1. Vector spaces

1.1. Def and basic examples.

Definition 1.1. Fix a field F. A set V with operations
$+: V \times V \rightarrow V \quad$ (addition), and $\cdot: \mathbf{F} \times V \rightarrow V \quad$ (scalar mult.),
is called a vector space (VS) (over '/' F) if

1) $(V,+)$ is an Abelian group
2) $1 \cdot \mathbf{v}=\mathbf{v} \forall \mathbf{v} \in V$
3) $\left.\left(\lambda_{1} \lambda_{2}\right) \cdot \mathbf{v}=\lambda_{1} \cdot\left(\lambda_{2} \cdot \mathbf{v}\right) \forall \lambda_{1}, \lambda_{2} \in F, \mathbf{v} \in V\right\}$ associativity
$\left.\begin{array}{l}\text { 4) } \lambda(\mathbf{a}+\mathbf{b})=\lambda \mathbf{a}+\lambda \mathbf{b} \forall \lambda \in F, \mathbf{a}, \mathbf{b} \in V \\ \text { 5) }\left(\lambda_{1}+\lambda_{2}\right) \mathbf{a}=\lambda_{1} \mathbf{a}+\lambda_{2} \mathbf{a}\end{array}\right\}$ distributivity
$\mathbf{x}+\mathbf{y}$ is sum of vectors $\mathbf{x}, \mathbf{y} \in V$,
$a \cdot \mathbf{x}$ is product of $a \in \mathbf{F}, \mathbf{x} \in V$
$\mathbf{x} \in V$ is called vector, $a \in \mathbf{F}$ a scalar
neutral element in $(V,+)$ is called 0 -vector $\mathbf{0}$
Exs of vector spaces
4) $\mathbf{F}^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1}, \ldots, a_{n} \in \mathbf{F}\right\}$
$\left(a_{1}, \ldots, a_{n}\right) n$-tuple, a_{i} elements or components of the tuple
\mathbf{F}^{n} is VS over \mathbf{F} with the operations

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right) \\
& a \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(a \cdot a_{1}, \ldots, a \cdot a_{n}\right) \quad(a \in \mathbf{F})
\end{aligned}
$$

vectors can be written as column vectors $\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{array}\right]$ or row vectors $\left(a_{1}, \ldots, a_{n}\right)$
in particular $(n=1) \mathbf{F}$ is a VS over itself
2) the generalization of both: a matrix $m \times n m$-rows n-columns

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \quad \begin{aligned}
& \\
& A_{i j}=a_{i j} \underline{\text { entries }} \\
& a_{i i} \underline{\text { diagonal entries }} \\
&
\end{aligned}
$$

$M_{m \times n}(\mathbf{F})=\{A: A$ is an $m \times n$ matrix over $\mathbf{F}\}$ is a VS over \mathbf{F} with

$$
\begin{aligned}
(A+B)_{i j} & :=A_{i j}+B_{i j} & \text { matrix addition } \\
(c A)_{i j} & :=c A_{i j} & \text { scalar mult. }
\end{aligned}
$$

(neutral element in $\left(M_{m \times n}(\mathbf{F}),+\right)$ is the zero matrix $\mathbf{0}_{i j}=0$.)
3) $S \neq \varnothing$ non-empty set

$$
\mathcal{F}(S, \mathbf{F})=\{\text { functions } f: S \rightarrow \mathbf{F}\}
$$

is a VS over \mathbf{F} with

$$
(f+g)(s)=f(s)+g(s), \quad \text { and } \quad(c f)(s)=c \cdot(f(s))
$$

$\forall s \in S$.
"function" can be replaced by "continuous f." or "differentiable f." (if $\mathbf{F}=$ \mathbb{R}).
4) polynomial over \mathbf{F}.
$\mathcal{P}(\mathbf{F})=\mathbf{F}[x]=\left\{f(x)=\sum_{i=0}^{n} a_{i} x^{i} \quad\right.$ for some $\left.\quad n \in \mathbb{N}, a_{i} \in \mathbf{F}, a_{n} \neq 0\right\}$
$\operatorname{deg} f=n \underline{\text { degree }}$

$$
[f]_{i}\left(\text { coefficient of } x^{i} \text { in } f\right)=\left\{\begin{array}{cl}
a_{i} & \text { if } i \leq \operatorname{deg} f \\
0 & \text { otherwise }
\end{array}\right.
$$

Define add and scalar mult by

$$
[f+g]_{i}=[f]_{i}+[g]_{i}, \quad[c f]_{i}=c[f]_{i}
$$

Then $\mathcal{P}(\mathbf{F})$ is a VS over \mathbf{F}.

