3. Elementary matrix operations and systems of linear equations

goal: computing rank of matrix solving systems of linear equations

3.1. Elementary matrix operations and elementary matrices.

goal: transform a matrix by elementary operations into a simpler one of same rank

Definition 3.1. An elementary row-column operation is

- (1) interchanging two rows/columns
- (2) multiplying a row /column by a <u>non-zero</u> scalar
- (3) adding a scalar multiple of a row /column to another row /column

$$\underline{\operatorname{Ex}} A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{pmatrix} \quad \text{interchange} \quad \begin{pmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & 4 \\ 4 & 0 & 1 & 2 \end{pmatrix} \stackrel{\text{need later}}{=} A_1$$

$$\begin{pmatrix} \underline{\operatorname{Rem}} & \operatorname{If} P \to Q \text{ by elementary} \\ \text{operation, then} \\ Q \to P \text{ by el. oper.} \end{pmatrix} \quad \begin{array}{c} \text{multiply} \\ \text{type 2: second column by 3} \\ \text{add } 4 \times \\ \text{type 3: third row to first row} \\ \begin{pmatrix} 17 & 2 & 7 & 12 \\ 2 & 1 & -1 & 3 \\ 4 & 0 & 1 & 2 \end{pmatrix} = A_3$$

Definition 3.2. An $n \times n$ elementary matrix is one obtained from I_n by performing an elementary operation.

Ex.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 \nearrow $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ exch. row 1 and 2
 $\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ add $-2 \cdot$ row 3 to row 1

Theorem 3.3. Let $A \in M_{m \times n}(\mathbf{F})$ $A \longrightarrow B$ by elementary row operation. $\implies \exists$ elementary matrix E with B = EA [B = AE]. with $Id \rightarrow E$ by the same elementary operation.

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} A \qquad A_{2} = A \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A$$

Theorem 3.4. Elementary matrices are invertible, and their inverses are of the same type.

$$Proof. \begin{pmatrix} 1 \\ & \ddots \\ & & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \\ & & 1 \\ & & & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 \\ & & 1 \\ & & & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \\ & & \ddots \\ & & & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 \\ & & \ddots \\ & & & 1 \end{pmatrix}.$$

3.2. Rank of matrix and matrix inverses.

Definition 3.5. $A \in M_{m \times n}(\mathbf{F})$ $\operatorname{rk}(A) := \operatorname{rk}(L_A : \mathbf{F}^n \to \mathbf{F}^m).$

Theorem 3.6. Let V, W be VS / \mathbf{F} $T : V \to W$ linear transformation. $\beta \quad \gamma \quad OB$ Then $\operatorname{rk}(T) = \operatorname{rk}\left([T]_{\beta}^{\gamma}\right)$.

Proof. The following diagram commutes.

$$V \xrightarrow{T} W$$

$$\phi_{\beta} \downarrow \qquad \qquad \downarrow \phi_{\gamma} \qquad \phi_{\beta}(\mathbf{x}) = [\mathbf{x}]_{\beta}$$

$$\phi_{\beta}, \phi_{\gamma} \text{ isomorphism}$$

$$\mathbf{F}^{n} \xrightarrow{L_{[T]_{\beta}^{\gamma}}} \mathbf{F}^{m}$$

 $\operatorname{rk}(T) = \dim(\operatorname{Im} T) = \dim(\phi_{\gamma}(\operatorname{Im} T)) = \dim(\operatorname{Im}(L_{[T]_{\beta}^{\gamma}})) \stackrel{\text{def of rank}}{=} \operatorname{rk}\left(L_{[T]_{\beta}^{\gamma}}\right) \stackrel{\downarrow}{=} \operatorname{rk}\left([T]_{\beta}^{\gamma}\right)$

using

Theorem 3.7. Let $A \in M_{m \times n}(\mathbf{F})$ P, Q invertible. $\bigcap_{M_{m \times m}} \bigcap_{M_{n \times n}} M_{n \times n}$ Then $\operatorname{rk}(PA) = \operatorname{rk}(A) = \operatorname{rk}(AQ) = \operatorname{rk}(PAQ)$. $Proof. R(L_{AQ}) = R(L_A \circ L_Q) = L_A L_Q(\mathbf{F}^n) = L_A(L_Q(\mathbf{F}^n)) \stackrel{\downarrow}{=} L_A(\mathbf{F}^n) = R(L_A)$ $\Longrightarrow \operatorname{rk}(AQ) = \dim(R(L_{AQ})) = \dim(R(L_A)) = \operatorname{rk}(A)$. $\dim R(L_{PA}) = \dim L_P(L_A(\mathbf{F}^n)) = \dim(L_A(\mathbf{F}^n)) = \dim R(L_A) = \operatorname{rk}(A)$. $\downarrow_{P \text{ iso}}$ Corollary 3.8. Elementary row and column operations on a matrix are rankpreserving.

Theorem 3.9. The rank of a matrix is the maximal number of linearly independent columns = dim(subspace generated by columns).

