2. LINEAR TRANSFORAMTIONS AND MATRICES

Motivation: want to study linear maps between VS
that "preserve" the VS structure
these occur in - calculus
(differentiation, intergation)

- geometry (rotations, reflactions, projections)
\Longrightarrow linear maps/transformations
Assumption: all VS considered over a common
field \mathbf{F}. (Fixed one for the whole $\S 2$.)

2.1. linear transformations, null spaces, and ranges.

Recall $T: V \rightarrow W$ denotes function/map from V to W.
Definition 2.1. Let V, W be VS (/F)
$T: V \rightarrow W$ is a linear transformation (from V to W)
limply linear if for all $\mathbf{x}, \mathbf{y} \in V, \quad c \in \mathbf{F}$:
(a) $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$ (additive)
(b) $T(c \mathbf{x})=c T(\mathbf{x})$
(If $\mathbf{F}=\mathbb{Q}$, then $(\mathrm{a}) \Longrightarrow(\mathrm{b})$, i.e., each additive map is linear, but not in general.)
Properties of a linear map T
(1) $T(\mathbf{0})=\mathbf{0}$
(2) T linear $\Longleftrightarrow \forall c \in \mathbf{F}, \mathbf{x}, \mathbf{y} \in V$

$$
T(c \mathbf{x}+\mathbf{y})=c T(\mathbf{x})+T(\mathbf{y})
$$

(3) If T is linear, then $T(\mathbf{x}-\mathbf{y})=T(\mathbf{x})-T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in V$
(4) T linear $\Longleftrightarrow \forall \mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in V, \quad c_{1}, \ldots, c_{n} \in \mathbf{F}$,

$$
T\left(\sum_{i=1}^{n} c_{i} \mathbf{x}_{i}\right)=\sum_{i=1}^{n} c_{i} T\left(\mathbf{x}_{i}\right)
$$

Example 2.2. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad T\left(a_{1}, a_{2}\right)=\left(2 a_{1}+a_{2}, a_{1}\right)$

$$
\begin{array}{r}
T\left(c\left(a_{1}, a_{2}\right)\right)=T\left(c a_{1}, c a_{2}\right)=\left(2 c a_{1}+c a_{2}, c a_{1}\right)=c\left(2 a_{1}+a_{2}, a_{1}\right)=c T\left(a_{1}, a_{2}\right) \\
T\left(\left(a_{1}, a_{2}\right)+\left(b_{1}, b_{2}\right)\right)=T\left(a_{1}+b_{1}, a_{2}+b_{2}\right)=\left(2\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right), a_{1}+b_{1}\right)= \\
\left(2 a_{1}+a_{2}, a_{1}\right)+\left(2 b_{1}+b_{2}, b_{1}\right)=T\left(a_{1}, a_{2}\right)+T\left(b_{1}, b_{2}\right)
\end{array}
$$

3 important examples from geometry
Example 2.3.

$$
\begin{array}{rll}
T\left(a_{1}, a_{2}\right)=\left(b_{1}, b_{2}\right) & b_{1}+b_{2} i= & e^{i \theta}\left(a_{1}+a_{2} i\right) \\
=\left(a_{1} \cos \theta-a_{2} \sin \theta,\right. & = & (\cos \theta+i \sin \theta)\left(a_{1}+a_{2} i\right) \\
\left.a_{1} \sin \theta+a_{2} \cos \theta\right) & & \left(a_{1} \cos \theta-a_{2} \sin \theta\right) \\
& +\left(a \sin \theta+a_{2} \cos \theta\right) i
\end{array}
$$

Exercise: show that T is linear.