Rem There is a little difference between polynomial (with abstract variable) and a polynomial function, say $x \in \mathbb{C} \stackrel{f}{\longmapsto} f(x) \in \mathbb{C}$.
5) sequence in $\mathbf{F} \quad f: \mathbb{N} \rightarrow \mathbf{F}$
$\left(a_{i}\right)_{i=1}^{\infty}=f=\left(a_{1}, \ldots, a_{n}, \ldots\right) \quad a_{i}=f(i) \underline{\text { sequence }}$
for $\mathbf{a}=\left(a_{i}\right)$ and $\mathbf{b}=\left(b_{i}\right)$
$\mathbf{a}+\mathbf{b}=\left((\mathbf{a}+\mathbf{b})_{i}\right)_{i=1}^{\infty}$ is defined by $(\mathbf{a}+\mathbf{b})_{i}=a_{i}+b_{i}$
$c \cdot \mathbf{a}=\left((c \cdot \mathbf{a})_{i}\right)_{i=1}^{\infty}$ is defined by $(c \cdot \mathbf{a})_{i}=c \cdot a_{i}$.
Theorem 1.2. (cancellation law for vector addition)
If for some $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \mathbf{x}+\mathbf{z}=\mathbf{y}+\mathbf{z}$, then $\mathbf{x}=\mathbf{y}$.

Proof. similar to proof for \mathbf{F}.
Corollary 1.3. The $\mathbf{0}$ vector is unique. The additive inverse $-\mathbf{x}$ of a vector \mathbf{x} is unique.

Theorem 1.4. $0 \cdot \mathrm{x}=\mathbf{0} \quad \forall \mathrm{x} \in V$

$$
\begin{aligned}
& (-a) \cdot \mathbf{x}=-(a \cdot \mathbf{x}) \quad \forall \mathbf{x} \in V, a \in \mathbf{F} \\
& a \cdot \mathbf{0}=\mathbf{0} \quad \forall a \in \mathbf{F}
\end{aligned}
$$

1.2. Subspaces.

Let V be a VS over \mathbf{F}. A subset $W \subset V$ is a subspace of V if $\left(W,+\left.\right|_{W \times W},\left.\right|_{\mathbf{F} \times W}\right)$ is a VS over \mathbf{F}.
this means

$$
\begin{array}{cl|l}
\hline \forall \mathbf{x}, \mathbf{y} \in W & \mathbf{x}+\mathbf{y} \in W \\
\forall a \in \mathbf{F} & a \mathbf{x} \in W
\end{array} \quad \begin{aligned}
& W \underline{\text { closed under addition }} \\
& \text { closed under scalar mult. }
\end{aligned}
$$

Theorem 1.5. A subset $W \subset V$ is a subspace \Longleftrightarrow it is closed under addition and sc. mult. and $W \neq \varnothing$.

Proof. $\quad \Rightarrow$ clear $\mathbf{0} \in W \Rightarrow W \neq \varnothing$
\Leftarrow we have to prove

1) $\mathbf{0} \in W$
2) $\forall \mathbf{x} \in W \quad-\mathbf{x} \in W$
other properties of VS follows from those of V.
Take $\mathbf{x} \in W$. By closedness under sc. mult. (with $0 \in \mathbf{F}) \mathbf{0}=0 \cdot \mathbf{x} \in W \Rightarrow 1$)
For 2) next let $\mathbf{x} \in W . \exists-1 \in \mathbf{F}$ the additive inverse of mult neutral element.
By closedness under sc. mult. $W \ni-1 \cdot x \underset{\uparrow}{=}-(1 \cdot \mathbf{x}) \underset{\uparrow}{=}-\mathbf{x}$
assoc. of . in $W W$ is VS
Exs of subspaces
3) $\{\mathbf{0}\} \subset W$ is always subspace $(\underline{\text { zero }}(\underline{\text { trivial }}$ subspace $) ; \quad W \subset W$
4) symmetric matrices

