
1. Vector spaces

1.1. Def and basic examples.

Definition 1.1. Fix a field F. A set V with operations

+ : V × V → V (addition) , and · : F× V → V (scalar mult.) ,

is called a vector space (VS) (over ‘/’ F) if

1) (V,+) is an Abelian group

2) 1 · v = v ∀v ∈ V

3) (λ1λ2) · v = λ1 · (λ2 · v) ∀λ1, λ2 ∈ F , v ∈ V
}

associativity

4) λ(a+ b) = λa + λb ∀λ ∈ F , a,b ∈ V
}

distributivity
5) (λ1 + λ2)a = λ1a+ λ2a

x+ y is sum of vectors x,y ∈ V ,

a · x is product of a ∈ F, x ∈ V

x ∈ V is called vector, a ∈ F a scalar

neutral element in (V,+) is called 0-vector 0

Exs of vector spaces

1) Fn = { (a1, . . . , an) : a1, . . . , an ∈ F }
(a1, . . . , an) n-tuple, ai elements or components of the tuple

Fn is VS over F with the operations

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

a · (a1, . . . , an) = (a · a1, . . . , a · an) (a ∈ F)

vectors can be written as column vectors










a1

a2
...

an










or row vectors (a1, . . . , an)

in particular (n = 1) F is a VS over itself

2) the generalization of both: a matrix m× n m-rows

n-columns

A =










a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn










Aij = aij entries

aii diagonal entries

1
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Mm×n(F) = {A : A is an m× n matrix over F } is a VS over F with

(A+B)ij := Aij +Bij matrix addition

(cA)ij := cAij scalar mult.

(neutral element in (Mm×n(F),+) is the zero matrix 0ij = 0.)

3) S 6= ∅ non-empty set

F(S,F) = { functions f : S → F }

is a VS over F with

(f + g)(s) = f(s) + g(s) , and (cf)(s) = c · (f(s))

∀s ∈ S.

“function” can be replaced by “continuous f.” or “differentiable f.” (if F =

R).

4) polynomial over F.

P(F) = F[x] =

{

f(x) =

n∑

i=0

aix
i for some n ∈ N, ai ∈ F, an 6= 0

}

deg f = n degree

[f ]i (coefficient of xi in f) =

{

ai if i ≤ deg f

0 otherwise

Define add and scalar mult by

[f + g]i = [f ]i + [g]i , [cf ]i = c[f ]i .

Then P(F) is a VS over F.

Rem There is a little difference between polynomial (with abstract vari-

able) and a polynomial function, say x ∈ C
f7−→ f(x) ∈ C.

5) sequence in F f : N→ F

(ai)
∞
i=1 = f = (a1, . . . , an, . . . ) ai = f(i) sequence

for a = (ai) and b = (bi)

a+ b =
(
(a+ b)i

)∞

i=1
is defined by (a+ b)i = ai + bi

c · a =
(
(c · a)i

)∞

i=1
is defined by (c · a)i = c · ai.

Theorem 1.2. (cancellation law for vector addition)

If for some x,y, z ∈ V , x+ z = y + z, then x = y.

Proof. similar to proof for F.

Corollary 1.3. The 0 vector is unique. The additive inverse −x of a vector x is

unique.
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Theorem 1.4. 0 · x = 0 ∀x ∈ V

(−a) · x = −(a · x) ∀x ∈ V, a ∈ F

a · 0 = 0 ∀a ∈ F

1.2. Subspaces.

Let V be a VS over F. A subset W ⊂ V is a subspace of V if
(

W,+
∣
∣
∣
W×W

, ·
∣
∣
∣
F×W

)

is a VS over F.

this means

∀x,y ∈ W x+ y ∈ W W closed under addition

∀a ∈ F ax ∈W W closed under scalar mult.

Theorem 1.5. A subset W ⊂ V is a subspace ⇐⇒ it is closed under addition

and sc. mult. and W 6= ∅.

Proof. ⇒ clear 0 ∈ W ⇒W 6= ∅

⇐ we have to prove

1) 0 ∈ W

2) ∀x ∈W − x ∈ W

other properties of VS follows from those of V .

