GS1001	Calculus I	Spring 2019

Test-00 (100 problems, 200 points)

For self-test and self-evaluation. For solution problems, 2 points (unless otherwise stated); for multiple choice problems, 2 points for right answer, 0 points for no answer, -1 point for wrong answer.

If you score < 60% (120 points), it means you are very unprepared and must recover your missing English/math skills by yourself. You can see the solution from a TA later, but we cannot check each one's sheet, and I have no time to discuss and teach all material in class.

Problem 1. Assume you are 박길동. How should you write your name in English?

\Box Park,	, gildong	\Box Girdong Park	\Box Girdong park	\Box girdong, Park
Problem 2. O	ne billion kilome	eters are 10^m centimeters f	for what m ?	
Problem 3. W	Vhat unit is soun	d measured in?		
□ Watt	per meter		□ Joule	
	pel		\Box Richter magnitude	
Problem 4. A	mong the first 10	00 elements in the periodi	c table, how many are in t	the first period?
$\square 2$			7	8
Problem 5. W	Vhat is an asteris	k?		
*			□ ^	\Box ~
Problem 6. W	What is an angle	bracket?		
□ [□ {		\Box (
Problem 7. W	Vhat mathematic	al operation is denoted by	v an exclamation mark?	
□ factor	rial	\Box fraction	\Box greatest integer	\Box logarithm
Problem 8. W	What means \forall ?			
\Box inters	section	□ negation	\Box for all	proper inclusion

not to submit

Problem 9.	What means	that A is	disjoint	from B	?
I TODIem 9.	what means	unat A 15	uisjonne	110111 D	÷

	$\Box \ A \subseteq B$	$\Box \ A \setminus B \neq \varnothing$	$\Box \ A \cap B = \varnothing$	$\Box \ B \setminus A = \varnothing$
Proble	em 10. What denotes \mathbb{Q}^2	2		
	\Box integers	\Box rational numbers	\Box real numbers	\Box natural numbers
Proble	em 11. How does one cal	If the statement $P \Longrightarrow Q$?	?	
	\Box inclusion	\Box implication	\Box conclusion	□ assertion
Proble	em 12. What is the cont	rapositive of the statement	t ' $P \Longrightarrow Q$ '?	
	$\Box \text{ not } P \Longrightarrow \text{not } Q$	$\Box \ P \Longrightarrow \mathrm{not} \ Q$	$\Box \ Q \Longrightarrow \mathrm{not} \ P$	$\Box \text{ not } Q \Longrightarrow \text{not } P$
Proble	em 13. When is ' $A \Longrightarrow A$	B' false?		
	\Box when A is false		\Box when A, B are false	
	\Box when A is true and I	B is false	\Box when <i>B</i> is false	

Problem 14. What of the following statements is not true for the ordering relation < on \mathbb{R} ?

 $\Box \quad \forall x, y \in \mathbb{R} \ \exists z \in \mathbb{R} \ : \ x < z \text{ or } z < y$ $\Box \quad \forall x, y \in \mathbb{R} \ : \ (\forall z \in \mathbb{R} \ : \ z > y \Longrightarrow z > x) \Longrightarrow y > x$ $\Box \quad \forall x, y \in \mathbb{R} \ : \ (x < y \Longrightarrow \exists z \in \mathbb{R} \ : \ x < z \text{ and } z < y)$ $\Box \quad \forall x, y \in \mathbb{R} \ \exists z \in \mathbb{R} \ : \ z > x \text{ and } z > y$

Problem 15. What of the following statements is false?

 $\Box (A \Longrightarrow (B \text{ and } C)) \iff ((A \Longrightarrow B) \text{ and } (A \Longrightarrow C))$ $\Box ((B \text{ and } C) \Longrightarrow A) \iff ((B \Longrightarrow A) \text{ or } (C \Longrightarrow A))$ $\Box ((B \text{ or } C) \iff A) \iff ((B \iff A) \text{ or } (C \iff A))$ $\Box (A \Longrightarrow (B \text{ or } C)) \iff ((A \Longrightarrow B) \text{ or } (A \Longrightarrow C))$

 $\square \bigcirc$

Problem 16. Negate the quantified expression $\exists A \subset \mathbb{R} \ \forall \varepsilon > 0 \ \exists N \ \forall n \ge N \ : \ (x_n, \infty) \subset A$

Problem 17. For what set $A \subset \mathbb{R}$ is the statement true $\forall x \in A \exists \varepsilon > 0 : (x - \varepsilon, a) \cap \mathbb{Z} = \emptyset$?

