5. Diagonalization

plan given $T: V \rightarrow V$
Does there exist a basis β of V such that $[T]_{\beta}$ is diagonal if so, how can it be found
\longrightarrow eigenvalues (EV), eigenvectors, eigenspaces

5.1. Eigenvalues and eigenvectors.

$$
T: V \rightarrow W \quad \beta \text { OB of } V, \gamma \mathrm{OB} \text { of } W \quad \operatorname{dim} V=m
$$

recall $\quad[T]_{\beta}^{\gamma} i$-th column is $\left[T\left(\mathbf{v}_{i}\right)\right]_{\gamma} \quad \beta=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right)$

$$
Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta} \text { change-of- }
$$

$T: V \rightarrow V \quad[T]_{\beta^{\prime}}=\left[I_{V}\right]_{\beta}^{\beta^{\prime}}[T]_{\beta}\left[I_{V}\right]_{\beta^{\prime}}^{\beta}=Q^{-1}[T]_{\beta} Q \quad$ coordinate matrix

Definition 5.1. $T: V \rightarrow V \quad \operatorname{dim} V=n<\infty \quad$ linear map
T is diagonalizable if $\exists \mathrm{OB} \beta$ of V with $[T]_{\beta}$ a diagonal matrix.

A square matrix A is diagonalizable if L_{A} is. β is called diagonalizing basis.

Now if $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is a diagonalizing basis with $[T]_{\beta}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then $T\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i}, \quad$ so $\quad T\left(\sum a_{i} \mathbf{v}_{i}\right)=\sum a_{i} \lambda_{i} \mathbf{v}_{i}$ and $\quad \mathbf{v}_{i} \neq \mathbf{0}$.

Definition 5.2. $T: V \rightarrow V$ linear operator. Assume $\mathbf{v} \neq \mathbf{0}$ and
$T \mathbf{v}=\lambda \mathbf{v}$. Then we call \mathbf{v} eigenvector
and λ eigenvalue (EV). We say that an eigenvector corresponds to an eigenvalue, and an eigenvalue corresponds to the eigenvector.

Theorem 5.3. $T: V \rightarrow V$ is diagonalizable $\Longleftrightarrow \exists$ basis of V of eigenvectors of T.

Example 5.4. $A=\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right), \quad \mathbf{v}_{1}=\binom{1}{-1} \quad \mathbf{v}_{2}=\binom{3}{4}$
$A \mathbf{v}_{1}=\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right) \cdot\binom{1}{-1}=\binom{-2}{2}=-2 \mathbf{v}_{1}, \quad A \mathbf{v}_{2}=\left(\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right) \cdot\binom{3}{4}=\binom{15}{20}=5 \mathbf{v}_{2}$,
so if $\beta=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then $[A]_{\beta}\left(:=\left[L_{A}\right]_{\beta}\right)=\left(\begin{array}{cc}-2 & 0 \\ 0 & 5\end{array}\right)$

Example 5.5. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotation by 90°

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

parallel
 \|

geomtetrically: no vector goes to a multiple one by 90° rotation thus T has no eigenvalues / eigenvectors \Longrightarrow not diagonalizable

Example 5.6. $V=C^{\infty}(\mathbb{R}) \quad C^{\infty}$-functions on $\mathbb{R} \rightarrow \mathbb{R}$.
$T(f)=f^{\prime} \quad$ what are $E V$ of T ?
$f^{\prime}=\lambda f \Longrightarrow f=c e^{\lambda t} \neq 0$
\Longrightarrow all $\lambda \in \mathbb{R}$ are eigenvalues of T (f are eigenfunctions)
(for $\lambda=0$ the eigenfunctions are the constant functions)
this cannot happen for operators on f.d. spaces

Theorem 5.7. $\lambda E V$ of $A \in M_{n \times n}(\mathbf{F})$
$\Longleftrightarrow \operatorname{det}\left(A-\lambda I d_{n}\right)=0$

Proof. $A \mathbf{v}=\lambda \mathbf{v} \Longleftrightarrow \exists \mathbf{v} \neq 0:\left(A-\lambda I d_{n}\right) \mathbf{v}=0$
$\Longleftrightarrow A-\lambda I d_{n}$ is not invertible
$\Longleftrightarrow \operatorname{det}\left(A-\lambda I d_{n}\right)=0$