Example 2.4. $T\left(a_{1}, a_{2}\right)=\left(a_{1},-a_{2}\right)$

	$\underline{\text { reflection }}$ (along x-axis)
$T^{2}=I d_{V} \leftarrow$ identity	

Example 2.5. $T\left(a_{1}, a_{2}\right)=\left(a_{1}, 0\right)$

$$
\frac{\text { projection }}{T^{2}=T} \text { (onto } x \text {-axis) }
$$

Example 2.6. (now matrices)
$T: M_{n \times n}(\mathbf{F}) \rightarrow M_{n \times n}(\mathbf{F}) \quad T(A)=A^{T}$
$(A+B)^{T}=A^{T}+B^{T} \quad(c A)^{T}=c A^{T} \Longrightarrow T$ is linear.
Example 2.7. $V=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: f \in C^{\infty}\right\}$ or $V=\mathcal{P}(\mathbb{R})=\mathbb{R}[z]$.
$T: V \rightarrow V \quad T(f)=f^{\prime}$. The differential operator is linear.
Example 2.8. $T(f)=\int_{0}^{x} f(t) d t$
Definition 2.9. V, W VS $/ \mathrm{F} \quad T: V \rightarrow W$ linear
$\operatorname{ker}(T)=N(T)=\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{0}\}=T^{-1} \stackrel{W}{\left(\begin{array}{l}\mathbf{0}\end{array}\right) \frac{\text { nullspace }}{\text { or } \frac{\text { kernel }}{\text { of } T}} \text {. }}$
$\operatorname{Im}(T)=R(T)=\{T(\mathbf{v}) \in W: \mathbf{v} \in V\} \subset W$ range or image of T

Example 2.10. Let $V=W$ and $T=I d_{V} \quad T(\mathbf{v})=\mathbf{v}$ identity map
Then $\operatorname{ker} T=\{\mathbf{0}\} \quad \operatorname{Im} T=V$
Let $T=0 \quad T(\mathbf{v})=\mathbf{0} \in W \quad \forall \mathbf{v} \in V \quad$ zero map
Then $\operatorname{ker} T=V \quad \operatorname{Im}=\{\mathbf{0}\}$
Theorem 2.11. Let $T: V \rightarrow W$ linear
Then $\operatorname{ker} T \subset V$ and $\operatorname{Im} T \subset W$ are linear subspaces.
Theorem 2.12. Let $T: V \rightarrow W$ be linear
and let $S \subset V$ be a subset.
Then $\quad T(\operatorname{span}(S))=\operatorname{span}(T(S))$.
Corollary 2.13. in particular when S generating $(\Longleftrightarrow \operatorname{span}(S)=V)$
then $\operatorname{span}(T(S))=\operatorname{Im} T$.
Corollary 2.14. S basis $\Rightarrow \operatorname{dim} \operatorname{Im} T \leq \operatorname{dim} V$
Definition 2.15. $T: V \rightarrow W$ linear

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(T)) & =: \operatorname{nul}(T) \text { nullity } \\
\operatorname{dim}(\operatorname{Im}(T)) & =: \operatorname{rk}(T) \underline{\text { rank }} \text { of } T
\end{aligned}
$$

Theorem 2.16. (Dimension theorem)
Let $T: V \rightarrow W$ linear, $\operatorname{dim}(V)<\infty$.

$$
\begin{equation*}
\text { Then } \quad \operatorname{nul}(T)+\operatorname{rk}(T)=\operatorname{dim}(V) \tag{1}
\end{equation*}
$$

