1. <u>Vector spaces</u>

1.1. Def and basic examples.

Definition 1.1. Fix a field \mathbf{F} . A set V with operations

 $+: V \times V \to V$ (addition), and $\cdot: \mathbf{F} \times V \to V$ (scalar mult.),

is called a vector space (VS) (over '/ F) if

- 1) (V, +) is an Abelian group 2) $1 \cdot \mathbf{v} = \mathbf{v} \ \forall \mathbf{v} \in V$ 3) $(\lambda_1 \lambda_2) \cdot \mathbf{v} = \lambda_1 \cdot (\lambda_2 \cdot \mathbf{v}) \ \forall \lambda_1, \lambda_2 \in F, \ \mathbf{v} \in V$ associativity 4) $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b} \ \forall \lambda \in F, \ \mathbf{a}, \mathbf{b} \in V$ distributivity 5) $(\lambda_1 + \lambda_2) \mathbf{a} = \lambda_1 \mathbf{a} + \lambda_2 \mathbf{a}$
- $\mathbf{x} + \mathbf{y}$ is <u>sum</u> of vectors $\mathbf{x}, \mathbf{y} \in V$, $a \cdot \mathbf{x}$ is <u>product</u> of $a \in \mathbf{F}, \mathbf{x} \in V$
- $\mathbf{x} \in V$ is called <u>vector</u>, $a \in \mathbf{F}$ a <u>scalar</u>

neutral element in (V, +) is called <u>0-vector</u> **0**

 $\underline{\mathrm{Exs}}$ of vector spaces

1)
$$\mathbf{F}^{n} = \{(a_{1}, \dots, a_{n}) : a_{1}, \dots, a_{n} \in \mathbf{F}\}$$

 $(a_{1}, \dots, a_{n}) \underline{n\text{-tuple}}, a_{i} \underline{\text{elements}} \text{ or \underline{components}} \text{ of the tuple}$
 $\mathbf{F}^{n} \text{ is VS over } \mathbf{F} \text{ with the operations}$
 $(a_{1}, \dots, a_{n}) + (b_{1}, \dots, b_{n}) = (a_{1} + b_{1}, \dots, a_{n} + b_{n})$
 $a \cdot (a_{1}, \dots, a_{n}) = (a \cdot a_{1}, \dots, a \cdot a_{n}) \quad (a \in \mathbf{F})$
vectors can be written as column vectors
 $\begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix}$ or row vectors } (a_{1}, \dots, a_{n})

in particular (n = 1) **F** is a VS over itself

2) the generalization of both: a matrix $m \times n$ m-rows

n-columns

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \qquad A_{ij} = a_{ij} \text{ entries}$$
$$a_{ii} \text{ diagonal entries}$$

 $M_{m \times n}(\mathbf{F}) = \{ A : A \text{ is an } m \times n \text{ matrix over } \mathbf{F} \}$ is a VS over \mathbf{F} with

$$(A+B)_{ij} := A_{ij} + B_{ij}$$
 matrix addition
 $(cA)_{ij} := cA_{ij}$ scalar mult.

(neutral element in $(M_{m \times n}(\mathbf{F}), +)$ is the zero matrix $\mathbf{0}_{ij} = 0.$) 3) $S \neq \emptyset$

S)
$$S \neq \emptyset$$
 non-empty set

$$\mathcal{F}(S,\mathbf{F}) = \{ \text{ functions } f : S \to \mathbf{F} \}$$

is a VS over \mathbf{F} with

$$(f+g)(s) = f(s) + g(s)$$
, and $(cf)(s) = c \cdot (f(s))$

 $\forall s \in S.$

"function" can be replaced by "continuous f." or "differentiable f." (if $\mathbf{F} =$ \mathbb{R}).

4) polynomial over \mathbf{F} .

$$\mathcal{P}(\mathbf{F}) = \mathbf{F}[x] = \left\{ f(x) = \sum_{i=0}^{n} a_i x^i \text{ for some } n \in \mathbb{N}, a_i \in \mathbf{F}, a_n \neq 0 \right\}$$

deg $f = n$ degree

 $\deg f = n \deg ree$

$$[f]_i \text{ (coefficient of } x^i \text{ in } f) = \begin{cases} a_i & \text{ if } i \leq \deg f \\ 0 & \text{ otherwise} \end{cases}$$

Define add and scalar mult by

$$[f+g]_i = [f]_i + [g]_i, \qquad [cf]_i = c[f]_i.$$

Then $\mathcal{P}(\mathbf{F})$ is a VS over \mathbf{F} .

