \operatorname{range}(f) ?$
$19=f(x)=3 x+1,-2 \leq x \leq 5$
$\rightarrow x=\frac{18}{3}=6 \notin[-2,5]$
so no x exists $\rightarrow 19 \notin \operatorname{range}(f)$

0.4 Coordinate Plane and Graphs

coordinate plane

$$
p=(x, y) \text { rectangular(Cartesian) coordinates of } p
$$

Graph of a function
$f: A \longrightarrow B \quad A, B \subset \mathbb{R}$
The graph of f consists of all points $(x, f(x))$ for $x \in A$

$$
\operatorname{graph}(f):=\{(x, f(x)): x \in A\} \subset A \times B
$$

$\underline{\mathrm{Ex}} A=\{1,2,3,4\}$

x	$f(x)$
1	2
2	3
3	-1
4	1

$\underline{\operatorname{Ex}} A=[-4,4] \quad f(x)=|x|$

$f(x)=x^{2}$ Then reflecting graph of f with respect to $y-$ axis gives graph itself. Because $f(x)=x^{2}=(-x)^{2}=f(-x)$

Definition: f is called even(우함수, 짝함수) function if

$$
f(x)=f(-x) \text { for every } x \in \operatorname{domain}(f)
$$

(Note:This means in particular that $x \in \operatorname{domain}(f) \Rightarrow-x \in \operatorname{domain}(f)$. For example $f(x)=x^{2}$ for domain $(f)=[-1,1)$ is not even!)
other examples $f(x)=|x|(\operatorname{domain}(f)=\mathbb{R})$

Because $|-x|=|x|$

$f(x)=\cos x$

$\operatorname{Graph}(f)$ has rotational symmetry by 180° around origin
$\Leftrightarrow \operatorname{graph}(f)$ is mapped to itself when we mirror with respect to both x - and y-axis
given f what function is graph f after mirroring with respect to both x - and y-axis

$$
f(x) \xrightarrow{\substack{y-\text {-xis } \\ \text { mirroring }}} f(-x) \xrightarrow{\substack{x-\text {-axis } \\ \text { mirroring }}}-f(-x)
$$

$\operatorname{Graph}(f)$ has rotational symmetry by 180° around origin
$\Leftrightarrow f(x)=-f(-x)$

These are odd functions.
Definition $f: A \rightarrow B$ odd(기함수, 홀함수) if $\forall x \in A(-x \in A$ and $)$

$$
f(x)=-f(-x)
$$

Ex $f(x)=x^{n} \quad \mathrm{n}$ odd in particular $f(x)=x$

0.5 Composition of functions

Ex $h(x)=\sqrt{x+3}$ is calculated in 2 steps:

1. add 3
2. take the root

These correspond to two separate functions $g(x)=x+3$ and $f(y)=\sqrt{y}$. So $h(x)=f(g(x))$.

We need this often, so we make definition.
Definition The composition of f and g
is defined by $(f \circ g)=f(g(x))$.
This is defined when $x \in \operatorname{domain}(g)$ and $g(x) \in \operatorname{domain}(f)$.
Thus domain $(f \circ g) \subset\{x \in \operatorname{domain}(g): g(x) \in \operatorname{domain}(f)\}$.
(and " $="$ if we do not specify domain $(f \circ g)$) per convention!
Ex Let $f(y)=\frac{1}{y-4}, g(x)=x^{2}$

1. evaluate $(f \circ g)(3)$
sol: $(f \circ g)(3)=f(g(3))=f\left(3^{2}\right)=f(9)=\frac{1}{9-4}=\frac{1}{5}$
2. find a formula for $(f \circ g)$

Sol: $(f \circ g)(x)=f(g(x))=f\left(x^{2}\right)=\frac{1}{x^{2}-4}$
3. determine domain $(f \circ g)$
sol: $\operatorname{domain}(f \circ g)=\{x \in \underbrace{\operatorname{domain}(g)}_{\mathbb{R}}: g(x) \in \underbrace{\operatorname{domain}(f)}_{\{y \in \mathbb{R}: y \neq 4\}}\}$
$=\left\{x \in \mathbb{R}: x^{2} \neq 4\right\}=\mathbb{R} \backslash\{-2,2\}$