Let $A=\left(A_{i j}\right)_{i=1, j=1}^{m}$ be $m \times n$ matrix.
We define an $n \times m$ matrix A^{T}, the transposed of A,
by $\left(A^{T}\right)_{i, j}:=A_{j, i}$

$$
\text { example }\left(\begin{array}{cc}
1 & 2 \\
-3 & 0 \\
4 & -5
\end{array}\right)^{T}=\left(\begin{array}{ccc}
1 & -3 & 4 \\
2 & 0 & -5
\end{array}\right)
$$

i.e. transposition interchanges rows and columns.
now we call an $n \times n$ matrix $A \underline{\text { symmetic }}$ if $A=A^{T}$,
e.g. $\quad\left(\begin{array}{ccc}1 & 3 & 0 \\ 3 & 2 & -2 \\ 0 & -2 & 5\end{array}\right)$.
$\left\{A n \times n\right.$ matrix over $\left.\mathbf{F}: A=A^{T}\right\} \subset M_{n \times n}(\mathbf{F}) \quad$ subspace
2) $\mathcal{P}_{n}(\mathbf{F}):=\{P \in \mathcal{P}(\mathbf{F}): \operatorname{deg} P \leq n\} \subset \mathcal{P}(\mathbf{F}) \quad$ subspace
3) $\{f: \mathbb{R} \rightarrow \mathbb{R}: f$ continuous $\} \subset\{f: \mathbb{R} \rightarrow \mathbb{R}\}$ is a subspace $\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=0\} \subset \ldots$
4) $A \in M_{n \times n}(\mathbf{F})$ is a diagonal matrix if $A_{i j}=0$ for $i \neq j$

$$
A=\left(\begin{array}{lll}
\ddots & & 0 \\
& \ddots & \\
0 & & \ddots
\end{array}\right) .
$$

then $\{$ diag. $n \times n$ matrices over $\mathbf{F}\} \subset M_{n \times n}(\mathbf{F})$
is a subspace
5) when $A=\left(A_{i j}\right) \in M_{n \times n}(\mathbf{F})$, then the trace $\operatorname{tr}(A) \in \mathbf{F}$ is defined by sum of diagonal entries

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i} .
$$

The space of traceless matrices is a subspace:

$$
\left\{A \in M_{n \times n}(\mathbf{F}): \operatorname{tr}(A)=0\right\} \subset M_{n \times n}(\mathbf{F}) .
$$

6) $\left\{A \in M_{n \times n}(\mathbf{F}): A_{i j} \geq 0 \forall i, j\right\} \subset M_{n \times n}(\mathbf{F})$ (with $\mathbf{F} \subset \mathbb{R}$) is not a subspace not closed under scalar mult.

$$
\{f: \mathbb{R} \rightarrow \mathbb{R}: f(1)=1\} \subset\{f: \mathbb{R} \rightarrow \mathbb{R}\}
$$

is not a subspace (not closed under addition)
The following gives a way of constructing subspaces out of others.
Theorem 1.6. Let $W_{1}, W_{2} \subset V$ subspaces. Then

1) $W_{1} \cap W_{2}$ is a subspace of V (intersection)
2) $W_{1}+W_{2}=\left\{\mathbf{w}_{1}+\mathbf{w}_{2}: \mathbf{w}_{1} \in W_{1}, \mathbf{w}_{2} \in W_{2}\right\}$ (sum) is a subspace of V

1.3. Linear combinations and systems of linear equations.

consider two vectors in \mathbb{R}^{3},
plane spanned by the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ is of the form

$$
\left\{\mathbf{x} \in \mathbb{R}^{3}: \exists \lambda_{1} \cdot \lambda_{2} \in \mathbb{R} \mathbf{x}=\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}\right\}
$$

linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$

Definition 1.7. V VS over $\mathbf{F}, \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{F}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$.
Then $\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}$ is called linear combination (l.c.) of $\mathbf{v}_{i} . \quad \lambda_{i}-\underline{\text { coefficients }}$ of 1.c.
Example 1.8. Since $0 \cdot \mathbf{v}=\mathbf{0}$ for all $\mathbf{v} \in V$, the $\mathbf{0}$ vector is the linear combination of any nonempty set of vectors of V.