Take x ∈W . By closedness under sc. mult. (with 0 ∈ F) 0 = 0 · x ∈W ⇒ 1)

For 2) next let x ∈W . ∃−1 ∈ F the additive inverse of mult neutral element.

By closedness under sc. mult. W ∋ −1 · x =
↑

assoc. of · in W

− (1 · x) =
↑
W is VS

− x �

Exs of subspaces

0) {0} ⊂W is always subspace (
zero
trivial subspace); W ⊂W

1) symmetric matrices

Let A = (Aij)
m n
i=1,j=1 be m× n matrix.

We define an n×m matrix AT , the transposed of A,

by (AT )i,j := Aj,i

example







1 2

−3 0

4 −5







T

=

(

1 −3 4

2 0 −5

)

,

i.e. transposition interchanges rows and columns.
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now we call an n× n matrix A symmetic if A = AT ,

e.g.







1 3 0

3 2 −2
0 −2 5







.

{
A n× n matrix over F :A = AT

}
⊂Mn×n(F) subspace

2) Pn(F) := {P ∈ P(F) : degP ≤ n } ⊂ P(F) subspace

3) { f : R→ R : f continuous } ⊂ {f : R→ R }
VS over R

is a subspace

{ f : R→ R : f(1) = 0 } ⊂ . . .

4) A ∈Mn×n(F) is a diagonal matrix if Aij = 0 for i 6= j

A =








. . .
0

0

. . .

. . .








.

then { diag. n× n matrices over F } ⊂Mn×n(F)

is a subspace

5) when A = (Aij) ∈Mn×n(F), then the trace tr(A) ∈ F is defined by sum of

diagonal entries

tr(A) =

n∑

i=1

Aii .

The space of traceless matrices is a subspace:

{A ∈Mn×n(F) : tr(A) = 0 } ⊂Mn×n(F) .

6) {A ∈ Mn×n(F) : Aij ≥ 0 ∀i, j } ⊂ Mn×n(F) (with F ⊂ R) is not a sub-

space

not closed under scalar mult.

{ f : R→ R : f(1) = 1 } ⊂ {f : R→ R }
is not a subspace (not closed under addition)

The following gives a way of constructing subspaces out of others.

Theorem 1.6. Let W1,W2 ⊂ V subspaces. Then

1) W1 ∩W2 is a subspace of V (intersection)

2) W1 +W2 = {w1 +w2 : w1 ∈ W1 , w2 ∈W2 } (sum) is a subspace of V
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1.3. Linear combinations and systems of linear equations.

consider two vectors in R3,

plane spanned by the vectors v1,v2 is of the form

{x ∈ R3 : ∃λ1.λ2 ∈ R x = λ1v1 + λ2v2

↑
linear combination of v1,v2

}

Definition 1.7. V VS over F, λ1, . . . , λn ∈ F, v1, . . . ,vn ∈ V .

Then
∑n

i=1 λivi is called linear combination (l.c.) of vi. λi – coefficients of l.c.

Example 1.8. Since 0 ·v = 0 for all v ∈ V , the 0 vector is the linear combination

of any non-empty set of vectors of V .

Sometimes it’s necessary to determine whether v ∈ V is l.c. of v1, . . . ,vn ∈ V ,

i.e. whether ∃λ1, . . . , λn : v =
∑n

i=1 λivi.

[

e.g. given x ∈ R3, does x lie on the plane of x1,x2 ∈ R3.
]

Example 1.9. (2, 6, 8) l.c. of u1 = (1, 2, 1), u3 = (0, 2, 3)

u2 = (−2,−4,−2), u4 = (2, 0,−3)
u5 = (−3, 8, 16) ?