Ø

 $\square \mathbb{R}$

 $\square \mathbb{Z}$

Problem 18. What is the English name for 평행육면체?

🗌 pri	sm	\Box parallelepiped	□ cylinder	D pyramid
Problem 19.	Under which of th	e following conditions is [$[a,b] \cap (c,d] = \varnothing?$	
$\Box d \leq$	$\leq a$	$\Box \ b \leq c$	$\Box \ a < d$	$\Box \ b < d$
Problem 20.	Which of the follow number x ?	wing functions does not gi	ve a rational number $f(x)$	for each natural
$\Box \frac{1}{\frac{1}{2}}$	$\frac{1}{x}$	$\Box \ \frac{1}{2+x}$	$\Box \left(\frac{1}{2}\right)^x$	$\Box x^{1/2}$
Problem 21.	What is an examp	ble of associativity propert	y?	
$\Box a +$	-(b+c) = (a+b) - b - b - b - b - b - b - b - b - b -	+c	$\Box (a+b)c = ac + bc$	
\Box if a	$a \leq b$ and $c \geq 0$, the	en $ac \leq bc$	\Box if $a \leq b$ and $b \leq c$, the	en $a \leq c$
Problem 22.	Which of the belo	w functions (on their max	imal domain) is not increa	asing?
$\Box x^3$	- 1	$\Box x^3 - \frac{1}{x}$	$\Box \ln\left(-\frac{1}{x}\right)$	$\Box \sqrt{-\frac{1}{x}}$
Problem 23.	How many coordi	nate axes does the coordin	nate plane have?	
\Box 1		2		$\square \infty$
Problem 24.	Problem 24. What does it mean that A is contained in B ?			
□ If ∠	A, then B		\Box A is an element in B	
	has smaller norm t	han B	\Box Every element in A is	s an element in B
Problem 25. What condition on a function $f : A \to B$ means f to be injective?				
\Box the	e range of f is equa	l to B	\Box the domain of f is eq	ual to B
$\Box f$ i	s not bijective		\Box if $f(x) = f(y)$ for x, y	$y \in A$, then $x = y$
Problem 26.	Which of the follo	wing functions is well-defi	ned over the domain \mathbb{R} ?	

$$\Box f(x) = \frac{1}{\sqrt{-x^2 + 1}} \qquad \Box f(x) = \frac{1}{\sqrt{x^2 + 1}} \\ \Box f(x) = \frac{1}{x^2 - 1} \qquad \Box f(x) = \frac{1}{-x^2 + 1}$$

Problem 27. Which of the following functions f is equal to g(x) = x - 3? (We assume functions are defined on their maximal domains.)

$$\Box f(x) = \frac{(x-3)^2}{x-3} \qquad \Box f(x) = \frac{(x-3)(x^2+3)}{x^2+3} \\ \Box f(x) = \sqrt{x-3^2} \qquad \Box f(x) = \sqrt{(x-3)^2}$$

Problem 28. What of the following claims is false (we assume f is defined on \mathbb{R})?

$\Box f(x) = \sin x \text{ is an odd function}$	$\Box f(x) = \cos x \text{ is an even function}$
$\Box f(x) = 4x^3$ is an even function	$\Box f(x) = 3x^4 \text{ is an even function}$

Problem 29. Consider a function $f : A \to B$ and a function g defined by g(x) = f(x+a) for a > 0. Then the graph of g is obtained from the graph of f by

\Box moving <i>a</i> to the left	\Box moving <i>a</i> to the right
\Box moving <i>a</i> up	\Box moving <i>a</i> down

- **Problem 30.** A function is called *monotonous* iff it is increasing or decreasing. Which of the following is true?
 - \Box Every monotonous function defined on \mathbb{R} is surjective.
 - \Box Every injective function defined on \mathbb{R} is continuous or monotonous.
 - \Box Every injective function defined on an interval is monotonous.
 - \Box Every injective continuous function defined on \mathbb{R} is monotonous.