Sometimes it's necessary to determine whether $\mathbf{v} \in V$ is l.c. of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V$, i.e. whether $\exists \lambda_{1}, \ldots, \lambda_{n}: \mathbf{v}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}$.
[e.g. given $\mathbf{x} \in \mathbb{R}^{3}$, does \mathbf{x} lie on the plane of $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbb{R}^{3}$.
Example 1.9. $(2,6,8)$ l.c. of $\mathbf{u}_{1}=(1,2,1)$, $\mathbf{u}_{3}=(0,2,3)$

$$
\mathbf{u}_{2}=(-2,-4,-2), \quad \mathbf{u}_{4}=(2,0,-3)
$$

$$
\mathbf{u}_{5}=(-3,8,16)
$$

$$
?
$$

$$
\begin{aligned}
(2,6,8)= & a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+\cdots+a_{5} \mathbf{u}_{5} \\
= & a_{1}(1,2,1)+\ldots+a_{5}(-3,8,16) \\
= & \left(a_{1}-2 a_{2}+a_{4}-3 a_{5}, 2 a_{1}-4 a_{2}+2 a_{3}+8 a_{5},\right. \\
& \left.a_{1}-2 a_{2}+3 a_{3}-3 a_{4}+16 a_{5}\right)
\end{aligned}
$$

compare components

$$
\begin{align*}
& a_{1}-2 a_{2} \quad+2 a_{4} \quad-3 a_{5}=2 \\
& 2 a_{1}-4 a_{2}+2 a_{3} \quad+8 a_{5}=6 \tag{1}\\
& a_{1}-2 a_{2}+3 a_{3}-3 a_{4}+16 a_{5}=8 \tag{3}\\
& a_{1}-2 a_{2} \quad+2 a_{4} \quad-3 a_{5}=2 \\
& \begin{array}{lll|l}
2 a_{3}-4 a_{4}+14 a_{5}=2 & (4) & : 2 \\
3 a_{3}-5 a_{4}+19 a_{5}=6 & (5) & -\frac{3}{2}(4)
\end{array}
\end{align*}
$$

By the following operations

- interchange of two rows
- mult. of an equation by non-zero constant
- add a multiple of an equation to another equation
we achieve that
- first non-zero coefficient of each equation is 1
- if unknown is first unknown with non-zero coefficient in some equation, then it does not occur in other equations
- the first unknown (with $\neq 0$ coefficient) in an equation has larger subscript than first unknown in previous equation.

Definition 1.10. Let S be a non-empty set $\subset V$, VS over \mathbf{F}

$$
\operatorname{span}(S)=\{\underbrace{\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}}_{\underline{\text { linear combination of } \mathbf{x}_{i}}} \quad: \lambda_{i} \in \mathbf{F}, \mathbf{x}_{i} \in S\}
$$

linear span or linear hull of S
Properties

1) $\operatorname{span}(\varnothing)=\{\mathbf{0}\}$
2) $S \subset \operatorname{span}(S)$
3) $A \subset B \Rightarrow \operatorname{span}(A) \subset \operatorname{span}(B)$
4) $\operatorname{span}(\operatorname{span}(A))=\operatorname{span}(A)$
span is a hull operation
5) $A=\operatorname{span}(A) \Longleftrightarrow A$ is a linear subspace of V

$$
\Downarrow 3) \& 5)
$$

$$
(V \supset W \text { subsp. } \supset S \Rightarrow W \supset \operatorname{span}(S))
$$

Definition 1.11. If $\operatorname{span}(S)=V$, we say the set S of vectors spans or linearly generates V.

$$
\begin{aligned}
& \begin{array}{rlrll}
a_{1}-2 a_{2} & +2 a_{4}-3 a_{5} & =2 & \\
& a_{3}-2 a_{4}+7 a_{5} & =1 & \downarrow \cdot-3 \\
3 a_{3}-5 a_{4}+19 a_{5} & =6 &
\end{array} \\
& a_{1}-2 a_{2} \begin{aligned}
+2 a_{4}-3 a_{5} & =2 \\
& a_{3}-2 a_{4}+7 a_{5}
\end{aligned}=1 \quad \uparrow \cdot+2 \uparrow \cdot-2 \\
& \text { solution } \\
& a_{1}-2 a_{2} \quad+a_{5} \quad=\quad-4 \\
& a_{3} \begin{aligned}
+3 a_{5} & =7 \\
a_{4}-2 a_{5} & =3
\end{aligned} \\
& a_{1}=-4-a_{5}+2 a_{2} \\
& a_{2}=\text { free } \\
& a_{3}=7-3 a_{5} \\
& a_{4}=2 a_{5}+3 \\
& a_{5}=\text { free }
\end{aligned}
$$

1.4. Linear independence.

in the previous calculation example we saw that in the presentation $\mathbf{v}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$, the a_{i} are not unique.