injective
Theorem 2.17. $T: V \rightarrow W \quad 1$-to-1 $\Longleftrightarrow \operatorname{ker}(T)=\left\{\mathbf{0}_{V}\right\}$.
Proof. 1) If T injective $\Rightarrow\left|T^{-1}(\mathbf{y})\right| \leq 1 \forall \mathbf{y} \in W$
Take $y=\mathbf{0}_{W} \quad\left|T^{-1}(\mathbf{0})\right| \leq 1$,
but $\mathbf{0}_{V} \in T^{-1}\left(\mathbf{0}_{W}\right)$ so $T^{-1}\left(\mathbf{0}_{W}\right)=\left\{\mathbf{0}_{V}\right\}$.
2) Assume $\operatorname{ker}(T)=\{\mathbf{0}\}$. Let $T(\mathbf{v})=T\left(\mathbf{v}^{\prime}\right) \in W$
for some $\mathbf{v}, \mathbf{v}^{\prime} \in V$,
then because T is linear $T\left(\mathbf{v}-\mathbf{v}^{\prime}\right)=T(\mathbf{v})-T\left(\mathbf{v}^{\prime}\right)=\mathbf{0}$,
so $\mathbf{v}-\mathbf{v}^{\prime} \in \operatorname{ker} T$. But $\operatorname{ker} T=\{\mathbf{0}\}$, so $\mathbf{v}-\mathbf{v}^{\prime}=\mathbf{0}$
$\Longrightarrow \mathbf{v}=\mathbf{v}^{\prime}$.
Theorem 2.18. $T: V \rightarrow W$ linear, $n=\operatorname{dim}(V)=\operatorname{dim}(W)<\infty$. The following are equivalent.
(a) T injective $(\Longleftrightarrow \operatorname{nul}(T)=0) \Longleftrightarrow$
(b) T surjective $(\Longleftrightarrow \operatorname{rk}(T)=n)$

Proof. (a) T injective $\quad \operatorname{nul}(T)=\operatorname{dim} \operatorname{ker} T=\operatorname{dim}\{\mathbf{0}\}=0$
theorem $2.16 \Rightarrow \operatorname{rk}(T)=\operatorname{dim} V=\operatorname{dim} W=n$
(2) $\Rightarrow \operatorname{dim} \operatorname{Im} T=\operatorname{dim} W ; \operatorname{Im} T \subseteq W$ subsp $\Rightarrow \operatorname{Im} T=W \Rightarrow T$ surjective
(b) $(\mathrm{a}) \Rightarrow \operatorname{rk}(T)=n=\operatorname{dim} V \underset{\text { Th 2.16 }}{\Longrightarrow} \operatorname{nul}(T)=0 \Rightarrow \operatorname{ker} T=\{\mathbf{0}\}$

Example 2.19. $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R}) \quad f(x)=a_{0}+a_{1} x+a_{2} x^{2}$

$$
\begin{aligned}
& T(f(x))=2 f^{\prime}(x)+\int_{0}^{x} 3 f(t) d t . \\
& R(T)=\operatorname{span}\left\{T(1), T(x), T\left(x^{2}\right)\right\} \\
& =\operatorname{span}\{\underbrace{3 x, 2+\frac{3}{2} x^{2}, 4 x+x^{3}}_{\text {linearly independent }}\} \\
& \operatorname{Im}(T) \\
& \operatorname{rk}(T)=\operatorname{dim} R(T)=3<4=\operatorname{dim} \mathcal{P}_{3}(\mathbb{R})(T \underline{\text { not surjective }}) \\
& \mathcal{P}_{2}(\mathbb{R}) \\
& \operatorname{nul}(T)+\underset{\|}{\operatorname{rrk}(T)=\operatorname{dim}_{\|}^{\|} V} \begin{array}{c}
\| \\
3
\end{array}
\end{aligned}
$$

Theorem 2.20. If $V, W V S / \mathbf{F}, \quad S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ basis of V, then for each $\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right) \in W^{n} \quad \exists$! linear $T: V \rightarrow W$ with $T\left(\mathbf{v}_{i}\right)=\mathbf{w}_{i}$.

Corollary 2.21. Let $T, U: V \rightarrow W$ be linear maps

$$
\begin{aligned}
& S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \text { be basis of } V \text {. } \\
& \text { If } T\left(\mathbf{v}_{i}\right)=U\left(\mathbf{v}_{i}\right) \quad \forall i=1, \ldots, n \Longrightarrow T=U \\
& \left.\quad T\right|_{S}=\left.U\right|_{S}
\end{aligned}
$$

(Linear maps are identified by their images on a basis.)

2.2. Matrix representations of linear transformations.

fix ordered bases ($\underline{\mathrm{OB}}) \beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of V and $\gamma=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}\right\}$ of W.
Example 2.22. $\left(\mathbf{e}_{i}\right)_{i=1}^{n} \quad$ ordered basis of $\mathbf{F}^{n} ; \quad$ standard ordered basis (SOB).