Composition is associative $: f \circ(g \circ h)=(f \circ g) \circ h=: f \circ g \circ h$
Composition is not commutate : $f \circ g \neq g \circ f$ in general e.g. Let $f(x)=x^{2}, g(x)=x+1$

$$
\begin{aligned}
& f(g(x))=f(x+1)=(x+1)^{2}=x^{2}+2 x+1, g(f(x))=g\left(x^{2}\right)=x^{2}+1 \\
& f(g(x)) \neq g(f(x))
\end{aligned}
$$

Identity Function

$$
I: A \rightarrow A, \quad I(x)=x, \quad I=I_{A}
$$

when $f: A \rightarrow A$, then $I \circ f=f=f \circ I$
(I is the identity for the operation of composition)
Sometimes one can write $h=f \circ g$ for f, g simpler than h.
Such decomposition $h=f \circ g$ is not unique.

$$
\begin{array}{lll}
h=\sqrt{\frac{x^{2}+3}{x^{2}+1}} & h=f \cdot g \quad f(y)=\sqrt{y} \quad g(x)=\frac{x^{2}+3}{x^{2}+1} \\
h=\tilde{f} \circ \tilde{g} \quad \tilde{f}(y)=\sqrt{\frac{y+3}{y+1}} \tilde{g}(x)=x^{2}
\end{array}
$$

0.6 Inverse functions

Ex. $f(x)=3 x$ find x with $f(x)=6$

$$
\text { sol. } 3 x=6 \Rightarrow x=2
$$

$$
f(x)=y
$$

solve for x sol. $3 x=y \Rightarrow x=\frac{y}{3}$
(exactly one x exists)
$x=: f^{-1}(y)=\frac{y}{3}$
This can be defined if for given y there is exactly one x.
This is of course not always the case.
$f(x)=x^{2}+1[\operatorname{dom}(f)=\mathbb{R}]$
$x^{2}+1=y$
What is $f^{-1}(y)$?

$$
x= \pm \sqrt{y-1}, \quad \text { thus } \quad\left\{\begin{array}{ll}
y>1 & 2 \text { values for } x \tag{1}\\
y=1 & 1 \text { value for } x \\
y<1 & 0 \text { values for } x
\end{array}\right\}
$$

We must change domain (f) so that only one x occurs.
Definition: Let $f: A \rightarrow B$ and $y \in B, B^{\prime} \subset B$
We define $f^{-1}\left(B^{\prime}\right)=\left\{x \in A: f(x) \in B^{\prime}\right\}$
$f^{-1}(y) \subseteq A($ set! $)$ as $f^{-1}(y)=\{x \in A: f(x)=y\}=f^{-1}(\{y\})$
f is injective if for all $y \in B, \quad\left|f^{-1}(y)\right| \leq 1 \Leftrightarrow$
$\forall x, y \in A: f(x)=f(y) \Rightarrow x=y$
f is surjective if for all $y \in B, \quad\left|f^{-1}(y)\right| \geq 1 \quad \Leftrightarrow \quad \operatorname{range}(f)=B$
(|| means number of elements)
f is bijective(book: one-to-one) if f is surjective and injective $\Leftrightarrow \mid f^{-1} \overline{(y) \mid=1}, f^{-1}(y)=\{x\}$