<u>Rem</u> There is a little difference between polynomial (with abstract variable) and a polynomial function, say $x \in \mathbb{C} \xrightarrow{f} f(x) \in \mathbb{C}$.

5) sequence in \mathbf{F} $f: \mathbb{N} \to \mathbf{F}$

$$(a_i)_{i=1}^{\infty} = f = (a_1, \dots, a_n, \dots) \quad a_i = f(i) \text{ sequence}$$

for $\mathbf{a} = (a_i)$ and $\mathbf{b} = (b_i)$
 $\mathbf{a} + \mathbf{b} = ((\mathbf{a} + \mathbf{b})_i)_{i=1}^{\infty}$ is defined by $(\mathbf{a} + \mathbf{b})_i = a_i + b_i$
 $c \cdot \mathbf{a} = ((c \cdot \mathbf{a})_i)_{i=1}^{\infty}$ is defined by $(c \cdot \mathbf{a})_i = c \cdot a_i$.

Theorem 1.2. (cancellation law for vector addition) If for some $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$, $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z}$, then $\mathbf{x} = \mathbf{y}$.

Proof. similar to proof for \mathbf{F} .

Corollary 1.3. The **0** vector is unique. The additive inverse $-\mathbf{x}$ of a vector \mathbf{x} is unique.

Theorem 1.4. $0 \cdot \mathbf{x} = \mathbf{0} \quad \forall \mathbf{x} \in V$

 $(-a) \cdot \mathbf{x} = -(a \cdot \mathbf{x}) \quad \forall \mathbf{x} \in V, a \in \mathbf{F}$ $a \cdot \mathbf{0} = \mathbf{0} \quad \forall a \in \mathbf{F}$

1.2. Subspaces.

Let V be a VS over **F**. A subset
$$W \subset V$$
 is a subspace of V if $\left(W, + \Big|_{W \times W}, \cdot \Big|_{\mathbf{F} \times W}\right)$ is a VS over **F**.

this means

$\forall \mathbf{x}, \mathbf{y} \in W$	$\mathbf{x} + \mathbf{y} \in W$	W closed under addition
$\forall a \in \mathbf{F}$	$a\mathbf{x} \in W$	W closed under scalar mult.

Theorem 1.5. A subset $W \subset V$ is a subspace \iff it is closed under addition and sc. mult. and $W \neq \emptyset$.

Proof. ⇒ clear
$$\mathbf{0} \in W \Rightarrow W \neq \emptyset$$

 \Leftarrow we have to prove
1) $\mathbf{0} \in W$
2) $\forall \mathbf{x} \in W - \mathbf{x} \in W$
other properties of VS follows from those of V.
Take $\mathbf{x} \in W$. By closedness under sc. mult. (with $0 \in \mathbf{F}$) $\mathbf{0} = 0 \cdot \mathbf{x} \in W \Rightarrow 1$)
For 2) next let $\mathbf{x} \in W$. $\exists -1 \in \mathbf{F}$ the additive inverse of mult neutral element.
By closedness under sc. mult. $W \ni -1 \cdot x = -(1 \cdot \mathbf{x}) = -\mathbf{x}$
 \uparrow
assoc. of \cdot in W W is VS
Exs of subspaces

zero 0) $\{\mathbf{0}\} \subset W$ is always subspace (<u>trivial</u> subspace); $W \subset W$

1) symmetric matrices

Let $A = (A_{ij})_{i=1,j=1}^{m}$ be $m \times n$ matrix.

We define an $n \times m$ matrix A^T , the transposed of A, by $(A^T)_{i,j} := A_{j,i}$

example
$$\begin{pmatrix} 1 & 2 \\ -3 & 0 \\ 4 & -5 \end{pmatrix}^T = \begin{pmatrix} 1 & -3 & 4 \\ 2 & 0 & -5 \end{pmatrix}$$
,

i.e. transposition interchanges rows and columns.

now we call an $n \times n$ matrix A symmetric if $A = A^T$,

e.g.
$$\begin{pmatrix} 1 & 3 & 0 \\ 3 & 2 & -2 \\ 0 & -2 & 5 \end{pmatrix}$$
.