Definition 5.8. Let $A \in M_{n \times n}(\mathbf{F}) . \quad \chi_{A}(t):=\operatorname{det}\left(A-t I d_{n}\right)$ is called characteristic polynomial of A

Example 5.9. $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$.

$$
\begin{gathered}
\operatorname{det}\left(A-t I d_{2}\right)=\left|\begin{array}{cc}
1-t & 1 \\
4 & 1-t
\end{array}\right|=(1-t)^{2}-4 \\
=(t-3)(t+1) \\
\Longrightarrow \text { eigenvalues of } A \text { are }+3,-1
\end{gathered}
$$

Definition 5.10. Let $T: V \rightarrow V$. Let β be OB of V. $\chi_{T}(t)=\operatorname{det}\left([T]_{\beta}-t I d_{n}\right)$ is called characteristic polynomial of T

Theorem 5.11. The definition of χ_{T} does not depend on the choice of basis β.

Proof. Let β, β^{\prime} be OB of V. Then we know

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q \quad Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}
$$

Then

$$
[T]_{\beta^{\prime}}-t I d_{n}=\left[T-t I d_{V}\right]_{\beta^{\prime}}=Q^{-1}\left[T-t I d_{V}\right]_{\beta} Q=Q^{-1}\left([T]_{\beta}-t I d_{n}\right) Q
$$

Thus

$$
\begin{aligned}
\operatorname{det}\left([T]_{\beta^{\prime}}-t I d_{n}\right) & =\stackrel{\stackrel{\sim}{\mathbf{F}}}{\stackrel{\mathrm{U}}{\mathrm{~F}}} \underset{\stackrel{\mathrm{~F}}{\mathrm{U}}}{\operatorname{det}\left(Q^{-1}\right) \cdot \operatorname{det}\left([T]_{\beta}-t I d_{n}\right) \cdot \operatorname{det}(Q)} \\
& =\underbrace{\operatorname{det}\left(Q^{-1}\right) \cdot \operatorname{det}(Q)}_{\operatorname{det}\left(Q^{-1} \cdot Q\right)=\operatorname{det}\left(I d_{n}\right)=1} \cdot \operatorname{det}\left([T]_{\beta}-t I d_{n}\right)
\end{aligned}
$$

Example 5.12. $V=\mathcal{P}_{2}(\mathbb{R}) \quad T: V \rightarrow V \quad T(f)=f+(x+1) f^{\prime}$
$\beta \operatorname{SOB}\left\{1, x, x^{2}\right\}$
Write $[.]^{\beta}=\left([.]_{\beta}\right)^{-1}$.

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right) \begin{array}{cc}
A=[T]_{\beta} & \begin{aligned}
& T(1)= \\
& T(x)= \\
& T\left(x^{2}\right)= \\
& \\
& \\
& 2 x\left(x+1=[(1,0,0)]^{\beta}\right. \\
& 3 x^{2}+2 x=[(1,2,0)]^{\beta}
\end{aligned} \\
\operatorname{det}\left(A-t I d_{3}\right)=x^{2}=
\end{array} \\
&=\operatorname{det}\left(\begin{array}{ccc}
1-t, 2,3)]^{\beta} \\
0 & 2-t & 2 \\
0 & 0 & 3-t
\end{array}\right) \\
&=(1-t)(2-t)(3-t)
\end{aligned}
$$

$$
\lambda \mathrm{EV} \quad \Longleftrightarrow \quad \lambda=1,2,3
$$

Theorem 5.13. $A \in M_{n \times n}(\mathbf{F})$
$\chi_{A}(t)=\operatorname{det}\left(A-t I d_{n}\right)$ is a polynomial in t of degree n with leading coefficient $(-1)^{n}$:

$$
\begin{aligned}
{\left[\chi_{A}(t)\right]_{n}=(-1)^{n} \quad\left[\chi_{A}(t)\right]_{n-1} } & =(-1)^{n-1} \operatorname{tr} A \\
& \ldots \quad\left[\chi_{A}(t)\right]_{0}=\operatorname{det}(A) .
\end{aligned}
$$

