
5. Diagonalization

plan given T : V → V

Does there exist a basis β of V such that [T ]β is diagonal

if so, how can it be found

−→ eigenvalues (EV), eigenvectors, eigenspaces

5.1. Eigenvalues and eigenvectors.

recall

T : V → W β OB of V , γ OB of W dimV = m

dimW = n

[T ]γβ i-th column is [T (vi)]γ β = (v1, . . . ,vm)

T : V → V [T ]β′ = [IV ]
β′

β [T ]β[IV ]
β
β′ = Q−1[T ]βQ

Q = [IV ]
β
β′ change-of-

coordinate matrix

Definition 5.1. T : V → V dim V = n <∞ linear map
T is diagonalizable if ∃ OB β of V with

[T ]β a diagonal matrix.

A square matrix A is diagonalizable if LA is.
β is called diagonalizing basis.

Now if β = {v1, . . . ,vn} is a diagonalizing basis with [T ]β = diag(λ1, . . . , λn),

then T (vi) = λivi, so T (
∑

aivi) =
∑

aiλivi and vi 6= 0.

Definition 5.2. T : V → V linear operator. Assume v 6= 0 and

Tv = λv. Then we call v eigenvector

and λ eigenvalue (EV). We say that an eigenvector

corresponds to an eigenvalue, and an eigenvalue corresponds

to the eigenvector.

Theorem 5.3. T : V → V is diagonalizable ⇐⇒ ∃ basis of V of eigen-
vectors of T .

Example 5.4. A =

(

1 3

4 2

)

, v1 =

(

1

−1

)

v2 =

(

3

4

)

Av1 =

(

1 3

4 2

)

·

(

1

−1

)

=

(

−2

2

)

= −2v1 , Av2 =

(

1 3

4 2

)

·

(

3

4

)

=

(

15

20

)

= 5v2 ,

so if β = {v1,v2}, then [A]β(:= [LA]β) =

(

−2 0

0 5

)

1
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Example 5.5. T : R2 → R2 rotation by 90◦
(

0 −1

1 0

)

geomtetrically: no vector goes to a

parallel=

multiple one by 90◦ rotation

thus T has no eigenvalues / eigenvectors =⇒ not diagonalizable

Example 5.6. V = C∞(R) C∞-functions on R→ R.

T (f) = f ′ what are EV of T ?

f ′ = λf =⇒ f = ceλt 6= 0

=⇒ all λ ∈ R are eigenvalues of T (f are eigenfunctions)

(for λ = 0 the eigenfunctions are the constant functions)

this cannot happen for operators on f.d. spaces

Theorem 5.7. λ EV of A ∈Mn×n(F)

⇐⇒ det(A− λIdn) = 0

Proof. Av = λv ⇐⇒ ∃v 6= 0 : (A− λIdn)v = 0

⇐⇒ A− λIdn is not invertible

⇐⇒ det(A− λIdn) = 0

Definition 5.8. Let A ∈Mn×n(F). χA(t) := det(A− tIdn) is
called characteristic polynomial of A

Example 5.9. A =

(

1 1

4 1

)

∈M2×2(R).

det(A− tId2) =

∣
∣
∣
∣
∣

1− t 1

4 1− t

∣
∣
∣
∣
∣
= (1− t)2 − 4

= (t− 3)(t+ 1)

=⇒ eigenvalues of A are +3,−1.

Definition 5.10. Let T : V → V . Let β be OB of V .

χT (t) = det([T ]β − t Idn) is called characteristic polynomial

of T

Theorem 5.11. The definition of χT does not depend on the choice of basis β.

Proof. Let β, β′ be OB of V . Then we know

[T ]β′ = Q−1[T ]βQ Q = [IV ]
β
β′

Then

[T ]β′ − t Idn = [T − t IdV ]β′ = Q−1[T − t IdV ]βQ = Q−1([T ]β − t Idn)Q .
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Thus

det([T ]β′ − t Idn) =

F∋

det(Q−1) · det([T ]β − t Idn) ·

F∋

det(Q)

= det(Q−1) · det(Q)
︸ ︷︷ ︸

det(Q−1·Q)=det(Idn)=1

· det([T ]β − t Idn)

= det([T ]β − t Idn). �

Example 5.12. V = P2(R) T : V → V T (f) = f + (x+ 1)f ′

β SOB {1, x, x2}

Write [ . ]β = ([ . ]β)
−1.