Problem 31. The line of which function g(x) is orthogonal to the line of f(x) = 3x + 1?

$$\Box \ g(x) = 3x - 1$$
 $\Box \ g(x) = -\frac{1}{3}x + 1$ $\Box \ g(x) = -x + 3$ $\Box \ g(x) = \frac{1}{3}x - 1$

Problem 32. A linear polynomial is one of degree

□ −1		\Box 1	$\square 2$
Problem 33. The equa	tion $ax^2 + bx + c = 0$ has	no real roots when	
\Box the discrimin	ant $b^2 + 4ac$ is positive	\Box the discrimentary the discrimentary the discrimentary the discrimentary tensor te	minant $b - 4ac$ is zero
\Box the discrimin	ant $b^2 - ac$ is negative	\Box the discrimentary the discrimentary the discrimentary the discrimentary tensor te	minant $b^2 - 4ac$ is negative
Problem 34. What is t	the graph of a linear funct	ion?	
a parabola		\Box a horizont	al line
\Box a vertical line	9	a non-hori	zontal non-vertical line

test00-04mar19

Problem 35.	The polynomial $(x - 3)(x - 2)(x - 1)(x^2 + 4)^2$ has	
— .		

\square degree <i>i</i> and 2 zeros	L degree 5 and 2 zeros
\Box degree 2 and 3 zeros	\Box degree 7 and 3 zeros

Problem 36. Let p and q be arbitrary non-zero polynomials. Which of the following inequalities is always true?

Problem 37. For what type of asymptote can a rational function have more than one asymptote of this type?

□ A horizontal line
 □ A non-horizontal non-vertical line
 □ A parabola

Problem 38. What of the following claims is true?

Any polynomial of odd degree has at east one multiple zero.

Any polynomial has at most as many zeros as its degree.

☐ The number of distinct zeros of a polynomial is equal to its degree.

Any polynomial of even degree has an even number of distinct zeros.

Problem 39. What is a pole of a rational function $f(x) = \frac{p(x)}{q(x)}$?

□ an x with p(x) = 0 and $q(x) \neq 0$ □ an x where f(x) is not continuous □ a singularity x which is not removable □ an x with p(x) = 0 and q(x) = 0

Problem 40. What is the maximal number of poles a rational function $f(x) = \frac{p(x)}{q(x)}$ can have?

 $\Box \deg p - \deg q - 1 \qquad \Box \deg q \qquad \Box \deg p - 1 \qquad \Box \deg p + 1$

Problem 41. When x is an arbitrary integer, for which numbers b is b^x defined?

 \Box all real numbers b \Box all rational numbers $b \ge 0$ \Box all real numbers $b \ne 0$ \Box all real numbers b > 0

Problem 42. What is the inverse function to $f(x) = m^x$ (for m > 0)?

 $\Box \ f^{-1}(x) = \log_m x \qquad \Box \ f^{-1}(x) = (-x)^m \qquad \Box \ f^{-1}(x) = \log_x m \qquad \Box \ f^{-1}(x) = x^{1/m}$

 \Box the perimeter of the unit circle

the maximal distance between two points on a circle

 \Box the distance between a point on a circle and the center of the circle

 \square a unit to measure angles

Problem 50. Assume for $f : \mathbb{R} \to \mathbb{R}$ we have f(x-3) = -f(x+3) for all $x \in \mathbb{R}$. What can you say about f?

 $\Box f$ is odd

 \Box f has a zero \Box f is surjective

 \Box f is periodic

test00-04mar19

Problem 51. What of the following is an expression for $\tan x$?

$$\begin{vmatrix} \pm \sqrt{1 - \cos^2 x} \\ = \pm \sqrt{\sin^2 x} \\ = \pm \sqrt{\sin^2 x} \\ = \pm \sqrt{\sin^2 x} \\ = \pm \sqrt{1 - \cos^2 x} \\ = \pm \sqrt{1 - \sin^2 x} \\ \end{vmatrix}$$
Problem 52. What is the below?

$$- + - - + + + + - + + - + + + - - + \\ = + + - - + + + - - + \\ \Rightarrow + + - - + + + - - + \\ \Rightarrow + + - - + \\ \Rightarrow + + - - + \\ \end{vmatrix}$$
Problem 53. When is a triangle acute?