Definition 1.12. Let $S \subset V \mathrm{VS}, \quad S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is linearly independent when $\forall \mathbf{v} \in V \exists$ at most one $\left(\lambda_{i}\right)_{i=1}^{n}: \mathbf{v}=\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}$.
otherwise call S linearly dependent
Example 1.13. If $\mathbf{0} \in S$, then S is always linearly dependent, because $\lambda \mathbf{0}=\mathbf{0}$ $\forall \lambda \in \mathbf{F}$,
so uniqueness of λ_{i} fails for $\mathbf{v}=\mathbf{0}$.

Example 1.14. $S=\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\} \subset \mathbb{R}^{3}$
$\left.\begin{array}{r}\text { assume } \exists \mathbf{v} \in \mathbb{R}^{3} \quad \mathbf{v}=\lambda_{1} \mathbf{x}_{1}+\lambda_{2} \mathbf{x}_{2}=\left(\begin{array}{c}0 \\ \lambda_{1} \\ \lambda_{2}\end{array}\right) \\ \mathbf{v}=\lambda_{1}^{\prime} \mathbf{x}_{1}+\lambda_{2}^{\prime} \mathbf{x}_{2}=\left(\begin{array}{c}0 \\ \lambda_{1}^{\prime} \\ \lambda_{2}^{\prime}\end{array}\right)\end{array}\right\} \Rightarrow \begin{aligned} & \lambda_{1}=\lambda_{1}^{\prime} \\ & \lambda_{2}=\lambda_{2}^{\prime}\end{aligned}$
\Longrightarrow linearly independent

Example 1.15. $S=\left\{\left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\} \subset \mathbb{R}^{3} \quad$ linearly $\underline{\text { dependent }}$

Theorem 1.16. Let $S \subset V$ be a linearly independent subset of V and $\mathbf{x} \in V$. Then $S \cup\{\mathbf{x}\}$ is linearly independent $\Longleftrightarrow \mathbf{x} \notin \operatorname{span}(S)$.

1.5. Bases and dimension.

V VS over $\mathbf{F}, \quad \mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in V, \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{F}$
called $\sum \lambda_{i} \mathbf{v}_{i}$ linear combination (of \mathbf{v}_{i} with coefficients λ_{i})

$$
S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \text { is linearly independent when }
$$

$\forall \mathbf{v} \in V \quad \exists \underline{\text { at most } 1}\left(\lambda_{1}, \ldots, \lambda_{n}\right): \quad \mathbf{v}=\sum \lambda_{i} \mathbf{v}_{i}$
S generates: $\Longleftrightarrow \quad(\operatorname{span}(S)=V)$
$\forall \mathbf{v} \in V \quad \exists(\underline{\text { at least 1 }})\left(\lambda_{1}, \ldots, \lambda_{n}\right): \quad \mathbf{v}=\sum \lambda_{i} \mathbf{v}_{i}$
Definition 1.17. If S is linearly independent and generating, then call S a basis of V.
$\left(\Longleftrightarrow \forall \mathbf{v} \in V \quad \exists!\left(\lambda_{1}, \ldots, \lambda_{n}\right): \quad \mathbf{v}=\sum \lambda_{i} \mathbf{v}_{i}\right)$
Example 1.18. $\operatorname{span}(\varnothing)=\{0\}$ and \varnothing is linearly independent $\Longrightarrow \varnothing$ is a basis of \{0\}

Example 1.19. $\mathbf{F}^{n} \supset\left\{\mathbf{e}_{i}\right\}_{i=1}^{n} \quad \mathbf{e}_{i}=\left(0, \ldots, 0,1_{i}, 0, \ldots, 0\right)$
standard basis
Example 1.20. $M_{m \times n}(\mathbf{F})$. Let $E^{i j}$ for $1 \leq i \leq m$

$$
1 \leq j \leq n \text { be the matrix }
$$

$$
\left(E^{i j}\right)_{k l}=\underbrace{\delta_{i k} \delta_{j l}}_{\text {Kronecker's delta }} \quad E^{i j}=\quad i\left(\begin{array}{rcc}
0 & \vdots & 0 \\
\cdots & 1 & \cdots \\
0 & \vdots & 0
\end{array}\right) .
$$

then $\left\{E^{i j}\right\}_{i=1, j=1}^{m,}{ }^{n}$ is a basis for $M_{m \times n}(\mathbf{F})$.

Example 1.21. $\mathcal{P}_{n}(\mathbf{F})=\{$ polynomials in $\mathcal{P}(\mathbf{F})$ of degree $\leq n\}$
$S=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ standard basis.