Definition Then we can define an inverse function f^{-1}
$f^{-1}(y):=x$ for the x with $f(x)=y$.
(when f is bijective, x is unique.)
Domain and Range of inverse function:
domain $\left(f^{-1}\right)=\operatorname{range}(f)$
$\operatorname{range}\left(f^{-1}\right)=\operatorname{domain}(f)$
The Composition of a function and its inverse
$f^{-1} \overline{(f(x))=x \quad \forall x \in \operatorname{domain}(f)}$
$f\left(f^{-1}(y)\right)=y \quad \forall y \in \operatorname{range}(f)=\operatorname{domain}\left(f^{-1}\right)$
$\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=x=I d(x)$
$f^{-1} \circ f=I d_{\text {domain }(f)} \quad f \circ f^{-1}=I d_{\text {range }(f)}$
\uparrow You can use to check formula for f^{-1}
Ex $f(x)=\frac{9}{5} x+32 \quad\left(x^{\circ} \mathbf{C}=f(x)^{\circ} \mathbf{F}\right)$
$f^{-1}(y)=\frac{5(y-32)}{9}$
check $\left(f^{-1} \circ f\right)(x)=f^{-1}\left(\frac{9}{5} x+32\right)=\frac{5\left(\left(\frac{9}{5} x+32\right)-32\right)}{9}=\frac{5 \cdot \frac{9}{5} x}{9}=x$

Comments about notation:

variable name does not matter.

1) $f^{-1}(x)=5 x-37 \sqrt{x} \quad$ are equivalent statements

I choose y for argument of f^{-1} and x for argument of f to indicate that x and y are possibly in two different sets $x \in \operatorname{domain}(f), y \in \operatorname{range}(f)$.
2) $f^{-1}(y) \neq f(y)^{-1}=\frac{1}{f(y)}$
ex. $f(x)=x^{2} \quad(x \geq 0), \quad f^{-1}(y)=\sqrt{y}$

$$
f(y)^{-1}=\frac{1}{f(y)}=\frac{1}{y^{2}}
$$

Thus if " $f^{-1} "$ is written be careful how it is meant!

0.7 Group, Field, Ring

Definition A group $(G,+),(G, \cdot)$ (additive/ multiplicative notation)
G set and $\cdot: G \times G \rightarrow G$ map "operation"
$\cdot\left(g_{1}, g_{2}\right)=: g_{1} \cdot g_{2}=g_{1} g_{2}$
with the following properties

1) $\exists 1 \in G \quad \underline{1 \text {-element }}$ or neutral element, identity (book)

$$
1 \cdot g=g \cdot 1=g \quad \forall g \in G
$$

2) $\forall g \in G \exists g^{\prime} \in G: g \cdot g^{\prime}=g^{\prime} \cdot g=1, \quad g^{\prime}=g^{-1} \underline{\text { inverse of } g}$
3) $g_{1}\left(g_{2} g_{3}\right)=\left(g_{1} g_{2}\right) g_{3} \forall g_{1}, g_{2}, g_{3} \in G$ (associativity)
$\underline{\text { Definition }} \underline{\underline{I}}$ additionally
4) $g_{1} g_{2}=g_{2} g_{1}$ for all $g_{1}, g_{2} \in G$, then G is an Abelian (commutative) group example $(\mathbb{Z},+)$ is Abelian group with neutral element 0
$\underline{\left.\text { Def }(F,+, \cdot) \text { is a field if } \quad\left[\begin{array}{cl}+ & \text { addition } \\ \cdot & \text { multiplication }\end{array}\right], ~\right]}$ $\exists 0,1 \in F$ s.t.
5) $(F,+)$ is an Abelian group with neural element 0
6) $(F \backslash\{0\}, \cdot)$ is an Abelian group with neural element 1
7) + , are distributive: $(a+b) \cdot c=a c+b c \forall a, b, c \in F$
if in $(F \backslash\{0\}, \cdot)$

		no inverse	
	exists inverse	$(F \backslash\{0\}, \cdot)$ monoid	with or w/t 1
commutative	F is field	F is commutative ring	with or w/t 1
noncommutative	F is skew-field	F is noncommutative ring	with or w/t 1