Definition 2.23. If $\beta=\left(\mathbf{v}_{i}\right)_{i=1}^{n}$ is ordered basis of V
then $\forall \mathbf{x} \in V \quad \exists!\left(a_{1}, \ldots, a_{n}\right): \mathbf{x}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$.
$\left(a_{1}, \ldots, a_{n}\right)$ is called coordinate vector $[\mathbf{x}]_{\beta}$ of \mathbf{x} w.r.t. the basis β.

Example 2.24. $\mathbf{x}=(1,3,2) \in \mathbb{R}^{3} \quad \beta=\left(\mathbf{e}_{i}\right)_{i=1}^{3}$
$\mathbf{x}=\mathbf{e}_{1}+3 \mathbf{e}_{2}+2 \mathbf{e}_{3} \Rightarrow[\mathbf{x}]_{\beta}=(1,3,2)=\mathbf{x}$.
x is equal to its coordinate vector w.r.t. β;
thus we denote elements in \mathbf{F}^{n} by their coordinate vector w.r.t. the SOB

Example 2.25. $V=\mathcal{P}_{2}(\mathbb{R}) \quad S=\left(1, x, x^{2}\right)$

$$
f(x)=4+6 x-7 x^{2}
$$

$[f]_{S}=(4,6,-7)$

Now let $T: V \rightarrow W$ linear, and fix ordered bases β, γ of V, W.
$\underset{\left(\mathbf{v}_{i}\right)}{\|}{ }_{\left(\mathbf{w}_{j}\right)}$
$T\left(\mathbf{v}_{i}\right)=\sum_{j=1}^{m} a_{j i} \mathbf{w}_{j} \Longleftrightarrow\left[T\left(\mathbf{v}_{i}\right)\right]_{\gamma}=\left(a_{j i}\right)_{j=1}^{m} \quad$ (note that $a_{i j}$ uniquely determine T)
Define the matrix $A \in M_{m \times n}(\mathbf{F})$ by $A_{j i}=a_{j i} \quad i=1, \ldots, n \quad j=1, \ldots, m$

Then $A=[T]_{\beta}^{\gamma}$ is the matrix presentation of T w.r.t. the ordered bases β of V, γ of W.
(If $V=W$ and $\beta=\gamma$, write $[T]_{\beta}$ for $[T]_{\beta}^{\beta}$.)
Example 2.26. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ (with β, γ standard bases)

$$
T\left(a_{1}, a_{2}\right)=\left(a_{1}+3 a_{2}, 0,2 a_{1}-4 a_{2}\right)
$$

If $\gamma^{\prime}=\left(\mathbf{e}_{3}, \mathbf{e}_{2}, \mathbf{e}_{1}\right)$, then

$$
\begin{gathered}
{\left[T\left(\mathbf{e}_{1}\right)\right]_{\gamma^{\prime}}=(2,0,1)} \\
{\left[T\left(\mathbf{e}_{2}\right)\right]_{\gamma^{\prime}}=(-4,0,3)}
\end{gathered} \quad \Longrightarrow \quad[T]_{\beta}^{\gamma^{\prime}}=\left(\begin{array}{cc}
2 & -4 \\
0 & 0 \\
1 & 3
\end{array}\right)
$$

Example 2.27. $T: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R}) \quad T(f)=f^{\prime} \quad[T]_{\beta}^{\gamma}:=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right)$

$$
\begin{array}{clll}
\beta=\left(1, x, x^{2}, x^{3}\right), & \gamma=\left(1, x, x^{2}\right) & T(x)=1 & {[T(x)]_{\gamma}=(1,0,0)} \\
T(1)=0 \Rightarrow[T(1)]_{\gamma}=(0,0,0) & T\left(x^{2}\right)=2 x & {\left[T\left(x^{2}\right)\right]_{\gamma}=(0,2,0)} \\
& T\left(x^{3}\right)=3 x^{2} & {\left[T\left(x^{3}\right)\right]_{\gamma}=(0,0,3)}
\end{array}
$$