A =







1 1 0

0 2 2

0 0 3







⇐=

A = [T ]β T (1) = 1 = [(1, 0, 0)]β

T (x) = 2x+ 1 = [(1, 2, 0)]β

T (x2) = 2x(x+ 1) + x2 =

3x2 + 2x = [(0, 2, 3)]β

det(A− t Id3) = det







1− t 1 0

0 2− t 2

0 0 3− t







= (1− t)(2 − t)(3− t)

λ EV ⇐⇒ λ = 1, 2, 3

Theorem 5.13. A ∈Mn×n(F)

χA(t) = det(A− t Idn) is a polynomial in t of degree n

with leading coefficient (−1)n:

[χA(t)]n = (−1)n [χA(t)]n−1 = (−1)n−1 trA

. . . [χA(t)]0 = det(A). �

Example 5.14. (How to find eigenvectors)

A =

(

1 1

4 1

)

λ1 = 3 λ2 = −1 (calculated before)

B1 = A− λ1I =

(

1 1

4 1

)

−

(

3 0

0 3

)

=

(

−2 1

4 −2

)

x =

(

x1

x2

)

eigenvector to λ1 = 3 ⇐⇒
−2x1 + x2 = 0

4x1 − 2x2 = 0
=⇒ x = t

(

1

2

)

(t ∈ R \ {0})

B2 = A− λ2I =

(

1 1

4 1

)

−

(

−1 0

0 −1

)

=

(

2 1

4 2

)

x =

(

x1

x2

)

eigenvector to λ2 = −1 ⇐⇒
4x1 + 2x2 = 0

2x1 + x2 = 0
=⇒ x = t

(

1

−2

)

(t ∈ R \ {0})

eigenvector of linear operators
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−−
−
−→

−−
−
−→

−−−−−−−−−→

−−−−−−−−−→

Fn Fn

V V

φβ
φβ

T (= LA)

A (= [T ]β)

T : V → V β OB of V A = [T ]β

φβ = [ . ]β

Lemma 5.15. v is an eigenvector of T with EV λ ⇐⇒

[v]β is eigenvector of A with EV λ.

Proof. “=⇒” A[v]β = Aφβ(v)

diag
commutes→

= φβ(T (v)) = φβ(λv) = λφβ(v) = λ[v]β .

since φβ is isomorphism, v 6= 0 ⇒ [v]β = φβ(v) 6= 0

“⇐=” similar �

so, to find eigenvectors of T , we can work in any OB β.

Write [ . ]β = (φβ)
−1. Thus













a1

.

.

.
an













β

=
n∑

i=1

aivi for β = {v1, . . . ,vn}.

Example 5.16. V = P2(R) T (f) = f + (x+ 1)f ′ β = {1, x, x2}

A =







1 1 0

0 2 2

0 0 3







λ = 1, 2, 3 (calculated before)

Let λ1 = 1 B1 = A− λ1Id =







0 1 0

0 1 2

0 0 2







kerB1 =







t







1

0

0













EVec of T for EV λ1 = 1 is






t ·







1

0

0













β

= t ∈ R.

check: f = t T (f) = f + (x+ 1)f ′ = t+ (x+ 1)t′ = t = f ✔

Let λ2 = 2 B2 = A− λ2Id =







−1 1 0

0 0 2

0 0 1







kerB2 =







t







1

1

0













EVec of T for EV λ2 = 2 is






t ·







1

1

0













β

= t+ tx (t ∈ R).

check: f = t+ tx T (f) = f + (x+ 1)f ′ = (t+ tx) + (x + 1)(t+ tx)′

= t+ tx+ (x+ 1)t = 2(t+ tx) = 2f ✔



5

λ3 = 3 B3 =







−2 1 0

0 −1 2

0 0 0







kerB3 =







t ·







1

2

1







t ∈ R







r.r.e.f. =







1 0 −1

0 1 −2

0 0 0







EVec f = t(1 + 2x+ x2)

check:

T (f) = T (t(1 + 2x+ x2))= t(1 + 2x+ x2) + t(1 + x)(2x + 2)

t(1 + x)2 + t(x + 1)(2x+ 2) = 3t(1 + x)2 = 3f ✔

5.2. Diagonalizability.

- test whether operator can be diagonalized

T : V → V ∃β with [T ]β
diagonal, find β

- eigenbasis to find

Theorem 5.17. T : V → V λ1, . . . , λk distinct eigenvalues with eigenvectors vi.

