2. Linear transforamtions and matrices

 Motivation: want to study linear maps between VS that "preserve" the VS structure these occur in ● calculus (differentiation, intergation)
 e geometry (rotations, reflactions, projections)
 ⇒ linear maps/transformations
 Assumption: all VS considered over a common

field **F**. (Fixed one for the whole §2.) 2.1. linear transformations, null spaces, and ranges.

Recall $T : V \to W$ denotes function/map from V to W.

Definition 2.1. Let V, W be VS (/F)

 $T : V \to W$ is a <u>linear transformation</u> (from V to W)

limply <u>linear</u> if for all $\mathbf{x}, \mathbf{y} \in V$, $c \in \mathbf{F}$:

- (a) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ (additive)
- (b) $T(c\mathbf{x}) = cT(\mathbf{x})$

(If $\mathbf{F} = \mathbb{Q}$, then (a) \Longrightarrow (b), i.e., each additive map is linear, but not in general.)

Properties of a linear map T

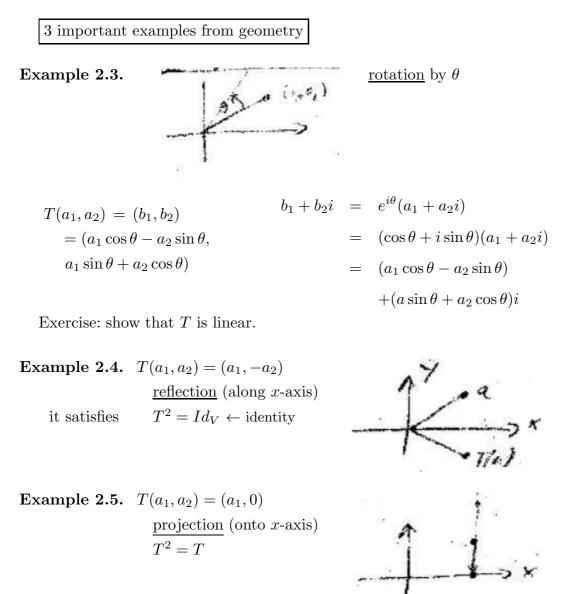
- (1) T(0) = 0
- (2) T linear $\iff \forall c \in \mathbf{F}, \ \mathbf{x}, \mathbf{y} \in V$ $T(c\mathbf{x} + \mathbf{y}) = cT(\mathbf{x}) + T(\mathbf{y})$
- (3) If T is linear, then $T(\mathbf{x} \mathbf{y}) = T(\mathbf{x}) T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in V$
- (4) T linear $\iff \forall \mathbf{x}_1, \dots, \mathbf{x}_n \in V, \quad c_1, \dots, c_n \in \mathbf{F},$

$$T\left(\sum_{i=1}^{n} c_i \mathbf{x}_i\right) = \sum_{i=1}^{n} c_i T(\mathbf{x}_i)$$

Example 2.2. $T : \mathbb{R}^2 \to \mathbb{R}^2$ $T(a_1, a_2) = (2a_1 + a_2, a_1)$

$$T(c(a_1, a_2)) = T(ca_1, ca_2) = (2ca_1 + ca_2, ca_1) = c(2a_1 + a_2, a_1) = cT(a_1, a_2)$$

$$T((a_1, a_2) + (b_1, b_2)) = T(a_1 + b_1, a_2 + b_2) = (2(a_1 + b_1) + (a_2 + b_2), a_1 + b_1) = (2a_1 + a_2, a_1) + (2b_1 + b_2, b_1) = T(a_1, a_2) + T(b_1, b_2)$$



Example 2.6. (now matrices) $T : M_{n \times n}(\mathbf{F}) \to M_{n \times n}(\mathbf{F}) \qquad T(A) = A^T$ $(A+B)^T = A^T + B^T \quad (cA)^T = cA^T \Longrightarrow T$ is linear.

Example 2.7. $V = \{ f : \mathbb{R} \to \mathbb{R} : f \in C^{\infty} \} \underline{\text{or}} V = \mathcal{P}(\mathbb{R}) = \mathbb{R}[z].$

 $T: V \to V$ T(f) = f'. The differential operator is linear.