Rem additive inverse of b in $(F,+)$ is written as $-b$ and $a-b=a+(-b)$ for mult. inverse we write $b^{-1}=\frac{1}{b}$, and $\frac{a}{b}=a \cdot b^{-1}=b^{-1} \cdot a$ (Note: in a skewfield, $\frac{a}{b}$ makes no sense!)

$$
\begin{aligned}
& \text { Ex } \begin{aligned}
&(\mathbb{C},+, \cdot),(\mathbb{R},+, \cdot),(\mathbb{Q},+, \cdot) \text { are fields } \\
&(\mathbb{Z},+, \cdot) ? \text { but } \cdot \text { has no inverse e.g. } 2 \in \mathbb{Z} \nexists g \in \mathbb{Z}: 2 \cdot g=1 \\
& \Longrightarrow \text { comm. ring with } 1, \text { but no field } \\
&(2 \mathbb{Z},+, \cdot) \text { now } \cdot \text { has no inverse and no identity }[\nexists e \in 2 \mathbb{Z}: e \cdot k=k \forall k \in 2 \mathbb{Z}] \\
& \quad \Longrightarrow \text { comm. ring without } 1
\end{aligned}
\end{aligned}
$$

Th. (cancellation laws) F field, $a, b, c \in F$ arbitrary

1) $a+b=c+b \Rightarrow a=c$
2) $b \neq 0, a \cdot b=c \cdot b \Rightarrow a=c$

Corollary The identity elements $0,1 \in F$ are unique.

Th. In any field F,

1) $a \cdot 0=0 \cdot a=0$
2) $-(a \cdot b)=(-a) \cdot b=a \cdot(-b)$

Corollary The additive identity 0 in F has no multiplicative inverse.

0.7.1 characteristic

Def F field. Define the characteristic $\operatorname{char}(F) \in \mathbb{N}$ by
$\operatorname{char}(F):=\left\{\begin{array}{cl}\min \{n \in \mathbb{N}_{+}: \underbrace{1+1+\cdots+1}_{n \text { times }}=0\} & \text { if such an } n \text { exists } \\ 0 & \text { otherwise }\end{array}\right.$
$\underline{\text { Ex }}$ For $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}, \operatorname{char}(F)=0($ no $n)$
Let $n>1$. Consider
$\mathbb{Z}_{n}=\mathbb{Z} / n \mathbb{Z}=\{$ conguence classes $\bmod n\}=\{0,1,2, \ldots, n-1\}$.
$\left(\mathbb{Z}_{n},+, 0\right)$ additive Abelian group
$\left(\mathbb{Z}_{n}, \cdot, 1\right)$ everything ok except inverse
Lemma \exists mult. inverse $\Longleftrightarrow n$ prime
So \mathbb{Z}_{n} is a field for n prime, but only a ring for other n (cyclic field/ring) For n prime, $\operatorname{char}\left(\mathbb{Z}_{n}\right)=n$.

Rem Only 0 and primes can be characteristic of a field.

Rem If $\operatorname{char}(F)=1$, then $1=0 \Rightarrow F=\{0\}$, not interesting.

0.8 Complex numbers

0.8.1 arithmetic, norm, conjugate

\mathbb{C} complex numbers
$z \in \mathbb{C}$ is of the form $z=a+b i, a, b \in \mathbb{R}, a=\Re e z$ real part
$b=\Im m z \overline{\text { imaginary part }}$
$i=\sqrt{-1}$ (imaginary unit)
$\quad z=a+b i$
$w=c+d i$
$z+w=(a+c)+(b+d) i \quad-z=-a-b i$
$z w=z \cdot w=(a c-b d)+(a d+b c) i$
if $z \in \mathbb{R}$ (i.e., $b=0$), $z w=(z c)+(z d) i$
$\bar{z}=a-b i$ (complex) conjugate
$z \cdot \bar{z}=a^{2}+b^{2}=|z|^{2} \quad|z|=\sqrt{a^{2}+b^{2}} \in \mathbb{R} \underline{\text { norm }}$
$[|z|=0 \Longleftrightarrow a=b=0 \Longleftrightarrow z=0 \quad$] abs. value
\Longrightarrow for $z \neq 0, z^{-1}=\frac{1}{|z|^{2}} \bar{z}=\left(\frac{a}{a^{2}+b^{2}}\right)-\left(\frac{b}{a^{2}+b^{2}}\right) i$
$\underline{T h} \mathbb{C}$ forms a field.