Example 5.14. (How to find eigenvectors)

$$
B_{2}=A-\lambda_{2} I=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)-\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right)
$$

$\mathbf{x}=\binom{x_{1}}{x_{2}}$ eigenvector to $\lambda_{2}=-1 \Longleftrightarrow \begin{array}{r}4 x_{1}+2 x_{2}=0 \\ 2 x_{1}+x_{2}=\end{array}=0 \quad \mathbf{x}=t\binom{1}{-2} \quad(t \in \mathbb{R} \backslash\{0\})$
eigenvector of linear operators

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \quad \lambda_{1}=3 \quad \lambda_{2}=-1 \quad \text { (calculated before) } \\
& B_{1}=A-\lambda_{1} I=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)-\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right)=\left(\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right) \\
& \left.\mathbf{x}=\binom{x_{1}}{x_{2}} \text { eigenvector to } \lambda_{1}=3 \Longleftrightarrow \begin{array}{r}
-2 x_{1}+x_{2}=0 \\
4 x_{1}-2 x_{2}=
\end{array}\right] \quad \Longrightarrow \mathbf{x}=t\binom{1}{2} \quad(t \in \mathbb{R} \backslash\{0\})
\end{aligned}
$$

$V \xrightarrow{T\left(=L_{A}\right)} V$

$$
T: V \rightarrow V \quad \beta \text { OB of } V \quad A=[T]_{\beta}
$$

$$
\phi_{\beta}=[.]_{\beta}
$$

Lemma 5.15. \mathbf{v} is an eigenvector of T with $E V \lambda \Longleftrightarrow$ $[\mathbf{v}]_{\beta}$ is eigenvector of A with $E V \lambda$.
diag
commutes
Proof. " $\Longrightarrow " A[\mathbf{v}]_{\beta}=A \phi_{\beta}(\mathbf{v}) \stackrel{\downarrow}{=} \phi_{\beta}(T(\mathbf{v}))=\phi_{\beta}(\lambda \mathbf{v})=\lambda \phi_{\beta}(\mathbf{v})=\lambda[\mathbf{v}]_{\beta}$.
since ϕ_{β} is isomorphism, $\mathbf{v} \neq \mathbf{0} \Rightarrow[\mathbf{v}]_{\beta}=\phi_{\beta}(\mathbf{v}) \neq \mathbf{0}$
" " similar
so, to find eigenvectors of T, we can work in any $\mathrm{OB} \beta$.
Write $[.]^{\beta}=\left(\phi_{\beta}\right)^{-1}$. Thus $\left[\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)\right]^{\beta}=\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}$ for $\beta=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.

Example 5.16. $V=\mathcal{P}_{2}(\mathbb{R}) \quad T(f)=f+(x+1) f^{\prime} \quad \beta=\left\{1, x, x^{2}\right\}$

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right) \quad \lambda=1,2,3 \text { (calculated before) }
$$

$\underline{\text { Let } \lambda_{1}=1} \quad B_{1}=A-\lambda_{1} I d=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2\end{array}\right) \quad \operatorname{ker} B_{1}=\left\{t\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$
EVec of T for EV $\lambda_{1}=1$ is $\left[t \cdot\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]^{\beta}=t \in \mathbb{R}$.
check: $f=t \quad T(f)=f+(x+1) f^{\prime}=t+(x+1) t^{\prime}=t=f$
Let $\lambda_{2}=2 \quad B_{2}=A-\lambda_{2} I d=\left(\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1\end{array}\right) \quad$ ker $B_{2}=\left\{t\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$
EVec of T for EV $\lambda_{2}=2$ is $\left[t \cdot\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right]^{\beta}=t+t x \quad(t \in \mathbb{R})$.
check: $f=t+t x \quad T(f)=f+(x+1) f^{\prime}=(t+t x)+(x+1)(t+t x)^{\prime}$