$$\begin{vmatrix} \text{when the incenter lies inside the triangle} \\ \Rightarrow \text{when the incenter lies inside the triangle} \\ \Rightarrow \text{when the incenter lies outside the triangle} \\ \Rightarrow \text{when the incenter lies inside the triangle} \\ \Rightarrow \text{when the orthocenter lies inside the triangle} \\ \Rightarrow \text{when the orthocenter lies inside the triangle} \\ \Rightarrow \text{when the orthocenter lies inside the triangle} \\ \Rightarrow \text{Problem 54. Which lines in a triangle always intersect in ratio 2:1?} \\ \Rightarrow \text{angle bisectors} \qquad | \text{ medians} \qquad | \text{ edge bisectors} \qquad | \text{ heights} \\ \Rightarrow \text{Problem 55. Assume } \{a_n\} \text{ is a real sequence and } a_n > 0. \text{ If the series of } \{a_n\} \text{ converges, and } \{a_n\} \text{ is among the below four types of sequence, which type is it?} \\ \Rightarrow \text{ arithmetic progression} \qquad | \text{ geometric progression} \\ \Rightarrow \text{ increasing sequence} \qquad | \text{ periodic sequence} \\ \Rightarrow \text{Problem 56. What of the following conditions for } O \subset \mathbb{R} \text{ means that } \overline{O} \neq \mathbb{R} \text{ (where bar denotes closure)?} \\ \Rightarrow \forall x \in O \exists a, b \in \mathbb{R} : a < x < b, (a, b) \subset O \\ \Rightarrow \exists x \in O \forall z > 0 : (x - z, x + z) \notin O \\ \Rightarrow \forall x \in O \forall z > 0 : (x - z, x + z) \cap O = \emptyset \\ \end{cases}$$

Problem 57. What of the following conditions means that the sequence $(x_n) \subset \mathbb{R}$ is unbounded above?

$\square \forall N \exists n \ge N : x_n > n$	$\square \forall N \exists n \ge N : x_n \ge N$
$\square \forall N \forall n \ge N : x_n \ge N$	$\Box \exists N \forall n \ge N : x_n \ge N$

 $\forall a \in A : a \leq x \text{ and } \forall z \in \mathbb{R} : ((\forall a \in A : a \leq z) \Longrightarrow z \geq x) ?$

□ supremum	\Box minimum	\Box boundary point	\Box upper bound
------------	----------------	-----------------------	--------------------

Problem 59. $A \subsetneq B$ is equivalent to?

 $\Box \quad \forall a : ((a \in A \Longrightarrow a \in B) \text{ and not } (a \in B \Longrightarrow a \in A))$ $\Box \quad (\forall a : (a \in A \Longrightarrow a \in B)) \text{ and not } (\forall a : (a \in B \Longrightarrow a \in A))$ $\Box \quad \forall a : ((a \in A \Longrightarrow a \in B) \text{ and } (a \notin B \Longrightarrow a \in A))$ $\Box \quad \exists a : ((a \in A \Longrightarrow a \in B) \text{ and not } (a \in B \Longrightarrow a \in A))$

Problem 60. What is the character "." not?

\square a full stop	\square a punctuation mark
\Box a period	\Box a hyphenation symbol

Problem 61. What is the word "herself"?

a reflexive pronoun	$\hfill\square$ an object form of a pronoun
\Box a preposition	\Box a conjunction

Problem 62. Which of the following articles is not written correctly?

\Box an hour	\Box an uniform	\Box a university	\Box the heritage

Problem 63. Which of the following sentences is written correctly?

\square This is my book, and that is yours.	\square This is mine book, and that is yours'.
\Box This is my book and that is your's.	\Box This is my book, and that is your.

Problem 64. Which of the following sentences is written correctly?

☐ This is a picture by a painter P. Picasso, who created it in 1960.

 \Box This is a picture by the painter, P. Picasso who created it in 1960.

 \square This is a picture by a painter P. Picasso who created it in 1960.

☐ This is a picture by the painter P. Picasso, who created it in 1960.

Problem 65. Which of the following sentences is written correctly?

- ☐ His mother Jane lives in the States. He's mother Jane; lives in the States.
- ☐ His mother, Jane lives in the States.

He's mother, Jane, lives in the States.

Problem 66. Which of the following sentences is written best?

- \Box The goods (packed in boxes) were brought by the driver.
- \Box (Packed in boxes) the goods were brought by the driver.
- \Box The driver (packed in boxes) brought the goods.
- The driver brought the (packed in boxes) goods.