 $\{A \ n \times n \text{ matrix over } \mathbf{F} : A = A^T \} \subset M_{n \times n}(\mathbf{F}) \qquad \text{subspace}$ 2) $\mathcal{P}_n(\mathbf{F}) := \{P \in \mathcal{P}(\mathbf{F}) : \deg P \le n \} \subset \mathcal{P}(\mathbf{F}) \qquad \text{subspace}$

- 3) $\{f : \mathbb{R} \to \mathbb{R} : f \text{ continuous }\} \subset \{f : \mathbb{R} \to \mathbb{R}\}\$ is a subspace $\{f : \mathbb{R} \to \mathbb{R} : f(1) = 0\} \subset \dots$
- 4) $A \in M_{n \times n}(\mathbf{F})$ is a <u>diagonal</u> matrix if $A_{ij} = 0$ for $i \neq j$

$$A = \begin{pmatrix} \ddots & 0 \\ & \ddots & \\ 0 & & \ddots \end{pmatrix}.$$

then { diag. $n \times n$ matrices over \mathbf{F} } $\subset M_{n \times n}(\mathbf{F})$ is a subspace

5) when $A = (A_{ij}) \in M_{n \times n}(\mathbf{F})$, then the <u>trace</u> $\operatorname{tr}(A) \in \mathbf{F}$ is defined by sum of diagonal entries

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

The space of <u>traceless matrices</u> is a subspace:

$$\{A \in M_{n \times n}(\mathbf{F}) : \operatorname{tr}(A) = 0\} \subset M_{n \times n}(\mathbf{F}).$$

6) $\{A \in M_{n \times n}(\mathbf{F}) : A_{ij} \ge 0 \ \forall i, j\} \subset M_{n \times n}(\mathbf{F}) \text{ (with } \mathbf{F} \subset \mathbb{R}) \text{ is } \underline{\text{not}} \text{ a subspace}$ space

not closed under scalar mult.

 $\{f : \mathbb{R} \to \mathbb{R} : f(1) = 1\} \subset \{f : \mathbb{R} \to \mathbb{R}\}\$ is not a subspace (not closed under addition)

The following gives a way of constructing subspaces out of others.

Theorem 1.6. Let $W_1, W_2 \subset V$ subspaces. Then

W₁ ∩ W₂ is a subspace of V (<u>intersection</u>)
 W₁ + W₂ = { w₁ + w₂ : w₁ ∈ W₁, w₂ ∈ W₂ } (<u>sum</u>) is a subspace of V

1.3. Linear combinations and systems of linear equations.

consider two vectors in \mathbb{R}^3 ,

plane spanned by the vectors $\mathbf{v}_1,\mathbf{v}_2$ is of the form

$$\{\mathbf{x} \in \mathbb{R}^3 : \exists \lambda_1 . \lambda_2 \in \mathbb{R} \ \mathbf{x} = \ \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \ \} \\ \uparrow$$

linear combination of $\mathbf{v}_1,\mathbf{v}_2$

Definition 1.7. V VS over \mathbf{F} , $\lambda_1, \ldots, \lambda_n \in \mathbf{F}$, $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$. Then $\sum_{i=1}^n \lambda_i \mathbf{v}_i$ is called <u>linear combination</u> (l.c.) of \mathbf{v}_i . λ_i – <u>coefficients</u> of l.c.

Example 1.8. Since $0 \cdot \mathbf{v} = \mathbf{0}$ for all $\mathbf{v} \in V$, the **0** vector is the linear combination of any non-empty set of vectors of V.

Sometimes it's necessary to determine whether $\mathbf{v} \in V$ is l.c. of $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$, i.e. whether $\exists \lambda_1, \ldots, \lambda_n : \mathbf{v} = \sum_{i=1}^n \lambda_i \mathbf{v}_i$.

[e.g. given $\mathbf{x} \in \mathbb{R}^3$, does \mathbf{x} lie on the plane of $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^3$.