Then {v1, . . . ,vk} linearly independent.

Proof. Induction over k. When k = 1, {v1} linearly independent ⇐⇒ v1 6= 0 .

Now induction step
Let {v1, . . . ,vk−1} linearly independent. (1)

0 =

k∑

i=1

aivi (2)

0 = (T − λkI)0 = (T − λkI)
( k∑

i=1

aivi

)

=

k∑

i=1

ai(λi − λk)vi =

k−1∑

i=1

Now by induction assumption (1), we have ai(λi − λk) = 0 i = 1, . . . , k − 1
but λi 6= λk by assumption =⇒ ai = 0 i = 1, . . . , k − 1

(2)
=⇒ 0 = akvk ====⇒

vk 6= 0

ak = 0.

=⇒ all ai = 0 i = 1, . . . , k ⇒ vi i = 1, . . . , k linear independent. �

Corollary 5.18. If T : V → V dim V = n If T has n distinct EV, then

T diagonalizes.

Proof. {v1, . . . ,vn} eigenvectors to λi are linearly independent⇒ (eigen)basis. �

Remark 5.19. Converse is not true: Id has only one EV, but diagonalizable.
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Definition 5.20. A polynomial f(t) ∈

F[t]

=

P(F) splits over F if ∃ c, a1, . . . , an ∈ F
(not necessarily

distinct)

, c 6= 0

with

f(t) = c(t− a1)(t− a2) · . . . · (t− an)

The algebraic multiplicity of ai in f is µai
(f) := #{ j : aj = ai }.

Note that ai are the roots of f (f(ai) = 0) and using factorization, one can see

every polynomial splits ⇐⇒ every (non-const.) polynomial has a root

Definition 5.21. F is algebraically closed if every polynomial in P(F) splits in F.

Example 5.22. f(t) = t2 + 1 ∈ P(R) does not split in R ⇒ R is not algebraically

closed

Theorem 5.23. (Fundamental Theorem of Algebra) C is algebraically closed.

Theorem 5.24. The characteristic polynomial of any diagonalizable operator (on

a f.d. VS) splits.

Proof. T : V → V
χT (t) = χ[T ]β (t) ∀β OB of V

so choose eigenbasis. Then [T ]β is diagonal diag(λ1, . . . , λn)

so χ[T ]β (t) = (−1)n
n∏

i=1

(t− λi) ⇒ χT splits. �

Example 5.25.
A =

(

1 1

0 1

)

χA(t) = χId(t) = (t− 1)2 splits, λ = 1 only EV

If A is diagonalizable, then [A]β(= [LA]β) =

(

1 0

0 1

)

⇒ A = Id ☇.

So χA splits, but A does not diagonalize.

Definition 5.26. T : V → V linear operator Eλ = ker(T − λId) λ EV

is called eigenspace (of T for EV λ)

Theorem 5.27. dimEλ ≤ µλ(χT (t)) algebraic mult. of λ in χT (t).

not always equal:

Example 5.28. A =

(

1 1

0 1

)

χA(t) = (t− 1)2 λ = 1 has algebraic multiplicity µλ = 2

dimEλ =?

(

1

0

)

∈ E1 ⇒ dim ≥ 1 .

Eλ ⊆ R2 dim ≤ 2. If dimEλ = 2 ⇒ Eλ = R2

LA

∣
∣
∣
Eλ

= λId
∣
∣
∣
Eλ

so if Eλ = R2, then

LA = LA

∣
∣
∣
R2

= Id
∣
∣
∣
R2

= Id ☇. So dimEλ = 1 < 2 = µλ.
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Theorem 5.29. Assume T : V → V λ1, . . . , λk distinct EV
βi basis of Eλi

∀ EV λi of T .