Th The conjugation has the following properties.
a) $\overline{\bar{z}}=z$
b) $\overline{z+w}=\bar{z}+\bar{w}$
c) $\overline{z \cdot w}=\bar{z} \cdot \bar{w}$
d) $\overline{\left(\frac{z}{w}\right)}=\frac{\bar{z}}{\bar{w}} \quad(w \neq 0)$
e) $z \in \mathbb{R} \Longleftrightarrow z=\bar{z}$
f) $z+\bar{z}=2 \Re e z, \quad z-\bar{z}=2 i \Im m z$

Th The norm has the following properties.
a) $|z|=|\bar{z}|$
b) $|z| \geq|\Re e z| \quad|z| \geq|\Im m z|$
c) $|z w|=|z| \cdot|w|$
d) $\left|\frac{z}{w}\right|=\frac{|z|}{|w|} \quad(w \neq 0)$
e) $|z|-|w| \leq|z+w| \leq|z|+|w|$

Pf a), b) exercise
c) $|z w|^{2}=z w \overline{z w}=z \bar{z} w \bar{w}=|z|^{2}|w|^{2}=(|z||w|)^{2}$
d) $\left|\frac{1}{w}\right|=\frac{1}{|w|}$ because $|w| \cdot\left|\frac{1}{w}\right|=\left|w \cdot \frac{1}{w}\right|=|1|=1$
so use then c)
e)
f) previous theorem
$|z+w|^{2}=(z+w)(\bar{z}+\bar{w})$

$$
\begin{array}{ll}
\stackrel{\downarrow}{=} & z \bar{z}+2 \Re e(z \bar{w})+w \bar{w} \\
\stackrel{b)}{\leq} & |z|^{2}+2|z \bar{w}|+|w|^{2} \\
\stackrel{a, c)}{=} & |z|^{2}+2|z||w|+|w|^{2}=(|z|+|w|)^{2}
\end{array}
$$

first inequality a consequence of second:
$|-z| \stackrel{c)}{=}|-1| \cdot|z|=|z|$
$|z|=|(z+w)+(-w)| \leq|z+w|+|-w|=|z+w|+|w|$
bring $|w|$ on other side $\Longrightarrow \square$

0.8.2 Trigonometric Functions (삼각함수)

The unit circle unit circle: circle with center $(0,0)$, radius $=1$ equation: $x^{2}+y^{2}=1$

Angles in the unit circle

Negative Angles θ are measured by $-\theta$ clockwise direction from positive horizontal axis thus same radius can give 2 different angles

$\theta \in\left[-90^{\circ}, 0^{\circ}\right]$

$\theta \in\left[-180^{\circ},-90^{\circ}\right]$
thus same radius can give 2 different angles depending on positive or negative:

$$
\left(\theta-\beta=360^{\circ}\right)
$$

$\theta=225^{\circ}$
$\beta=-135^{\circ}$

Angles $>360^{\circ}$

$$
\theta=225^{\circ}+360^{\circ}=585^{\circ}
$$

$\theta>360^{\circ}$ is obtained by
going once (or several times) around the circle
(counterclockwise; for negative θ clockwise)
The same radius corresponds to angles differing by $n \cdot 360^{\circ}$.
$\underline{\text { Length of Circular arc }}$
circumference $=2 \pi$

$$
\frac{l}{2 \pi}=\frac{\theta^{\circ}}{360^{\circ}} \longrightarrow l=\frac{\theta \pi}{180}
$$

an angle of l radians is one with unit circle arc of length l
(later more about radians)
$\underline{\text { Special Points on Unit Circle }}$