Example 1.22. $\mathcal{P}(\mathbf{F}) \quad S=\left\{1, x, x^{2}, \ldots, x^{n}, \ldots\right\}$.

Rem. when S is infinite, we define a linear combination of elements in S by $\sum_{i=1}^{n} \lambda_{i} \mathbf{x}_{i}$ where n is arbitrary large but $<\infty$ and $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ any subset of n elements of S.

Theorem 1.23. Let $S=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ be a finite generating set of $V S$ of V.
Then \exists basis $S^{\prime} \subseteq S$ of V.
Proof. If $V=\{\mathbf{0}\}$, then $S^{\prime}=\varnothing \subseteq S$ basis.
So assume $V \neq\{\mathbf{0}\}$. Then $\exists \mathbf{x}_{1} \ni S \quad \mathbf{x}_{1} \neq \mathbf{0}$ (order \mathbf{x}_{i} properly);
then $S_{1}=\left\{\mathbf{x}_{1}\right\}$ is linearly independent.
We construct now sets S_{i} with $\quad S_{i} \subset\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right\}$
then $S^{\prime}:=S_{n}$ is the basis we sought.
$\operatorname{span}\left(S_{i}\right)=\operatorname{span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right\}\right)$
S_{i} linearly independent.
$i=1$ done; For $i=1, \ldots, n-1$ do the following:
if $\mathbf{x}_{i+1} \in \operatorname{span}\left(S_{i}\right)$, set $S_{i+1}:=S_{i}$,
else set $S_{i+1}=S_{i} \cup\left\{\mathbf{x}_{i+1}\right\}$
Claim $1 \operatorname{span}\left(S_{i+1}\right)=\operatorname{span}\left(\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{i+1}\right\}\right)$.

$$
\begin{aligned}
& \text { pf. if } \mathbf{x}_{i+1} \in \operatorname{span}\left(S_{i}\right) \\
& \text { then } \operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i+1}\right)=\operatorname{span}\left(\operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right) \cup\left\{\mathbf{x}_{i+1}\right\}\right) \\
& \quad=\operatorname{span}\left(S_{i}, \mathbf{x}_{i+1}\right) \\
& \quad=\operatorname{span}\left(S_{i}\right)=\operatorname{span}\left(S_{i+1}\right) \\
& \quad \uparrow \\
& \quad \mathbf{x}_{i+1} \in \operatorname{span}\left(S_{i}\right)
\end{aligned} \begin{aligned}
& \text { if } \mathbf{x}_{i+1} \notin \operatorname{span}\left(S_{i}\right) \\
& \operatorname{span}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i+1}\right)=\operatorname{span}\left(S_{i} \cup\left\{\mathbf{x}_{i+1}\right\}\right)=\operatorname{span}\left(S_{i+1}\right)
\end{aligned}
$$

Claim $2 S_{i+1}$ is linearly independent.
pf

$$
\text { if } \begin{aligned}
\mathbf{x}_{i+1} & \in \operatorname{span}\left(S_{i}\right) \\
S_{i+1} & =S_{i} \text { linearly independent. }
\end{aligned}
$$

if $\mathbf{x}_{i+1} \notin \operatorname{span}\left(S_{i}\right)$,
then $S_{i} \cup\left\{\mathbf{x}_{i+1}\right\}$ linear independent by theorem 1.16.

Theorem 1.24. (Replacement theorem)
Let V be a VS generated by G with $|G|=n$. Let L be a linearly independent subset of V with $|L|=m$.
Then $m \leq n$, and $\exists H \subseteq G$ with $|H|=n-m$ such that $\operatorname{span}(L \cup H)=V$.

Corollary 1.25. Let V have a basis G and $|G|=n<\infty$, and let G^{\prime} be a different basis $\Longrightarrow\left|G^{\prime}\right|=n$.

Proof. Take $L=G^{\prime}$ in previous theorem
it asserts that $|L|=m \leq n$.
Reverse role of G and $G^{\prime} \Rightarrow m \geq n \quad \Longrightarrow m=n$

Definition 1.26. Dimension of a $\operatorname{VS} V, \operatorname{dim}(V)$ is cardinality of a basis if \exists finite generating set; else $\operatorname{dim}(V)=\infty$.
when $\operatorname{dim}(V)=\infty \quad V$ is infinite dimensional
$\operatorname{dim}(V)<\infty \quad V$ is finite dimensional