$$
=t+t x+(x+1) t=2(t+t x)=2 f
$$

$\lambda_{3}=3 \quad B_{3}=\left(\begin{array}{ccc}-2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0\end{array}\right) \quad \operatorname{ker} B_{3}=\left\{t \cdot\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) t \in \mathbb{R}\right\}$

$$
\text { r.r.e.f. }=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

EVec $f=t\left(1+2 x+x^{2}\right)$
check:

$$
\begin{aligned}
& T(f)=T\left(t\left(1+2 x+x^{2}\right)\right)=t\left(1+2 x+x^{2}\right)+t(1+x)(2 x+2) \\
& t(1+x)^{2}+t(x+1)(2 x+2)=3 t(1+x)^{2}=3 f
\end{aligned}
$$

5.2. Diagonalizability.

- test whether operator can be diagonalized

$$
T: V \rightarrow V \quad \exists \beta \text { with }[T]_{\beta}
$$

- eigenbasis to find

Theorem 5.17. $T: V \rightarrow V \lambda_{1}, \ldots, \lambda_{k}$ distinct eigenvalues with eigenvectors \mathbf{v}_{i}. Then $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ linearly independent.

Proof. Induction over k. When $k=1, \quad\left\{\mathbf{v}_{1}\right\}$ linearly independent $\Longleftrightarrow \mathbf{v}_{1} \neq \mathbf{0}$. Now induction step

Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k-1}\right\}$ linearly independent.

$$
\begin{equation*}
\mathbf{0}=\sum_{i=1}^{k} a_{i} \mathbf{v}_{i} \tag{1}
\end{equation*}
$$

$\mathbf{0}=\left(T-\lambda_{k} I\right) \mathbf{0}=\left(T-\lambda_{k} I\right)\left(\sum_{i=1}^{k} a_{i} \mathbf{v}_{i}\right)=\sum_{i=1}^{k} a_{i}\left(\lambda_{i}-\lambda_{k}\right) \mathbf{v}_{i}=\sum_{i=1}^{k-1} \downarrow$
Now by induction assumption (1), we have $a_{i}\left(\lambda_{i}-\lambda_{k}\right)=0 \quad i=1, \ldots, k-1$ but $\lambda_{i} \neq \lambda_{k}$ by assumption $\Longrightarrow a_{i}=0 \quad i=1, \ldots, k-1$

$$
\begin{aligned}
& \stackrel{(2)}{\Longrightarrow} \mathbf{0}=a_{k} \mathbf{v}_{k} \quad \xlongequal[\mathbf{v}_{k} \neq \mathbf{0}]{\Longrightarrow} a_{k}=0 \\
& \Longrightarrow \text { all } a_{i}=0 \quad i=1, \ldots, k \Rightarrow \quad \mathbf{v}_{i} \quad i=1, \ldots, k \quad \text { linear independent. }
\end{aligned}
$$

Corollary 5.18. If $T: V \rightarrow V \quad \operatorname{dim} V=n \quad$ If T has n distinct $E V$, then T diagonalizes.

Proof. $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ eigenvectors to λ_{i} are linearly independent \Rightarrow (eigen)basis.

Remark 5.19. Converse is not true: $I d$ has only one EV, but diagonalizable.

Definition 5.20. A polynomial $f(t) \in \mathcal{P}(\mathbf{F})$ splits over \mathbf{F} if $\exists c, a_{1}, \ldots, a_{n} \in \mathbf{F}, c \neq 0$ (not necessarily distinct)
with

$$
f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \cdot \ldots \cdot\left(t-a_{n}\right)
$$

The algebraic multiplicity of a_{i} in f is $\mu_{a_{i}}(f):=\#\left\{j: a_{j}=a_{i}\right\}$.
Note that a_{i} are the roots of $f\left(f\left(a_{i}\right)=0\right)$ and using factorization, one can see every polynomial splits \Longleftrightarrow every (non-const.) polynomial has a root

Definition 5.21. \mathbf{F} is algebraically closed if every polynomial in $\mathcal{P}(\mathbf{F})$ splits in \mathbf{F}.
Example 5.22. $f(t)=t^{2}+1 \in \mathcal{P}(\mathbb{R})$ does not split in $\mathbb{R} \Rightarrow \mathbb{R}$ is not algebraically closed

Theorem 5.23. (Fundamental Theorem of Algebra) \mathbb{C} is algebraically closed.
Theorem 5.24. The characteristic polynomial of any diagonalizable operator (on a f.d. VS) splits.