- $\theta=30^{\circ}$

$$
y=\frac{1}{2} \rightarrow x=\frac{\sqrt{3}}{2}
$$

- $\theta=60^{\circ}$

θ radian	θ degree	(x, y)
0°	0	$(1,0)$
$\frac{\pi}{6}$	30°	$\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
$\frac{\pi}{4}$	45°	$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\frac{\pi}{3}$	60°	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$\frac{\pi}{2}$	90°	$(0,1)$
π	180°	$(-1,0)$

Cosine and Sine

Definition: The cosine of an angle $\theta, \underline{\cos \theta}$, is defined to be the first coordinate of the end point of a radius of unit circle at angle θ with positive horizontal axis. The $\underline{\operatorname{sine}}$ of $\theta, \underline{\sin \theta}$, is the end point's second coordinate.
Thus the coordinates of the end point are $(\cos \theta, \sin \theta)$.
Ex.

θ degree	$\cos \theta$	$\sin \theta$
0°	1	0
30°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
60°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
90°	0	1
180°	-1	0

The signs of Cosine and Sine

coordinate axes divide \mathbb{R}^{2} into quadrants(사분면).
quadrant determines sign of $\sin \theta, \cos \theta$

$\theta \in\left(0, \frac{\pi}{2}\right)$	$\sin \theta>0, \cos \theta>0$
$\theta \in\left(\frac{\pi}{2}, \pi\right)$	$\cos \theta<0, \sin \theta>0$
$\theta \in\left(\pi, \frac{3 \pi}{2}\right)$	$\sin \theta<0, \cos \theta<0$
$\theta \in\left(\frac{3 \pi}{2}, 2 \pi\right)$	$\cos \theta>0$,
$\sin \theta<0$	

The Key Equation Connecting Cosine and Sine
$(x, y)=(\cos \theta, \sin \theta)$ end point of radius \in circle $x^{2}+y^{2}=1$
$\rightarrow \underline{\cos ^{2} \theta+\sin ^{2} \theta=1}$

Periodicity(주기성) of \sin and \cos
the same radius determines angles up to multiples of 2π
Thus:
$\cos (x+2 \pi)=\cos (x)$
$\sin (x+2 \pi)=\sin (x)$
Definition: $f: \mathbb{R} \rightarrow \mathbb{R}$ periodic if $\exists d>0$ (period) with
$f(x+d)=f(x) \quad \forall x \in \mathbb{R}$
($\forall x \in \operatorname{dom}(f) \quad x+d \in \operatorname{dom}(f)$ also ok)
cos, \sin are periodic functions with (minimal) period 2π.

The graph of Cosine and Sine
$\overline{\cos ^{2} \theta+\sin ^{2} \theta=1 \rightarrow \cos ^{2} \theta}, \sin ^{2} \theta \leq 1$
$\rightarrow|\cos \theta|,|\sin \theta| \leq 1$
Thus $\begin{aligned} & -1 \leq \cos \theta \leq 1 \\ & -1 \leq \sin \theta \leq 1\end{aligned}$

Domain and range of cosine and sine:
$\operatorname{dom}(\operatorname{cosine})=\operatorname{dom}(\cos)=\mathbb{R}$
range $(\sin)=\operatorname{range}(\cos)=[-1,1]$

Polar coordinates

$$
(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\} \cong z=x+i y \in \mathbb{C} \backslash\{0\} \cong(r, \theta) \in(0, \infty) \times[0,2 \pi)
$$

(x, y) Cartesian (rectangular) coordinates
(r, θ) polar coordinates

$$
\begin{aligned}
& \quad r=|z| \underline{\text { norm of } z \in \mathbb{C}} \\
& \theta=\arg (z) \underline{\text { argument of } z,} \quad \theta \in[0,2 \pi)(\text { or } \mathbb{R} / 2 \pi \mathbb{Z})
\end{aligned}
$$

polar coordinates behave more naturally w.r.t. complex mult.