Definition 2.28. V, W VS over \mathbf{F}.

$$
\mathcal{L}(V, W)=\{T: V \rightarrow W: \quad T \text { linear }\}
$$

When $V=W$ set $\mathcal{L}(V, V)=: \mathcal{L}(V)$.
Theorem 2.29. $\mathcal{L}(V, W)$ is a $V S$ over \mathbf{F} with the operations

$$
\begin{aligned}
(T+U)(\mathbf{v}) & :=T(\mathbf{v})+U(\mathbf{v}) \quad(\mathbf{v} \in V) \\
(c T)(\mathbf{v}) & :=c T(\mathbf{v})
\end{aligned}
$$

Moreover, for fixed bases β, γ of V, W, we have

$$
\begin{aligned}
{[T+U]_{\beta}^{\gamma} } & =[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma} \\
{[c T]_{\beta}^{\gamma} } & =c[T]_{\beta}^{\gamma}
\end{aligned}
$$

\Rightarrow| adding and | corresponds to | adding and |
| :---: | :---: | :---: |
| scalar mult. of linear maps | | scalar mult. of matrices |

So matrices are a way to calculate with linear maps this is why they are useful!

2.3. composition of linear maps and matrix multiplication.

We learned $T: V \rightarrow W \quad U: W \rightarrow Z$

$$
\exists U \circ T: V \rightarrow Z \quad U \circ T(\mathbf{x})=U(T(\mathbf{x}))
$$

Theorem 2.30. $T: V \rightarrow W \quad U: W \rightarrow Z$ are linear \Longrightarrow

$$
U \circ T: V \rightarrow Z \text { is linear }
$$

$$
\begin{aligned}
& \text { Proof. } U \circ T(\mathbf{a}+\mathbf{b})=U(T(\mathbf{a}+\mathbf{b})) \underset{\substack{\uparrow \\
T \\
\text { is linear }}}{=} U(T(\mathbf{a})+T(\mathbf{b})) \underset{\uparrow}{\substack{\uparrow \\
U \\
\text { is linear }}}=U(T(\mathbf{a}))+U(T(\mathbf{b})) \\
& =U \circ T(\mathbf{a})+U \circ T(\mathbf{b})
\end{aligned}
$$

Theorem 2.31. V VS $/ \mathbf{F} T, U_{1}, U_{2} \in \mathcal{L}(V)$. Let $T U=T \circ U$.
$T\left(U_{1}+U_{2}\right)=T U_{1}+T U_{2} \quad\left(U_{1}+U_{2}\right) T=U_{1} T+U_{2} T \quad$ distributive
$T\left(U_{1} U_{2}\right)=\left(T U_{1}\right) U_{2} \quad$ associative
$T I=I T \quad I=I d_{V} \quad$ multiplicative identity
$a\left(U_{1} U_{2}\right)=\left(a U_{1}\right) U_{2}=U_{1}\left(a U_{2}\right)$
$\mathcal{L}(V)$ is almost a field except that

1) multiplication is non-commutative
2) $\exists U \neq 0$ with no multiplicative inverse (unless $\operatorname{dim} V=1$ and $\mathcal{L}(V) \simeq \mathbf{F}$) $\mathcal{L}(V)$ is "ring" (ex: \mathbb{Z} is a ring),
but non-commutative
How to define matrix multiplication to correspond to composition of maps?