Ex. $\operatorname{dim}\{\mathbf{0}\}=0$.
Ex. $\operatorname{dim} \mathbf{F}^{n}=n$
Ex. $\operatorname{dim} M_{m \times n}(\mathbf{F})=m n$
Ex. $\operatorname{dim} \mathcal{P}_{n}(\mathbf{F})=n+1$
Ex. $\operatorname{dim}_{\mathbb{C}} \mathbb{C}=1$ (basis $\left.\{1\}\right)$
$\operatorname{dim}_{\mathbb{R}} \mathbb{C}=2$ (basis $\{1, i\}$)
$\operatorname{dim}_{\mathbb{R}} \mathbb{R}=1$ but $\operatorname{dim}_{\mathbb{Q}} \mathbb{R}=\infty$ (not easy to prove)
$\operatorname{dim}_{\mathbb{Q}} \mathbb{R}=\infty$ is related to the existence of transcendental numbers
$\alpha \in \mathbb{R}$ transcendental $: \Longleftrightarrow P(a) \neq 0$ for all $P \in \mathcal{P}(\mathbb{Q})$.
α transcendental $\Longleftrightarrow\left\{1, \alpha, \alpha^{2}, \ldots\right\} \subset \mathbb{R}$ is linearly independent over \mathbb{Q}

Rem α is irrational $\Longleftrightarrow P(a) \neq 0$ for all $P \in \mathcal{P}_{1}(\mathbb{Q})$ $\Longleftrightarrow\{1, \alpha\} \subset \mathbb{R}$ is linearly independent over \mathbb{Q}

It is known, e.g., that π and e are transcendental; $\sqrt{2}$ is irrational but not transcendental.

Proposition 1.27. $\operatorname{dim} \mathcal{P}(\mathbf{F})=\infty$.

Proof. Assume $\operatorname{dim} \mathcal{P}(\mathbf{F})=n<\infty$.
Then as a consequence of Replacement theorem, any linearly independent set $S \subset$ $\mathcal{P}(\mathbf{F})$ has $m \leq n<\infty$ elements.
But $\mathcal{P}(\mathbf{F})$ has the linearly independent set $S=\left\{1, x, x^{2}, \ldots\right\}$ with $|S|=\infty$. So $\operatorname{dim} \mathcal{P}(\mathbf{F})=\infty$.

Remark 1.28. We prove that when $\operatorname{dim}(V)<\infty$, then V has a basis. This is true also when $\operatorname{dim}(V)=\infty$, but its proof depends on deep logic (Axiom of choice) and I will not do it in class (see $\S 1.7$ in book).

Corollary 1.29. V VS over $\mathbf{F}, \quad n=\operatorname{dim}(V)<\infty$.
(a) any finite generating set S of V has $|S| \geq n$,
S is a basis $\Longleftrightarrow|S|=n$
(b) a linearly independent set S of V has $|S| \leq n$.
S is a basis $\Longleftrightarrow|S|=n$
(c) every linearly independent set S can be extended to a basis

Recall: (d) every spanning subset S can be reduced to a basis
Example 1.30. show that $x^{2}+3 x-2,2 x^{2}+5 x-3, x^{2}-4 x+4$ is a basis of $\mathcal{P}_{2}(\mathbb{R})$.
$\operatorname{dim} \mathcal{P}_{2}(\mathbb{R})=|S|=3$, so enough to prove S is generating

$$
\begin{aligned}
a x^{2}+b x+c & =(-8 a+5 b+3 c)\left(x^{2}+3 x-2\right) \\
& +(4 a-2 b-c)\left(2 x^{2}+5 x-3\right) \\
& +(-a+b+c)\left(-x^{2}-4 x+4\right)
\end{aligned}
$$

how to find this we discussend when we talked about linear eqn systems

$$
\begin{array}{cccc}
M_{1} & M_{2} & M_{3} & M_{4}
\end{array}
$$

Example 1.31. show that $S=\left\{\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\right\}$ is a basis of $M_{2 \times 2}(\mathbf{F})$ (assume $\operatorname{char}(\mathbf{F}) \neq 3$).