$$
\arg (z \cdot w)=\arg z+\arg w \quad|z \cdot w|=|z| \cdot|w|
$$

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta) \quad(\theta \in \mathbb{R})
$$

thus

$$
e^{x+i y}=e^{x}(\cos (y)+i \sin (y))
$$

Since $|\cos (y)+i \sin (y)|=1$ and $\arg (\cos (y)+i \sin (y))=y$ (up to $2 \pi \mathbb{Z}$), we have for $z=x+i y$,

$$
\begin{gathered}
\left|e^{x+i y}\right|=e^{x} \quad \text { and } \quad \arg \left(e^{x+i y}\right)=y, \quad \text { or } \\
\left|e^{z}\right|=e^{\Re e z} \quad \text { and } \quad \arg \left(e^{z}\right)=\Im m z
\end{gathered}
$$

One can again define a complex log as

$$
\log (w)=z \text { when } e^{z}=w \quad(w \neq 0)
$$

But $\log (w)$ is defined only in $\mathbb{C} / 2 \pi i \mathbb{Z}$.

complex roots

Let $n \in \mathbb{N}, n>1$. The multiplication formula gives

$$
z^{n}=|z|^{n}(\cos (n \arg (z))+i \sin (n \arg (z))) .
$$

Thus when $w \neq 0$, there are \underline{n} distinct n-th roots of w, i.e., complex numbers z with $z^{n}=w$.

The are given by the formula
$z_{k+1}=\sqrt[n]{|w|} \cdot\left(\cos \left(\frac{\arg (w)+2 \pi k}{n}\right)+i \sin \left(\frac{\arg (w)+2 \pi k}{n}\right)\right), \quad k=0, \ldots, n-1$

In case of real roots $\sqrt[n]{w}, w \in \mathbb{R}$, there is a natural choice (take the positive number for $\sqrt[n]{w}$ if n is even - and $w>0$), but for mathematicians there is no canonical choice of complex roots.

Thus the expression $\sqrt[n]{w}$ for $w \in \mathbb{C}$ is ambiguous, and when you work with complex roots, you must say which one you mean!

0.8.3 Algebraic closedness

One main reason for importance of complex numbers is that \mathbb{C} is algrabically closed.
Def F is algrabically closed field if every polynomial

$$
P=z_{0}+z_{1} t+z_{2} t^{2}+\ldots+z_{n} t^{n}, \quad z_{i} \in F \quad z_{n} \neq 0
$$

splits

$$
P=z_{n} \cdot\left(t-t_{0}\right) \cdot\left(t-t_{1}\right) \cdot \ldots \cdot\left(t-t_{n}\right), \quad t_{i} \in F
$$

t_{i} - root or zero of P.

```
\(\underline{\text { multiplicity }}\) of \(t_{i}=\left|\left\{j: t_{j}=t_{i}\right\}\right| \geq 1\)
```

(if mult $=0$, not a root)
if mult $=1, t_{i}$ is simple root if mult $=2, t_{i}$ is double root if mult $=3, t_{i}$ is triple root

0.8.4 Quaternions \mathbb{H}

$$
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}
$$

i, j, k formal symbols $(c=d=0 \Longrightarrow$ complex nrs$) \Longrightarrow \mathbb{H} \supset \mathbb{C}$

$\downarrow \cdot$	i	j	k
i	-1	$-k$	j
j	k	-1	$-i$
k	$-j$	i	-1

$$
\begin{array}{ll}
z=a+b i+c j+d k & \\
\bar{z}=a-b i-c j-d k & z \cdot \bar{z}=|z|^{2}=a^{2}+b^{2}+c^{2}+d^{2} \\
& \Rightarrow z^{-1}=\frac{1}{|z|^{2}} \cdot \bar{z}
\end{array}
$$

\mathbb{H} forms a skew-field (like field but multiplication is non-commutative)