Then β1 ∪ β2 ∪ · · · ∪ βk (3) is linearly independent.

Proof. Similar to Theorem 5.17. �

Theorem 5.30. T : V → V diagonalizable ⇐⇒ ∀λi EV of T , i = 1, . . . , k
dimEλi

= µλi
(χT ) and

χT splits (or
∑k

i=1 dimEλi
= n)

Then (3) is an eigenbasis.

Proof. Theorem 5.27 + Theorem 5.29. �

=⇒ Test for diagonalization

- determine characteristic polynomial of T find zeros ⇒ eigenvalues λi +

multiplicities µλi

- for each distinct eigenvalue λi, solve (T − λiI)x = 0

determine mi = dimEλi
= n− rk (T − λiI)

- if for all i, mi = µλi
(χ), then T diagonalizable, else not

Example 5.31.









f ′

1

f ′

2

f ′

3









= A









f1

f2

f3









linear differential equation system

(an application of diagonalization)

f =









f1

f2

f3









f ′ =









f ′

1

f ′

2

f ′

3









fi : R → R

If A diagonalizes, then ∃Q : Q−1AQ = D D = diag(λi)

Q−1f ′ = D ·Q−1f Q−1 · f(t) =
(

cie
λit
)3

i=1
(ci ∈ R)

=⇒ solution f(t) = Q ·
(

cie
λit
)3

i=1
.

(5.3 skip)

5.4. Invariant subspaces and Cayley-Hamilton theorem.

Definition 5.32. T : V → V W ⊂ V is (T -)invariant subspace if

T (W ) ⊆W , i.e., T (w) ∈ W ∀w ∈W .

Example 5.33.

T arbitrary
{0}, V, kerT, ImT, Eλ for any eigenvalue λ of T .

Example 5.34. T : R3 → R3 T (a, b, c) = (a+ b, b+ c, 0)

W =
{
(x, y, 0) : x, y ∈ R

}
T -invariant

Definition 5.35. T : V → V x ∈ V

ΣT (x) := span
{
x, T (x), T 2(x), . . .

}
←

only finitely
many are
linearly independent

T -cyclic subspace of V generated by x

Exercise: (a)W = ΣT (x) is T invariant, (b) if x ∈ W ′ and W ′ is T -invariant, then W ′ ⊃W

“W is the smallest T -invariant subspace ∋ x”
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Example 5.36. T : R3 → R3 T (a, b, c) = (−b+ c, a+ c, 3c)

x = (1, 0, 0) = e1

T (e1) = (0, 1, 0) = e2

T 2(e1) = T (e2) = (−1, 0, 0) = −e1
[
T 3(e1) = −e2 T 4(e1) = e1

]

=⇒ W = span {e1, e2}

= { (x, y, 0) : x, y ∈ R }

Example 5.37. T :

R[z]

=

P(R) →

R[z]

=

P(R) T (f) = f ′

x = z2 ΣT (x) = span{z2, 2z, 2} = P2(R) ⊆ P(R)

Theorem 5.38. T : V → V W invariant subspace. Then

χ
T |

W

| χ
T

Proof. γ OB of W β ⊇ γ OB of V

[T ]β =

(

B1 B2

0 B3

)

χT (t) =

∣
∣
∣
∣
∣

B1 − t Id B2

0 B3 − t Id

∣
∣
∣
∣
∣

= det(B1 − t Id)
︸ ︷︷ ︸

χT |W
(t)

· det(B3 − t Id)
︸ ︷︷ ︸

∈F[t]

�

Theorem 5.39. Let T : V → V W = ΣT (v), k = dimW . Then

(a) {v, T (v), . . . , T k−1(v) } is a basis of W

(b) If a0v + a1T (v) + · · ·+ ak−1T
k−1(v) + T k(v) = 0,

then χ
T |

W

(t) = (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk).

Proof. (a) Let j be largest positive integer such that β = {v, T (v), . . . , T j−1(v)}

is linearly independent.