Example 1.9. (2,6,8) l.c. of
$$\mathbf{u}_1 = (1,2,1),$$
 $\mathbf{u}_3 = (0,2,3)$
 $\mathbf{u}_2 = (-2,-4,-2),$ $\mathbf{u}_4 = (2,0,-3)$
 $\mathbf{u}_5 = (-3,8,16)$?
(2,6,8) = $a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + \dots + a_5\mathbf{u}_5$
= $a_1(1,2,1) + \dots + a_5(-3,8,16)$
= $(a_1 - 2a_2 + a_4 - 3a_5, 2a_1 - 4a_2 + 2a_3 + 8a_5)$
 $a_1 - 2a_2 + 3a_3 - 3a_4 + 16a_5)$

compare components

 $3a_3 - 5a_4 + 19a_5 = 6 (5) \left| -\frac{3}{2}(4) \right|$

$$a_{1} -2a_{2} +2a_{4} -3a_{5} = 2$$

$$a_{3} -2a_{4} +7a_{5} = 1$$

$$3a_{3} -5a_{4} +19a_{5} = 6$$

$$\downarrow \cdot -3$$

$$a_{1} -2a_{2} +a_{5} = -4$$

$$a_{3} +3a_{5} = 7$$

$$a_{4} -2a_{5} = 3$$

$$a_{4} -2a_{5} = 3$$

$$a_{5} = \text{free}$$

$$a_{2} = \text{free}$$

$$a_{3} = 7 - 3a_{5}$$

$$a_{4} = 2a_{5} + 3$$

$$a_{5} = \text{free}$$

By the following operations

- interchange of two rows
- mult. of an equation by $\underline{\text{non-zero}}$ constant
- add a multiple of an equation to $\underline{another}$ equation

we achieve that

- first non-zero coefficient of each equation is 1
- if unknown is first unknown with non-zero coefficient in some equation, then it does not occur in other equations
- the first unknown (with $\neq 0$ coefficient) in an equation has larger subscript than first unknown in previous equation.

Definition 1.10. Let S be a non-empty set $\subset V$, VS over **F**

$$\operatorname{span}(S) = \left\{ \underbrace{\sum_{i=1}^{n} \lambda_i \mathbf{x}_i}_{\text{linear combination of } \mathbf{x}_i} : \lambda_i \in \mathbf{F}, \ \mathbf{x}_i \in S \right\}$$

linear span or linear hull of S

Definition 1.11. If $\operatorname{span}(S) = V$, we say the set S of vectors <u>spans</u> or <u>linearly generates</u> V.

1.4. Linear independence.

in the previous calculation example we saw that in the presentation $\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{v}_i$, the a_i are not unique.

Definition 1.12. Let $S \subset V \operatorname{VS}$, $S = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ is <u>linearly independent</u> when $\forall \mathbf{v} \in V \exists$ at most one $(\lambda_i)_{i=1}^n : \mathbf{v} = \sum_{i=1}^n \lambda_i \mathbf{x}_i$. otherwise call S linearly dependent

Example 1.13. If $\mathbf{0} \in S$, then S is always linearly dependent, because $\lambda \mathbf{0} = \mathbf{0}$ $\forall \lambda \in \mathbf{F}$,

so uniqueness of λ_i fails for $\mathbf{v} = \mathbf{0}$.

Example 1.14.
$$S = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^{3}$$

assume $\exists \mathbf{v} \in \mathbb{R}^{3}$ $\mathbf{v} = \lambda_{1}\mathbf{x}_{1} + \lambda_{2}\mathbf{x}_{2} = \begin{pmatrix} 0 \\ \lambda_{1} \\ \lambda_{2} \end{pmatrix}$
 $\mathbf{v} = \lambda_{1}'\mathbf{x}_{1} + \lambda_{2}'\mathbf{x}_{2} = \begin{pmatrix} 0 \\ \lambda_{1} \\ \lambda_{2} \end{pmatrix} \right\} \Rightarrow \lambda_{1} = \lambda_{1}'$
 $\lambda_{2} = \lambda_{2}'$

 \implies linearly independent

Example 1.15.
$$S = \left\{ \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\} \subset \mathbb{R}^3$$
 linearly dependent

Theorem 1.16. Let $S \subset V$ be a linearly independent subset of V and $\mathbf{x} \in V$. Then $S \cup \{\mathbf{x}\}$ is linearly independent $\iff \mathbf{x} \notin \operatorname{span}(S)$.