Proof. Let
$$A \in M_{m \times n}(\mathbf{F})$$
. Then
 $L_A : \mathbf{F}^n \to \mathbf{F}^m \qquad L_A(\mathbf{x}) = A \cdot \mathbf{x}$
 $L_A(\mathbf{e}_i) = A \cdot \mathbf{e}_i \quad i\text{-th column of } A.$
 $L_A \text{ linear}$
So $\text{Im}(L_A) = L_A(\text{span}(\{\mathbf{e}_i\})) \stackrel{\downarrow}{=} \text{span}(\{L_A(\mathbf{e}_i)\}) = \text{span}(\text{columns of } A). \square$

Example 3.10.

$$\operatorname{rk} \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} = 2 \qquad \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} - \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Corollary 3.11. $A \in M_{m \times n}(\mathbf{F})$ is invertible $\iff \operatorname{rk}(A) = m = n$.

Theorem 3.12. (important!)

heorem 3.12. (important!)

$$A \in M_{m \times n}(\mathbf{F}).$$
 Then $A \xrightarrow[el. op. \ m-r \in \{ \begin{array}{c|c} & n-r \\ \hline & 0 \\ \hline & 0 \\ \hline & 0 \\ \hline & 0 \\ \hline & \\ I_{r,m,n} \end{array} \} . \Rightarrow \underline{r = \operatorname{rk}(A)}.$

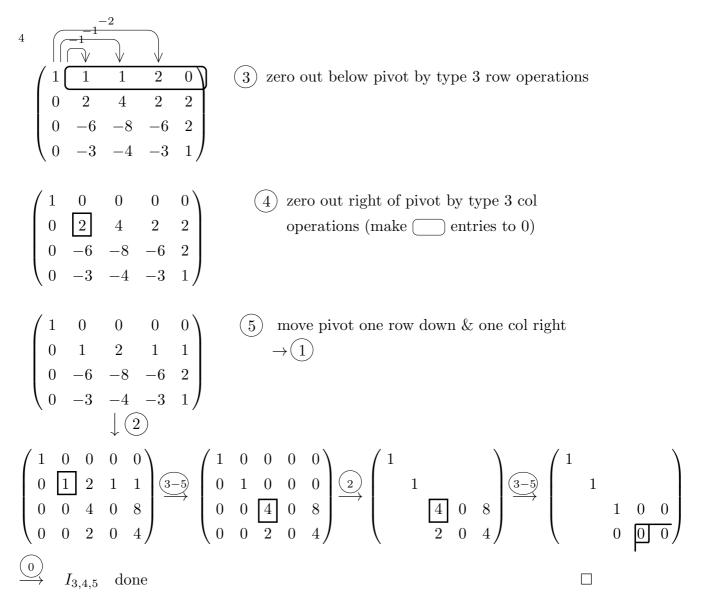
Proof. By example.

$$\begin{pmatrix} 0 & 2 & 4 & 2 & 2 \\ 4 & 4 & 4 & 8 & 0 \\ 8 & 2 & 0 & 10 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 4 & 4 & 4 & 8 & 0 \\ 0 & 2 & 4 & 2 & 2 \\ 8 & 2 & 0 & 10 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{pmatrix}$$
$$\cdot - 6 \underbrace{\left(\begin{array}{c} 1 & 1 & 1 & 2 & 0 \\ 0 & 2 & 4 & 2 & 2 \\ 8 & 2 & 0 & 10 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{array} \right)}_{6 & 3 & 2 & 9 & 1 \end{pmatrix}$$

(0) p := pivot element row := pivot element col := 1 if all elements in pivot rectangle are $0 \Rightarrow$ end $\left. \begin{array}{c} \operatorname{row}\\ \operatorname{col} \end{array} \right\} \ge p$

exchange rows and columns so that pivot $\neq 0$ (1)(type 1)

(2) divide row by pivot element so it gets = 1(type 2)



Corollary 3.13. $A \in M_{m \times n}(\mathbf{F})$ rk (A) = r then $\exists P, Q \text{ products of elementry matricies :}$ $M_{m \times m} M_{n \times n}$ $A = PI_{r,m,n}Q$.

Proof. $P^{-1} = E_1 \cdots E_k$ product of elementary matrices E_i for row operations in Q^{-1} col

(1) - (5). Then $P = E_k^{-1} \cdots E_1^{-1}$, E_i^{-1} are elementary.

Corollary 3.14. Let $A \in M_{m \times n}(\mathbf{F})$.

- (a) $\operatorname{rk}(A^T) = \operatorname{rk}(A)$
- (b) $\operatorname{rk}(A^T) = \operatorname{dim}\operatorname{span}(\operatorname{columns} of A) = \operatorname{dim}\operatorname{span}(\operatorname{rows} of A)$

Corollary 3.15. $A \in M_{n \times n}(\mathbf{F})$ is invertible $\iff A$ is a product of elementary matrices

$$\begin{array}{c} I_{n,n,n} \\ Proof. \ `` \Longrightarrow `` A \ \text{invertible} \implies \operatorname{rk}(A) = n \ \stackrel{cor. \ 3.13}{\Longrightarrow} A = P \ \stackrel{\|}{I_n} Q = PQ, \\ P, Q \ \text{products of elementary matrices} \\ \ `` \Leftarrow `` \ \text{elementary matrices are invertible} \implies \text{their products are invertible} \quad \Box \end{array}$$

Corollary 3.16. Let
$$A \in M_{m \times n}(\mathbf{F}) \xrightarrow[]{W_{m \times m}} M_{n \times n}$$

rk $(A) = r \iff \exists P$, Q invertible with $A = PI_{r,m,n}Q$.