(2, 6, 8) = a1u1 + a2u2 + · · ·+ a5u5

= a1(1, 2, 1) + . . .+ a5(−3, 8, 16)

= (a1 − 2a2 + a4 − 3a5, 2a1 − 4a2 + 2a3 + 8a5,

a1 − 2a2 + 3a3 − 3a4 + 16a5)

compare components

a1 −2a2 +2a4 −3a5 = 2 (1)

2a1 −4a2 +2a3 +8a5 = 6 (2)
∣
∣
∣
∣
∣

−2 (1)
− (1)a1 −2a2 +3a3 −3a4 +16a5 = 8 (3)

a1 −2a2 +2a4 −3a5 = 2

2a3 −4a4 +14a5 = 2 (4)
∣
∣
∣
∣
∣

: 2

− 3
2 (4)3a3 −5a4 +19a5 = 6 (5)
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a1 −2a2 +2a4 −3a5 = 2

a3 −2a4 +7a5 = 1

−→ · − 3

3a3 −5a4 +19a5 = 6

a1 −2a2 +2a4 −3a5 = 2

←−−−−− · − 2a3 −2a4 +7a5 = 1

←−− ·+ 2
a4 −2a5 = 3

a1 −2a2 +a5 = −4
a3 +3a5 = 7

a4 −2a5 = 3

=⇒

solution

a1 =−4− a5 + 2a2

a2 = free

a3 =7− 3a5

a4 =2a5 + 3

a5 = free

By the following operations

- interchange of two rows

- mult. of an equation by non-zero constant

- add a multiple of an equation to another equation

we achieve that

- first non-zero coefficient of each equation is 1

- if unknown is first unknown with non-zero coefficient in some equation,

then it does not occur in other equations

- the first unknown (with 6= 0 coefficient) in an equation has larger subscript

than first unknown in previous equation.

Definition 1.10. Let S be a non-empty set ⊂ V , VS over F

span(S) =

{
n∑

i=1

λixi

︸ ︷︷ ︸

linear combination of xi

: λi ∈ F, xi ∈ S

}

linear span or linear hull of S

Properties 1) span(∅) = {0}
2) S ⊂ span(S)







span is a

hull

operation

3) A ⊂ B ⇒ span(A) ⊂ span(B)

4) span(span(A)) = span(A)

5) A = span(A) ⇐⇒ A is a linear subspace of V=⇒

3) & 5)

(V ⊃ W subsp. ⊃ S ⇒ W ⊃ span(S))

Definition 1.11. If span(S) = V , we say the set S of vectors spans or linearly generates

V .
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1.4. Linear independence.

in the previous calculation example we saw that in the presentation v =

n∑

i=1

aivi,

the ai are not unique.

Definition 1.12. Let S ⊂ V VS, S = {x1, . . . ,xn} is linearly independent when

∀v ∈ V ∃ at most one (λi)
n
i=1 : v =

n∑

i=1

λixi.

otherwise call S linearly dependent

Example 1.13. If 0 ∈ S, then S is always linearly dependent, because λ0 = 0

∀λ ∈ F,

so uniqueness of λi fails for v = 0.

Example 1.14. S =













0

0

1







,







0

1

0













⊂ R3

assume ∃v ∈ R3 v = λ1x1 + λ2x2 =









0

λ1

λ2















⇒ λ1 = λ′
1

λ2 = λ′
2

v = λ′
1x1 + λ′

2x2 =









0

λ
′

1

λ
′

2









=⇒ linearly independent

Example 1.15. S =













0

0

2







,







0

1

2







,







0

1

0













⊂ R3 linearly dependent

Theorem 1.16. Let S ⊂ V be a linearly independent subset of V and x ∈ V . Then

S ∪ {x} is linearly independent ⇐⇒ x 6∈ span(S).

1.5. Bases and dimension.

V VS over F, v1, . . . ,vn ∈ V , λ1, . . . , λn ∈ F

called
∑

λivi linear combination (of vi with coefficients λi)

S = {v1, . . . ,vn} is linearly independent when

∀v ∈ V ∃ at most 1 (λ1, . . . , λn) : v =
∑

λivi
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S generates :⇐⇒ (span(S) = V )

∀v ∈ V ∃ (at least 1) (λ1, . . . , λn) : v =
∑

λivi

Definition 1.17. If S is linearly independent and generating, then call S a basis

of V .
(
⇐⇒ ∀v ∈ V ∃! (λ1, . . . , λn) : v =

∑

λivi

)

Example 1.18. span(∅) = {0} and ∅ is linearly independent =⇒ ∅ is a basis of

{0}

Example 1.19. Fn ⊃ {ei}ni=1 ei = (0, . . . , 0, 1
i
, 0, . . . , 0)

standard basis

Example 1.20. Mm×n(F). Let E
ij for 1 ≤ i ≤ m

1 ≤ j ≤ n be the matrix

(Eij)kl = δikδjl
︸ ︷︷ ︸

Kronecker’s delta

Eij =








0

j

... 0

i · · · 1 · · ·
0

... 0








.

then {Eij}m, n
i=1,j=1 is a basis for Mm×n(F).