Problem 67. Which of the following sentences is written correctly?

- ☐ I had little experience and, could not solve the problem.
- □ I had little experience I could not solve the problem.
- ☐ I had little experience, and I could not solve the problem.
- ☐ I had little experience; and so could not solve the problem.

Problem 68. Which of the following sentences is written correctly?

- \Box Whom needs it can see this document.
- \square Show this document to whoever needs it.

 \square Show this document to whom needs it.

Whomever needs this document can see it.

Problem 69. Which of the following sentences is written correctly?

- He is one of a student, who never attend class.
- ☐ He is one of the students who never attend class.
- He is one among several students who never attends class.
- He is among the students, who never attend class.

Problem 70. Which of the following sentences is written correctly?

 \Box Nobody are perfect.

 \Box None of us is perfect.

 \Box None of we is perfect.

 \Box Nobody of we are perfect.

Problem 71. Which of the following sentences is not written and meant correctly?

- Decayed and badly smelling, the shop owner three out the fruits.
- □ Since they were decayed and badly smelling, the shop owner threw out the fruits.
- The shop owner three out the fruits, decayed and badly smelling.
- Decayed and badly smelling, the fruits were thrown out by the shop owner.

Problem 72. Which of the following sentences is written and meant correctly?

- \Box Let us show that f_n is continuous, then Theorem 3 states that this is true when $n \geq 3$.
- \Box If we want to show that f_n is continuous, Theorem 3 states that this is true when $n \geq 3$.
- □ Wanting to show that f_n is continuous, Theorem 3 can be applied, which states that this is true when $n \ge 3$.
- \Box To show that f_n is continuous, we apply Theorem 3, which states that this is true when $n \geq 3$.

Problem 73. What among the below four is a correct letter opening?

De De	ar Paul?	Dear Paul,	Dear Paul;	Dear Paul-
Problem 74.	What of the follow	ving characters is a closin	g delimiter?	
□ (□]		□.
Problem 75.	What of the follow	ving words is not a prepos	sition?	
\Box for		\Box without	□ if	\Box from
Problem 76.	Which of the follo	wing sentences is written	correctly?	
□ He	was famous; and r	nany admired him.		
□ He	was famous; and t	herefore, many admired h	im.	
П Не	was famous, there	fore, many admired him.		
☐ He	was famous; many	admired him.		
Problem 77.	In the sentence 'It the word 'seeable'	was seeable from the beg	ginning that the problem i v anv of three of the belo	s hard to solve', w words. Which

the word 'seeable' can better be replaced by any of three of the below words. We word should 'seeable' *not* be replaced with?

 \square watchable

test00-04mar19

Problem 78. How should one abbreviate the name Vaughan Frederick Randal Jones?

UVFR. Jones UV.F.R. Jones UV. F.R.Jones UV. F. R.Jones	\Box VFR. Jones	\Box V.F.R. Jones	\Box V. F.R.Jones	\Box V. F. R.Jones
--	-------------------	---------------------	---------------------	----------------------

Problem 79. Which of the following sentences is written and meant correctly?

- \Box The delivery involves the driver. \Box The delivery constitutes the driver.
- \Box The delivery comprises the driver. \Box The delivery contains the driver.

Problem 80. Which of the following sentences is written and meant correctly?

 \square Comparing x to y, we find that x is equal with y.

 \Box Comparing x to y, we find that x is equal to y.

 \Box Comparing x with y, we find that x is equal with y.

 \Box Comparing x with y, we find that x is equal to y.

Problem 81. Which of the following sentences is written and meant correctly?

 \square The root effects in the convergence of the algorithm.

 \Box The root has an affect for the convergence of the algorithm.

 \Box The root has an effect on the convergence of the algorithm.

The root effect for the convergence of the algorithm.

Problem 82. Which of the following sentences is written correctly?

- Leave this problem to solve by others.
 Image: Let this problem to solve by others.
- \Box Let this problem be solved by others. \Box Left this problem solved by others.

Problem 83. Let $A, B \subset \mathbb{R}$. What sentence expresses the condition $\forall a \in A, b \in B : a < b$?

- \Box Every element in A is fewer than any element in B.
- \Box The set A have fewer elements in B.
- \square The set A has less elements than B.
- \Box An element in A is less than every element in B.