Example 2.8. $T(f) = \int_{0}^{x} f(t) dt$

Definition 2.9. V, W VS /F $T: V \rightarrow W$ linear

$$\ker(T) = N(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \} = T^{-1}(\overset{W}{\mathbf{0}}) \underbrace{\text{nullspace}}_{\text{or kernel}}$$

 $\operatorname{Im}(T) = R(T) = \{ T(\mathbf{v}) \in W : \mathbf{v} \in V \} \subset W \text{ <u>range</u> or <u>image</u> of T$

- **Example 2.10.** Let V = W and $T = Id_V$ $T(\mathbf{v}) = \mathbf{v}$ <u>identity</u> map Then ker $T = \{\mathbf{0}\}$ $\operatorname{Im} T = V$ Let T = 0 $T(\mathbf{v}) = \mathbf{0} \in W$ $\forall \mathbf{v} \in V$ <u>zero</u> map Then ker T = V $\operatorname{Im} = \{\mathbf{0}\}$
- **Theorem 2.11.** Let $T : V \to W$ linear Then ker $T \subset V$ and $\text{Im}T \subset W$ are linear subspaces.
- **Theorem 2.12.** Let $T : V \to W$ be linear and let $S \subset V$ be a subset. Then $T(\operatorname{span}(S)) = \operatorname{span}(T(S)).$
- **Corollary 2.13.** in particular when S generating (\iff span(S) = V) then span(T(S)) = ImT.

Corollary 2.14. S basis $\Rightarrow \dim \operatorname{Im} T \leq \dim V$

Definition 2.15. $T : V \to W$ linear $\dim(\ker(T)) =: \operatorname{nul}(T) \operatorname{\underline{nullity}}$ $\dim(\operatorname{Im}(T)) =: \operatorname{rk}(T) \operatorname{\underline{rank}} \text{ of } T$

Theorem 2.16. (Dimension theorem)

Let $T : V \to W$ linear, $\dim(V) < \infty$.

Then
$$\operatorname{nul}(T) + \operatorname{rk}(T) = \dim(V).$$
 (1)

Theorem 2.17. $T: V \to W$ *1-to-1* $\iff \ker(T) = \{\mathbf{0}_V\}.$

Proof. 1) If T injective
$$\Rightarrow |T^{-1}(\mathbf{y})| \le 1 \ \forall \mathbf{y} \in W$$

Take $y = \mathbf{0}_W$ $|T^{-1}(\mathbf{0})| \le 1$,
but $\mathbf{0}_V \in T^{-1}(\mathbf{0}_W)$ so $T^{-1}(\mathbf{0}_W) = \{\mathbf{0}_V\}$.
2) Assume ker $(T) = \{\mathbf{0}\}$. Let $T(\mathbf{v}) = T(\mathbf{v}') \in W$
for some $\mathbf{v}, \mathbf{v}' \in V$,
then because T is linear $T(\mathbf{v} - \mathbf{v}') = T(\mathbf{v}) - T(\mathbf{v}') = \mathbf{0}$,
so $\mathbf{v} - \mathbf{v}' \in \ker T$. But ker $T = \{\mathbf{0}\}$, so $\mathbf{v} - \mathbf{v}' = \mathbf{0}$
 $\Rightarrow \mathbf{v} = \mathbf{v}'$.

Theorem 2.18. $T : V \to W$ linear, $n = \dim(V) = \dim(W) < \infty$. The following are equivalent.

- (a) T injective (\iff nul(T) = 0) \iff
- (b) T surjective (\iff rk(T) = n)

Proof. (a) T injective $\operatorname{nul}(T) = \dim \ker T = \dim \{\mathbf{0}\} = 0$

theorem 2.16
$$\Rightarrow$$
 rk $(T) = \dim V = \dim W = n$ (2)

 $(2) \Rightarrow \dim \operatorname{Im} T = \dim W; \operatorname{Im} T \subseteq W \text{ subsp} \Rightarrow \operatorname{Im} T = W \Rightarrow T \text{ surjective}$

(b) (a)
$$\Rightarrow \operatorname{rk}(T) = n = \dim V \underset{\operatorname{Th} 2.16}{\Longrightarrow} \operatorname{nul}(T) = 0 \Rightarrow \ker T = \{\mathbf{0}\}$$