Example 1.21. Pn(F) = { polynomials in P(F) of degree ≤ n }
S = { 1, x, x2, . . . , xn} standard basis.

Example 1.22. P(F) S = { 1, x, x2, . . . , xn, . . . }.

Rem. when S is infinite, we define a linear combination of elements in S by

n∑

i=1

λixi where

n is arbitrary large but <∞ and {x1, . . . ,xn} any subset of n elements of S.

Theorem 1.23. Let S = {x1, . . . ,xn} be a finite generating set of VS of V .

Then ∃ basis S′ ⊆ S of V .

Proof. If V = {0}, then S′ = ∅ ⊆ S basis.

So assume V 6= {0}. Then ∃x1 ∋ S x1 6= 0 (order xi properly);

then S1 = {x1} is linearly independent.

We construct now sets Si with Si ⊂ {x1, . . . ,xi}
span(Si) = span({x1, . . . ,xi})
Si linearly independent .

then S′ := Sn is the basis we sought.
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i = 1 done; For i = 1, . . . , n− 1 do the following:

if xi+1 ∈ span(Si), set Si+1 := Si,

else set Si+1 = Si ∪ {xi+1}

Claim 1 span(Si+1) = span({x1, . . . ,xi+1}).

pf. if xi+1 ∈ span(Si),

then span(x1, . . . ,xi+1) = span(span(x1, . . . ,xi) ∪ {xi+1})
= span(Si,xi+1)

=
↑

xi+1 ∈ span(Si)

span(Si) = span(Si+1).

if xi+1 6∈ span(Si),

span(x1, . . . ,xi+1) = span(Si ∪ {xi+1}) = span(Si+1). �

Claim 2 Si+1 is linearly independent.

pf if xi+1 ∈ span(Si),

Si+1 = Si linearly independent.

if xi+1 6∈ span(Si),

then Si ∪ {xi+1} linear independent by theorem 1.16. �

Theorem 1.24. (Replacement theorem)

Let V be a VS generated by G with |G| = n. Let L be a linearly independent subset

of V with |L| = m.

Then m ≤ n, and ∃H ⊆ G with |H | = n−m such that span(L ∪H) = V .

Corollary 1.25. Let V have a basis G and |G| = n <∞,

and let G′ be a different basis =⇒ |G′| = n.

Proof. Take L = G′ in previous theorem

it asserts that |L| = m ≤ n.

Reverse role of G and G′ ⇒ m ≥ n =⇒ m = n �

Definition 1.26. Dimension of a VS V , dim(V ) is cardinality of a basis if ∃ finite
generating set; else dim(V ) =∞.

when dim(V ) =∞
dim(V ) <∞

V is infinite dimensional

V is finite dimensional
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Ex. dim{0} = 0.

Ex. dim Fn = n

Ex. dim Mm×n(F) = mn

Ex. dim Pn(F) = n+ 1

Ex. dimC C = 1 (basis {1})
dimR C = 2 (basis {1, i})
dimR R = 1 but dimQ R = ∞ (not easy to prove)

dimQ R = ∞ is related to the existence of transcendental numbers

α ∈ R transcendental :⇐⇒ P (a) 6= 0 for all P ∈ P(Q).

α transcendental ⇐⇒ {1, α, α2, . . . } ⊂ R is linearly independent over Q

Rem α is irrational ⇐⇒ P (a) 6= 0 for all P ∈ P1(Q)

⇐⇒ {1, α} ⊂ R is linearly independent over Q

It is known, e.g., that π and e are transcendental;
√
2 is irrational but not

transcendental.

Proposition 1.27. dimP(F) = ∞.

Proof. Assume dimP(F) = n <∞.

Then as a consequence of Replacement theorem, any linearly independent set S ⊂
P(F) has m ≤ n <∞ elements.