=⇒ T j(v) ∈ spanβ =⇒ spanβ is T -invariant

=====⇒
exercise

ΣT (v) ⊆ spanβ ⊆
↑

def of β

ΣT (v) =⇒ “=”

β is basis of ΣT (v) |β| = j = dimΣT (v)

def of k→

= k

=⇒ j = k =⇒ (a)

Now (b). Work in OB β

[T |
W
]β =









0 · · · 0 −a0

1 0 −a1
1 . . .

...

0 1 −ak−1









χ
T |

W

(t) = (−1)k ( . . . ). �

Example 5.40. (continue example 5.36)

T : R3 → R3 T (a, b, c) = (−b+ c, a+ c, 3c)
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W = ΣT (e1) T (e1) = e2 T 2(e1) = −e1
=⇒ k = 2

=⇒ 1 · T 2(e1) + 0 · T (e1) + 1 · e1 = 0

Th 5.39
=⇒ χ

T |
W

= (−1)2( 1 + 0 · t+ 1 · t2) = t2 + 1. ii
check using determinant

β = {e1, e2}

[T |W ]β =

(

0 −1

1 0

)

χ
T |

W

=

∣
∣
∣
∣
∣

−t −1

1 −t

∣
∣
∣
∣
∣
= t2 + 1

Definition 5.41. If P =
m∑

i=0

ait
i ∈ P(F) and T : V → V , A ∈ Mn×n(F), then

define

P (T ) =
m∑

i=0

aiT
i, with T 0 = Id, T 1 = T , and T n = T ◦ · · · ◦ T

︸ ︷︷ ︸

n times

P (A) =
m∑

i=0

aiA
i, with A0 = In, A

1 = A, etc.
(
matrix
mult

)

Theorem 5.42. Let P ∈ P(F) and T : V → V , n = dim V <∞.

(a) If P (T ) = 0, then for each eigenvalue λ of T we have P (λ) = 0.

(b) If for each eigenvalue λ of T we have P (λ) = 0, and T is diagonalizable,

then P (T ) = 0.

proof is exercise

Example 5.43. A projection T satisfies T 2 = T . Thus P (T ) = 0 for P (t) = t2− t.

Thus all possible eigenvalues of a projection are λ = 0 and λ = 1.

Example 5.44. A reflection T satisfies T 2 = Id. Thus P (T ) = 0 for P (t) = t2− 1.

Thus all possible eigenvalues of a reflection are λ = 1 and λ = −1.

Remark 5.45. It is not claimed (and not true in general) that all roots of P occur

as EV of T !

Theorem 5.46. (Cayley-Hamilton theorem)

A linear operator T : V → V satisfies its characteristic equation

χT (T ) = 0 .
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Proof. Let v 6= 0. We prove

χT (T )(v) = 0.

Let W = ΣT (v) k = dimW

Th 5.39(a)
=⇒ ∃ai with a0v + a1T (v) + . . .+ ak−1T

k−1(v) + T k(v) = 0





=⇒Th 5.39(b)

=⇒ χ
T |

W

= (−1)k(a0 + a1t+ · · ·+ ak−1t
k−1 + tk)

=⇒ χ
T |

W

(T )(v) = (−1)k(a0Id+ a1T + · · ·+ ak−1T
k−1 + T k)(v) = 0 .

Now χ
T |

W

| χ
T
by theorem 5.38, so

χ
T
(T )(v) = 0. �

Example 5.47. T : R2 → R2

T (a, b) = (a+ 2b,−2a+ b)

β = (e1, e2) [T ]β=

A =

(

1 2

−2 1

)

χA(t) =

∣
∣
∣
∣
∣

1− t 2

−2 1− t

∣
∣
∣
∣
∣
= (1 − t)2 + 4 = t2 − 2t+ 5

χA(A) = A2 − 2A+ 5Id =

(

1 2

−2 1

)2

−

(

2 4

−4 2

)

+

(

5 0

0 5

)

=

(

−3 4

−4 −3

)

+

(

−2 −4

4 −2

)

+

(

5 0

0 5

)

=

(

0 0

0 0

)

.