1.5. Bases and dimension.

V VS over \mathbf{F} , $\mathbf{v}_1, \ldots, \mathbf{v}_n \in V$, $\lambda_1, \ldots, \lambda_n \in \mathbf{F}$ called $\sum \lambda_i \mathbf{v}_i$ linear combination (of \mathbf{v}_i with coefficients λ_i)

 $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \text{ is <u>linearly independent</u> when} \\ \forall \mathbf{v} \in V \quad \exists \text{ <u>at most 1</u>} (\lambda_1, \dots, \lambda_n) : \quad \mathbf{v} = \sum \lambda_i \mathbf{v}_i$

 $S \underline{\text{generates}} : \iff (\operatorname{span}(S) = V)$ $\forall \mathbf{v} \in V \quad \exists (\underline{\text{at least 1}}) (\lambda_1, \dots, \lambda_n) : \quad \mathbf{v} = \sum \lambda_i \mathbf{v}_i$

Definition 1.17. If S is linearly independent and generating, then call S a <u>basis</u> of V.

 $(\iff \forall \mathbf{v} \in V \quad \exists! \ (\lambda_1, \dots, \lambda_n) : \mathbf{v} = \sum \lambda_i \mathbf{v}_i)$

Example 1.18. span(\emptyset) = {**0**} and \emptyset is linearly independent $\Longrightarrow \emptyset$ is a basis of {**0**}

Example 1.19. $\mathbf{F}^n \supset \{\mathbf{e}_i\}_{i=1}^n \quad \mathbf{e}_i = (0, \dots, 0, \underbrace{1}_i, 0, \dots, 0)$

standard basis

Example 1.20. $M_{m \times n}(\mathbf{F})$. Let E^{ij} for $1 \le i \le m$

 $1 \leq j \leq n$ be the matrix

$$(E^{ij})_{kl} = \underbrace{\delta_{ik}\delta_{jl}}_{\text{Kronecker's delta}} E^{ij} = i \begin{pmatrix} 0 & \vdots & 0 \\ \cdots & 1 & \cdots \\ 0 & \vdots & 0 \end{pmatrix}.$$

then $\{E^{ij}\}_{i=1,j=1}^{m, n}$ is a basis for $M_{m \times n}(\mathbf{F})$.

Example 1.21. $\mathcal{P}_n(\mathbf{F}) = \{ \text{ polynomials in } \mathcal{P}(\mathbf{F}) \text{ of degree } \leq n \}$ $S = \{ 1, x, x^2, \dots, x^n \}$ standard basis.

Example 1.22. $\mathcal{P}(\mathbf{F})$ $S = \{1, x, x^2, \dots, x^n, \dots\}.$

<u>Rem.</u> when S is infinite, we define a linear combination of elements in S by $\sum_{i=1}^{n} \lambda_i \mathbf{x}_i$ where n is arbitrary large but $< \infty$ and $\{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ any subset of n elements of S.

Theorem 1.23. Let $S = {\mathbf{x}_1, \ldots, \mathbf{x}_n}$ be a <u>finite</u> generating set of VS of V. Then \exists basis $S' \subseteq S$ of V.

Proof. If $V = \{\mathbf{0}\}$, then $S' = \emptyset \subseteq S$ basis. So assume $V \neq \{\mathbf{0}\}$. Then $\exists \mathbf{x}_1 \ni S \quad \mathbf{x}_1 \neq \mathbf{0}$ (order \mathbf{x}_i properly); then $S_1 = \{\mathbf{x}_1\}$ is linearly independent.

We construct now sets S_i with $S_i \subset \{\mathbf{x}_1, \dots, \mathbf{x}_i\}$ then $S' := S_n$ is the basis we sought. $\operatorname{span}(S_i) = \operatorname{span}(\{\mathbf{x}_1, \dots, \mathbf{x}_i\})$ S_i linearly independent.

i = 1 done; For i = 1, ..., n - 1 do the following:

if $\mathbf{x}_{i+1} \in \operatorname{span}(S_i)$, set $S_{i+1} := S_i$, else set $S_{i+1} = S_i \cup \{\mathbf{x}_{i+1}\}$

<u>Claim 1</u> span (S_{i+1}) = span $(\{\mathbf{x}_1, \dots, \mathbf{x}_{i+1}\})$.

pf. if
$$\mathbf{x}_{i+1} \in \operatorname{span}(S_i)$$
,
then $\operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_{i+1}) = \operatorname{span}(\operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_i) \cup \{\mathbf{x}_{i+1}\})$
 $= \operatorname{span}(S_i, \mathbf{x}_{i+1})$
 $= \operatorname{span}(S_i) = \operatorname{span}(S_{i+1}).$
 \uparrow
 $\mathbf{x}_{i+1} \in \operatorname{span}(S_i)$
if $\mathbf{x}_{i+1} \notin \operatorname{span}(S_i)$,
 $\operatorname{span}(\mathbf{x}_1, \dots, \mathbf{x}_{i+1}) = \operatorname{span}(S_i \cup \{\mathbf{x}_{i+1}\}) = \operatorname{span}(S_{i+1}).$

<u>Claim 2</u> S_{i+1} is linearly independent.