Proof. $T: V \rightarrow V$
$\chi_{T}(t)=\chi_{[T]_{\beta}}(t) \quad \forall \beta$ OB of V
so choose eigenbasis. Then $[T]_{\beta}$ is diagonal $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$
so $\chi_{[T]_{\beta}}(t)=(-1)^{n} \prod_{i=1}^{n}\left(t-\lambda_{i}\right) \Rightarrow \chi_{T}$ splits.
Example 5.25.

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \chi_{A}(t)=\chi_{I d}(t)=(t-1)^{2} \quad \text { splits, } \lambda=1 \text { only EV }
$$

If A is diagonalizable, then $[A]_{\beta}\left(=\left[L_{A}\right]_{\beta}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \Rightarrow A=I d$ 文.
So χ_{A} splits, but A does not diagonalize.
Definition 5.26. $T: V \rightarrow V$ linear operator
$E_{\lambda}=\operatorname{ker}(T-\lambda I d) \quad \lambda \mathrm{EV}$ is called eigenspace (of T for $\mathrm{EV} \lambda$)

Theorem 5.27. $\operatorname{dim} E_{\lambda} \leq \mu_{\lambda}\left(\chi_{T}(t)\right)$ algebraic mult. of λ in $\chi_{T}(t)$.
not always equal:
Example 5.28. $\quad A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad \chi_{A}(t)=(t-1)^{2} \quad \lambda=1$ has algebraic multiplicity $\mu_{\lambda}=2$

$$
\begin{aligned}
& \operatorname{dim} E_{\lambda}=? \quad\binom{1}{0} \in E_{1} \Rightarrow \operatorname{dim} \geq 1 . \\
& E_{\lambda} \subseteq \mathbb{R}^{2} \quad \operatorname{dim} \leq 2 . \text { If } \operatorname{dim} E_{\lambda}=2 \Rightarrow E_{\lambda}=\mathbb{R}^{2} \\
& \left.L_{A}\right|_{E_{\lambda}}=\left.\lambda I d\right|_{E_{\lambda}} \text { so if } E_{\lambda}=\mathbb{R}^{2}, \text { then } \\
& L_{A}=\left.L_{A}\right|_{\mathbb{R}^{2}}=\left.I d\right|_{\mathbb{R}^{2}}=I d \text { 亿. So } \operatorname{dim} E_{\lambda}=1<2=\mu_{\lambda} .
\end{aligned}
$$

Theorem 5.29. Assume $T: V \rightarrow V \quad \lambda_{1}, \ldots, \lambda_{k}$ distinct $E V$ β_{i} basis of $E_{\lambda_{i}} \forall E V \lambda_{i}$ of T.
Then $\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ (3) is linearly independent.
Proof. Similar to Theorem 5.17.
Theorem 5.30. $T: V \rightarrow V$ diagonalizable $\Longleftrightarrow \forall \lambda_{i} E V$ of $T, i=1, \ldots, k$ $\operatorname{dim} E_{\lambda_{i}}=\mu_{\lambda_{i}}\left(\chi_{T}\right) \underline{\text { and }}$ χ_{T} splits (or $\sum_{i=1}^{k} \operatorname{dim} E_{\lambda_{i}}=n$) Then (3) is an eigenbasis.