Proof. " \Longrightarrow " By Corollary 3.13, $\exists P, Q$ products of elementary matrices. elementary matrices are invertible $\Rightarrow P, Q$ invertible

"⇐ " assume $A = PI_{r,m,n}Q$, P, Q invertible by Corollary 3.15, P, Q are products of elementary matrices and $\operatorname{rk}(EA) = \operatorname{rk}(A) = \operatorname{rk}(AE')$ when E, E' elementary so $\operatorname{rk}(A) = \operatorname{rk}(PI_{r,m,n}Q) = \operatorname{rk}(I_{r,m,n}) = r$.

Proof of Cor 3.14. (a) When P is invertible, $(P^T)^{-1} = (P^{-1})^T$,

(b) follows from (a).

Theorem 3.17. Let $T : V \to W$, $U : W \to Z$ linear transformations, A, B matrices such that AB defined.

$$T(V) \subseteq W$$

$$(*) \qquad U(T(V)) \subseteq U(W)$$

$$\parallel \qquad \downarrow$$

$$Proof. (a) rk (UT) = \dim(U(T(V))) \leq \dim(U(W)) = \dim \operatorname{Im}(U) = rk (U).$$

$$U : W \to Z. \text{ Let } \tilde{U} = U \Big|_{T(V)} : T(V) \to Z$$

$$\dim \operatorname{Im}(\tilde{U}) + \underbrace{\dim(\ker(\tilde{U}))}_{\geq 0} = \dim(T(V))$$

$$\dim \operatorname{Im}(\tilde{U}) \leq \dim(T(V))$$

$$(*) = \dim(\tilde{U}(T(V))) \leq \dim(T(V)) = \dim \operatorname{Im}(T) = rk (T)$$

$$(b) \text{ for matrices apply to } L_A, L_B.$$

The inverse of a matrix

Definition 3.18.
$$A \in M_{m \times n}$$
, $B \in M_{m \times p}$, $(A|B) = M_{m \times (n+p)}$ $(A|B)$
augmented matrix

Let $A \in M_{n \times n}(\mathbf{F})$ consider $(A|I_n)$. Assume A is invertible. Then A^{-1} is product of elementary matrices (Cor 3.15 above) $A^{-1} = E_1 \cdot \ldots \cdot E_g$. $(A|B) \longrightarrow E(A|B) = (EA|EB)$ for an elementary matrix E is an elementary row operation

Now do this for $E_g, E_{g-1}, \ldots, E_1$ on $(A|Id_n)$.

 $(A|Id_n) \longrightarrow A^{-1}(A|Id_n) = (A^{-1}A|A^{-1}Id_n) = (Id|A^{-1}).$

Corollary 3.19. A is invertible \iff there exists a sequence of row operations that turn $(A|Id_n)$ into $(Id_n|B)$. In this case $B = A^{-1}$.

Proof. " \Longrightarrow " we proved that $(A|Id_n) \to (Id_n|A^{-1})$ by row operations. Now assume it is possible.

$$(A|Id_n) \to (Id_n|X)$$
 by row operations (2)

row operations on (A|X) preserve $X^{-1}A$: "invariant" (EA|EX) (A|X) \downarrow \downarrow $(X^{-1}E^{-1})(EA) = X^{-1}A.$ Thus if (2), then $X^{-1}Id_n = Id_n^{-1}A \implies A = X^{-1}$ $\Rightarrow X = A^{-1}$

"⇐ " If $(A|Id_n) \rightarrow (Id_n|B)$ by row operations, then forget right block: $A \rightarrow Id_n$ by row operations, so $\operatorname{rk}(A) = \operatorname{rk}(Id_n) = n \Rightarrow A$ is invertible.

this means: if A is non-invertible, any attempt to turn $(A|Id_n) \xrightarrow[row]{} (Id_n|B)$ will produce a left block with a zero row/column.