Example 2.19. $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R}) \quad f(x) = a_0 + a_1 x + a_2 x^2$

$$T(f(x)) = 2f'(x) + \int_{0}^{x} 3f(t) dt.$$

$$R(T) = \operatorname{span}\{T(1), T(x), T(x^{2})\}$$

$$= \operatorname{span}\left\{\underbrace{3x, 2 + \frac{3}{2}x^{2}, 4x + x^{3}}_{\text{linearly independent}}\right\}$$

$$\operatorname{Im}(T)$$

$$\operatorname{rk}(T) = \dim R(T) = 3 < 4 = \dim \mathcal{P}_{3}(\mathbb{R}) \ (T \text{ not surjective})$$

$$\mathcal{P}_{2}(\mathbb{R})$$

$$\operatorname{nul}(T) + \operatorname{rk}(T) = \dim \bigvee_{V} \implies \operatorname{nul}(T) = 0 \implies T \text{ injective}$$

 $\operatorname{Hur}(I) + \operatorname{Ir}(I) = \operatorname{dim}_{V} \quad \Longrightarrow \operatorname{Hur}(I) = 0 \implies I \quad \operatorname{\underline{Injective}}_{3}$ 3Theorem 2.20. If V, W VS /F, $S = \{\mathbf{v}_{1}, \dots, \mathbf{v}_{n}\}$ basis of V,

then for each $(\mathbf{w}_1, \ldots, \mathbf{w}_n) \in W^n$ $\exists!$ linear $T: V \to W$ with $T(\mathbf{v}_i) = \mathbf{w}_i$.

Corollary 2.21. Let $T, U : V \to W$ be linear maps $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be basis of V. If $T(\mathbf{v}_i) = U(\mathbf{v}_i) \quad \forall i = 1, \dots, n \Longrightarrow T = U$. $T\Big|_S = U\Big|_S$

(Linear maps are identified by their images on a basis.)

2.2. Matrix representations of linear transformations.

fix <u>ordered</u> bases (<u>OB</u>) $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ of V and $\gamma = {\mathbf{w}_1, \dots, \mathbf{w}_m}$ of W. **Example 2.22.** $(\mathbf{e}_i)_{i=1}^n$ <u>ordered</u> basis of \mathbf{F}^n ; standard ordered basis (SOB).

Definition 2.23. If $\beta = (\mathbf{v}_i)_{i=1}^n$ is ordered basis of Vthen $\forall \mathbf{x} \in V \quad \exists ! (a_1, \ldots, a_n) : \mathbf{x} = \sum_{i=1}^n a_i \mathbf{v}_i$. (a_1, \ldots, a_n) is called <u>coordinate vector</u> $[\mathbf{x}]_{\beta}$ of \mathbf{x} w.r.t. the basis β .

Example 2.24. $\mathbf{x} = (1, 3, 2) \in \mathbb{R}^3$ $\beta = (\mathbf{e}_i)_{i=1}^3$ $\mathbf{x} = \mathbf{e}_1 + 3\mathbf{e}_2 + 2\mathbf{e}_3 \Rightarrow [\mathbf{x}]_\beta = (1, 3, 2) = \mathbf{x}.$

x is equal to its coordinate vector w.r.t. β ;

thus we denote elements in \mathbf{F}^n by their coordinate vector w.r.t. the SOB

Example 2.25. $V = \mathcal{P}_2(\mathbb{R})$ $S = (1, x, x^2)$ $f(x) = 4 + 6x - 7x^2$ $[f]_S = (4, 6, -7)$

Now let $T\,:\,V\to W$ linear, and fix ordered bases $\begin{array}{cc}\beta\ ,\ \gamma\ \text{ of }V,\,W.\\ &\parallel\ &\parallel\end{array}$

 $T(\mathbf{v}_i) = \sum_{j=1}^m a_{ji} \mathbf{w}_j \iff [T(\mathbf{v}_i)]_{\gamma} = (a_{ji})_{j=1}^m \qquad \text{(note that } a_{ij} \text{ uniquely determine } T)$ Define the <u>matrix</u> $A \in M_{m \times n}(\mathbf{F})$ by $A_{ji} = a_{ji} \qquad i = 1, \dots, n \quad j = 1, \dots, m$

Then $A = [T]^{\gamma}_{\beta}$ is the <u>matrix presentation</u> of T w.r.t. the ordered bases β of V, γ of W.