Proof. Theorem 5.27 + Theorem 5.29.
\Longrightarrow Test for diagonalization

- determine characteristic polynomial of T find zeros \Rightarrow eigenvalues $\lambda_{i}+$ $\underline{\text { multiplicities }} \mu_{\lambda_{i}}$
- for each distinct eigenvalue λ_{i}, solve $\left(T-\lambda_{i} I\right) \mathbf{x}=0$
determine $m_{i}=\operatorname{dim} E_{\lambda_{i}}=n-\operatorname{rk}\left(T-\lambda_{i} I\right)$
- if for all $i, \quad m_{i}=\mu_{\lambda_{i}}(\chi)$, then T diagonalizable, else not

Example 5.31. $\left(\begin{array}{c}f_{1}^{\prime} \\ f_{2}^{\prime} \\ f_{3}^{\prime}\end{array}\right)=A\left(\begin{array}{c}f_{1} \\ f_{2} \\ f_{3}\end{array}\right) \quad f=\left(\begin{array}{c}f_{1} \\ f_{2} \\ f_{3}\end{array}\right) \quad f^{\prime}=\left(\begin{array}{c}f_{1}^{\prime} \\ f_{2}^{\prime} \\ f_{3}^{\prime}\end{array}\right) \quad f_{i}: \mathbb{R} \rightarrow \mathbb{R}$
If A diagonalizes, then $\exists Q: Q^{-1} A Q=D \quad D=\operatorname{diag}\left(\lambda_{i}\right)$

$$
\begin{aligned}
Q^{-1} f^{\prime}=D \cdot Q^{-1} f & Q^{-1} \cdot f(t)=\left(c_{i} e^{\lambda_{i} t}\right)_{i=1}^{3} \quad\left(c_{i} \in \mathbb{R}\right) \\
\Longrightarrow & \text { solution } f(t)=Q \cdot\left(c_{i} e^{\lambda_{i} t}\right)_{i=1}^{3}
\end{aligned}
$$

(5.3 skip)

5.4. Invariant subspaces and Cayley-Hamilton theorem.

Definition 5.32. $T: V \rightarrow V \quad W \subset V$ is $(T$-)invariant subspace if

$$
T(W) \subseteq W \text {, i.e., } T(\mathbf{w}) \in \overline{W \forall \mathbf{w} \in W}
$$

T arbitrary
Example 5.33. $\{0\}, V, \operatorname{ker} T, \operatorname{Im} T, E_{\lambda}$ for any eigenvalue λ of T.
Example 5.34. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad T(a, b, c)=(a+b, b+c, 0)$
$W=\{(x, y, 0): x, y \in \mathbb{R}\} T$-invariant
Definition 5.35. $T: V \rightarrow V \quad \mathbf{x} \in V$

> only finitely
$\Sigma_{T}(\mathbf{x}):=\operatorname{span}\left\{\mathbf{x}, T(\mathbf{x}), T^{2}(\mathbf{x}), \ldots\right\} \hookleftarrow \begin{aligned} & \text { many are } \\ & \text { linearly independent }\end{aligned}$
T-cyclic subspace of V generated by \mathbf{x}
Exercise: (a) $W=\Sigma_{T}(\mathbf{x})$ is T invariant, (b) if $\mathbf{x} \in W^{\prime}$ and W^{\prime} is T-invariant, then $W^{\prime} \supset W$ " W is the smallest T-invariant subspace $\ni \mathbf{x}$ "

Example 5.36. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad T(a, b, c)=(-b+c, a+c, 3 c)$

$$
\begin{aligned}
\mathbf{x} & =(1,0,0)=\mathbf{e}_{1} \\
T\left(\mathbf{e}_{1}\right) & =(0,1,0)=\mathbf{e}_{2} \\
T^{2}\left(\mathbf{e}_{1}\right) & =T\left(\mathbf{e}_{2}\right)=(-1,0,0)=-\mathbf{e}_{1} \\
{\left[T^{3}\left(\mathbf{e}_{1}\right)\right.} & \left.=-\mathbf{e}_{2} \quad T^{4}\left(\mathbf{e}_{1}\right)=\mathbf{e}_{1}\right] \quad \Longrightarrow \quad \begin{aligned}
& =\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \\
& =\{(x, y, 0): x, y \in \mathbb{R}\}
\end{aligned}
\end{aligned}
$$

Example 5.37. $T: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}) \quad T(f)=f^{\prime}$

$$
\mathbf{x}=z^{2} \quad \Sigma_{T}(\mathbf{x})=\operatorname{span}\left\{z^{2}, 2 z, 2\right\}=\mathcal{P}_{2}(\mathbb{R}) \subseteq \mathcal{P}(\mathbb{R})
$$