How to find row operations for $(A|Id_n) \rightarrow (Id_n|B)$? (this is the first method to compute $B = A^{-1}$; we may see another)

 $\underline{\operatorname{Ex}} \quad \begin{pmatrix} 0 & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix}^{-1} = ? \quad (\text{We start as in the algorithm to determine rank.})$ $(A \mid I) = \begin{pmatrix} \boxed{0} & 2 & 4 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 2 & 4 & 2 \\ 3 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & \exp(1 - 2 + 1) \\ 1 & \exp(1 - 2 + 1$

$$\begin{array}{c} -3 \\ \hline \left(\begin{array}{c} 1 & 2 & 1 & 0 & 1/2 & 0 \\ 0 & 2 & 4 & 1 & 0 & 0 \\ 3 & 3 & 1 & 0 & 0 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & 2 & 1 & 0 & 1/2 & 0 \\ 0 & 2 & 4 & 1 & 0 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & 2 & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & \frac{2}{2} & 1 & 0 & 1/2 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & 0 & \frac{1}{2} & 2 & 0 \\ 0 & 0 & -3 & -2 & 0 & -3/2 & 1 \end{array} \right) \\ \hline \left(\begin{array}{c} 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3} & \frac{1}{8} & -\frac{5}{8} & \frac{3}{4} \\ \hline \left(\begin{array}{c} 1 & 0 & 0 & \frac{1}{3} & \frac{1}{8} & -\frac{5}{8} & \frac{3}{4} \\ 0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{2} \\ \frac{3}{3} & \frac{3}{3} & 1 \end{array} \right)^{-1} = \begin{pmatrix} \frac{1}{8} & -\frac{5}{8} & \frac{3}{4} \\ -\frac{1}{4} & \frac{3}{4} & -\frac{1}{2} \\ \frac{3}{8} & -\frac{3}{8} & \frac{1}{4} \end{pmatrix} \right)^{-1}$$

7

3.3. Systems of linear equations - Theoretical aspects.

$$a_{11}x_{1} + \dots + a_{1n}x_{n} = b_{1} \qquad a_{ij}, b_{i} \in \mathbf{F} \text{ field const}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad (3) \qquad x_{j} \in \mathbf{F} \text{ unknowns}$$

$$a_{m1}x_{1} + \dots + a_{mn}x_{n} = b_{m} \qquad \underbrace{\text{system of } m \text{ linear equations}}_{\text{with } n \text{ unknowns over } \mathbf{F}}$$

$$A = (a_{ij})_{i=1,j=1}^{m} \qquad \underbrace{\text{coefficient matrix.}}_{b_{m}} \qquad \underbrace{\text{with } n \text{ unknowns over } \mathbf{F}}_{\text{given } \mathbf{v}_{1}, \dots, \mathbf{v}_{n}, \mathbf{x}, \text{find } \lambda_{i} \text{ with } \sum \lambda_{i} \mathbf{v}_{i} = \mathbf{x}. \text{Now we do this more systematically}}$$

$$(3) \iff A\mathbf{x} = \mathbf{b}. \quad \underbrace{\text{linear equation system (LES)}}_{\text{solution } \text{set } \neq \emptyset}$$

$$(3) \begin{cases} \underbrace{\text{consistent}}_{i} : \iff \text{ solution set } \neq \emptyset \\ \underbrace{\text{inconsistent}}_{i} : \iff \text{ solution set } = \emptyset \end{cases}$$

$$\begin{array}{ll} x_1 + x_2 = 3 & 2x_1 + 3x_2 + x_3 = 1 & x_1 + x_2 = 0 \\ x_1 - x_2 = -1 & x_1 - x_2 + 2x_3 = 6 & x_1 + x_2 = 1 \\ x_1 = 1 & x_2 = 2 \\ \text{unique sol} & (x_1, x_2, x_3) = \begin{cases} (-6, 2, 7) \\ (8, -4, -3) \end{cases} \text{ sol. no sol. } \underline{\text{inconsistent}} \end{array}$$

How do we find solution?

Definition 3.20. A system $A\mathbf{x} = \mathbf{b}$ is $\begin{cases} \frac{\text{homogeneous}}{\text{nonhomogeneous}} & \text{if } \mathbf{b} = \mathbf{0} \\ \frac{\text{nonhomogeneous}}{\text{nonhomogeneous}} & \text{if } \mathbf{b} \neq \mathbf{0} \end{cases}$ **Theorem 3.21.** K sol. set of $A\mathbf{x} = \mathbf{0}$. $K = \ker(L_A) =: \ker A$. $\dim K = n - \operatorname{rk}(L_A)$

 $L_A : \mathbf{F}^n \to \mathbf{F}^m$ Proof. dim ker $(L_A) = \dim \mathbf{F}^n - \dim \operatorname{Im}(L_A)$.

fewer eqn than variables \downarrow Corollary 3.22. If m < n, then $K \neq \{0\}$.

Theorem 3.23. Let $A\mathbf{x} = \mathbf{b}$ (4) be a (consistent) LES and $A\mathbf{x} = \mathbf{0}$ (5) be the homogeneous system corresponding to (4). Then

$$K_{(4)} = \mathbf{s} + K_{(5)} = \{ \mathbf{s} + \mathbf{k} : \mathbf{k} \in K_{(5)} \},\$$

where \mathbf{s} is a concrete solution of (4).