(If V = W and $\beta = \gamma$, write $[T]_{\beta}$ for $[T]_{\beta}^{\beta}$.)

Example 2.26. $T : \mathbb{R}^2 \to \mathbb{R}^3$ (with β, γ standard bases) $T(a_1, a_2) = (a_1 + 3a_2, 0, 2a_1 - 4a_2)$

$$T(\mathbf{e}_{1}) = T(1,0) = 1\mathbf{e}_{1} + 0\mathbf{e}_{2} + 2\mathbf{e}_{3} = (1,0,2) \qquad \begin{array}{c} a_{11} = 1 \\ a_{21} = 0 \\ a_{31} = 2 \end{array}$$

$$T(\mathbf{e}_{2}) = T(0,1) = 3\mathbf{e}_{1} + 0\mathbf{e}_{2} - 4\mathbf{e}_{3} = \left(\begin{array}{c} a_{12} = 3 \\ (3,0,-4) \\ \downarrow \end{array} \right) \qquad \begin{array}{c} a_{12} = 3 \\ (3,0,-4) \\ \downarrow \end{array}$$

$$A = [T]_{\beta}^{\gamma} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -4 \end{pmatrix} \qquad \begin{array}{c} 3 \\ 0 \\ -4 \end{pmatrix}$$

If $\gamma' = (\mathbf{e}_3, \mathbf{e}_2, \mathbf{e}_1)$, then

$$[T(\mathbf{e}_1)]_{\gamma'} = (2,0,1) \qquad \Longrightarrow \quad [T]_{\beta}^{\gamma'} = \begin{pmatrix} 2 & -4 \\ 0 & 0 \\ 1 & 3 \end{pmatrix}.$$

Example 2.27. $T : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R}) \quad T(f) = f' \qquad [T]_{\beta}^{\gamma} := \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$

$$\begin{split} \beta &= (1, x, x^2, x^3), \quad \gamma = (1, x, x^2) \quad T(x) = 1 \quad [T(x)]_{\gamma} = (1, 0, 0) \\ T(1) &= 0 \; \Rightarrow \; [T(1)]_{\gamma} = (0, 0, 0) \quad \begin{array}{c} T(x^2) &= 2x \quad [T(x^2)]_{\gamma} = (0, 2, 0) \\ T(x^3) &= 3x^2 \quad [T(x^3)]_{\gamma} = (0, 0, 3) \end{split}$$

Definition 2.28. V, W VS over **F**.

$$\mathcal{L}(V, W) = \left\{ T : V \to W : T \text{ linear } \right\}$$

the space of linear maps between V and W.

When V = W set $\mathcal{L}(V, V) =: \mathcal{L}(V)$.

Theorem 2.29. $\mathcal{L}(V, W)$ is a VS over **F** with the operations

$$\begin{aligned} (T+U)(\mathbf{v}) &:= T(\mathbf{v}) + U(\mathbf{v}) \qquad (\mathbf{v} \in V) \\ (cT)(\mathbf{v}) &:= cT(\mathbf{v}) \end{aligned}$$

Moreover, for fixed bases β , γ of V, W, we have

$$[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$$
$$[cT]^{\gamma}_{\beta} = c[T]^{\gamma}_{\beta}$$

\Rightarrow	adding and	corresponds to	adding and
	scalar mult. of linear maps		scalar mult. of matrices

So matrices are a way to calculate with linear maps – this is why they are useful!

2.3. composition of linear maps and matrix multiplication.

We learned $T : V \to W$ $U : W \to Z$ $\exists U \circ T : V \to Z \quad U \circ T(\mathbf{x}) = U(T(\mathbf{x}))$

Theorem 2.30. $T: V \to W \quad U: W \to Z \text{ are linear} \Longrightarrow$ $U \circ T: V \to Z \text{ is linear}$

Proof.
$$U \circ T(\mathbf{a} + \mathbf{b}) = U(T(\mathbf{a} + \mathbf{b})) = U(T(\mathbf{a}) + T(\mathbf{b})) = U(T(\mathbf{a})) + U(T(\mathbf{b}))$$

 $\uparrow \qquad \uparrow$
 $T \text{ is linear} \qquad U \text{ is linear}$
 $= U \circ T(\mathbf{a}) + U \circ T(\mathbf{b})$