Theorem 5.38. $T: V \rightarrow V \quad W$ invariant subspace. Then

$$
\chi_{\left.T\right|_{W}} \mid \chi_{T}
$$

Proof. γ OB of $W \quad \beta \supseteq \gamma$ OB of V

$$
\begin{aligned}
{[T]_{\beta}=\left(\begin{array}{c|c}
B_{1} & B_{2} \\
\hline 0 & B_{3}
\end{array}\right) \quad \chi_{T}(t) } & =\left|\begin{array}{c|c}
B_{1}-t I d & B_{2} \\
\hline 0 & B_{3}-t I d
\end{array}\right| \\
& =\underbrace{\operatorname{det}\left(B_{1}-t I d\right)}_{\chi_{T \mid W}(t)} \cdot \underbrace{\operatorname{det}\left(B_{3}-t I d\right)}_{\in \mathbf{F}[t]}
\end{aligned}
$$

Theorem 5.39. Let $T: V \rightarrow V \quad W=\Sigma_{T}(\mathbf{v}), k=\operatorname{dim} W$. Then
(a) $\left\{\mathbf{v}, T(\mathbf{v}), \ldots, T^{k-1}(\mathbf{v})\right\}$ is a basis of W
(b) If $a_{0} \mathbf{v}+a_{1} T(\mathbf{v})+\cdots+a_{k-1} T^{k-1}(\mathbf{v})+T^{k}(\mathbf{v})=\mathbf{0}$,

$$
\text { then } \chi_{\left.T\right|_{W}}(t)=(-1)^{k}\left(a_{0}+a_{1} t+\cdots+a_{k-1} t^{k-1}+t^{k}\right) \text {. }
$$

Proof. (a) Let j be largest positive integer such that $\beta=\left\{\mathbf{v}, T(\mathbf{v}), \ldots, T^{j-1}(\mathbf{v})\right\}$ is linearly independent.

$$
\begin{aligned}
& \Longrightarrow T^{j}(\mathbf{v}) \in \operatorname{span} \beta \Longrightarrow \operatorname{span} \beta \text { is } T \text {-invariant } \\
& \underset{\text { exercise }}{\Longrightarrow} \Sigma_{T}(\mathbf{v}) \subseteq \operatorname{span} \beta \underset{\substack{\uparrow} \Sigma_{T}(\mathbf{v}) \Longrightarrow}{ } \quad \text { "=" } \\
& \quad \beta \text { is basis of } \Sigma_{T}(\mathbf{v}) \quad|\beta|=j=\operatorname{dim} \Sigma_{T}(\mathbf{v}) \stackrel{\downarrow}{=} k \\
& \Longrightarrow j=k \Longrightarrow(\mathrm{a})
\end{aligned}
$$

Now (b). Work in OB β

$$
\left[\left.T\right|_{W}\right]_{\beta}=\left(\begin{array}{cccc}
0 & \cdots & 0 & -a_{0} \\
1 & & 0 & -a_{1} \\
& 1 & \ddots & \\
0 & & 1 & -a_{k-1}
\end{array}\right) \quad \chi_{\left.T\right|_{W}}(t)=(-1)^{k}(\ldots)
$$

Example 5.40. (continue example 5.36)

$$
T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \quad T(a, b, c)=(-b+c, a+c, 3 c)
$$

$$
\begin{aligned}
W=\Sigma_{T}\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{1}\right)=\mathbf{e}_{2} \quad T^{2}\left(\mathbf{e}_{1}\right)=-\mathbf{e}_{1} \\
\Longrightarrow & k=2 \\
\Longrightarrow & 1
\end{aligned}
$$

check using determinant
$\stackrel{T h 5.39}{\Longrightarrow} \chi_{\left.T\right|_{W}}=(-1)^{2}\left(1+0 \cdot t+\boxed{1} \cdot t^{2}\right)=t^{2}+1 . \mathrm{ii}$ $\beta=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$

$$
\left[\left.T\right|_{W}\right]_{\beta}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \chi_{\left.T\right|_{W}}=\left|\begin{array}{cc}
-t & -1 \\
1 & -t
\end{array}\right|=t^{2}+1
$$