$\begin{array}{rl}A=[U]_{\beta}^{\gamma} \quad B=[T]_{\alpha}^{\beta} & B=m \times n \text {-matrix } \\ A B=[U T]_{\alpha}^{\gamma} & A=p \times m \text {-matrix } \\ { }_{C} & C=p \times n \text {-matrix }\end{array}$

$$
\begin{aligned}
U T\left(\mathbf{v}_{i}\right)= & U\left(T\left(\mathbf{v}_{i}\right)\right)=U\left(\sum_{j=1}^{m} B_{j i} \mathbf{w}_{j}\right) \\
= & \sum_{j=1}^{m} B_{j i} U\left(\mathbf{w}_{j}\right)=\sum_{j=1}^{m} B_{j i}\left(\sum_{k=1}^{p} A_{k j} \mathbf{z}_{k}\right) \\
& \sum_{k=1}^{p}\left(\sum_{j=1}^{m} A_{k j} B_{j i}\right) \mathbf{z}_{k}=\sum_{k=1}^{p} C_{k i} \mathbf{z}_{k}
\end{aligned}
$$

where

$$
C_{k i}=\sum_{j=1}^{m} A_{k j} B_{j i}
$$

Definition 2.32. Let $A \in M_{p \times m}(\mathbf{F}) \quad B \in M_{m \times n}(\mathbf{F})$, then define $A B \in M_{p \times n}(\mathbf{F})$ by

$$
(A B)_{i j}=\sum_{k=1}^{m} A_{i k} B_{k j} \quad 1 \leq i \leq p, \quad 1 \leq j \leq n
$$

This is called product $A B$ of A and B.

Ex.

$$
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 4 & -1
\end{array}\right) \cdot\left(\begin{array}{l}
4 \\
2 \\
5
\end{array}\right)=\binom{1 \cdot 4+2 \cdot 2+1 \cdot 5}{0 \cdot 4+4 \cdot 2+(-1) \cdot 5}=\binom{13}{3}
$$

Theorem 2.33. Let V, W, Z be finite dim. $V S$ with bases α, β, γ.
Let $T: V \rightarrow W \quad U: W \rightarrow Z$ be linear.

$$
\text { Then }[U T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta} \text {. }
$$

Corollary 2.34. (when $V=W=Z$) V VS /F finite dim.

$$
T, U \in \mathcal{L}(V) \quad[U T]_{\beta}=[U]_{\beta}[T]_{\beta}
$$

$$
\text { Ex. } U: \mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathcal{P}_{2}(\mathbb{R}) \quad T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathcal{P}_{3}(\mathbb{R})
$$

$$
U(f)=f^{\prime} \quad T(f)=\int_{0}^{x} f(t) d t
$$

Let α and β be SOB of \mathcal{P}_{3} and \mathcal{P}_{2} resp．

$$
\begin{gathered}
{[U T]_{\beta}} \\
=[U]_{\alpha}^{\beta}[T]_{\beta}^{\alpha}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right) \cdot\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 3
\end{array}\right)= \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=[I]_{\beta} \quad \text { Kronecker's delta }
\end{gathered}
$$

Definition 2．35．$I_{n} \in M_{n \times n}(\mathbf{F})$ with $\left(I_{n}\right)_{i j}=\delta_{i j}$ is called identity matrix

$$
I_{1}=(1), \quad I_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Theorem 2．36．V, W f．d．$V S / \mathbf{F} \beta$ ，γ ordered bases， $\mathbf{u} \in V$

$$
\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}
$$

$$
[T(\mathbf{u})]_{\gamma}=[T]_{\beta}^{\gamma}[\mathbf{u}]_{\beta}
$$

In particular，the i－th column of $[T]_{\beta}^{\gamma}$ is $\left[T\left(\mathbf{v}_{i}\right)\right]_{\gamma}$ ．
Definition 2．37．$A \in M_{m \times n}(\mathbf{F})$ define

$$
L_{A}: \mathbf{F}^{n} \xrightarrow[\text { left-multiplication transformation }]{\longrightarrow} \mathbf{F}^{m} \text { defined by } L_{A}(\mathbf{x})=A \mathbf{x}
$$

$$
\text { example } A=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) 2 \times 3 \text { matrix } L_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$ let β be SOB of $\mathbb{R}^{3}, \gamma \mathrm{SOB}$ of \mathbb{R}^{2} ．

$$
\begin{aligned}
& \begin{array}{c}
{[(1,0,0)]_{\beta}} \\
L_{A}(1,0,0)
\end{array} \\
& L_{A}(0,1,0)=\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\binom{1}{0} \\
& 0
\end{aligned} 1
$$