Theorem 2.31. V VS /**F** T, U_1 , $U_2 \in \mathcal{L}(V)$. Let $\overline{TU = T \circ U}$. $T(U_1 + U_2) = TU_1 + TU_2$ $(U_1 + U_2)T = U_1T + U_2T$ distributive $T(U_1U_2) = (TU_1)U_2$ associative TI = IT $I = Id_V$ multiplicative identity $a(U_1U_2) = (aU_1)U_2 = U_1(aU_2)$

 $\mathcal{L}(V)$ is almost a field except that

- 1) multiplication is non-commutative
- 2) $\exists U \neq 0$ with no multiplicative inverse (unless dim V = 1 and $\mathcal{L}(V) \simeq \mathbf{F}$)

 $\mathcal{L}(V)$ is "ring" (<u>ex:</u> \mathbb{Z} is a ring), but non-commutative

How to define matrix multiplication to correspond to composition of maps?

$$T : \mathbf{V} \longrightarrow \mathbf{W} \qquad U : \mathbf{W} \longrightarrow \mathbf{Z}$$

bases $\alpha \quad \beta \qquad \beta \quad \gamma$
$$\parallel \quad \parallel \quad \parallel \quad \parallel \\ \{\mathbf{v}_i\}_{i=1}^n \ \{\mathbf{w}_j\}_{j=1}^m \qquad \{\mathbf{z}_k\}_{k=1}^p$$

$$A = [U]^{\gamma}_{\beta} \quad B = [T]^{\beta}_{\alpha} \qquad \qquad B = m \times n \text{-matrix}$$

$$AB = [UT]^{\gamma}_{\alpha} \qquad \qquad A = p \times m \text{-matrix}$$

$$C = p \times n \text{-matrix}$$

$$UT(\mathbf{v}_{i}) = U(T(\mathbf{v}_{i})) = U\left(\sum_{j=1}^{m} B_{ji} \mathbf{w}_{j}\right)$$
$$= \sum_{j=1}^{m} B_{ji} U(\mathbf{w}_{j}) = \sum_{j=1}^{m} B_{ji} \left(\sum_{k=1}^{p} A_{kj} \mathbf{z}_{k}\right)$$
$$\sum_{k=1}^{p} \left(\sum_{j=1}^{m} A_{kj} B_{ji}\right) \mathbf{z}_{k} = \sum_{k=1}^{p} C_{ki} \mathbf{z}_{k}$$
where
$$C_{ki} = \sum_{j=1}^{m} A_{kj} B_{ji}$$

Definition 2.32. Let $A \in M_{p \times m}(\mathbf{F})$ $B \in M_{m \times n}(\mathbf{F})$, then define $AB \in M_{p \times n}(\mathbf{F})$ by

$$(AB)_{ij} = \sum_{k=1}^{m} A_{ik} B_{kj} \qquad 1 \le i \le p, \quad 1 \le j \le n$$

This is called product AB of A and B.

$$\underline{Ex.} \quad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 4 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 4 + 2 \cdot 2 + 1 \cdot 5 \\ 0 \cdot 4 + 4 \cdot 2 + (-1) \cdot 5 \end{pmatrix} = \begin{pmatrix} 13 \\ 3 \end{pmatrix}.$$

Theorem 2.33. Let V, W, Z be finite dim. VS with bases α, β, γ . Let $T : V \to W$ $U : W \to Z$ be linear. Then $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta} [T]^{\beta}_{\alpha}$.

Corollary 2.34. (when V = W = Z) V VS /**F** finite dim.

$$T, U \in \mathcal{L}(V)$$
 $[UT]_{\beta} = [U]_{\beta}[T]_{\beta}$

Ex.
$$U : \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_2(\mathbb{R})$$
 $T : \mathcal{P}_2(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$
 $U(f) = f'$ $T(f) = \int_0^x f(t) dt$

Let α and β be SOB of \mathcal{P}_3 and \mathcal{P}_2 resp.

$$\begin{split} [UT]_{\beta} &= & [U]_{\alpha}^{\beta}[T]_{\beta}^{\alpha} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{pmatrix} = \\ & \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = [I]_{\beta} \\ & \text{Kronecker's delta} \end{split}$$

Definition 2.35. $I_n \in M_{n \times n}(\mathbf{F})$ with $(I_n)_{ij} = \delta_{ij}$ is called <u>identity matrix</u>

$$I_1 = (1), \qquad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Theorem 2.36. V, W f.d. VS /**F** β , γ ordered bases, $\mathbf{u} \in V$ $\beta = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ $[T(\mathbf{u})]_{\gamma} = [T]_{\beta}^{\gamma} [\mathbf{u}]_{\beta}$

In particular, the i-th column of $[T]^{\gamma}_{\beta}$ is $[T(\mathbf{v}_i)]_{\gamma}$.