Proof. Let
$$\mathbf{s} \in K_{(4)}$$
 $A\mathbf{s} = \mathbf{b}$
 $\mathbf{s}' \in K_{(4)}$ $A\mathbf{s}' = \mathbf{b}$ $A(\mathbf{s} - \mathbf{s}') = \mathbf{0} \Rightarrow \mathbf{s}' - \mathbf{s} \in K_{(5)}$
 $\Rightarrow \mathbf{s}' = (\underbrace{-\mathbf{s} + \mathbf{s}'}_{\in K_{(5)}}) + \mathbf{s} \quad \in \mathbf{s} + K_{(5)}.$

 $\Rightarrow K_{(4)} \subseteq \mathbf{s} + K_{(5)}.$

Now let
$$\mathbf{s}' \in \mathbf{s} + K_{(5)}$$
 $\mathbf{s}' = \mathbf{s} + \mathbf{k}$ $A\mathbf{k} = \mathbf{0}$
 $A\mathbf{s}' = A\mathbf{s} + A\mathbf{k} = A\mathbf{s} = \mathbf{b} \Rightarrow \mathbf{s}' \in K_{(4)} \Rightarrow s + K_{(5)} \subseteq K_{(4)}$. \Box

Example 3.24.

$$1 \quad \begin{array}{cccc} -x_1 + 2x_2 - x_3 &= 0 \\ x_1 + x_2 - x_3 &= 0 \\ &: \mathbb{R}^3 \to \mathbb{R}^2 \end{array} \quad \operatorname{rk}(A) = 2 \\ &: \mathbb{R}^3 \to \mathbb{R}^2 \\ \operatorname{dim}(\ker A) = \operatorname{dim}(\mathbb{R}^3) - \operatorname{rk}(A) = 1. \\ &\operatorname{check that} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \ker A \quad \ker A = \left\{ t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} : t \in \mathbb{R} \right\} \\ &\stackrel{\uparrow}{(1 \text{ how to find - later})} \\ &\stackrel{\downarrow}{(1 \text{ how to find - later})} \\ &\stackrel{\downarrow}{(1 \text{ how to find - later})} \\ &\stackrel{\downarrow}{\Rightarrow} K = \left\{ \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} : t \in \mathbb{R} \right\} \quad \begin{array}{c} \operatorname{solution} \\ \operatorname{set} \end{array}$$

One special case

Theorem 3.25. Let $A\mathbf{x} = \mathbf{b}$ be a LES with $A \in M_{n \times n}$. Then $A\mathbf{x} = \mathbf{b}$ has exactly one solution $\iff A$ is invertible In that case the solution is $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof. " \Leftarrow " Let A be invertible $\mathbf{x} = A^{-1}\mathbf{b}$ is a solution.

$$\{ \text{ sol. of } A\mathbf{x} = \mathbf{b} \} = A^{-1}\mathbf{b} + \{ \underbrace{\text{ sol of } A\mathbf{x} = \mathbf{0} }_{\text{ker } A = \{0\}} \}$$

" \Longrightarrow " Let **s** be the unique solution of A**x** = **b**.

{ solutions to
$$A\mathbf{x} = \mathbf{b}$$
 } = $\mathbf{s} + \{ \underbrace{\text{sol of } A\mathbf{x} = \mathbf{0}}_{\text{ker } A} \}^{\downarrow} \{ \mathbf{s} \}.$
 $\Rightarrow \ker(A) = \{ \mathbf{0} \}$
 $\Rightarrow A \text{ injective } \Rightarrow A : \mathbf{F}^n \Rightarrow \mathbf{F}^n \text{ bijective } \Rightarrow A \text{ invertible}$

$$\Rightarrow A \text{ injective } \Rightarrow A : \mathbf{F}^n \to \mathbf{F}^n \text{ bijective } \Rightarrow A \text{ invertible } \qquad \square$$

$$\underline{\text{Ex.}} \quad 2x_2 + 4x_3 = 3 \quad \begin{pmatrix} x_1 \\ x_2 \\ 3x_1 + 4x_2 + 2x_3 = 3 \\ 3x_1 + 3x_2 + x_3 = 1 \end{pmatrix} \quad \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = A^{-1}\mathbf{b} = \begin{pmatrix} 1/_8 & -5/_8 & 3/_4 \\ -1/_4 & 3/_4 & -1/_2 \\ 3/_8 & -3/_8 & 1/_4 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3/_4 \\ 1 \\ 1/_4 \end{pmatrix}$$

Definition 3.26. $(A | \mathbf{b})$ the augmented matrix of LES $A\mathbf{x} = \mathbf{b}$.

Theorem 3.27. $A\mathbf{x} = \mathbf{b}$ is consistent LES \iff $\operatorname{rk}(A|\mathbf{b}) = \operatorname{rk}(A)$.