Proof. we prove S generates $\quad 4=|S|=\operatorname{dim} M_{2 \times 2}$
options: 1) solve linear eqn system
2) (better) enough to prove $\underbrace{\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)}_{S^{\prime}} \in \operatorname{span}(S)$
because $S^{\prime} \subset \operatorname{span}(S) \Longrightarrow$
$V=\operatorname{span}\left(S^{\prime}\right) \subset \operatorname{span}(\operatorname{span}(S))=\operatorname{span}(S) \subset V$
$\Longrightarrow \operatorname{span}(S)=V$.
$M_{1}+M_{2}+M_{3}+M_{4}=\left(\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right)$

$$
\begin{aligned}
& \underbrace{M_{3}-\frac{1}{3}\left(M_{1}+M_{2}+M_{3}+M_{4}\right)}_{\downarrow}=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) \\
& E_{3}=-\left(\begin{array}{ll}
\downarrow
\end{array}\right) \\
& E_{i}=\underbrace{-\left(M_{i}-\frac{1}{3}\left(M_{1}+M_{2}+M_{3}+M_{4}\right)\right)}_{\text {l.c. of } M_{i}}
\end{aligned}
$$

$\underline{\text { Dimension of subspaces }}$
Theorem 1.32. Let V be a $V S$ over $\mathbf{F}, \quad W \subseteq V$ subspace
Then $\operatorname{dim}(W) \leq \operatorname{dim}(V) \&($ if $\operatorname{dim} V<\infty!) "=" \Longleftrightarrow V=W$.
Proof. A basis S^{\prime} of W is linearly independent in V, thus by corollary 1.29, part c) $\exists S \supseteq S^{\prime}$ basis of V.
$\operatorname{dim}(V)=|S| \geq\left|S^{\prime}\right|=\operatorname{dim}(W)$.

Assume $|S|=\left|S^{\prime}\right|$. Then $S \supseteq S^{\prime} \Rightarrow S=S^{\prime}$
so $S^{\prime}=S$ is a basis of V.

$$
\begin{gathered}
W \underset{\uparrow}{\uparrow} \operatorname{span}\left(S^{\prime}\right) \underset{\uparrow}{\uparrow}=\operatorname{span}(S)=V \\
S^{\prime} \text { basis of } W \quad S=S^{\prime} \quad S \text { basis of } V
\end{gathered}
$$

Ex.

1) $\left\{\begin{array}{c}\| \\ \operatorname{diag} \operatorname{matrices} \\ D M_{n \times n}(\mathbf{F})\end{array} \operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)=\left(\begin{array}{ccc}a_{1} & 0 \\ & \ddots & \\ 0 & & a_{n}\end{array}\right)\right\} \subseteq M_{n \times n}(\mathbf{F})$.

$$
\begin{gathered}
\text { basis for } D M_{n \times n}(\mathbf{F})\left\{\begin{array}{ccc}
E^{i i} & : 1 \leq i \leq n\} \\
\|_{i} & i
\end{array}\right. \\
i^{(}\left(\begin{array}{ccc}
0 & \vdots & 0 \\
\cdots & 1 & \\
0 & & 0
\end{array}\right)
\end{gathered}
$$

$$
\text { then } \operatorname{dim} D M_{n \times n}(\mathbf{F})=n<n^{2}=\operatorname{dim} M_{n \times n}(\mathbf{F})
$$

2) $\left\{M \in M_{n \times n}(\mathbf{F}): M=M^{T}\right\} \subseteq M_{n \times n}(\mathbf{F})$
symmetric matrices

$$
\begin{aligned}
& \text { basis }\left\{E^{i j}+E^{j i}, \quad 1 \leq i<j \leq n\right\} \cup\left\{E^{i i}: 1 \leq i \leq n\right\} \\
& \qquad \mid \text { basis } \left\lvert\,=\frac{n(n+1)}{2}<n^{2}=\operatorname{dim} M_{n \times n}(\mathbf{F})\right.
\end{aligned}
$$

Lagrange interpolation

$c_{0}, c_{1}, \ldots, c_{n} \in \mathbf{F}$ scalars. consider

$$
f_{i}(x)=\prod_{\substack{k=0 \\ k \neq i}}^{n} \frac{\left(x-c_{k}\right)}{\left(c_{i}-c_{k}\right)}
$$

$f_{i}\left(c_{j}\right)=\delta_{i j} \Longrightarrow f_{i}$ are linearly independent
reason is : \quad given $f: \mathbf{F} \rightarrow \mathbf{F}$

$$
\begin{equation*}
\text { consider } \quad \sum f\left(c_{i}\right) f_{i}=\tilde{f} \in \mathcal{P}_{n}(\mathbf{F}) \tag{6}
\end{equation*}
$$

f and \tilde{f} have the same values in $\left\{c_{i}\right\}_{i=0}^{n}$

\tilde{f} approximates	f
\uparrow	\uparrow

polynomial arbitrary function
(6) is called Lagrange interpolation