Definition 5.41. If $P=\sum_{i=0}^{m} a_{i} t^{i} \in \mathcal{P}(\mathbf{F})$ and $T: V \rightarrow V, A \in M_{n \times n}(\mathbf{F})$, then define

$$
\begin{gathered}
P(T)=\sum_{i=0}^{m} a_{i} T^{i}, \text { with } T^{0}=I d, T^{1}=T, \text { and } T^{n}=\underbrace{T \circ \cdots \circ T}_{n \text { times }} \\
P(A)=\sum_{i=0}^{m} a_{i} A^{i}, \text { with } A^{0}=I_{n}, A^{1}=A, \text { etc. }\binom{\text { matrix }}{\text { mult }}
\end{gathered}
$$

Theorem 5.42. Let $P \in \mathcal{P}(\mathbf{F})$ and $T: V \rightarrow V, n=\operatorname{dim} V<\infty$.
(a) If $P(T)=0$, then for each eigenvalue λ of T we have $P(\lambda)=0$.
(b) If for each eigenvalue λ of T we have $P(\lambda)=0$, and T is diagonalizable, then $P(T)=0$.
proof is exercise
Example 5.43. A projection T satisfies $T^{2}=T$. Thus $P(T)=0$ for $P(t)=t^{2}-t$. Thus all possible eigenvalues of a projection are $\lambda=0$ and $\lambda=1$.

Example 5.44. A reflection T satisfies $T^{2}=I d$. Thus $P(T)=0$ for $P(t)=t^{2}-1$. Thus all possible eigenvalues of a reflection are $\lambda=1$ and $\lambda=-1$.

Remark 5.45. It is not claimed (and not true in general) that all roots of P occur as EV of T !

Theorem 5.46. (Cayley-Hamilton theorem)
A linear operator $T: V \rightarrow V$ satisfies its characteristic equation

$$
\chi_{T}(T)=0
$$

Proof. Let $\mathbf{v} \neq 0$. We prove

$$
\chi_{T}(T)(\mathbf{v})=\mathbf{0}
$$

Let $W=\Sigma_{T}(\mathbf{v}) \quad k=\operatorname{dim} W$

$$
\left.\begin{array}{cl}
\stackrel{\mathrm{Th}}{\xlongequal[5.39(\mathrm{a})]{\Longrightarrow}} & \exists a_{i} \text { with } a_{0} \mathbf{v}+a_{1} T(\mathbf{v})+\ldots+a_{k-1} T^{k-1}(\mathbf{v})+T^{k}(\mathbf{v})=\mathbf{0} \\
\stackrel{\mathrm{Th}}{5.39(\mathrm{~b})} & \chi_{\left.T\right|_{W}}=(-1)^{k}\left(a_{0}+a_{1} t+\cdots+a_{k-1} t^{k-1}+t^{k}\right) \\
\Longrightarrow \chi_{\left.T\right|_{W}}(T)(\mathbf{v})=(-1)^{k}\left(a_{0} I d+a_{1} T+\cdots+a_{k-1} T^{k-1}+T^{k}\right)(\mathbf{v})=\mathbf{0} .
\end{array}\right\}
$$

Now $\chi_{\left.T\right|_{W}} \mid \chi_{T}$ by theorem 5.38, so

$$
\chi_{T}(T)(\mathbf{v})=\mathbf{0} .
$$

Example 5.47. $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \beta=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \quad[T]_{\beta}$

$$
T(a, b)=(a+2 b,-2 a+b) \quad A=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)
$$

$$
\chi_{A}(t)=\left|\begin{array}{cc}
1-t & 2 \\
-2 & 1-t
\end{array}\right|=(1-t)^{2}+4=t^{2}-2 t+5
$$

$$
\chi_{A}(A)=A^{2}-2 A+5 I d=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)^{2}-\left(\begin{array}{cc}
2 & 4 \\
-4 & 2
\end{array}\right)+\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
-3 & 4 \\
-4 & -3
\end{array}\right)+\left(\begin{array}{cc}
-2 & -4 \\
4 & -2
\end{array}\right)+\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