Example 3.28.
$$x_1 + x_2 = 1$$

 $x_1 + x_2 = 0$
 $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
 $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $(A \mid \mathbf{b}) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.
 $\operatorname{rk}(A) = 1$
 $\operatorname{rk}(A \mid \mathbf{b}) = 2$

 \Rightarrow inconsistent

Example 3.29. Is
$$\begin{pmatrix} 3\\3\\2 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$?
 $\begin{pmatrix} 3\\3\\2 \end{pmatrix} = x_1 \begin{pmatrix} 1\\1\\1 \end{pmatrix} + x_2 \begin{pmatrix} 1\\-1\\0 \end{pmatrix}$
 $x_1 + x_2 = 3$
 $x_1 - x_2 = 3$ no solution $\Rightarrow \underline{no}$
 $x_1 = 2$

closed economic model (Application)

producer : Farmer (food), Tailor (cloth), carpenter (house) & consumer

no capital enters and exits (closed model)

	Food	Clothing	Housing)
Farmer	0.4	0.2	0.2	consumption
Tailor	0.1	0.7	0.2	Consumption
Carpenter	0.5	0.1	0.6	J
(1.0	1.0	1.0)	

e.g. Farmer consumes 40% of food and 20% of cloth.

Qu How much must F,T,C produce to attain an

equilibrium (income = spending \implies society survives)? food cloth house

Let p_1 , p_2 , p_3 be incomes of farmer/tailor/carpenter when farmer must buy 20% of housing, he spends $0.2p_3$

consumption matrix

In this example $\mathbf{p} = \begin{pmatrix} 0.25 \\ 0.35 \\ 0.4 \end{pmatrix}$ $\mathbf{p} \in \ker(A - Id) \iff$ equilibrium condition so income of farmer: taylor: carpenter = 5:7:8

<u>Rem.</u> what we want is $\mathbf{p} \ge \mathbf{0}$ (positive; all entries $p_i \ge 0$)

 $(I - A)\mathbf{x} = \mathbf{0}$ has a 1-dimensional dolsution set generated by a non-negative vector.

open model	outside demand	d_1	food		$\left(d_{1} \right)$			
		d_2	cloth	$\mathbf{d} =$	d_2			
		d_3	house		$\left(d_{3} \right)$			
win(carpenter)						enter)		
income(carpenter) = spending(carpenter) + outside demand (house)								
mcome(carp	emer) – spenam	g(car	penter)	oublue	uomo	ina (nouse)		
、 -	mer	~ `	rmer	outside	ueme	food		
fari	, -	fa	- ,	outside	deme	· · · ·		

 $\mathbf{d} + A\mathbf{p} = \mathbf{p} \Longrightarrow \mathbf{p} = (I - A)^{-1}\mathbf{d}$ (and again \mathbf{p} must be non-negative)

3.4. LES - computational aspects.

we know: to solve $A\mathbf{x} = \mathbf{b}$ we need $\begin{pmatrix} 1 & \text{one sol} \\ 2 & \text{basis of sol. set of } A\mathbf{x} = \mathbf{0} \end{pmatrix}$

we use row operations to accomplish 1 & 2 by transforming $A\mathbf{x} = \mathbf{b}$ into a simple system where we see solutions

Definition 3.30. $(A|\mathbf{b}) \iff (A'|\mathbf{b}')$ equivalent if \mathbf{x} sol. of $A\mathbf{x} = \mathbf{b} \iff \mathbf{x}$ sol. of $A'\mathbf{x} = \mathbf{b}'$.

$$A \in M_{m \times n}, \quad b \in \mathbf{F}^m$$

$$CA|C\mathbf{b}) \iff (A|\mathbf{b})$$
 (same solutions)

Corollary 3.32. Row operations on $(A|\mathbf{b})$ give equivalent system.

Qu: How to find proper row operations? Gaussian elimination by example Forward pass I part (but not down) (but not above) (0) move pivot right as long as pivot + <u>below</u> = 0 make pivot to 1 $\begin{array}{c} \cdot -3 \end{array} \left[\begin{array}{cccc} 1 & 2 & 1 & -1 & 2 \\ 1 & 1 & 1 & 0 & 3 \\ 3 & 2 & 3 & -2 & 1 \end{array} \right]$ can divide by 3 but better exch row 1 & 3 2) zero out below pivot $\begin{array}{c|c} \cdot & -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ -4 \\ 0 \\ 1 \\ -5 \end{array} \right)$ (3) move pivot 1 right & 1 down skip $\cdot_{4} \left[\begin{array}{ccc|c} 1 & 2 & 1 & -1 & 2 \\ 0 & 1 & 0 & -1 & -1 \\ 0 & -4 & 0 & 1 & -5 \end{array} \right]$ make pivot = 1 ($\cdot - 1$ second row) (0) pivot + below is zero \longrightarrow move right (1) $\left(\begin{array}{ccc|c}
1 & 2 & 1 & -1 & 2\\
0 & 1 & 0 & -1 & -1\\
0 & 0 & 0 & 1 & 3
\end{array}\right)$ we achieved now that the first non-zero entry in each row = 1& always right of first entry in the previous row