Let $A \in M_{m \times n}(\mathbf{F})$ ．Then $L_{A}: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ linear．If $\beta, \gamma \operatorname{SOB}$（順基底）of $\mathbf{F}^{n}, \mathbf{F}^{m}$ ．
Theorem 2．38．（a）$\left[L_{A}\right]_{\beta}^{\gamma}=A$
（b）$L_{A}=L_{B} \Longleftrightarrow A=B$
（c）$L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{A}$ for all $a \in \mathbf{F}$ ．
（d）If $T: \mathbf{F}^{n} \rightarrow \mathbf{F}^{m}$ is linear，$T=L_{[T]_{\beta}^{\gamma}}$
(e) If $E \in M_{n \times p}(\mathbf{F}) \quad\left(L_{E}: \mathbf{F}^{p} \rightarrow \mathbf{F}^{n}\right)$
then $L_{A E}=L_{A} L_{E}$
(f) If $m=n$, then $L_{I_{n}}=I d_{\mathbf{F}^{n}}$

Corollary 2.39. Let A, B, C be matrices, such that $A(B C)$ is defined. Then $(A B) C$ is also defined, and $A(B C)=(A B) C$.

Proof. By part (e) of Theorem 2.38, and associativity of \circ for maps

$$
L_{A(B C)}=L_{A} \circ L_{B C}=L_{A} \circ\left(L_{B} \circ L_{C}\right)=\left(L_{A} \circ L_{B}\right) \circ L_{C}=L_{A B} \circ L_{C}=L_{(A B) C}
$$

now by part (b) of Theorem $2.38 \Longrightarrow$

2.4. Invertibility and isomorphism.

Definition 2.40. A linear map $T: V \rightarrow W$ is invertible if
$\exists U: W \rightarrow V$ with $T U=I d_{W}$ and $U T=I d_{V}$. $U=T^{-1} \underline{\text { inverse }}$

Theorem 2.41. T invertible $\Longleftrightarrow T$ is bijective
in this case T^{-1} is unique
moreover, $(T U)^{-1}=U^{-1} T^{-1}$ and $\left(T^{-1}\right)^{-1}=T$.
Theorem 2.42. $T: V \rightarrow W$ invertible linear then $T^{-1}: W \rightarrow V$ is linear
Theorem 2.43. $T: V \rightarrow W$ linear $\operatorname{dim}(V)<\infty$

$$
T \text { invertible } \Longleftrightarrow \operatorname{rk}(T)=\operatorname{dim}(V)=\operatorname{dim}(W)
$$

Proof. Use rk $(T)+\operatorname{nul}(T)=\operatorname{dim}(V)$.
Definition 2.44. $A \in M_{n \times n}(\mathbf{F})$ is invertible $: \Longleftrightarrow \exists B \in M_{n \times n}(\mathbf{F})$ with $A B=B A=I d_{n}$. Then $B=A^{-1}$ inverse matrix.
(Remark: If one of $A B=I d$ or $B A=I d$, then also the other holds.)
Theorem 2.45. $T: V \rightarrow W$ invertible, $\beta, \gamma O B$ of V, W

$$
\text { then } \begin{aligned}
{\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right) } & \uparrow \\
& \\
& \text { matrix inverse } \\
& \left(\text { note: }[T]_{\beta}^{\gamma} \text { is square } m t x\right)
\end{aligned}
$$

Proof. $I_{n}=\left[I d_{V}\right]_{\beta}=\left[T^{-1} T\right]_{\beta}=\left[T^{-1}\right]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}$.

Definition 2.46. $F: V \rightarrow W$ linear bijective is called (linear) isomorphism. And V, W are isomorphic $V \simeq W$.

Theorem 2.47. V, W finite dimensional (f.d.) $V S / \mathbf{F} \quad V \simeq W \Longleftrightarrow \operatorname{dim}(V)=$ $\operatorname{dim}(W)$.