Definition 2.37. $A \in M_{m \times n}(\mathbf{F})$ define $L_A : \mathbf{F}^n \longrightarrow \mathbf{F}^m$ defined by $L_A(\mathbf{x}) = A\mathbf{x}$ left-multiplication transformation

example
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} 2 \times 3$$
 matrix $L_A : \mathbb{R}^3 \to \mathbb{R}^2$
let β be SOB of \mathbb{R}^3 , γ SOB of \mathbb{R}^2 .

$$\begin{split} & [(1,0,0)]_{\beta} \\ & \downarrow \\ L_A(1,0,0) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ & L_A(0,1,0) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad \Rightarrow [L_A]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = A \\ & L_A(0,0,1) = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Big]_{\gamma} \end{split}$$

Let $A \in M_{m \times n}(\mathbf{F})$. Then $L_A : \mathbf{F}^n \to \mathbf{F}^m$ linear. If β, γ SOB (順基底) of $\mathbf{F}^n, \mathbf{F}^m$.

Theorem 2.38. (a)
$$[L_A]^{\gamma}_{\beta} = A$$

(b) $L_A = L_B \iff A = B$
(c) $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_A$ for all $a \in \mathbf{F}$.
(d) If $T : \mathbf{F}^n \to \mathbf{F}^m$ is linear, $T = L_{[T]^{\gamma}_{\beta}}$

(e) If $E \in M_{n \times p}(\mathbf{F})$ $(L_E : \mathbf{F}^p \to \mathbf{F}^n)$ then $L_{AE} = L_A L_E$ (f) If m = n, then $L_{I_n} = Id_{\mathbf{F}^n}$

Corollary 2.39. Let A, B, C be matrices, such that A(BC) is defined. Then (AB)C is also defined, and A(BC) = (AB)C.

Proof. By part (e) of Theorem 2.38, and associativity of \circ for maps

 $L_{A(BC)} = L_A \circ L_{BC} = L_A \circ (L_B \circ L_C) = (L_A \circ L_B) \circ L_C = L_{AB} \circ L_C = L_{(AB)C}$ now by part (b) of Theorem 2.38 $\implies \Box$

2.4. Invertibility and isomorphism.

Definition 2.40. A linear map
$$T : V \to W$$
 is invertible if
 $\exists U : W \to V$ with $TU = Id_W$ and $UT = Id_V$.
 $U = T^{-1}$ inverse

- **Theorem 2.41.** T invertible \iff T is bijective in this case T^{-1} is unique moreover, $(TU)^{-1} = U^{-1}T^{-1}$ and $(T^{-1})^{-1} = T$.
- **Theorem 2.42.** $T: V \to W$ invertible linear then $T^{-1}: W \to V$ is linear
- **Theorem 2.43.** $T : V \to W$ linear dim $(V) < \infty$ T invertible \iff rk $(T) = \dim(V) = \dim(W)$
- *Proof.* Use $\operatorname{rk}(T) + \operatorname{nul}(T) = \dim(V)$.

Definition 2.44. $A \in M_{n \times n}(\mathbf{F})$ is invertible : $\iff \exists B \in M_{n \times n}(\mathbf{F})$ with $AB = BA = Id_n$. Then $B = A^{-1}$ inverse matrix.

(Remark: If one of AB = Id or BA = Id, then also the other holds.)

Theorem 2.45.
$$T: V \to W$$
 invertible, β, γ OB of V, W
then $[T^{-1}]_{\gamma}^{\beta} = ([T]_{\beta}^{\gamma})^{-1}$
matrix inverse
(note: $[T]_{\beta}^{\gamma}$ is square mtx)

Proof. $I_n = [Id_V]_{\beta} = [T^{-1}T]_{\beta} = [T^{-1}]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}.$

Definition 2.46. $F : V \to W$ linear bijective is called <u>(linear) isomorphism</u>. And V, W are isomorphic $V \simeq W$.