Problem 84. Which of the following phrases is written correctly?

- \Box If n = 3, the equation is easy to solve. Otherwise, further work is needed.
- \Box If n = 3, the equation is easy to solve. Or else, farther work is needed.
- \square If n = 3. Then the equation is easy to solve, else farther work is needed.
- \Box If n = 3, then the equation is easy to solve. Else, more work is needed.

Problem 85. Which of the following sentences is written correctly?

- He cannot play neither well soccer nor tennis.
- \Box Neither can be play well soccer, nor can be play well tennis.
- He can neither play well soccer nor tennis.
- He cannot play well soccer nor tennis.

Problem 86. Which of the following sentences is written and meant correctly?

- \Box I am satisfied that x verified the fix point condition.
- \square I satisfied that x verifies the fix point condition.
- \Box I verified that x satisfies the fix point condition.
- \Box I verified that x is satisfied with the fix point condition.

Problem 87. Which of the following sentences is written and meant correctly?

- \Box Consider the matrix, who is positive definite.
- \Box Consider the matrix that is positive definite.
- \Box Consider a matrix, which is positive definite.
- Consider a matrix, that is, positive definite.

Problem 88. Which of the following sentences is written correctly?

- \square This result is different than what we expected.
- This result is something else from what we expected.
- \Box This result is other then what we expected.
- \Box This result is different from what we expected.

Problem 89. Which	h of the follo	wing sentences is written	wrongly?	
\Box Inside th	e conference,	a special lecture is contai	ined.	
\Box In the co	onference, a sp	pecial lecture is included.		
During t	he conference	, a special lecture is schee	luled.	
\Box Within t	he conference	e, a special lecture is inclu	ded.	
Problem 90. How	can one read	" a^2 "?		
\Box "a up tw	0"	\Box "a two power"	\Box "square two a "	\Box "a squared"
Problem 91. What	t is the mean	ing of the prefix "pro-"?		
\Box in favor of	of	□ before	$\hfill\square$ a kind of	□ backward
Problem 92. What	t of the follow	ving is an acronym?		
	ro		□ ;ff	
□ J1. Jen	IE			L e.g.
Problem 93. What	t is a corollar	y?		
🗌 A main r	esult of a cha	apter of the book		
A technic	cal statement	needed in the proof of a	theorem.	
\Box A conseq	uence of a th	eorem with a short proof		
\Box A histori	cal comment	in the introduction of a r	nathematical book.	
Problem 94. What	t is the differe	ence between an equation	and an equality?	
\Box An equat	tion defines a	symbol, and an equality	uses it.	
□ An equat	tion stands in	a theorem, and an equal	ity in a definition.	
□ An equal	ity is true for	all values of the variable	s, and an equation only fo	or some.
\Box There is	no difference	both mean the same.		
Problem 95. The j	phrase "The	next step is to show" is	s most useful in the	
\Box definition	n of a symbol		\Box title	

 $\hfill\square$ statement of a theorem

 $\Box\,$ proof of a theorem

Problem 96. What of the following expressions is written well?

- \Box For many xs and ys there is no solution.
- \Box For many x's and y's there is no solution.
- \Box For many x s and y s there is no solution.
- \Box For many numbers x and y there is no solution.

Problem 97. Which of the following sentences is written and meant correctly?

- \Box I came here with some body. \Box I came hear with some body.
- □ I came herewith somebody. □ I came here with somebody.

Problem 98. Why did Nobel not create a prize in mathematics? - 노벨이 수학상을 안 만든 이유는?

- □ because Euclid stole his calculator 유클리드가 그의 계산기를 훔친 탓에
- □ because he didn't like Stuart's calculus textbook Stuart 미분적분교과서가 마음에 안 _ 든 탓에
- □ because his wife had an affair with a mathematician 아내가 수학자랑 불륜관계를 ___ 가진 탓에
- ↓ because he saw Gauss cheating during his algebra exam 대수학시험 때 가우스가 부 정행위하는 것을 본 탓에

Problem 99. What is not a good way of nesting delimiters (of the same size) in a formula?

 $\Box \{ [()] \} \qquad \Box \{ []() \} \qquad \Box [\{ () \}]$

Problem 100. Where should the symbol ' \times ' be used for multiplication in a formula?

\Box in the title

 \Box at a line break

 \Box in a definition

 \square at the end of a paragraph