Corollary 2.48. V f.d. $V S / \mathbf{F} \quad \mathbf{F}^{n} \simeq V \quad n=\operatorname{dim} V$.

Example 2.49. $\mathcal{P}_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4} \quad f \stackrel{F}{\longmapsto}(f(1), f(2), f(3), f(4))$ dim of $\mathcal{P}_{3}(\mathbb{R}), \mathbb{R}^{4}$ same, F is linear, injective:
if $f(1)=f(2)=f(3)=f(4)=0$ then $(x-1)(x-2)(x-3)(x-4) \mid f, \quad$ but if $\operatorname{deg} f \leq 3$, then $f \equiv 0 \Longrightarrow f$ isomorphism.

How do we realize the isomorphism $\mathbf{F}^{n} \simeq V$ in corollary 2.48?
Definition 2.50. Let V be VS $/ \mathbf{F}, \quad \operatorname{dim} V=n, \quad \beta$ OB. Then $\phi_{\beta}: V \rightarrow \mathbf{F}^{n}$ given by $\phi_{\beta}(\mathbf{x})=[\mathbf{x}]_{\beta}$ is standard representation of V w.r.t. β.
Theorem 2.51. ϕ_{β} is an isomorphism.
$\Longrightarrow \mathbf{F}^{n} \simeq V$ depends on the choice of basis (not canonical)

Theorem 2.52. Let $V, W V S / \mathbf{F} \quad \beta, \gamma O B .(|\gamma|=m,|\beta|=n)$.
The map $\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(\mathbf{F})$
given by $\Phi(T)=[T]_{\beta}^{\gamma}$ is an isomorphism.
Corollary 2.53. $\operatorname{dim} \mathcal{L}(V, W)=m n$.

2.5. change of coordinates.

What happens to $[\mathbf{v}]_{\beta}$ and $[T]_{\beta}^{\gamma}$ when changing β to β^{\prime} ?
Theorem 2.54. Let β, β^{\prime} be OB of f.d. vector space

$$
V, \text { let } Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta} \text {. Then }
$$

(a) Q is invertible
(b) For any $\mathbf{v} \in V, \quad[\mathbf{v}]_{\beta}=Q \cdot\left([\mathbf{v}]_{\beta^{\prime}}\right)$

Proof. (a) $\left[I_{V}\right]_{\beta}^{\beta^{\prime}}\left[I_{V}\right]_{\beta^{\prime}}^{\beta}=\left[I_{V}\right]_{\beta^{\prime}}^{\beta^{\prime}}=I d$
(b) $[\mathbf{v}]_{\beta}=\left[I_{V}(\mathbf{v})\right]_{\beta}=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}[\mathbf{v}]_{\beta^{\prime}}=Q \cdot[\mathbf{v}]_{\beta^{\prime}}$

Theorem 2.55. Under the assumption of theorem 2.54
and for $T \in \mathcal{L}(V)$, we have
$[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q \quad$ change of basis corresponds to conjugating the coordinate matrix
Proof. $Q[T]_{\beta^{\prime}}=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}[T]_{\beta^{\prime}}^{\beta^{\prime}}$

$$
=\left[I_{V} \cdot T\right]_{\beta^{\prime}}^{\beta}=[T]_{\beta^{\prime}}^{\beta}
$$

$$
\|
$$

$$
[T]_{\beta} Q=[T]_{\beta}^{\beta}\left[I_{V}\right]_{\beta^{\prime}}^{\beta}=\left[T \cdot I_{V}\right]_{\beta^{\prime}}^{\beta}=[T]_{\beta^{\prime}}^{\beta}
$$

Definition 2.56. (G, \cdot) is group $\quad g^{-1} b g$ is g-conjugate of b.
$\{T \in \mathcal{L}(V): T$ invertible $\}$ is a group, also $\left\{M \in M_{n \times n}(\mathbf{F}): M\right.$ invertible $\}$ \uparrow
how do I see this? determinants; later
thus we can speak of conjugate matrix
(in book $Q^{-1} A Q$ are called similar; not conjugate)