But P(F) has the linearly independent set S = {1, x, x2, . . . } with |S| = ∞ ☇.
So dimP(F) =∞. �

Remark 1.28. We prove that when dim(V ) <∞, then V has a basis. This is true

also when dim(V ) =∞, but its proof depends on deep logic (Axiom of choice) and

I will not do it in class (see §1.7 in book).

Corollary 1.29. V VS over F, n = dim(V ) <∞.

(a) any finite generating set S of V has |S| ≥ n,

S is a basis ⇐⇒ |S| = n

(b) a linearly independent set S of V has |S| ≤ n.

S is a basis ⇐⇒ |S| = n

(c) every linearly independent set S can be extended to a basis

(d)Recall: every spanning subset S can be reduced to a basis

Example 1.30. show that x2 + 3x− 2, 2x2 + 5x− 3, x2 − 4x+ 4

is a basis of P2(R).

dim P2(R) = |S| = 3, so enough to prove S is generating
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ax2 + bx+ c = (−8a+ 5b+ 3c)(x2 + 3x− 2)

+ (4a− 2b− c)(2x2 + 5x− 3)

+ (−a+ b + c)(−x2 − 4x+ 4)

↑
how to find this we discussend when we talked about linear eqn systems

Example 1.31. show that S =

{
M1

(

1 1

1 0

)

,

M2
(

1 1

0 1

)

,

M3
(

1 0

1 1

)

,

M4
(

0 1

1 1

)}

is a basis of M2×2(F) (assume char(F) 6= 3).

Proof. we prove S generates 4 = |S| = dimM2×2

options: 1) solve linear eqn system

2) (better) enough to prove

E1
(

0 0

0 1

)

,

E2
(

0 0

1 0

)

,

E3
(

0 1

0 0

)

,

E4
(

1 0

0 0

)

︸ ︷︷ ︸

S′

∈ span(S)

because S′ ⊂ span(S) =⇒
V = span(S′) ⊂ span(span(S)) = span(S) ⊂ V

=⇒ span(S) = V .

M1 +M2 +M3 +M4 =

(

3 3

3 3

)

M3 − 1

3
(M1 +M2 +M3 +M4)

︸ ︷︷ ︸

↓

=

(

0 −1
0 0

)

E3 = −
( )

Ei = −(Mi − 1

3
(M1 +M2 +M3 +M4))

︸ ︷︷ ︸

l.c. of Mi

�

Dimension of subspaces

Theorem 1.32. Let V be a VS over F, W ⊆ V subspace

Then dim(W ) ≤ dim(V ) & (if dimV <∞!) “=” ⇐⇒ V = W .

Proof. A basis S′ of W is linearly independent in V , thus by corollary 1.29, part c)

∃S ⊇ S′ basis of V .

dim(V ) = |S| ≥ |S′| = dim(W ) .

Assume |S| = |S′|. Then S ⊇ S′ ⇒ S = S′

so S′ = S is a basis of V .

W =
↑

S′ basis of W

span(S′) =
↑
S = S′

span(S) =
↑

S basis of V

V �

Ex.
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1)

{

diag matrices=

DMn×n(F)

diag(a1, . . . , an) =




a1 0
. . .

0 an





}

⊆Mn×n(F).

basis for DMn×n(F) { Eii

=







0

i... 0
i · · · 1

0 0







: 1 ≤ i ≤ n } .

then dimDMn×n(F) = n < n2 = dimMn×n(F)

2) {M ∈Mn×n(F) : M = MT } ⊆Mn×n(F)

symmetric matrices

basis {Eij + Eji, 1 ≤ i < j ≤ n } ∪ {Eii : 1 ≤ i ≤ n }
|basis| = n(n+ 1)

2
< n2 = dimMn×n(F)

Lagrange interpolation

c0, c1, . . . , cn ∈ F scalars. consider

fi(x) =

n∏

k = 0
k 6= i

(x− ck)

(ci − ck)

fi(cj) = δij =⇒ fi are linearly independent

reason is : given f : F→ F

consider
∑

f(ci)fi = f̃ ∈ Pn(F) (6)

f and f̃ have the same values=

f̃

↑

polynomial

approximates f

↑

arbitrary function

in {ci}ni=0

(6) is called Lagrange interpolation