II part Backward pass

zero out above (1) using row operations of type 3 from right to left (so that in columns with (1) this is the only non-zero entry)

$$\begin{pmatrix} 1 & 2 & 1 & -1 & | & 2 \\ 0 & 1 & 0 & -1 & | & -1 \\ 0 & 0 & 0 & 1 & | & 3 \end{pmatrix} \stackrel{\checkmark}{\stackrel{\checkmark}{\longrightarrow}} \stackrel{+}{\stackrel{+}{\longrightarrow}} ^{+}$$

$$\begin{pmatrix} 1 & 2 & 1 & 0 & | & 5 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 3 \end{pmatrix} \stackrel{\backsim}{\longrightarrow} \stackrel{-2}{\stackrel{\longrightarrow}{\longrightarrow}} ^{-2}$$

$$\begin{pmatrix} 1 & 0 & 1 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 2 \\ 0 & 0 & 0 & 1 & | & 3 \end{pmatrix} \stackrel{\longleftrightarrow}{\longrightarrow} (7) \qquad \begin{aligned} x_1 & +x_3 &= & 1 \\ x_2 &= & 2 \\ x_4 &= & 3 \end{aligned}$$

Definition 3.33. A matrix is in <u>reduced row echelon form</u> (r.r.e. form, RREF) if the following conditions are satisfied:

- (a) any non-zero row lies above any zero row
- (b) first (=leftmost) non-zero entry in a row is the only non-zero entry in its column
- (c) first (=leftmost) non-zero entry in a row is = 1 and occurs in a column (above) right to leftmost entry in previous row

What is the solution of a LES in r.r.e. form?

• for every variable that <u>does not occur</u> leftmost in an equation take arbitrary value;

in our example $x_3 = t$

entries that do not occur first in a row: x_3 and x_5

$$x_3 = s$$
, $x_5 = t$
and solve for x_1, x_2, x_4

$$\begin{aligned} x_4 &= 2 + 2x_5 = 2 + 2t \\ x_2 &= 1 - x_5 + x_3 = 1 - t + s \\ x_1 &= 3 + 2x_5 - 2x_3 = 3 + 2t - 2s \end{aligned} \implies \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 + 2t - 2s \\ 1 - t + s \\ s \\ 2 + 2t \\ t \end{pmatrix} \\ = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 2 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -1 \\ 0 \\ 2 \\ 1 \end{pmatrix} \qquad \text{general solution} \\ (s, t \in \mathbb{R} \text{ arbitrary}) \end{aligned}$$

Theorem 3.35. (A|b) LES in r.r.e. form with r non-zero equations.

- (a) $\operatorname{rk}(A) = r$
- (b) the above procedure gives the general solution
 x = x₀ + sx₁ + tx₂ + ux₃ + ··· s, t, u, ··· ∈ ℝ
 where x₀ is one solution of non-homogeneous system &
 sx₁ + tx₂ + ··· is the general solution of corresponding homogeneous system
- \underline{if} (A|b) consistent
- (c) (A|b) is inconsistent $\iff \exists$ zero row in A with non-zero element in **b**;

$$\left(\begin{array}{ccccccccc} \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \end{array}\right)$$

<u>Rem</u> r.r.e. form is unique. (Why?)

An interpretation of r.r.e.f.

Let A be a matrix and B be the r.r.e.f. of A

Let (1) be the leftmost non-zero entries in each row of B.

$$# \widehat{1} = \operatorname{rk} B = \# \text{ non-zero rows in } B$$

r.r.e.f. \Longrightarrow column of $\#k$ $\widehat{1}$ are $\begin{pmatrix} 0\\0\\1\\0\\0\\0 \end{pmatrix} \leftarrow k\text{-th row} = \mathbf{e}_k$.
 j_k

Let A be invertible $\mathbf{x} = A^{-1}\mathbf{b}$ is a solution.

$$\{ \text{ sol. of } A\mathbf{x} = \mathbf{b} \} = A^{-1}\mathbf{b} + \{ \underbrace{\text{ sol of } A\mathbf{x} = \mathbf{0}}_{\text{ker } A = \{0\}} \}$$
$$\underbrace{ \{ A^{-1}\mathbf{b} \}}_{A \text{ invertible} \Rightarrow \text{ injective}}$$

Claim 2: when
$$\mathbf{b}_k = \begin{pmatrix} d_1 \\ \vdots \\ d_r \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 (8) is te k-th column of B then
 $\mathbf{a}_k = \sum_{i=1}^r d_i \mathbf{a}_{j_i}$ is the k-th column of A
i.e., all other $\neq j_i$ -th columns
because $\mathbf{b}_k = \sum_{i=1}^r d_i \mathbf{e}_i$, so
 $\mathbf{a}_k = M^{-1}\mathbf{b}_k \stackrel{(8)}{=} M^{-1} \left(\sum_{i=1}^r d_i \mathbf{e}_i\right) \stackrel{\mathbf{b}_{j_i} = \mathbf{e}_i}{=} \sum_{i=1}^r d_i M^{-1} \mathbf{b}_{j_i} = \sum_{i=1}^r d_i \mathbf{a}_{j_i}$
 \Rightarrow all columns of A are linear combinations of \mathbf{a}_{i_j}

 \implies { $\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}$ } are a basis of the image of A

Theorem 3.36. Let $A \in M_{m \times n}$ rk (A) = r (r > 0) and let. Then B be r.r.e.f. of A

- (a) The number of non-zero rows in B is r.
- (b) $\forall i = 1, 2, \dots, r \exists a \ column \ \mathbf{b}_{j_i} \ of B \ s.t. \ \mathbf{b}_{j_i} = \mathbf{e}_i$
- (c) $\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_r}$ (columns of A numbered j_1, \ldots, j_r) are linearly independent
- (d) For each k = 1, 2, ..., n: column k of B is $\mathbf{b}_k = d_1 \mathbf{e}_1 + ... + d_r \mathbf{e}_r \iff \mathbf{a}_k = d_1 \mathbf{a}_{j_1} + ... + d_r \mathbf{a}_{j_r}$

Corollary 3.37. r.r.e.f of A is unique.