 \mathbf{pf}

if
$$\mathbf{x}_{i+1} \in \operatorname{span}(S_i)$$
,
 $S_{i+1} = S_i$ linearly independent.

if
$$\mathbf{x}_{i+1} \notin \operatorname{span}(S_i)$$
,
then $S_i \cup \{\mathbf{x}_{i+1}\}$ linear independent by theorem 1.16.

Theorem 1.24. (Replacement theorem)

Let V be a VS generated by G with |G| = n. Let L be a linearly independent subset of V with |L| = m. Then $m \le n$, and $\exists H \subseteq G$ with |H| = n - m such that $\operatorname{span}(L \cup H) = V$.

Corollary 1.25. Let V have a basis G and $|G| = n < \infty$, and let G' be a different basis $\implies |G'| = n$.

Proof. Take L = G' in previous theorem it asserts that $|L| = m \le n$. Reverse role of G and $G' \Rightarrow m \ge n \implies m = n$

Definition 1.26. Dimension of a VS V, dim(V) is cardinality of a basis if \exists finite generating set; else dim $(V) = \infty$.

when $\dim(V) = \infty$ V is infinite dimensional $\dim(V) < \infty$ V is finite dimensional $\underline{\operatorname{Ex.}} \dim\{\mathbf{0}\} = 0.$ $\underline{\operatorname{Ex.}} \dim \mathbf{F}^{n} = n$ $\underline{\operatorname{Ex.}} \dim M_{m \times n}(\mathbf{F}) = mn$ $\underline{\operatorname{Ex.}} \dim \mathcal{P}_{n}(\mathbf{F}) = n + 1$ $\underline{\operatorname{Ex.}} \dim_{\mathbb{C}} \mathbb{C} = 1 \text{ (basis } \{1\})$ $\dim_{\mathbb{R}} \mathbb{C} = 2 \text{ (basis } \{1, i\})$ $\dim_{\mathbb{R}} \mathbb{R} = 1 \text{ but } \dim_{\mathbb{O}} \mathbb{R} = \infty \text{ (not easy to prove)}$

 $\dim_{\mathbb{Q}} \mathbb{R} = \infty$ is related to the existence of <u>transcendental</u> numbers $\alpha \in \mathbb{R}$ transcendental: $\iff P(a) \neq 0$ for all $P \in \mathcal{P}(\mathbb{Q})$.

 α transcendental $\iff \{1, \alpha, \alpha^2, \dots\} \subset \mathbb{R}$ is linearly independent over \mathbb{Q}

 $\frac{\operatorname{Rem}}{\operatorname{kem}} \alpha \text{ is irrational } \iff P(a) \neq 0 \text{ for all } P \in \mathcal{P}_1(\mathbb{Q})$ $\iff \{1, \alpha\} \subset \mathbb{R} \text{ is linearly independent over } \mathbb{Q}$

It is known, e.g., that π and e are transcendental; $\sqrt{2}$ is irrational but not transcendental.

Proposition 1.27. dim $\mathcal{P}(\mathbf{F}) = \infty$.

Proof. Assume dim $\mathcal{P}(\mathbf{F}) = n < \infty$.

Then as a consequence of Replacement theorem, any linearly independent set $S \subset \mathcal{P}(\mathbf{F})$ has $m \leq n < \infty$ elements.

But $\mathcal{P}(\mathbf{F})$ has the linearly independent set $S = \{1, x, x^2, ...\}$ with $|S| = \infty$ So dim $\mathcal{P}(\mathbf{F}) = \infty$.

Remark 1.28. We prove that when $\dim(V) < \infty$, then V has a basis. This is true also when $\dim(V) = \infty$, but its proof depends on deep logic (Axiom of choice) and I will not do it in class (see §1.7 in book).

Corollary 1.29. V VS over \mathbf{F} , $n = \dim(V) < \infty$.