Theorem 2.47. V, W finite dimensional (f.d.) VS / \mathbf{F} V \simeq W \iff dim(V) = dim(W).

Corollary 2.48. V f.d. VS $/\mathbf{F}$ $\mathbf{F}^n \simeq V$ $n = \dim V$.

Example 2.49.
$$\mathcal{P}_3(\mathbb{R}) \to \mathbb{R}^4$$
 $f \stackrel{F}{\longmapsto} (f(1), f(2), f(3), f(4))$
dim of $\mathcal{P}_3(\mathbb{R}), \mathbb{R}^4$ same, F is linear, injective:
if $f(1) = f(2) = f(3) = f(4) = 0$ then
 $(x-1)(x-2)(x-3)(x-4) \mid f$, but if deg $f \leq 3$, then
 $f \equiv 0 \Longrightarrow f$ isomorphism.

How do we realize the isomorphism $\mathbf{F}^n \simeq V$ in corollary 2.48?

Definition 2.50. Let V be VS $/\mathbf{F}$, dim V = n, β OB. Then $\phi_{\beta} : V \to \mathbf{F}^n$ given by $\phi_{\beta}(\mathbf{x}) = [\mathbf{x}]_{\beta}$ is standard representation of V w.r.t. β .

Theorem 2.51. ϕ_{β} is an isomorphism.

 $\implies \mathbf{F}^n \simeq V$ depends on the choice of basis (<u>not canonical</u>)

 $\begin{array}{cccc} \dim & \dim & & \\ & \parallel & \parallel & \\ n & m \end{array} \\ \textbf{Theorem 2.52.} \ Let \ V, \ W \ VS / \textbf{F} & \beta, \gamma \ OB. \ (|\gamma| = m, \ |\beta| = n). \\ & The \ map \ \Phi \ : \ \mathcal{L}(V, W) \ \rightarrow \ M_{m \times n}(\textbf{F}) \\ & given \ by \ \Phi(T) \ = \ [T]_{\beta}^{\gamma} \ is \ an \ isomorphism. \end{array}$

Corollary 2.53. dim $\mathcal{L}(V, W) = mn$.

2.5. change of coordinates.

What happens to $[\mathbf{v}]_{\beta}$ and $[T]_{\beta}^{\gamma}$ when changing β to β' ?

- **Theorem 2.54.** Let β , β' be OB of f.d. vector space V, let $Q = [I_V]^{\beta}_{\beta'}$. Then
 - (a) Q is invertible
 - (b) For any $\mathbf{v} \in V$, $[\mathbf{v}]_{\beta} = Q \cdot ([\mathbf{v}]_{\beta'})$

Proof. (a)
$$[I_V]^{\beta'}_{\beta}[I_V]^{\beta}_{\beta'} = [I_V]^{\beta'}_{\beta'} = Id$$

(b) $[\mathbf{v}]_{\beta} = [I_V(\mathbf{v})]_{\beta} = [I_V]^{\beta}_{\beta'}[\mathbf{v}]_{\beta'} = Q \cdot [\mathbf{v}]_{\beta'}$

Theorem 2.55. Under the assumption of theorem 2.54 and for $T \in \mathcal{L}(V)$, we have $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$

change of basis corresponds to conjugating the coordinate matrix

Proof. $Q[T]_{\beta'} = [I_V]_{\beta'}^{\beta}[T]_{\beta'}^{\beta'}$ = $[I_V \cdot T]_{\beta'}^{\beta} = [T]_{\beta'}^{\beta}$ $\|$ $[T]_{\beta}Q = [T]_{\beta}^{\beta}[I_V]_{\beta'}^{\beta} = [T \cdot I_V]_{\beta'}^{\beta} = [T]_{\beta'}^{\beta}$ **Definition 2.56.** (G, \cdot) is group $g^{-1}bg$ is g-conjugate of b.

 $\{ T \in \mathcal{L}(V) : T \text{ invertible } \} \text{ is a group, also } \{ M \in M_{n \times n}(\mathbf{F}) : M \text{ invertible } \}$

thus we can speak of conjugate matrix

(in book $Q^{-1}AQ$ are called <u>similar</u>; not conjugate)