Proof. go from k = 1, k = 2, ..., k = nLet l be the number of linearly independent columns 1, ..., k - 1. k-th column \mathbf{a}_k of A is not lin. combination of previous columns $\iff k$ -th column of B is not linear combination of previous columns $\stackrel{B \text{ r.r.e.f.}}{\iff} \mathbf{b}_k = \mathbf{e}_{l+1}$

if so, 1 + l is uniquely determined: it is the number in order of such k if not, $\mathbf{a}_{j_1}, \ldots, \mathbf{a}_{j_l}$ is linearly independent

so \exists uniquely determined d_i with $\sum_{m=1}^l d_m \mathbf{a}_{j_m} = \mathbf{a}_k$

then
$$\sum_{m=1}^{l} d_m \mathbf{b}_{j_m} = \mathbf{b}_k = \begin{pmatrix} d_2 \\ d_l \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $\left(d_{1} \right)$

Example 3.38.

$$A = \begin{pmatrix} 2 & 4 & 6 & 2 & 4 \\ 1 & 2 & 3 & 1 & 1 \\ 2 & 4 & 8 & 0 & 0 \\ 3 & 6 & 7 & 5 & 9 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathbf{b}_1, \mathbf{b}_3, \mathbf{b}_5$ linearly independent, $\mathbf{b}_2 = 2\mathbf{b}_1, \mathbf{b}_4 = 4\mathbf{b}_1 - \mathbf{b}_3$ $\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5$ linearly independent, $\mathbf{a}_2 = 2\mathbf{a}_1, \mathbf{a}_4 = 4\mathbf{a}_1 - \mathbf{a}_3$ $\{\mathbf{a}_1, \mathbf{a}_3, \mathbf{a}_5\}$ basis of span $\{\mathbf{a}_1, \dots, \mathbf{a}_5\}$

$$\underbrace{\begin{array}{c} & S \\ \hline & & \\ 1 \\ Question: \text{ find a basis of span} \end{array}}_{\text{which is a subset of } S: \text{ answer } \left\{ *1, *2, *3 \right\}. \end{array}}^{*1} \underbrace{\begin{array}{c} *1 \\ *2 \\ 1 \\ 2 \\ 3 \\ \end{array}}, \begin{pmatrix} 4 \\ 2 \\ 4 \\ 6 \\ \end{array}, \begin{pmatrix} 6 \\ 3 \\ 8 \\ 7 \\ \end{array}, \begin{pmatrix} 2 \\ 1 \\ 0 \\ 5 \\ \end{array}, \begin{pmatrix} 4 \\ 1 \\ 0 \\ 9 \\ \end{array} \right) \right\}}_{\text{which is a subset of } S: \text{ answer } \left\{ *1, *2, *3 \right\}.$$

Solution: – write the vectors in S as columns of a matrix A

- find reduced r.e.f. B of A
- choose the columns of A which correspond to columns of B with 1

(2) <u>Question</u>: Complete a linearly independent set of vectors $S \subseteq V$ to a basis of V.

- write S as columns of a matrix A
- append to A on the right as columns some generating set H of A, A' = (A|H)
- find reduced r.e.f. B of A^\prime
- choose the columns of A' which correspond to columns with 1 of B: $S \cup \{...\}$ is a basis

Example 3.39.
$$V = \{ (x_1, \ldots, x_5) \in \mathbb{R}^5 : x_1 + 7x_2 + 5x_3 - 4x_4 + 2x_5 = 0 \}$$

 $S = \{ (-2, 0, 0, -1, -1), (1, 1, -2, -1, -1), (-5, 1, 0, 1, 1) \}$
can check using (1) that S is linearly independent
i.e. if we write vectors in S into a matrix A

then every column in r.r.e.f. B of A has a(1):

$$\begin{pmatrix} -2 & 1 & -5 \\ 0 & 1 & 1 \\ 0 & -2 & 0 \\ -1 & -1 & 1 \\ -1 & -1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A \qquad \qquad B$$

find a generating set *H* of $V = \{x_1 = -7x_2 - 5x_3 + 4x_4 - 2x_5\}$

<u>answer</u>: basis of $V \supseteq S$ is

 $S \cup \{(4,0,0,1,0)\}$

summary: we can determine rank

determine inverse

solve a LES

complete a linearly independent set to a basis choose a basis from a generating set