- (a) any finite generating set S of V has $|S| \ge n$, S is a basis $\iff |S| = n$
- (b) a linearly independent set S of V has $|S| \le n$. S is a basis $\iff |S| = n$
- (c) every linearly independent set S can be extended to a basis

<u>Recall:</u> (d) every spanning subset S can be reduced to a basis

Example 1.30. show that $x^2 + 3x - 2$, $2x^2 + 5x - 3$, $x^2 - 4x + 4$ is a basis of $\mathcal{P}_2(\mathbb{R})$.

dim $\mathcal{P}_2(\mathbb{R}) = |S| = 3$, so enough to prove S is generating

$$ax^{2} + bx + c = (-8a + 5b + 3c)(x^{2} + 3x - 2) + (4a - 2b - c)(2x^{2} + 5x - 3) + (-a + b + c)(-x^{2} - 4x + 4) \uparrow$$

how to find this we discussed when we talked about linear eqn systems

Example 1.31. show that
$$S = \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$

is a basis of $M_{2\times 2}(\mathbf{F})$ (assume char(\mathbf{F}) $\neq 3$).

Proof. we prove S generates $4 = |S| = \dim M_{2 \times 2}$ options: 1) solve linear eqn system 2) (better) enough to prove $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in \operatorname{span}(S)$

because
$$S' \subset \operatorname{span}(S) \Longrightarrow$$

 $V = \operatorname{span}(S') \subset \operatorname{span}(\operatorname{span}(S)) = \operatorname{span}(S) \subset V$
 $\Longrightarrow \operatorname{span}(S) = V.$
 $M_1 + M_2 + M_3 + M_4 = \begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$
 $\underbrace{M_3 - \frac{1}{3}(M_1 + M_2 + M_3 + M_4)}_{E_3 = -\begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$
 $E_3 = -\begin{pmatrix} \downarrow \\ 0 \\ E_i = \underbrace{-(M_i - \frac{1}{3}(M_1 + M_2 + M_3 + M_4))}_{\text{l.c. of } M_i}$

Dimension of subspaces

Theorem 1.32. Let V be a VS over \mathbf{F} , $W \subseteq V$ subspace Then $\dim(W) \leq \dim(V)$ & (if $\dim V < \infty$!) "=" $\iff V = W$.

Proof. A basis S' of W is linearly independent in V, thus by corollary 1.29, part c) $\exists S \supseteq S'$ basis of V. $\dim(V) = |S| \ge |S'| = \dim(W)$.

Assume |S| = |S'|. Then $S \supseteq S' \Rightarrow S = S'$ so S' = S is a basis of V.

$$W = \operatorname{span}(S') = \operatorname{span}(S) = V$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$S' \text{ basis of } W \quad S = S' \qquad S \text{ basis of } V$$
Ex.

1)
$$\left\{ \begin{array}{c} \text{diag matrices} & \text{diag}(a_1, \dots, a_n) = \\ & \| \\ & DM_{n \times n}(\mathbf{F}) \end{array} \right\} \subseteq M_{n \times n}(\mathbf{F}).$$

basis for
$$DM_{n \times n}(\mathbf{F}) \left\{ \begin{array}{cc} E^{ii} & : & 1 \leq i \leq n \end{array} \right\}$$
.
$$\| & \|_{i} \\ i \begin{pmatrix} 0 & \vdots & 0 \\ \cdots & 1 \\ 0 & & 0 \end{pmatrix}$$

then dim $DM_{n \times n}(\mathbf{F}) = n < n^2 = \dim M_{n \times n}(\mathbf{F})$ 2) { $M \in M_{n \times n}(\mathbf{F}) : M = M^T$ } $\subseteq M_{n \times n}(\mathbf{F})$ symmetric matrices basis { $E^{ij} + E^{ji}, \quad 1 \le i < j \le n$ } \cup { $E^{ii} : 1 \le i \le n$ } |basis| $= \frac{n(n+1)}{2} < n^2 = \dim M_{n \times n}(\mathbf{F})$

Lagrange interpolation

 $c_0, c_1, \ldots, c_n \in \mathbf{F}$ scalars. consider

$$f_i(x) = \prod_{\substack{k = 0 \ k \neq i}}^n \frac{(x - c_k)}{(c_i - c_k)}$$

 $f_i(c_j) = \delta_{ij} \Longrightarrow f_i$ are linearly independent

reason is : given $f : \mathbf{F} \to \mathbf{F}$

consider
$$\sum f(c_i)f_i = \tilde{f} \in \mathcal{P}_n(\mathbf{F})$$
 (6)

f and \tilde{f} have the same values in $\{c_i\}_{i=0}^n$

